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Abstract

Traditional discounting models in decision making research are typically applied in the spe-cific scenario that people obtain reward after making a single decision. However, in mostdecision making scenarios in our natural environment, people obtain a reward only after asequence of decisions. In these scenarios, it is still an open question whether traditional dis-counting models can be applied, as forward planning might affect the way risk and effort aretaken into account. Another open question is whether future effortful or risky actions areconsidered differently from immediate ones. To address these questions, I combined com-putational and experimental work to test how one can model the decision making behavior ofhuman participants in sequential decision making tasks. Specifically, I present two behavioralstudies in which participants only received reward when specific goal conditions were metafter a number of trials. In the first study I addressed the question of how decisions underrisk can be modeled precisely by explicitly including the state-dependent context in each de-cision. In the second study, I established a computational model for making context-specificdecisions under risk and effort. Importantly, in both the computational models developed inthese two studies I explicitly included forward planning to model the way how people makea sequence of goal-directed decisions. By fitting these models to participants’ choice behav-ior, I show the advantages of model-based data analysis for future experimental studies, aswell as the usefulness of Bayesian model comparison to select the best-fitting mechanismthrough which future risk and efforts are taken into account when making a decision.
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1 Introduction
The conscious human mind is able to cope with a never-ending barrage of small and bigdecisions in its everyday operations. These decisions can have consequences in time scalesranging from milliseconds (e.g. closing the eyes when something approaches them) to years(e.g. when deciding on a career path). The considerations necessary to make these decisionscan be mostly intrinsic (e.g. scratching an itch) or may require taking into account large-scalesystems like the public transportation in a new city or multiple players in a game.In addition to these complications, the mind must cope with an immense number of pos-sibilities from which to choose. Even the apparently-simple task of walking from home to thestore around the corner presents the deciding mind with an almost-infinite amount of pos-sibilities; the complete set of possible choices at any moment include all the 360◦ in whichone could move, all the possible places in which one could change moving direction and allthe ways in which one could go around obstacles.In order to evaluate every choice available when making a decision, one must take intoaccount the consequences of each decision, which is further complicated by consequenceswhich are stochastic, or whose exact nature is not known to the decision maker. Some con-sequences are not immediate, but could have known or unknown delays associated withthem.How does the brain accomplish the impressive feat of making these decisions in an onlinefashion? How can one decision-making body perform in such disparate scenarios as playingchess, riding a horse, or a decision on macro-economic issues? Understanding how thehuman mind tackles decision making would help us better understand human behavior,with applications including but not limited to medical care (Gallagher and Updegraff, 2012),addiction treatment (Everitt and Robbins, 2005), and marketing (Nasiry and Popescu, 2012).Furthermore, it would allow us to build machines that can perform as well as humans can indecision-making tasks, with applications as simple as chatbots (e.g Serban et al., 2017) andas grandiose as space exploration (Clarke, 1968).Risk and effort permeate every decision we encounter in real life: on the one hand, risk(and the similar concept of uncertainty) is present in every action and consideration we take.From noise in our movements and perceptions (e.g. we do not always catch the ball mid-air,even when we are paying attention to the game) to the inherent risk in any social interaction(e.g. the flat mate washes the dishes only half the times), any plan of action and any one-off decision must take risk into consideration. On the other hand, every action comes at anintrinsic cost: the effort necessary to carry it out. Cooking dinner implies the use of physical
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energy, which is a limited resource that needs to be regulated. Even planning our day andwhether to cook dinner or eat out requires the expenditure of cognitive resources, whichare thought to be finite (cf. Inzlicht and Berkman, 2015; Kurzban et al., 2013).In what follows, the subjects of risk and effort (defined in the following sections) in decisionmaking are described in the framework of sequential decision-making tasks. This is doneacross two peer-reviewed articles I published on decision making with risk and effort. In bothpublished works, sequential decision making was used instead of the single-trial decisionmaking paradigms that are typically used in the field to explicitly model how participants’avoidance of risk and effort can be adapted to the context in which the decision has beenmade, without resorting to time- or context-dependent discounting parameters.The study of human decision making has a long history in psychology and economics. Ineconomics, decision-making under risk (see next section) has been highly prioritized, fromthe earliest theories of expected utility (Bernoulli, 1954), to the formalization of the problem(Von Neumann and Morgenstern, 1944), to the initial formulation of prospect theory (Kahne-man and Tversky, 1979), to the most recent versions of it (Tversky and Kahneman, 1992). Inpsychology, a stronger emphasis has been made on the learning of tools to make decisions,starting with the earliest studies into habitual behavior (for a review, see Anderson, 2000,chapters 2-4) and their computational implementations (e.g. Sutton and Barto, 2018; Dayan,1993; Watkins and Dayan, 1992). In parallel to economics, psychology saw the introductionof discounting models for risk/uncertainty and temporal delay (for a review, see Green andMyerson, 2004) and, more recently, effort (Kool et al., 2010).Many of the computational models developed through the years have been single-usemodels: models designed to explain behavior in a specific task (e.g. decisions under riskor delay). This includes models mentioned above, such as prospect theory and discountingmodels. However, additional effort has been put into developing more generic frameworksfor human behavior which can be adapted to different types of decisions to be made. Theearliest examples of these include dynamic programming and reinforcement learning (for areview, see Sutton and Barto, 2018). Later on, the drift diffusion model (Ratcliff and McKoon,2008) was introduced which, while originally conceived for evidence-accumulating percep-tual decision-making, has been adapted for cognitive decision making (e.g. Pedersen et al.,2017). More recently, attractor dynamics-based decision making has been proposed as analternative to the drift difusion model (Bitzer et al., 2014). In a different vein, planning as in-ference, active inference and the free-energy principle (Toussaint and Storkey, 2006; Fristonet al., 2014; Kaplan and Friston, 2018; Botvinick and Toussaint, 2012; Friston et al., 2015) wereintroduced as a possible mechanism of decision making in the brain, with wide applicabilitydue to the generic formulation of these approaches.Until recently, most studies on decision making under risk and effort have been donethrough single-trial experiments. These experiments (e.g. n-armed bandits (Averbeck, 2015))are useful for isolating the mechanisms through which, for example, the presence of riskdevalues the subjective evaluation of reward. However, most decisions in life are not madein isolation, but rather are a part of a large sequence of actions whose rewards might notcome until many steps into the future. For example, the action of getting the coffee canisterout of the cupboard has value only as a part of the sequence of actions that leads to a cup ofcoffee. The action of putting one foot forward has no value but as part of the sequential act ofwalking, and even walking is typically seen as part of bigger sequences (e.g. going shopping).An important question for human decision making is whether embedding decisions in se-quences of decisions (i.e. sequential decision making) requires us to adapt our understand-ing of the ways in which risk and effort affect our valuation of rewards which are no longer
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a direct consequence of a single decision. If a reward can only be obtained by completinga number of tasks, each of which comes with a probability of failure, do humans discountthe reward for each one of those tasks? Or does the discounting process happen only oncewith an “overall” probability? Does mentally separating an effortful task into sub-tasks changehow we discount the reward based on the overall effort? Can a single, fixed discount functionproduce changes in a person’s attitude towards risk and effort throughout a task?In this work I tackle these questions in two ways. First, in chapter 2 I present a modelfor sequential decision-making based on active inference (Friston et al., 2015) in which risk-aversion is modeled implicitly (i.e. without an explicit discount function), which allows themodel to consider future risky decisions in the same way as immediate risky decisions areconsidered. Second, in chapter 3 I present a model based on single-trial discounting modelsfor both effort and risk, with an explicit mechanism for forward-planning. With this model,future efforts and risks are modeled explicitly via two possible mechanisms each, for a totalof four possible combinations of future risk/effort considerations. A novel sequential deci-sion making task under risk and effort is also introduced, with which I was able to select themechanism for the consideration of future effort and risk that best fit the data.Furthermore, I focused on developing and applying generic frameworks for sequential de-cision making that could be applied to a number of different tasks and even combined forentirely new tasks. I show how having these models available when analyzing data allowsresearchers to ask novel questions that traditional data-analysis methods used in psychol-ogy cannot address. Even in complex tasks, where a single participant may not observea significant portion of all possible scenarios during the experimental session, model-baseddata analysis allows for both within- and across-participant analysis, as well as obtaining trial-specific results, which is difficult –and often impossible– with traditional data-driven analyses.With a strong focus on Bayesian methods of model comparison and fitting, I show howthese models can be applied to sequential decision-making tasks and their parameters fittedto individual participants.Before introducing the models used, it is important to formally define the two main com-ponents of the decision-making tasks to which the models were applied: risk and effort.In both of the studies presented below, there is a strong focus on the computational mod-els that were developed. While the computational models presented are different from eachother, they have three key points in common: (1) they can be fitted to each participant sepa-rately, (2) they model the behavioural choice data of each trial, as opposed to model summarymeasures like the average response frequency and (3) they can be used to infer the partic-ipant’s confidence on their choice, i.e. if we think of their choice as being sampled from adistribution at each trial, what was the probability of the observed choice. This last point isthe focus of the first study presented below, where we argue that it can be used as a powerfuldata analysis tool that allows us to extrapolate choice behavior in yet-unseen contexts.

1.1 Decision making under risk

The two studies on which this dissertation is based study the concept of risk in sequentialdecision making. Here, I give a brief overview of the concept of risk in decision making, as wellas the ways in which risk has been studied and modeled in psychology and other behavioralsciences.Given a decision to make, risk is defined as the possibility that an action does not have thedesired outcome, with a probability p ∈ (0, 1). Examples of risky decisions, i.e. decisions in
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which risk exists, are easy to come by. The most obvious translation of risk into real life is inlotteries and slot machines, in which a single action (buying the lottery ticket or sliding the coininto the slot machine) has a desired consequence (winning money), but also the possibilityof a second outcome (not winning money), both with a sometimes known probability. Risk,however, is found in all facets of life and can involve action sequences. For example, if runninglate, taking a bus (which involves a long series of single steps, e.g. walking to the bus station)gets you on time with a probability, and with X delay with a probability that depends on X.Taking a taxi (with its own sequence of actions) has the same possible outcomes but withdifferent probabilities each.The study of decision making under risk is of great importance as, in real life, risk per-meates all the decisions that we make. From the broadest decisions (e.g. which career topursue) to the most essential ones (e.g. how to hold a glass of water), there is always a chancethat things will not go how we wanted and planned and, in many cases, alternative possibili-ties can be foreseen and taken into account. In the interest of understanding how humansperceive and handle risks in their decisions, risk has been studied in psychology, economicsand neuroscience for decades, as introduced above.In behavioral experiments, the typical setup for studying decision making under risk com-prises a set of states in which the participant can find herself, and a small set of availableactions, each of which having a set of outcomes with known probabilities. In some cases,uncertainty is also considered, i.e. outcomes to an action whose probabilities are not knownto the participant and can only be inferred/approximated. A common example of this is theone- or multiple-armed bandit (e.g. Averbeck, 2015). This setup is an abstraction of the afore-mentioned slot machine, in which the participant is presented with one or more “arms” topull (in analogy to old-school slot machines) in order to receive reward with a probability thatis sometimes known (risk).Such setups are used in conjunction with descriptive models that calculate a subjectivevalue of reward, with the goal of inferring participant-specific parameters that describe howmuch they devalue reward based on risk. These models, often called discounting modelsbecause the reward is discounted (i.e. lowered) by risk, are parametric models which canbe fitted to experimental data to derive parameter values that describe the risk-aversionor proneness of a participant. The best-fitting of these models is hyperbolic discounting(Ostaszewski et al., 1998), which states that a person will assign a subjective value to a rewardwhich diminishes with risk following the hyperbola Rsub = Robj/(1+κγ), where γ is the oddsagainst gaining that reward, γ = (1 − p)/p, where p is the probability of getting the reward.Finally, κ is the discount parameter which is fitted to a participant’s choices. If κ ∈ [0, 1), theparticipant is said to be risk prone, κ ∈ (1,∞) means the participant is risk averse, and κ = 1means the participant is neutral, or optimal, as then the subjective value is reduced to theexpected value of that action, i.e. Rsub = pRobj .It has been shown that a person’s discount parameters can change over time (Matheret al., 2012; O’Brien and Hess, 2020; Green et al., 1999b, 1996). This can have two expla-nations: (1) the strength with which humans discount rewards based on risk changes overtime and circumstances (i.e. κ depends on time), or (2) discounting itself is fixed, but the waysubjective values are used to make decisions change depending on context. Note that thesetwo alternatives are not mutually exclusive and could both be in effect.For the two studies presented here, I chose to focus on the second mechanism, namely theadaptation of behavior to changing context. To this effect, we present two different modelsthat exemplify how fixed discounting parameters can lead to highly dynamic behavior. Inparticular, in the second study, traditional discount curves are used for probability and effort
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discounting to explicitly fix the discounting curves to their current state of the art in theliterature, while focusing on context adaptation.In what follows I briefly introduce the published works separately. The full published textscan be found in Chapter 2 and Chapter 3.

1.2 Modeling context in sequential decision making under risk

In the first published work presented below (Chapter 2), published as Cuevas Rivera et al.(2018), we presented a behavioral model for decisions under risk and uncertainty based onactive inference (Friston et al., 2015), which explicitly models the changing context for everytrial and adapts its decisions. Using a sequential decision making task previously presentedby Kolling et al. (2014), we used the behavioral model to model participants’ choices in thetask. The task is a modified k-armed bandit, in which the goal is not only to maximize reward,but also to obtain a minimum reward within eight trials (otherwise, all reward is lost). At eachof these trials, only two bets are available, and the probabilities and possible payoffs areshown to the participant. At each trial, one of the bets is high-reward, high-risk, while theother is low-reward, low-risk, with the exact probabilities and rewards changing randomlyfrom trial to trial. Participants must develop a strategy to balance reward and risk throughoutthe eight trials.The model presented takes into account the accumulated points, as well as the minimumpoints necessary to achieve and an estimation of the possible future bets to find the strat-egy that balances reward and risk. The focus of this work was on the advantages that comewith explicitly modeling context as part of the behavioral model, as well as modeling thepreferences and beliefs of the participant in each trial. In particular, we focused on the inter-polation that can be done with the models after they have been fitted to participants’ data.Because many tasks in real life are complex in nature, including many possibly-hidden statesof the environment, as well as actions available and changing circumstances, it is unlikely thatduring the course of a single experiment that aims at mimicking real life, the participant willencounter a significant portion of all the available states. This leaves the experimenter in asituation in which analyzing data on a single trial basis is difficult and oftentimes impossible.We first showed that our trial-based analysis can reproduce the analysis performed previ-ously by Kolling et al. (2014), which is based on a grand average across all participants and byclustering all trials into four categories. We then show that this grand-average analysis, whileuseful in many situations, produces results that can be misleading, as they lump togethermany decisions that are made in wildly differing contexts. We finalize by showing how theinterpolation can lead to new insights on the behavior of participants.

1.3 Constant risk and effort aversion as dynamic observables

While not as widely studied as probability discounting, the related effect of effort discount-ing follows similar principles (Prévost et al., 2010; Phillips et al., 2007). Much like with risk, areward is made less desirable, the higher the effort required to obtained is, both for phys-ical and cognitive effort. Note that effort can sometimes be seen as its own reward, thusadding to the objective reward (cf. Wang et al., 2017). Following the steps of probability anddelay discounting, different descriptive models have been presented for effort discounting
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(Prévost et al., 2010; Skvortsova et al., 2014; Phillips et al., 2007; Hartmann et al., 2013; Klein-Flügge et al., 2015; Kivetz, 2003). Although effort presents extra challenges (e.g. that effort issometimes regarding as a reward in itself (e.g. Inzlicht et al., 2018)), it is also an open ques-tion whether the parameters for effort discounting change in time and with the context, orwhether they are fixed, as discussed above with risk.In the second published article presented below (see Chapter 3), published in (Cuevas Riveraet al., 2018), we present a novel sequential decision making task involving risk and mentaleffort. As before, in this task participants must accumulate a minimum number of pointsacross ten trials, to gain monetary reward. At each trial, the participant might choose a betwith a fifty percent chance of awarding a point (zero points otherwise), and the exertion ofmental effort, though a number-sorting task, which always yields a point. The parametersof the task were set up such that in half the mini-blocks (collections of ten trials), partici-pants could accumulate enough points to earn monetary reward by just choosing the bet,thus avoiding the exertion of any mental effort. This was done to determine whether peoplewould choose to exert mental effort even when it was not absolutely necessary. This is re-flected in the task in the form of a participant exerting effort during the first trials, instead ofchoosing the bet and waiting until the later trials to exert effort, if it became necessary.We predicted that participants would show different strategies regarding when in a mini-block they chose to exert effort. Matching this, we found that participants could be classi-fied as belonging to one of three groups: (1) early-effort, (2) late-effort or (3) all-effort. Astheir names suggest, early- and late-effort participants were those that chose to start theminiblock with effort, or end with it (when necessary), respectively. The all-effort populationcomprises those participants who chose effort in every trial, regardless of the contingenciesof the monetary rewards.In addition to the experimental task, we presented a behavioral model that incorporatesknown discounting functions and adds a forward-planning component to enable it to makesequential decisions in the task. The purpose of the model was to show that static discount-ing parameters, as in traditional discounting models, can create a dynamic avoidance of riskand effort. More precisely, we show that by explicitly Modeling the context in which decisionsare being made, a decision making agent armed with a fixed discount function for risk andeffort can make very different choices as context changes in a forced binary choice whereone option involves risk and the other effort.We used the experimental data to select the best-fitting mechanism for forward-planning,which describes how participants consider future efforts and bets to make the present de-cision. Finally, we showed that the fitted model parameters correlate with the dynamics ofeffort exertion for each participant, describing whether they belonged to the early- or late-effort groups.
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2 Context-dependent risk aversion:
a model-based approach

2.1 Abstract

Most research on risk aversion in behavioral science with human subjects has focused on acomponent of risk aversion that does not adapt itself to context. More recently, studies haveexplored risk aversion adaptation to changing circumstances in sequential decision-makingtasks. It is an open question whether one can identify evidence, at the single subject level, forsuch risk aversion adaptation. We conducted a behavioral experiment on human subjects,using a sequential decision making task. We developed a model-based approach for estimat-ing the adaptation of risk-taking behavior with single-trial resolution by modelling a subject’sgoals and internal representation of task contingencies. Using this model-based approach,we estimated the subject-specific adaptation of risk aversion depending on the current taskcontext. We found striking inter-subject variations in the adaptation of risk-taking behavior.We show that these differences can be explained by differences in subjects’ internal rep-resentations of task contingencies and goals. We discuss that the proposed approach canbe adapted to a wide range of experimental paradigms and be used to analyze behavioralmeasures other than risk aversion.

2.2 Introduction

It is typically assumed that humans, as well as other animals, prefer courses of action freeof risk and uncertainty; e.g., when foraging for food, easier and safer patches are preferred(Kacelnik and Bateson, 1996; Myerson et al., 2003). However, this safety-seeking behavior ishighly contextual: In many situations, the course of action with the least risk or least uncer-tainty is not the one that can best fulfill the current goals. For example, while an animal mightchoose to go for small, easy prey at the beginning of a day, towards the end, if sustenance isnot ensured for the night with the small prey, bigger prey must be sought, with all the risksit entails (Kacelnik and Bateson, 1996; McNamara and Houston, 1992).Personality traits related to such risk proneness and risk aversion are well studied in hu-mans. However, it is known that, as with animals, the preference towards risky or safe choices
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is not a static parameter of behavior; instead, this preference seems to change to better fitthe context. While much research has been conducted on these dynamic context effects inanimal behavior (Caraco et al., 1980, 1990; Cartar and Dill, 1990; Kacelnik and Bateson, 1996)and in anthropology and related fields (Winterhalder and Smith, 2000), relatively few studiesseem to have explored the same themes in human subjects (Houston et al., 2014; Kollinget al., 2012; Mobbs et al., 2013).A possible reason for this is that studying the dynamics of risk aversion in an individualis notoriously difficult (Kellen et al., 2016). This is mostly due to the fact that risk aversionmust be measured, by definition, in a situation in which risk and uncertainty play a greatpart. In these situations, the behavior of the subject is stochastic (Rieskamp, 2008), whichmay complicate the analysis of the behavioral data.To work around this difficulty, experimenters have resorted to experimental manipulationsto indirectly assess or directly ask for the subject’s preferences or uncertainty (Hey and Orme,1994), which comes with its own set of pitfalls (Charness et al., 2013). Other methods arebased on averaging behavior across many decisions, sometimes across many subjects andtasks, and inferring how behavior changes, on average, as a function of context, e.g. (Econo-mides et al., 2015; Kellen et al., 2016; Kolling et al., 2014; Schwartenbeck et al., 2015; Walasekand Stewart, 2015). This approach has the downside of being blind to subject- and/or trial-specific changes on choice preference.Here we performed a model-based analysis of the adaptation of risk aversion to con-text based on subject-specific behavioral responses. To do this, we combined a behavioralmodel formulated in the recently-developed active inference framework (Friston et al., 2015)with maximum-likelihood estimators of subject-specific parameters. The behavioral modelallowed us to estimate a subject’s preference for risk at every decision. Importantly, the pro-posed method has the advantage of not requiring multiple observations of the same contextin order to estimate a subject’s preferences, instead harnessing statistical power from everydecision made across all trials.As an experimental proof of principle, we applied the resulting model-based technique toa sequential decision-making task first presented in (Kolling et al., 2014). In this task, subjectsmust make a sequence of decisions to accumulate points towards a target. This task is wellsuited to study the effects of context on risk aversion, as the risk of not reaching the tar-get varies throughout the sequence of decisions, thereby prompting subjects to adapt theirchoices to the current risk context.With this approach, we find inter-subject differences in the way that context modulatesrisk aversion, as well as motivational and confidence-related differences in the way subjectsevaluate a context and make a decision.

2.3 Methods

2.3.1 The task

Subjects performed a game-like task first introduced in (Kolling et al., 2014), in which theyhave a total of eight trials (decisions) to accumulate points, in what we call a mini-block. Foreach mini-block, a threshold is set, of which subjects are informed; if at the end of the mini-block the number of points accumulated does not exceed the threshold, all points for thatmini-block are lost. The overarching goal for the subjects is to accumulate as many points aspossible over all mini-blocks.
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Risky option Safe option
Prob. ofsuccess Reward Expectedvalue Subj.value Prob. ofsuccess Reward Expectedvalue Subj.value

1 0.35 265 92.75 0.243 0.9 100 90 -0.449
2 0.35 260 91 0.13 0.6 180 108 0.491
3 0.45 240 108 0.98 0.9 115 103.5 0.134
4 0.45 190 85.5 -0.149 0.6 150 90 -0.677
5 0.35 245 85.75 -0.208 0.75 145 108.75 0.215
6 0.2 350 70 0.210 0.55 145 79.75 -0.123
7 0.4 245 98 0.442 0.75 170 127.5 0.118
8 0.3 210 63 -0.165 0.9 120 108 0.329

Table 2.1: The eight action pairs offered to subjects in each mini-block, in random order. Each rowrepresents a single action pair with one safe option and one risky option. The column ‘Prob.of success’ indicates the probability of getting the reward and the column. ‘Reward’ indi-cates the magnitude of a reward in points. The column ‘Expected value’ lists the probabilityof success times the reward. The column “Subj. value” shows the subjective value (see maintext for the definition).

In every trial, the subjects are presented with two choices; they can either choose (i) anaction that yields a small number of points with a high probability of success, or (ii) one whichyields a high number of points, but with a low probability of success. Each yields zero points ifit does not win. We call these two choices the ‘safe choice’ and the ‘risky choice’, respectively.Following Kolling et al. (2014), there are eight pairs of a safe and risky choices (called actionpairs; see Table 2.1), and they are presented in random order in every mini-block, withoutrepetition. The order is not known to the subjects. Subjects are informed that the outcomesof the two bets at each trial are randomly selected, independently of each other.The maximum possible number of points in a mini-block is 2,005, which is achieved only inthe unlikely case when the subject chooses and wins every risky option. The threshold to bereached, for each mini-block, is pseudo-randomly chosen from four possibilities: 595, 930,1035, and 1105.In this task, the variables relevant to making a decision are the trial number, the number ofpoints accumulated so far in the mini-block, the current threshold and the presented actionpair. All this information is shown to the subject on the screen during a trial (see Figure 2.1).On the top of the screen, a bar shows the subjects how many points they have accumulatedthrough the current mini-block, as well as the threshold. We used a bar to prevent subjectsfrom calculating exactly how many points were needed, in order to maintain uncertainty inthe decisions. The two available actions are shown on the left and right of the screen; theposition of the two choices (right or left side) was randomized. The probabilities of successfor the actions are displayed as vertical bars, and the reward magnitudes are displayed asnumbers. The trial number of the ongoing mini-block is displayed on the bottom.Subjects made choices by pressing the X or M keys on a standard keyboard, to choose theoption on the left or right, respectively. After a decision was made, feedback was displayedthat informed the subjects whether the two choices had been successful or not (regardlessof which choice was made). If the selected action was successful, the points were added tothe top bar in white. At the beginning of the next trial, the white bar turns the same color as
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Figure 2.1: The information was shown to subjects on a computer screen. Each screen was shownfor 1.5s, except for the decision screen (the second screen), which was displayed eitherfor a maximum of 10 seconds or until the subject made a decision. If no decision wasmade during the 10 allotted seconds, another screen (not shown) reminds the subject tostay attentive, and the trial is repeated. After the final screen is shown for 1.5s, a new trialbegins. At the end of each mini-block (of eight trials), the subject is informed about successor failure of reaching the threshold, i.e. the required number of points for this mini-block.For visual clarity, the elements are shown bigger in this figure than in the experiments.
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the rest of the bar. At the end of the mini-block, subjects were informed as to the numberof points gained in that mini-block. The timings of the screens can be seen in Figure 2.1.Following Kolling et al. (2014), a mini block-specific multiplier was used, which can be seenin the top-right corner of the display. This number is set according to the current threshold,with values 1.1, 2.3, 3.3 and 4.2 (for the corresponding thresholds in ascending order). If thesubject goes past the threshold of this mini-block, the accumulated points are multiplied bythis multiplier. This is done to offset the difficulty of the higher thresholds and maintain thesubject’s motivation.For this task, we defined the context as the combination of trial number, action pair (of-fered), number of points that have been earned so far, and threshold for the current mini-block. These are the variables that are relevant to making a decision and may prompt sub-jects to adapt their behavior in a specific context. For example, subjects may decide dif-ferently about a specific action pair when late in a mini-block with many points required tosurpass the threshold, as compared to early in the mini-block. We use this definition of con-text throughout this paper.The task was performed by 35 subjects, recruited from a pool of subjects at the Technis-che Universität of Dresden. 13 were men and 22 women, with an average age of 26 years(standard deviation 4.6). All had normal or corrected-to-normal eyesight.The training session consisted of 4 mini-blocks, each with a different threshold. After thetraining session, each subject completed a total of 48 mini-blocks, 12 with each threshold, inrandomized order. The session was divided into two blocks with 24 mini-blocks each, witha pause between the two blocks, totaling around 45 minutes per subject, depending on thetime they took for each decision. Both the offers and their outcomes were chosen randomlybefore the experiments and were used with all subjects. The position of the risky option (leftor right hand side of the screen) was randomly chosen for each trial.The payout was of 10 Euros, not tied to performance. While some studies have foundevidence that real vs. hypothetical payouts affect behavior in gambling tasks (Locey et al.,2011; Xu et al., 2018), it is unclear if and how adding non-hypothetical rewards would affectbehavior in our task, as risky and safe choices can both be valid ways of winning a mini-block. Relatedly, whether monetary incentives alleviate or completely eliminate these biasesis still under investigation, with studies attempting to eliminate the effects of these biasesseeing mixed effects (Fantino et al., 2007; Locey et al., 2011). Moreover, incentivizing subjectshas been found to exacerbate certain cognitive biases and hurt performance (Camerer andHogarth, 1999; Hertwig and Ortmann, 2001).The study was approved by the Institutional Review Board of the Technische UniversitätDresden (protocol number EK 541122015) and conducted in accordance with the declara-tion of Helsinki. All subjects gave their written, informed consent.
2.3.2 Active inference model

Our behavioral model is based on active inference, as was described in (Friston et al., 2015).In this and the following sections, we briefly describe the Active Inference framework, as wellas the generative model parameters that we used, and the fitting procedures to fit the modelto each subject’s data.The active inference agent chooses actions which minimize expected free energy (i.e. max-imize model evidence or minimize surprise), given the generative model and the goals of thetask. The generative model is a formal description of the agent’s knowledge about the exist-
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ing hidden states of the environment and the existing rules that define transitions betweenthese states. Model inversion based on Bayes’ theorem allows us to formulate the agent’sbeliefs about the current and past states of the world, and to generate expectations aboutthe future.In practice, exact probabilistic inference is rarely computationally tractable, as generativemodels capture complex task dynamics. Hence, one often has to resort to an approximateinference scheme when defining model inversion. Active inference is based on the so-calledvariational approximation which allows treating posterior beliefs over specific hidden vari-ables as conditionally independent from other factors of the hidden states space (Beal, 2003;Daunizeau et al., 2009). This method allows us to obtain closed-form algebraic equations thatdefine the evolution of beliefs over the hidden states of the world.In active inference, the problem of choosing an action that best fits the goals of the taskis cast as an inference problem. In fact, actions are taken as another hidden state (so-calledcontrol states) of the environment, and as such benefit from the same simplification that theclosed-form update equations bring.In the following sections, we discuss the underlying hidden Markov model in which thetask contingencies are represented. Full details of the mathematical derivation of the updateequations can be found in (Friston et al., 2015).
Generative Model

The full generative model of active inference is built with the following Friston et al. (2015):
• A set of observations
• A set of hidden states and actions
• A generative model over observations, states and actions
• An approximate posterior probability over hidden states

In what follows, we describe these required components of the generative model in moredetail.
Observations and hidden states

We take the hidden states of the environment to be two-dimensional. The first dimensionis that of the accumulated points: it describes how many points in the mini-block the agenthas won so far. These are taken to be the integers in the interval (0, 200), where 0 meansthat no points have been so far earned, and 200 is the maximum number of points possible.In the experiments, the points run from 0 to 2005; however, for the sake of computationalefficiency, we divided the points by 10 and rounded up. In trial simulations, we found thatthis approximation made no difference in the behavior of the agent, and it allowed us tosimulate the task in computation times adequate for our fitting procedures. Additionally, wedid not include all 200 states (points) in the model, but rather created a cut-off point shortlyafter threshold; this allowed us to further reduce the computation times without affectingthe results. The value chosen was 1.2 times the threshold for most of the computation,except for the (much smaller) computations in the section Section ’Risk preferences for thelow- and high-STP groups’, where it was set at 1.5 times the threshold to fully accommodate
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the consequences of all action pairs. Very few observations were made by subjects beyondthe cut-off point (a maximum of 12 out of 384 for one subject) and they were removed fromthe pool.The second dimension of the hidden states is the current offer; the action pairs are labeledfrom 1 to 8, as in Table 2.1.We have chosen the observation likelihood, which defines dependence of observations onhidden states, as an identity matrix. This was to reflect the fact that, during the experiments,subjects receive direct observations pertaining to the number of points so far accumulatedand the current offer. This means that the observations are fully informative about the stateof the environment; hence the inference about the current state corresponds to matchingbeliefs to observations.
Generative model of states and action

The state transition probability defines the agent’s belief about the evolution of the environ-ment, both as a consequence of the agent’s actions and of the passing of time.We now describe the agent’s generative model pertaining to the task at hand that consistsof accumulating points throughout the trials. It is beyond the scope of this work to explainhow an agent (or subject) comes to build (learn) this generative model. Here we assume thatsubjects have learned an accurate representation of the environment, which would corre-spond to setting the agents’ generative model to correspond to the true generative processof the environment (i.e. the exact transition rules of the environment). This reflects the factthat the rules of the task are simple and well explained to the subjects at the beginning ofthe experiment.The evolution of the environment is described in terms of transition matrices. There isone for each of the available actions. In our model, there are two actions available: riskyand safe. The effect of each action depends on the current offer, which is why it is includedas a dimension of the hidden states. The matrices can be represented with the followingequation:

Bs/r(Xt +Rs/r,j , Xt) = Ps/r,succ,j (2.1)
Bs/r(Xt, Xt) = Ps/r,fail,j (2.2)
Bs/r(X,Xt) = 0, ∀X /∈ {Xt +Rs/r,j , Xt} (2.3)

WhereBs/r is the transition matrix for the safe or risky action, respectively,Xt is the currentnumber of points, and Pr/s,succ/fail,j andRr/s,j are the probabilities of success/failure and thereward of the j-th action pair, respectively. These reflect the rules of the game, in whichchoosing an action can either yield that action’s reward, with the action’s probability, or yieldno reward.Regarding the current offer (action pair), we chose a generative model which differs fromthe generating process of the environment. In the environment, transitions from one offer toanother are randomized, but no action pair is repeated during a single mini-block. However,because keeping track of the offers already seen (and those still to come) is a very costlyprocess, the agent instead believes that all transitions (i.e. from the current action pair to allothers) are equally probable. We believe that this generative model is more likely to resemblethat of human subjects.
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Prior preferences over goal states

The goals of the task are stated as a distribution over the last state, after the eighth trial. Theagent will make its decisions by comparing its predictions regarding states to be visited inthe future by making a set of decisions, and the prior distribution over the last state.In our case, this distribution describes the relative desirability of outcomes of a mini-block,in terms of the accumulated points. A score is assigned to each of these hidden states ofthe environment; the higher this score, the more the agent will seek to be in this state by theend of the mini-block. We assumed that subjects learned this distribution through both taskinstructions and experience during training.Given the task instruction one could reason that the best functional form for the prefer-ences is the one with zeros everywhere below threshold and some positive number abovethreshold (see Figure 2.2A). However, it is important to note that the prior preferences overthe goal state do not necessarily reflect the rules of the game, but rather establishes thebehavioral strategy that the agent believes is the best for winning. Therefore, we expectthat, through experience, subjects build different beliefs as to what the best way to win is.Because of this, we allowed for subject-specific goal distributions.For our fitting procedures, we used three distinct shapes for the goals: Gaussian, sigmoid,exponential. By changing their parameters, we were able to generate a large family of shapesthat are consistent with the task instructions. In particular, the sigmoid family recreates thetask instructions to the letter, such that any state below threshold has no value, and a ramp-ing up holds for those above threshold. Examples of these shapes can be seen in Figure2.2B-C.The sigmoid family has two parameters: slope and center. The center determines wherethe transition from zero to one is centered, and the slope parameter is the slope at thecenter. These follow the equation:
fsig(x) = 1

1 + e−m(x−x0)
(2.4)

Where m and x0 are the slope and the center, respectively. A very high m and a x0 atthreshold reproduces the step function as in Figure 2.2A.The exponential family has only one parameter, the coefficient of the exponent. This familyfollows the equation:
fexp = ekx (2.5)

where κ is a free parameter, For the remainder of this work, we will refer to the parameter
κ of the exponential goal shape as sensitivity to points (STP), in analogy to the sensitivity todelay/probability in the discounting literature (Basile and Toplak, 2015). This family describesa ’ramping-up’, which does not incorporate the existence of a threshold. This shape repre-sents a simple heuristic, where the agent assigns exponentially larger amounts of preferenceto higher number of points.Finally, the Gaussian family has two parameters: mean and standard deviation. They aregiven by the equation:

fg(x) = Ae−
(x−µ)2

2σ2 (2.6)
where µ and σ are the mean and standard deviation, respectively, and A is the normaliza-tion constant. This family reflects a compromise between the general rule of ’more points
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Figure 2.2: Goals are expressed as a valuation of each of the relevant hidden states, which in thiscase are the accumulated points after the 8th trial. These valuations are presented hereas shapes, following the equations described in the Methods section. The shade areasare those points above threshold. For visualization, only points from 0 to 700 are plotted,with a threshold of 595. (A) An example of a shape that follows the task instructions to theletter. All points below threshold have a value of 0, while all above are valued the same.(B) Gaussian, (C) sigmoid and (D) exponential families of shapes. For each family, threeexamples are plotted (shown in different colors), with their corresponding parametersshown in the legend. The values of µ and κ are relative to the threshold. For example,
µ = −150 represents a mean located at x̂ − µ = 445. In (D), STP stands for sensitivity topoints, which is the parameter of the exponential family (see the section Section ’Subject-specific parameter values’ above).
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are better’ and a strong preference to states close to threshold (depending on the mean ofthe distribution).Note that, while most of the shapes considered do not have a strong threshold that theagent must surpass (with the exception of the sigmoid, when the slope is high), they do notconflict with the rules of the task; by maximizing points (which can be said of any monotonously-increasing shape), a mini-block can be won. Additionally, certain parameter ranges (for ex-ample, higher values for the exponential) do include the idea of soft thresholds, i.e. that theagent has a strong preference for ending above threshold.
Posterior over actions (update equations)

To calculate the posterior probability distribution over the available actions at each trial,
p(at|st,m) , our model makes use of the following equation:

logP (at|st) = F (st, C) + log(βat) (2.7)
where is a subject-specific choice bias, which does not depend on the context and thefunction F (st, C) compares the projected future states to the agent’s goals C ; see (Fristonet al., 2015) for details.We introduced this choice bias parameter because we observed a marked average pref-erence of most subjects for the safe choice across the entire data set (see Section ’Standardanalysis of behavioral data’ below). Choice bias is a prior preference for or against the riskyoption, regardless of context and, more specifically, of the current offer. That is, has twocomponents, βrisky and βsafe. The values referred to in the main text are those of βrisky. Thisparameter complements the goal parameters by adding a component that is non-contextualon top of the contextual goal parameters. For an overview of the model parameters, see Fig-ure 2.3A.

2.3.3 Fitting the model

Our model has free parameters which we fitted to every subject independently by doing agrid-search over the relevant part of the parameter space. These parameters are of twocategories, affecting the agent in different ways, see Figure 2.3A.In the first category, the first parameter affects how extreme the probability distributionsfrom which actions are sampled can be. We call this parameter maximum decision modi-fier (MDM) and it corresponds to the parameter in (Friston et al., 2015). The effect of theMDM is that, for a low value, the distributions approach 50/50, regardless of context, whilefor large value, they approach either 0/100 or 100/0, depending on the context. This canbe interpreted as controlling how certain the agent can be about its decisions; its value,either optimal (performance-wise) or inferred (fitted to a subject) is both task- and subject-dependent. The second parameter in this category is choice bias, which is a non-contextualnumber added to (or subtracted from) the preference for risk.The second category pertains to the shape of the goal distribution. These are the threefamilies discussed above, each with its own parameters.For each subject, we performed a grid-search over the parameter space and calculated,for each set of values for the parameters, the data likelihood of the model. Through this pro-cedure, we created a likelihood map for each subject, which represents a multi-dimensionalprobability distribution over parameter values.
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Figure 2.3: (A) Model parameters. The goal shape (e.g. exponential) is shared by all subjects, while therest (Subject-specific, free parameters) are fitted to each subject. Non-contextual parame-ters are those that affect all decisions equally (the choice bias and the maximum decisionmultiplier, MDM). Contextual parameters are those whose effect on decisions changeswith context, which are those related to the shape of the goal. The number of parametersdepends on the shape; the Gaussian has two (µ, σ), the sigmoid two (m, x0) and the ex-ponential one (STP) (see Section ’Prior preferences over goal states’). In total, the modelwith the exponential has four free parameters and with Gaussian and sigmoid five. (B) Di-agram for the proposed method to estimate subjects’ preferences. The process starts atthe top, with the collection of all models and the experimental data for all subjects. Nodeson the left-hand column are models, which become more refined as the process movesdownwards. The same is true for the Fitting and Data columns (center and right-hand,respectively). The final step, “Estimate preferences”, is repeated for each trial, while therest are performed only once.
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The parameters we searched are as follows. For the Gaussian family, µ from x̂ − 15 to
x̂+ 15, σ from 1 to 15, where x̂ is the threshold, both with increments of 1. For the sigmoidfamily, we chose centers x0 between x̂ − 15 and x̂ + 15 with increments of 1, and slope mfrom 0.1 to 3 with increments of 0.1. We chose to set the values of µ and x0 to be centeredabout threshold in order to unify the parameter values across all conditions and simplifycalculations; since the interpretation of the fitted agents is made in terms of their shapesand not their parameter values, this choice has no effect on the results. For the exponentialfamily, the parameter STP was taken from 0.5 to 10, in increments of 0.1. Smaller incrementsin these parameters caused no discernible differences in the posteriors over actions.The parameter MDM was searched in the range 0.1 to 5 in increments of 0.1, and fromthere to 60 in increments of 5. The range of MDM is segmented in this way because for highervalues (¿5), small increments create no discernible differences in the posterior distributionsover actions.Finally, the choice bias parameter was searched between 0.1 and 2 in increments of 0.1.Maximum likelihoods rapidly drop after 1.2, and by 2 are already many orders of magnitudelower.
2.3.4 Model comparison

We made use of the Bayesian information criterion (BIC) (Schwarz, 1978) to evaluate eachmodel and compare between them, using the guidelines in (Kass and Raftery, 1995).In Figure 2.3B we show a diagram of the entire procedure comprising model comparison,parameter fitting and preference estimation (which will be discussed below).

2.4 Results

The influence of the environment, as well as the internal state of an agent, e.g. a foraging bee,on the decision-making process under varying risk has been extensively studied in the fieldsof behavioral ecology (for animals) and behavioral anthropology (for humans) (Winterhalderand Smith, 2000). In these studies, animal or human subjects are placed in environments,or presented with tasks, in which a sequence of decisions must be made in order to reachan overarching goal. For each decision, two or more options are presented to the subject,differing in how risky these options are, i.e. how likely it is that they will yield no reward, andhow much reward, e.g. food or money, they may yield. Here we define risk as the probabilitythat a chosen action does not yield any reward, when these probabilities are known to thedecision-making agent (as opposed to uncertainty, where the contingencies are unknown).Because this definition of risk (and its usage in risky/safe choices) refers to the differenceson the probabilities of success for the two choices in a trial, “relative risk” would be a moreadequate name; however, since it is the only definition of risk used in this study, we havedropped the adjective “relative” from the name for simplicity.For this work, to exemplarily showcase this approach, we made use of one such task, in-troduced in (Kolling et al., 2014), in which the variations in the context, i.e. the states of theenvironment and of the agent relevant to the decision-making process, allowed us to studythe effects of context on the choices of human subjects. More specifically, it allowed us tostudy the adaptation of risk aversion to changing context, as has been done with animals(Caraco et al., 1980, 1990; Cartar and Dill, 1990; Kacelnik and Bateson, 1996).
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This section is divided into three parts: firstly, we show, using standard analysis tools, thebehavioral results. Secondly, we present a computational model for the task, as well as theresults from fitting this model to behavioral data. Finally, we show that our approach can beused to track the change in subjects’ risk aversion throughout the experiment.
2.4.1 Standard analysis of behavioral data

We first performed the same data analysis as was performed in (Kolling et al., 2014) on ourdata set of 35 subjects.In Figure 2.4A, we show the average probability of choosing the risky action as a functionof ∆V , the difference in subjective values of the risky and safe choices. To reproduce thefindings in (Kolling et al., 2014), we defined the subjective value of a choice as:
Vrisky/safe = p̃risky/safe(win|offer) + r̃risky/safe(offer) (2.8)

where and are the probability of success and the reward for the current offer, where of-fers are normalized by the mean and standard deviation across all offers. The tildes in andindicate that they have been normalized: for each offer, we subtracted the mean across alloffers and divided by the standard deviation (see Table 2.1). Note that the term “subjective”refers to the fact that it differs from the objective definition of expected value (probabilitymultiplied by reward); Kolling et al. (2014) opted for this definition as they found that it bet-ter fitted subject’s choices. Note that, to show the expected value in the conventional sense,Table 2.1 lists the standard expected values for each offer pair, based on a multiplication ofprobability and reward size.As already found in (Kolling et al., 2014), it can be seen that, when averaged across all sub-jects and all mini-blocks, the probability of choosing the risky offer increases monotonouslywith the difference in subjective values. Note that ∆V does not offer a full description of acontext, for it does not take into account the potential pressure created by the upcomingend of the mini-block or the necessity to go above threshold in the task (Kolling et al., 2014).Kolling et al. (2014) defined the variable ‘risk pressure’ as a more detailed (but still incom-plete; see below) description of the context of the present task. Risk pressure is defined asthe average number of points the subject would need to earn in each of the remaining trialsin the mini-block in order to surpass the threshold:
Γt =

{
x̂−xt
T−t ifxt < x̂

0 otherwise (2.9)
where t is the current trial number, is the threshold, xt the accumulated number of pointsat t, and T the total number of trials. They found evidence, using a regression analysis, thatits value is a predictor of subjects’ choices. Risk pressure has values in the interval [0,]: (i)zero when points are above-threshold, (ii) and when no points have been earned and onlyone trial is left. In the present task, risk pressure values above 350 represent a context inwhich the subject cannot possibly win, as the highest possible offer is 350 (see Table 2.1).We replicated the behavioral results in (Kolling et al., 2014) using two fixed-effects gener-alized linear models (GLMs); both assume the same regressor values for all subjects. Thefirst model had four regressors, namely: a constant term (choice bias), ∆V , trial number andrisk pressure. The results can be seen in Figure 2.4B. In our case, probably due to the largernumber of subjects, all regressors are significant (p¡0.001); however, to exactly reproduce
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Figure 2.4: Behavioral results. These results reproduce the results reported in (Kolling et al., 2014).(A) Probability of choosing the risky choice, P(risky), as a function of ∆V , the differencebetween the values of the risky choice and the safe choice, averaged across all subjects. (B)Fixed-effects logistic regression with decisions pooled from all subjects as the dependentvariable (1 for risky, 0 for safe) and four regressors: a constant term (choice bias), thedifference in values for the two choices (as in (A)), trial number and risk pressure. (C) GLMregression as in (B), but without the trial number as regressor. Error bars are SEM. Allregressors in (B) and (C) are significant (p¡0.001).
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the previous results we created a second GLM with three regressors: constant term, ∆Vand risk pressure. The resulting regression can be seen in Figure 2.4C.
2.4.2 Adaptability of risk aversion

In this section, we use a simple method to analyze the adaptation of risk pressure, wheremany trials are binned together and averaged to calculate the subject’s preferences for riskaversion for this set of trials. This is an obvious extension of the analysis performed in (Kollinget al., 2014) for ∆V (also see Figure 2.4A). We show the limitations of such a method andshow, in subsequent sections, how the model-based approach we present in this papersidesteps these difficulties.When trying to estimate subjects’ preferences from a single decision in a stochastic envi-ronment, that single decision is not necessarily representative of the subject’s preference.This is especially true when the preference is not too strong, which we found to be the casefor this task. In such a case, to estimate the small size of the preference, one would re-quire many exposures to this decision in the same context. However, this is suboptimal dueto potentially confounding memory effects Bornstein et al. (2017); Mather et al. (2003): thesubject may remember having made a specific context-dependent decision before, whichwill influence any subsequent repetitions.In order to study the context dependence of risk aversion, a simple analysis method is tomake use of risk pressure as a description for the context: We binned risk pressure to obtainenough decisions to calculate a risk pressure-dependent risk aversion value for each bin.Any such reduction of dimensionality will have the disadvantage of possibly mapping twovery distinct contexts onto the same risk pressure value. For example, a risk pressure of300 on the last trial, when an option to win 350 points has been offered to the subject,presents a context with 20% probability of going above threshold (see Table 2.1) if the subjecttakes the risky offer, and 0% if the subject takes the safe offer. The same risk pressure nearthe beginning of a mini-block would present a game in which winning is almost impossible,and choice becomes inconsequential. This downside is inevitable in order to obtain reliableestimates on the mean risk aversion when using averaging methods.As can be seen in Figure 2.5A, high values of risk-pressure above 350 were observed muchmore rarely than lower values. This is a direct consequence of the task design: if values ofrisk pressure above 350 were commonly observed, subjects might lose motivation due tothe high difficulty of the task.We calculated risk aversion as a function of risk pressure, by binning the contexts for eachsubject according to values of risk pressure. For each bin, the average risk aversion can becalculated by averaging across all decisions made in the bin. In Figure 2.5B, the frequencyof choosing the risky choice for each bin is shown for three representative subjects, alongwith the 95% confidence intervals. The results for the remaining subjects can be seen inthe supporting information (sup. fig. 1). We found that for 25 out of 35 subjects, the nullhypothesis that risk aversion is constant for all values of risk pressure cannot be rejected(one-way ANOVA, p¿0.05).In what follows, we introduce a novel method for inferring the risk aversion on a trial-by-trial basis.
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Figure 2.5: Risk pressure and risk aversion. (A) Histogram of the values of risk pressure encounteredby all subjects. (B) Adaptive risk aversion for three representative subjects where we plot,against risk pressure, the frequency that the subject chooses the risky option, P(risky),calculated by averaging over all choices for each subject, binned according to the contextin which the choice was made. Only risk-pressure values between 0 and 350 are shownas only few contexts were observed in higher values of risk-pressure by all subjects –see(A).

2.4.3 Model-based approach

In this section we describe a novel method for estimating the subject’s preference (i.e. riskaversion) for every context they observed. This method takes advantage of all decisionsmade by the subject to calculate the subject’s preference in any given context. We introducea model-based approach using active inference, with free parameters that we fitted to eachsubject using all the decisions made by the subject (see Section ’Methods’). This so-calledagent (the fitted model) can then be used to estimate, for any given context, the probabilitydistribution over actions that is most consistent with the subject’s entire set of choices.This process is equivalent to finding the underlying mechanism with which subjects maketheir decisions (which is assumed not to change throughout the experiment). Once thismechanism has been found, it can be used to calculate the preferences (risky vs. safe) thatthe subject had for any trial.We will show that these fitted agents can be used to study in greater detail the changes ofrisk aversion in human subjects.
2.4.4 Model parameters and fitting

We fitted three different models which differed in their parameterization of the goal shape;see Section ’Methods’. For each of these three models, we fit the model’s parameters tothe choices made by the subjects throughout all the mini-blocks. We fitted a total of fourparameters to subjects’ choices: (i) the maximum decision multiplier (MDM), (ii) up to twoparameters that control the shape of the goal distribution, and (iii) a choice bias parameter.
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For more details on these parameters, see Section ’Methods’.The MDM and choice bias parameters differ from the goal shape parameters in that theireffect on choices does not depend directly on the context. For this reason, their effects willbe discussed mostly separately from those of the goal shape parameters.
2.4.5 Modeling inter-subject differences

We first hypothesized that previously observed inter-subject differences in risk aversion (Choiet al., 2007; Shead and Hodgins, 2009) can be modelled for this task here as differencesin the internal representation of the task contingencies. For example, an agent for whomfinishing below threshold is unacceptable (Figure 2.2A) will tend to display, if necessary, riskierbehavior than one who is simply trying to increase the number of points (blue and brownline in Figure 2.2).To address this hypothesis, we tested for inter-subject differences in the model parame-ters that best fit the behavior of each subject. To do this, we compared two models: Withthe first, we inferred a single, best-fitting parameter set for the data of all subjects, i.e., sameparameter values for all subjects. For the second model, we inferred subject-specific pa-rameters. We found that the BIC difference between these two models strongly favored thesubject-specific model (∆BIC ¿ 100), as per the guidelines in (Kass and Raftery, 1995).Given that there was strong evidence for inter-subject variability in how subjects repre-sented the goal of the task, we next performed a model comparison between the three goalshapes, to determine whether one family was significantly better at explaining subjects’ be-havior than the other two.We found strong evidence that the exponential shape is better at explaining subjects’ be-havior than the other two families, as evidenced by∆BIC ¿ 100, and therefore all the followingresults were obtained with this exponential shape family.Finally, we tested whether there was also evidence for condition-specific differences ingoals, i.e. different goal shapes for the four different thresholds, for each subject. However,we found no significant advantage in separating data into conditions; therefore, all resultsthat follow were obtained with the subject-specific model but with the same parametersacross conditions.We also found that the introduction of the subject-specific MDM significantly improvedmodel fit (∆BIC ¿ 100). Adding the choice bias parameter further increased model fit (∆BIC¿ 100).To summarize, we found very strong evidence for the model with inter-subject differences,with the exponential family being the best model for representing subjects’ goal shapes. Thismodel was used for the results presented in what follows.
2.4.6 Subject-specific parameter values

The MDM values we obtained for different subjects range from 0.1, which makes most de-cisions close to a 50/50 decision, to values as high as 20, which creates preferences closeto being deterministic. In Figure 2.6A we present a histogram of the values of MDM for allsubjects, where the average MDM value is 6.01 (standard deviation of 5.70). The number ofbins and their positions were determined using the SciPy Jones et al. (2001) implementationof the Freedman-Diaconis estimator (Freedman and Diaconis, 1981), assuming equal-widthbins.
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Figure 2.6: (A) Histogram for the best-fit values of the maximum decision multiplier (MDM) for all sub-jects. (B) Histogram of the best-fit choice bias parameter values, where the value of 1stands for unbiased choice behavior and values smaller than one for a bias for the safechoice. (C) The shapes elicited by the centers of each of two identified clusters, as givenby the cluster center’s sensitivity to points (STP) value. The shaded area indicates above-threshold values (depicted here with a threshold of 595). (D) Scatter plot of the STP pa-rameter for all subjects. The colors indicate cluster membership, as in (C). Subjects weresorted by cluster membership. The horizontal lines represent the values of STP whichwere determined as the cluster centers in (C).
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The low values of the MDM for many subjects reflect a degree of indecisiveness, with whichdecisions are mostly driven by the choice bias parameter; this seems to be at least partiallydue to the fact that the task rarely presents contexts in which one action is clearly betterthan the other. Those subjects with a high MDM tend to have many strong preferencesthroughout a mini-block; these strongly determined decisions are the least affected by thechoice bias.All best-fit choice bias parameter values were found between 0.6, which favors safe choices,to 1.2, which favors risky choices (a value of 1 has no effect), and a mean of 0.8. For mostsubjects (26 out of 35), we found a best-fit choice bias parameter smaller than one, whichindicates an increased preference for the safe choice.We also found inter-subject differences in the shape parameters, reflected in subject-specific values for the STP. To summarize these results, we clustered all subjects based ontheir fitted STP using the k-means algorithm (Goutte et al., 1999; Lloyd, 1982). We foundthat the best number of clusters is 2, and the clusters resulting from this procedure can beclassified as low- or high-STP; see Figure 2.6C-D. Subjects belonging to the low-STP group im-plement a simple heuristic of accumulating more points, regardless of threshold; those in thehigh-STP group are best described by representing rather sharp goal shapes, i.e. by givingrelatively low importance to points below threshold. For a full list of the inferred parameters,see the supporting information (sup. table 1).Finally, we calculated a Pearson cross-correlation matrix for the fitted parameters andfound no significant correlations between them.
2.4.7 Recovering subjects’ preferences

With the estimated parameters for each subject, we can build a decision-making agent (hence-forth, a fitted agent) which makes decisions the most consistently with its correspondingsubject. Thus, for each subject we have a fitted agent.Using these subject-specific fitted agents, we recovered subjects’ preferences via the pos-terior distributions over actions that the subject-specific fitted agents calculate for every con-text. The key advantage of this procedure is that it eliminates the necessity of having manytrials measured experimentally in the same context (or the same variable of interest, whichis related to context, e.g. risk pressure), when investigating subjects’ trial-by-trial preferencesand their dynamics. In other words, the model-based approach is like a ‘mathematical micro-scope’ (Moran et al., 2013) which enables the experimenter to replace actual (here binary)choice observations of a single subject, for a specific context, by inferred posterior probabil-ities lying continuously between 0 and 1.
2.4.8 Adaptation of risk aversion

In this section we show the behavior of the fitted agent in a similar manner as that used forFigure 2.5B, discuss the shortcomings of this approach and, in the next section, show howour model-based approach can be used to sidestep these shortcomings.We first looked at the subject-specific general risk aversion, i.e. how likely subjects are topick the safe option throughout all contexts they observed. Averaged across all the trials andsubjects, we observed a probability of choosing the risky option of 0.41, with a standard devi-ation of 0.07 across subjects, before taking into account the choice bias parameter. Despite
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the differences in parameter values, we found no significant differences between subjects(one-way ANOVA, p¿0.05).Figure 2.7 (left), where we show the recovered preferences for three representative sub-jects (the same as in Figure 2.5B), for the set of all the contexts that they observed. Notethat the spread of the dots is not measurement noise but the inferred preferences for dif-ferences offers. While different trends can be seen for the three representative subjects(e.g. subject A’s preference for risk increased for the first 100 units of risk pressure, whilesubject B’s preference dipped in the 50-150 range), this representation suffers from similarproblems as those discussed in section ‘Adaptability of risk aversion’.Relatedly, the sharp vertical swings of the averages in Figure 2.7 (left-hand side, solid lines)are due only to the fact that the observations made by subjects do not sample all values ofrisk pressure evenly; the calculation of the preferences (vertical positions of the dots) itselfentails no stochasticity, as the model is deterministic. These variations make extracting anysignificant information from these plots all but impossible. However, our model-based ap-proach allows us to overcome this difficulty by being able to predict how such a subject wouldbehave in the “missing” contexts, uncovering the differences in behavior between subjects Aand B in greater detail; See the next section.For validation purposes, we compared the estimates obtained with our method and withthe binning method (see Figure 2.5B). Since most of the observed contexts (for all subjects)are for low values of risk pressure (see Figure 2.5A), and to allow for a better comparisonbetween the methods, we binned the decisions in risk pressure values between 0 and 200(with bins at 0, 50, 100 and 150). The results are shown in the right-hand column of Figure2.7, alongside the average obtained with our method (the same as the left-hand column),using the same bins as the binning method, i.e. we binned the preferences estimated by ourmethod and calculated their average for each bin. For clarity, in the remainder of this work,we use the name “model-based binning” to refer to the results presented in the right-handcolumn of Figure 2.7, i.e. to binning the model-based risk aversion to calculate averages(blue line). For all three subjects both methods agree in their estimate of how often, in aspecific risk pressure range, these three subjects will choose the risky choice. There aresmall differences, especially for subjects A and B, which we will discuss below.
2.4.9 Risk preferences for the low- and high-STP groups

In this section, we show that the jaggedness of the average risk preference for each value ofrisk pressure (Figure 2.7, left-hand column) is mostly caused by the biases introduced by theset of contexts observed by the subjects. We also show how one can use the fitted agentsto “see through” these biases, to gain further insight into the adaptation of risk aversion tocontext for the two groups of subjects.For the results in this section, we used the agents that were fitted to subjects A and B fromFigure 2.7. To facilitate a direct comparison between the risk aversion adaptations of thesetwo subjects, we set their MDM to 20 and their choice bias to 1. Because the effects of thesetwo parameters are not context-dependent, the principled findings in this section are notaffected by using the fitted values while the visual clarity of the figures is increased. Notethat for both subjects, MDM values are similar in their effects (10 and 5, respectively) andchoice biases are identical (0.6). We used these two modified agents to extrapolate thesesubjects’ preferences to contexts that were not observed during the experiment.As shown above, the model-based approach allows us to have a trial-specific estimation
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Figure 2.7: Probability of choosing risky. The three representative subjects are labeled A, B and C, andeach row corresponds to one subject. These subjects are the same as those used in Figure2.5B. Left-hand column: plot for each subject, labeled ‘Inferred preferences’, representsthe subject’s preference for the risky option. For each data point (context of being offered,under as specific value of risk pressure, a specific option pair, see Table 2.1) the subject’spreference for the risky option (y-axis) is plotted against risk pressure (x-axis). For eachrisk-pressure value, the average preference for the risky option is calculated (solid line).Not all risk pressures have been sampled by the subjects during the experiment as canbe seen from the broken solid line for subjects A and B. Right-hand column: to validatethe model-based approach, we show the binning method shown in Figure 2.5 (green) andthe preferences estimated by the model-based approach, averaged on the same bins asthe binning method. Note that the definition of bins deviate from Figure 2.5 as only riskpressure values up to 150 are shown in these plots; this is done for a better comparisonwith the model-based approach (see main text).
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Figure 2.8: Each plot is for a different trial number, shown above each plot. Agent A, a representativeof the high-STP group, is shown in blue. Agent B, a representative of the low-STP group, isshown in orange. We exposed both agents to all possible contexts in the task. Each singledot indicates the probability of choosing the risky choice for a single context. Orange dotswere offset by 0.2 units to the right for visual clarity; averages (solid lines) were not off-set. The solid line represents averages that were obtained for each value of risk pressureacross all eight offers. For every trial, there is a maximum possible risk pressure (thresholddivided by remaining trials); blank spaces on each plot are values of risk pressure beyondthat maximum.

of subjects’ risk aversion. This enables us to separate trials not just by risk pressure as inFigure 2.7, but also by trial number, essentially creating a two-dimensional projection of thefour-dimensional context (trial number, offered action pair, number of points that have beenearned so far, and threshold). Such a separation, which can be seen in Figure 2.8 for agentsA and B, revealed stereotyped trends in the adaptation of risk aversion to risk pressure asmini-blocks advanced.Importantly, for each trial and risk pressure value, the vertical spread of the points is dueto the available action pairs (eight of them), and not due to measurement errors, as there isno stochasticity in these estimated preferences.A key feature of this presentation is the stereotyped curves, across trials, for average riskaversion adaptation that differ from trial to trial only in their length of spread across riskpressure values. This difference in length is caused by the fact that it is impossible to observehigh risk pressures at the beginning of a mini-block, while on later trials the risk pressure may
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become quite large if the subject is missing a lot of points to reach the target. For any trialnumber, the high-STP subject type has a higher risk aversion than the low-STP subject typefor the lowest values of risk pressure. For the largest values possible in the trial, however,this relationship is inverted, the low-STP subject type having now higher risk aversion thanthe other. This trend holds for most trials and slowly disappears towards the end of eachmini-block. As can be seen in Figure 2.7, this phenomenon is lost, for both model-basedand standard binning, when averaging across all trials and using the contexts observed bysubjects.To avoid biasing the estimates of Figure 2.8 with the specific set of contexts that any sub-ject observed, we created a set of contexts which contains exactly one context for everycombination of risk pressure, trial number and offered action pair. To make use of this setof contexts, we take advantage of the fact that our agents allow us to extrapolate how thecorresponding subject would react to any context, even if it was not observed during theexperimental session. For simplicity, we fixed the threshold to 595 for all contexts as we didnot find evidence for differences in subject parameterizations for different conditions (seeabove).This set of observations is unbiased in the sense that all possible observations are en-countered exactly once. The importance of this can be seen in Figure 2.8: if for any value ofrisk pressure the action pairs with the highest probability of choosing the risky option hadnot been encountered by the subject, the average for this value of risk pressure (solid line)would be much lower. Conversely, if any one action pair had been encountered multipletimes, the average would be skewed towards the probability of choosing the risky option forthat action pair. The model-based approach is not susceptible to such biases. Critically, thisbias is outside experimental control, as it depends on the subjects’ choices during the ex-periment, which determine what risk pressure values are experienced for each action pairand trial number. Clearly, such a bias may impact the results and interpretation when usingthe binning method; see Section ’Discussion’.Figure 2.8 also reveals a trend not visible in more coarse-grained descriptions such asFigure 2.7: as mini-blocks progress, the average risk aversion across all values of risk pressurebecomes flatter and more similar between the two subject types. This culminates in the lasttrial of the mini-block, where both average lines are very similar to each other and close toa flat line around medium values of risk pressure. We believe this to be a consequence ofthe smaller depth of future planning that a subject has to go through at each trial. In the lasttrial of the mini-block, when no future planning is necessary, the probability of choosing therisky choice peaks in very different places of risk pressure, for different action pairs, creatingthe flat average seen in the last trial (since this is the average across all action pairs). Tomake this clearer, in Figure 2.9, we plotted the probability of choosing the risky choice forfour different offer pairs in the last trial. This plot contains the same data as the last panel(trial 8) of Figure 2.8, but different types of lines (e.g. dashed) are used instead of individualdots to aid in differentiating between action pairs, and the other four offers were removedto avoid visual clutter.Figure 2.9 shows that, even when the difference in average risk aversion (averaged acrossall action pairs, for every risk pressure value) between the two agents is not large (as seenin Figure 2.8 for the 8th trial), the probability of choosing the risky option of a specific actionpair can differ greatly between the two subject types. In general, for the high-STP subjecttype the probability of choosing the risky option for an action pair has steeper curves thanfor the low-STP subject type. This is partially due to the fact that the high-STP subject type ismuch more inclined to take the risky choice for any one given offer at risk pressure values in
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Figure 2.9: Probability of choosing the risky option for the first four offers (action pairs) in Table 2.1,during the last trial, for both subject types (orange for high-STP, blue for low-STP). Thefour offers are plotted, each with a different type of line, (in the order of Table 2.1): solid,dashed, dash-dotted and dotted. Lines of the same type with two different colors repre-sent the same offer for the two different subject types. The last four offers of Table 2.1were removed for visual clarity. For example, the dashed lines represent the offer (safe:180, risky: 260), where the blue dashed line shows that the high STP subject type choosesmore often the risky choice once the risk pressure is above 180, i.e. there are more than180 points missing. In contrast, the low STP subject type does not change much its choicebehavior when offered this specific offer on the last trial.
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which the safe choice is not good enough to succeed. This is especially true if the probabilityof success for the safe offer is not much higher than the risky choice, e.g. for the 2nd offer(dashed line in Figure 2.9, safe offer: 180 points with probability 0.6, risky offer: 260 pointswith probability of 0.35; see Table 2.1).Looking at the averages shown in Figure 2.8, it may appear as if the average differencesin behavior (solid lines) between the two subject types can be explained by a potential dif-ference in choice bias. This would shift the entire solid line up or down, if the choice biaswere bigger or smaller than 1, respectively. However, it is evident from Figure 2.9 that this isnot the case when looking in more detail at single offers: given the different shapes betweenthe blue and orange curves, shifting any curve up or down (by adding a choice bias differentfrom 1) would not make them similar across subject types.Although we focused here on only two subject types to show principled subject-specificdifferences, note that these two subject types are representatives for the high-STP and thelow-STP group. As we have shown in Figure 2.8 and Figure 2.9, the model-based approachenables a precise mapping between subject-specific goals and corresponding action prefer-ences at the single-trial level for a concrete context experienced in a single trial. Here, wehave used this mapping to infer from sequences of choices the internal goal function at thesingle-subject level.

2.5 Discussion

To reveal adaptation of risk-taking behavior to changing context, we developed a model-based approach for inferring the risk aversion with subject- and trial-specific resolution. Thisallowed us to use the set of binary choices made by subjects to infer the preference that eachsubject had when making those decisions. The method uses the computational frameworkof active inference and is based on a decision-making model with free parameters that canbe fitted to an individual subject’s decisions. To show how this works in practice, we used asequential decision-making task, in which subjects aim to achieve a goal over multiple trials.This task was designed to elicit changes in risk-taking behavior as the context changes inwhich the subject must make a decision.We demonstrated how this model-based approach can be used to analyze behavior at asubject- and trial-specific resolution, which is generally not possible with standard binningmethods due to limitations in the amount of data that is typically collected. Using clustering,we found that subjects can be divided into two groups, according to a key model parameterthat describes the relative value that subjects give to increasing gains. We found that thesetwo groups have different risk-taking behavior adaptation to changing context.
2.5.1 Risk aversion adaptation

Traditionally, behavioral studies on risk aversion have focused on its fixed, context indepen-dent component. Economic theories of decision making under risk, e.g. prospect theory(Kahneman and Tversky, 1979), as well as psychological experiments on probability discount-ing (Green et al., 1999a), have focused on characterizing human choices in fixed, often hypo-thetical, contexts, and risk aversion is assumed not to change throughout the experiment.Conversely, the dynamic, context-adapting aspect of risk aversion has seen much study inecology, where it is established that risk aversion is not only a function of the given options,
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but also of the current needs and their urgency (McNamara and Houston, 1992). From ecol-ogy, risk-sensitive foraging theory (McNamara and Houston, 1992) emerged as a normativeaccount of a foraging animal in an ever-evolving environment, which takes into account thechanging needs of the foraging animal. The jump to the study of risk-taking behavior to hu-man subjects has been made in the field of human behavioral ecology, where the tenets oftheories such as risk-sensitive foraging theory have been applied to human evolution; for anextensive review, see (Winterhalder and Smith, 2000).Despite this, descriptive accounts of risk aversion as an adapting variable of human behav-ior have been more limited. Examples of studies that have focused on the dynamic, context-adapting side of risk aversion in human subjects are (Kolling et al., 2014), and (Schweighoferet al., 2006), the latter in the similar field of delay discounting.The approach in (Kolling et al., 2014) was a direct, data-driven measurement of risk aver-sion, which relied on binning enough decisions together to obtain reliable statistics, fromwhich a preference for risk can be calculated. Such binning of distinct decisions is necessaryin tasks with a large set of possible contexts since it becomes impossible to sample once, letalone enough times for a reliable estimation of a mean, any sizeable portion of the wholespace. For example, in the task used by (Kolling et al., 2014), the number of different contextsis in the order of tens of thousands, while the number of trials per subject was only 384.In this work, we presented a model-based approach which is not affected by the size of theset of contexts and with which there is no need for a proxy variable nor binning decisions,since estimates on risk aversion can be obtained by fitting a decision-making model to theentire data set of each subject. This approach assumes that the experimentally-measuredchoices are sufficient to infer about an underlying choice mechanism with which one canextrapolate the remaining contexts not seen by the subject in the experiment. As the un-derlying choice mechanism we used the so-called active inference framework (Friston et al.,2015). The overall procedure resulted in an increased resolution, at the single-trial level, forthe study of the adaptation of risk aversion to changing context. As a beneficial side effect,the model-based approach also avoids known statistical artifacts of binning approaches, e.g.hiding existing effects in the data (Ashby et al., 1994; Cohen et al., 2008; Estes and Maddox,2005; Siegler, 1987).
2.5.2 Subject classification and differences in behavior

Using the fitted model parameters, we found that subjects can be classified into two groups(see Section ’Model parameters and fitting’). We found differences both when looking atsubjects’ preferences averaged across all trials, for which the differences are shown to beonly evident in the low risk-pressure ranges (see Figure 2.7), and when looking at the moredetailed per-trial analysis (see Figure 2.8 and Figure 2.9).While it is difficult to discern differences in Figure 2.7 due to the averaging over trials (seeSection ’Adaptability of risk aversion’), Figure 2.8 and Figure 2.9 reveal the clearest differ-ences. We found that there are clear differences between the choice behavior between thehigh-STP and low-STP subject type; for the high-STP subject type, risk aversion decreases asrisk pressure increases, while for the low-STP subject type, the highest values of risk pressuresee an increase in preference for risk.The behavior of a high-STP subject type is to try and go above threshold. When morepoints are needed to reach the threshold (high risk pressure), more risk is taken. When fewpoints are required (low risk pressure), risk is unnecessary and therefore avoided. We found
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that a low-STP group subject type shows a much weaker awareness of the threshold. It isan open question what exactly low-STP subjects try to achieve. A simple explanation may bethat they were less motivated, or less goal-directed than the high-STP subject types to try andsucceed in this specific task. Note that the model-based approach inferred these differenceswithout an obvious reliance on subjects’ performance: we did not find a significant perfor-mance difference between the two groups. We inferred the differences in subjects’ internalrepresentation of the task goal just by fitting the pattern of choices to the underlying activeinference model. The finding that there was not a difference in performance between thetwo groups is possibly a consequence of the stochastic nature of the task; in future work, itmay be useful to focus on less stochastic tasks to confirm the difference between the low-and high-STP groups also in terms of performance or other measures. We believe it is astrength of the proposed method that we can model the behavior of these subjects who donot necessarily follow the instructions to the letter but nevertheless perform well.The lack of threshold awareness is noticeable when comparing the curves on the last(eighth) trial in Figure 2.8 and Figure 2.9. For the high-STP subject type, the probability ofchoosing the risky option for each offered action pair peaks at different values of risk pres-sure, depending on the action pair, which reveals threshold-awareness. The low-STP subjecttype instead shows little adaptation, at this last trial, of risk aversion to risk pressure.The last trial also offers some insight into a feature of the model-based approach, as ap-plied to this experimental task. Intuition suggests that the maximum probability of choosingthe risky option should be very high in the last trial when the reward offered by the safeoption is insufficient. However, the underlying heuristic of “the more the better” is presenteven for the high-STP subject type: This can be seen in Figure 2.6C where the goal shape ofthe high STP-group (blue solid line) has non-zero values even for a number of points belowthreshold. These non-zero values increase the usefulness of the safe choice even in caseswhere it is not enough to go above threshold, decreasing the preference for the better riskychoice. This, coupled with the low probability of success with the risky choices, effects thelack of extreme preferences for the risky choice in the last trial seen in Figure 2.8 and Figure2.9. Whether or not subjects’ choices show the same behavior is rather difficult to determinebecause such cases occur rarely (around 1% of trials in our data set). Additionally, given thelow number of occurrences, even a single safe choice made by a subject in these situations(e.g. by not paying attention or by miscalculation) throws off any estimate that is made basedon these choices alone, or by the whole set of choices (as with our approach). Moreover, sub-jects had only a rather coarse-grained indicator of the number of missing points by a plottedbar as shown in Figure 2.1, so there may be cases where subjects were not entirely clearabout whether a safe choice would be sufficient to reach the goal, or not. In fact, in the 1%of trials where a subject may obtain the target only by choosing the risky option, subjectschose the risky option only 75% of the times, which could explain the results seen in Figure2.8 and Figure 2.9. It could prove interesting to explicitly model this observation noise infuture studies in order to determine whether the inferred goal shapes better conform to thetask’s rules.Starting from these initial results, the model-based approach can be used to generate pre-dictions. For example, one could ask (i) how specific subjects will respond in specific but yetunseen contexts and whether this can be generalized and translated, using inferred param-eters, to different experiments, and (ii) what specific contexts are those, for a specific exper-iment, that will show the most obvious differences between two groups of subject or, moregenerally, along a specific trait dimension. One can also use Bayesian model comparison totest alternative or extended versions of the current model. For example, the low percentage
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of risky choices observed in extreme contexts on the 8th trial might be caused by observa-tion noise: subjects do not know exactly how many points they need to go above thresholdand might therefore miscalculate the usefulness of the safe option. As a first approxima-tion, the current model does not account for such observational noise; rather it calculateswith absolute precision whether a given reward would suffice. Because of this, one way forthe model to account for these decisions (safe choices in extreme cases) was to “soften” theshape of the goals, assuming that subjects found values below threshold acceptable, if notoptimal, which gives a higher preference (likelihood) to the exponential family of goals overthe other two.
2.5.3 Describing a context with a proxy variable

Reducing a complex context into a one-dimensional proxy variable (such as or risk pressure)can bring with it loss of information. In the specific case of the task used here, as in manyother tasks used in psychology, the context, i.e. the set of variables necessary to make adecision, is multi-dimensional. In many tasks, e.g. the urn task (FitzGerald et al., 2015), theset of all contexts is small enough that a proxy variable might not be necessary, or a naturalproxy variable, such as trial number itself, can be used, as e.g. in (Schweighofer et al., 2006).However, in other tasks as the one used here, in which the number of contexts is usually inthe thousands, it is difficult to obtain veridical estimates on context-dependent risk aversionwithout using proxy variables that bin together dissimilar decisions.With our model-based approach we do not need to use such a proxy variable for context;instead, the context is evaluated by the model by using all the information available to makea decision. This approach additionally revealed the effects of using a proxy variable. Thiscan be seen in Figure 2.7 where, for each value of risk pressure, data points at differentheights can be seen. These represent trials with different trial numbers, offered action pair,number of points and/or threshold, which nonetheless might have the same risk pressure. Instandard binning approaches, these would be binned together to obtain summary statistics.As a first attempt to validate the results from our model-based approach using standardbinning methods, we compared the overall preference for the risky offer, averaged acrossall subjects and trials. A finer comparison was made in Figure 2.7, where we showed thatbinning the results using model-based binning yields curves of summary statistics that arevery similar to those obtained with standard methods.It is this similarity between the two methods that hints at important information beinglost when binning many decisions: with the results from the binning method we could notconclude that any adaptation of risk aversion to risk pressure happens as we could not rejectthe null hypothesis of no risk adaptation for 25 out of 35 subjects. In contrast, our model-based approach reveals differences between stereotyped risk aversion adaptation curvesthat are clearly visible when looked at in a trial-specific fashion (Figure 2.8). Additionally, ourmethod provided a single, subject-specific parameter value (i.e. STP, sensitivity to points) toexplain the rather complex adaptation of risk aversion.
2.5.4 Risk aversion

In this work we showed that differences in risk-taking behavior can be partially explained bydifferences in the way that subjects set goals for themselves. These internal goals are related
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to the goals of the task, as they were explained to the subjects, but are not necessarily thesame as determined by the instructions.The internal representation of goals sets not only the desired end states of a task, butalso the valuations of these end states relative to each other (see Figure 2.6C). It is theserelative values that can explain the inter-subject differences observed in the adaptation ofrisk aversion. For example, a subject with an internal goal of maximizing the number of pointsachieved at all costs could be less risk-prone that a subject who only wants to go above-threshold, due to the expected value of the safe choice is larger than that of the risky choice(see Figure 2.7). The effects of this internal representation of goals on risk aversion is highlycontextual: in a given context, if two subjects have different internal goals, one subject mightshow a stronger preference for the risky offer than the other, while for another context, theopposite would be true. This is what differentiates this adaptive account of risk aversion froma trait-like account. Examples of this can be seen in Figure 2.9B, where differently-coloredlines of the same action pair (e.g. dotted lines) cross each other.To complement this adaptive account, we introduced the additional parameter of choicebias, which accounts for an overall preference for safe choices (risk aversion) or risky choices(risk proneness) by using prior probabilities for actions. In this work, we implemented asubject-specific, overall prior preference for (or against) the risky choice for any action pair.This choice bias is not informed about context or about the relative values and probabilitiesof success of the given choices. We found this simple, fixed bias to be an important param-eter as evidenced by very strong evidence for it when comparing models. In this sense, themodel presented in this work incorporates an adaptive risk aversion adaptation, which tai-lors responses to changing contexts, and a trait-like, non-adaptive risk aversion, which biasesall responses towards or away from risk taking behavior. Similarly, in future work, additionalbiases, e.g. choice-supportive bias or the effect of previous successes with an offer, can beadded to the generative model in a straightforward way, using model selection to identifythose bias parameters that provide for better models of adaptive risk aversion.
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3 Modeling dynamic allocation of
effort in a sequential task using
discounting models

3.1 Abstract

Most rewards in our lives require effort to obtain them. It is known that effort is seen byhumans as carrying an intrinsic disutility which devalues the obtainable reward. Establishedmodels for effort discounting account for this by using participant-specific discounting pa-rameters inferred from experiments. These parameters offer only a static glance into thebigger picture of effort exertion. The mechanism underlying the dynamic changes in a par-ticipant’s willingness to exert effort is still unclear and an active topic of research. Here, wemodeled dynamic effort exertion as a consequence of effort- and probability-discountingmechanisms during goal reaching, sequential behavior. To do this, we developed a novelsequential decision-making task in which participants made binary choices to reach a mini-mum number of points. Importantly, the time points and circumstances of effort allocationwere decided by participants according to their own preferences and not imposed directlyby the task. Using the computational model to analyze participants’ choices, we show thatthe dynamics of effort exertion arise from a combination of changing task needs and forwardplanning. In other words, the interplay between a participant’s inferred discounting parame-ters is sufficient to explain the dynamic allocation of effort during goal reaching. Using formalmodel comparison, we also inferred the forward-planning strategy used by participants. Themodel allowed us to characterize a participant’s effort exertion in terms of only a few pa-rameters. Moreover, the model can be adapted to a number of tasks used in establishingthe neural underpinnings of forward-planning behavior and meta-control, allowing for thecharacterization of behavior in terms of model parameters.

3.2 Introduction

It has been known for long that physical effort appears to bear an inherent cost both inhumans and other animals (Hull, 1943; Walton et al., 2006). Although the nature of cogni-
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tive effort remains elusive (Shenhav et al., 2017), the role of mental effort has been studiedmore recently in the same vein (Kool et al., 2010; Apps et al., 2015; Pessiglione et al., 2018;Schmidt et al., 2012), as well as its neural underpinnings, e.g., (Radulescu et al., 2015). Gen-erally, effort seems to carry a disutility that diminishes the value of reward an action entails,a phenomenon known as effort discounting (Westbrook et al., 2013; Botvinick et al., 2009).In psychology and economics, much effort has been put into establishing so-called effortdiscount functions, i.e., parameterized functions that describe how the subjective value of areward diminishes as a specific amount of effort is required to obtain it. As with delay andprobability discounting, several parametric shapes of the effort discounting function havebeen suggested: hyperbolic (Prévost et al., 2010), inspired by delay and probability discount-ing; linear (Skvortsova et al., 2014); bilinear (Phillips et al., 2007); parabolic (Hartmann et al.,2013); and sigmoidal (Klein-Flügge et al., 2015). Additionally, a framework based on prospecttheory conceptualizes effort discounting as a shift of the status-quo (Kivetz, 2003). See also(Talmi and Pine, 2012; Białaszek et al., 2017; Klein-Flügge et al., 2015) for comparisons be-tween these different models.While these studies established a mathematical description of how required effort affectsthe valuation of a reward, the experiments were typically constrained to the particular casewhere the decision to invest effort to obtain reward must be made immediately. However, inmost cases of goal-directed behavior in daily life, the reward is not obtainable immediatelybut must be pursued over an extended time period. This means that in typical effort dis-counting experiments one cannot address the question of when people will invest effort toobtain a reward that remains obtainable over an extended period of time. For example, anemployee may be given a deadline of two weeks to complete an assignment that takes oneday. The question for this employee on every day until assignment completion is whethershe should invest the effort today or wait until later (Steel and König, 2006). This question isoutside the domain of typical effort discounting experiments because there is no ’wait untillater’ option. Some individuals would probably do the assignment early because there maybe an unforeseen situation that prevents them from finishing later. Others would prefer towait and intend to do the assignment late, e.g., just before the deadline runs out, becauseperhaps it turns out that the assignment is no longer required. Clearly, all possible coursesof actions (do the effort early or late) have their advantages and disadvantages and put indi-viduals into a decision dilemma. We believe that this dilemma is central to the meta-controlquestion of how effort discounts potential reward because the dilemma emerges typicallywhen one is pursuing goals that cannot be obtained now but only after some extended time(Goschke, 2014).In order to induce this dilemma, it is necessary to put participants in a situation whereforward planning and future contingencies are important, as opposed to the single-trial ex-periments traditionally used to elicit discounting. By forward planning, we mean that to makea decision one has to plan several time steps into the future to predict the consequences ofpossible courses of actions (Dolan and Dayan, 2013). For example, the employee may on dayone simulate through in her mind several alternatives of when to do the assignment, selectone of these alternatives and execute the first action of this alternative. The question is howone can model decision making in this dilemma by combining forward planning over severaltrials and previously established effort discounting models for a single trial.To address this question, we developed a sequential decision making task that capturesthe effort-investment decision dilemma described above. In each trial of a trial sequence,participants were given the choice to exert effort right away to improve their chances of ob-taining a reward at the end of the trial sequence, or wait and not invest effort to see how the
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situation evolves, so that eventually the need for effort might disappear, however at the priceof lowering the chances of reward. We found that the proposed computational model wasable to explain different time points at which different participants invested effort. Usingformal model comparison, we inferred the forward-planning strategy used by participantsduring the task. We also show that the inferred effort- and probability-discounting parame-ters provided for an easily interpretable explanation of the early versus late effort allocationeffect observed in the choice data.In summary, we present a computational-experimental approach, in the form of a novelexperimental task and a sequential decision-making model, that enables future studies intothe effects of pursuing long-term goals based on moment-by-moment decisions about effortinvestment in human participants.

3.3 Methods

Participants were recruited from a pool of potential participants organized by the TechnischeUniversität Dresden that includes students as well as individuals from the general population.Of N = 60 participants taking part in the experiment, five had to be excluded based on theirpoor performance during an initial training period (see below). This left N = 55 participants(18 female, with an average age of M = 26.0, SD = 10.8) for our analyses.Participants went through two different experimental tasks which, together with introduc-tion and training, took an average of 1.5 hours. The two experimental tasks were a single-taskeffort/probability discounting paradigm and the novel sequential task. In this work, we reportonly the analysis of the sequential task data that was performed before the single-trial task.For this reason, we describe here only the sequential task.Payoff was a basic reimbursement of 9 Euros for participating, plus a performance-basedbonus of up to 5 Euros for the sequential task. Some participants traded the basic reimburse-ment for course credit. On average, participants who did not trade the basic reimbursementfor course credit earned around 14 Euros for the whole experiment.The study was approved by the Institutional Review Board of the Technische UniversitätDresden (protocol number EK 541122015) and conducted in accordance with the declara-tion of Helsinki. All participants gave their written, informed consent.
3.3.1 Sequential task

In this task, participants were instructed to accumulate points over the course of a mini-block(a trial sequence) of ten trials, with the objective of surpassing a point threshold at the endof a mini-block (displayed as an empty bar to fill with points). To do this, they had to, at everytrial, choose between a mentally effortful and a probabilistic option.If the participant chose the effortful option, she must complete a number-sorting task, inwhich a set of numbers was shown on screen with five digits each that can differ in any of thedigits (see Figure 3.1A). The participant had to sort the set of numbers in ascending orderby sequential mouse clicks on the displayed numbers within a fixed time period, the lengthof which was determined during training (see below). If the participant correctly sorted thenumbers, a point was gained for that trial, which was shown on the bar at the bottom. Nopoint was gained if the numbers were not sorted correctly.If the participant chose the probabilistic option, she had to complete a number-sorting taskas well, but all numbers had a single digit, rendering the task practically cognitively effortless.
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If the numbers were correctly sorted, participants had a 50% chance of earning a point (and50% of earning none), of which they were informed during the instructions. The probabilisticoption corresponded to waiting until a later trial to exert effort, if it ever became necessary.The probability associated with the probabilistic option was included to create mini-blocksin which the participant could win without having to exert any effort by choosing this optionat every trial and being “lucky” with the outcomes. We included the single-digit sorting trialto equalize the physical effort that comes from using the mouse to click on the numbers.The time allotted to a participant for sorting the numbers was adapted to each participantduring training such that their performance on the number-sorting task (with five digits) isaround 90% (see Section ’Procedure’) to equalize the required effort across all participants.To avoid time becoming a confound, this participant-specific time was the same for boththe effortful and the probabilistic option, determined for each participant during training. Bydoing this, all trials lasted exactly the same time for each participant.At each trial, the current number of points was displayed as a bar shown on the bottomof the screen (see Figure 3.1B) during the cue and decision phase (see Figure 3.1C). In orderto fill the bar in the mini-block, five points were necessary. If during a mini-block the bar wasfilled, 20 Euro cents were added to the participant’s final reward. Otherwise, they gained noreward for the mini-block. Each participant went through 25 mini-blocks. Monetary rewardwas contingent on winning mini-blocks (as opposed to simply maximizing points) to give spe-cial significance to winning a mini-block and to implicitly dissuade participants from focusingon getting the maximum number of points by always choosing the effortful option.Each trial of the sequential task was divided into three phases: (1) the cue and decisionphase (Figure 3.1B), in which participants had to choose between the two options using thekeyboard (“c” for the option shown on the left, “m” for the option shown on the right). Theleft/right position of the two options (probabilistic and effortful) on the screen was random-ized every trial. This phase lasted until the participant made the decision, but no longerthan three seconds; (2) the sorting phase, in which participants had to carry out the selectedtask. This phase lasted between four and ten seconds, depending on the participant’s per-formance during training (see below); and (3) the feedback phase, in which participants weretold whether they correctly completed the task or not. This phase lasted half a second. Figure3.1C shows a diagram of the trial timing, including all the screens observed by participantsas well as the timings of each phase of the trials.Importantly, the number of points required to win a mini-block was only half of the numberof trials in the mini-block. This, combined with the 50% chance of getting a point with theprobabilistic option, had the effect that, by just choosing the probabilistic option, the par-ticipant could win on average half the mini-blocks in the experiment. Additionally, becausethe difficulty of the effortful task was set such that expected performance is close to 100%,the participant was almost guaranteed to win every mini-block, regardless of the strategychosen, as long she was willing to invest the effort associated with the effortful option whenit became necessary, i.e., when she would otherwise have risked not having enough pointsat the end of the mini-block.
3.3.2 Procedure

The experimental session began with instructions shown on the screen. No instructionswere given by the experimenter. Then, the participant went through an introduction to thenumber-sorting task with the intention of getting them acquainted with how the mouse isused to sort the numbers. During this familiarization period, participants completed twelve
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Figure 3.1: Experimental task. (A) Cue and decision phase of the sequential task. Participants had tochoose between the easy option (Leicht, in the original German), which corresponded tothe probabilistic option (see main text), and a hard option (Schwierig), which correspondedto the effortful option, which lead to the task shown in (B). The choice was made withkeyboard keys C and M, for the option on the left and right, respectively; the side on whicheach option appeared is randomly selected at every trial. The trial number is shown on topas 2/5, which means the second trial out of five(B) Number-sorting task, where participantshad to select the shown numbers in ascending order to correctly complete a single trial ofthe sequential effort-investment task. To select a single number, participants could clickanywhere in the box containing this number. (C) Schedule of the different phases of asingle trial in the sequential task. The shown screens are those in (A) and (B). The timesfor each screen are shown at the bottom, along with the name of each phase. Note thatthe time allotted to sorting the numbers was the same both for the probabilistic (leicht) oreffortful (schwierig) option. The main experiment consisted of 25 mini-blocks (sequencesof trials) with ten trials each. The text size on panels A and B was increased for visual clarity
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trials, divided into six single-digit sorting tasks and six five-digit sorting tasks. Training fol-lowed, during which participants’ response times for the main experiment were adjusted.Participants first had to go through a block of 40 trials, in which they had to sort the fournumbers as quickly as possible within a fixed time-interval of twelve seconds per trial. Thiswas long enough that no participant timed out. After this initial block, the new interval waschosen to be the 95% percentile of the participant’s reaction times. After that, three moreblocks of 40 trials were possible; after each of them, the participant’s performance (i.e., thepercentage of times they correctly sorted the numbers before the deadline) was measured.If the performance was below 85%, the deadline was increased. If above 95%, the deadlinewas decreased. This was repeated for a maximum of four training blocks. If after the trainingphase the performance was not between 85% and 95%, we excluded the participant fromfurther analysis. The duration of the training phase varied across participants. Once trainingwas done, participants received instructions for the sequential experiment, followed by tenpractice mini-blocks, in which they earned no reward (stated in the instructions). Once theyfinished these, they performed the main experiment with 25 mini-blocks, earning monetaryreward for each one completed successfully.
3.3.3 Exclusion criterion

As mentioned in Section ’Procedure’, we excluded participants who could not maintain therequired accuracy while sorting numbers. The reasoning behind this was twofold. On theone hand, too low performance on the number-sorting task would bias participants towardschoosing the effortful option early in the miniblock, to make sure that they had a chance towin. On the other hand, too high performance would leave us unable to adjust the allottedsorting time to ensure that all participants were given time just enough for them to accu-rately sort the numbers, and no more. A participant that has a 100% accuracy in sorting thenumbers may find the task not to be effortful at all.In total, 5 participants were excluded from analysis due to their success rates being outsideof the range 85-95% in the number-sorting task throughout the experiment. The remaining55 participants were used for the analysis in the Results section.
3.3.4 Single-trial discounting models

The sequential decision-making model proposed in this work is based on classical single-trialdiscounting models. For completeness, we briefly describe their mathematical form in thissection.It is now well accepted that the best-fitting discounting function for probability discountingis a hyperbola-like one (Ostaszewski et al., 1998), whose mathematical form is given by:
V̂ = V fp(p) (3.1)

where V̂ is the subjective value, p is the probability of obtaining the reward, V is the objectivereward value (e.g. the amount of money) and fp is given by:
fp(p) = 1(

1 + κp
1−p
p

)s (3.2)
where κp and s are the model’s free parameters which are to be fit to behavioral data. Thesetwo parameters have the effect of creating steeper discounting the higher their values are; κp
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is regarded as a probability-scaling parameter, while s is regarded as a non-linear sensitivityto probability (Green and Myerson, 2004).We made use of this model during our study with one caveat: while the inclusion of theparameter s has been previously found to add explanatory power to the model, it makescomparison between groups more difficult (McKerchar and Renda, 2012), as discounting isaffected by these two parameters, and it severely complicates parameter fitting due to thehigh correlation between the parameters (Myerson et al., 2001). For this reason, we choseto fix s to 1 for all participants.For effort discounting it is less clear which discounting function describes behavioral databest (Białaszek et al., 2017; Klein-Flügge et al., 2015; Kool et al., 2010; Klein-Flügge et al., 2016;Kivetz, 2003). Formal model comparison has been performed between different discountfunctions, with differing results (Białaszek et al., 2017; Klein-Flügge et al., 2015).In this work, we exemplify our model using hyperbolic and sigmoid effort discount func-tions. We chose hyperbolic discounting for its long tradition in probability and delay dis-counting, which makes it a prime candidate for effort discounting. Sigmoid discounting, onthe other hand, has the property of being concave for low effort levels and convex for higheffort levels, which Klein-Flügge et al. (2015) argued was an integral part of effort discount-ing. However, note that our modeling approach presented below can be applied to any otherdiscount function.The hyperbolic effort discount function is given by:
fε(ε) =

1

1 + κεε
(3.3)

where ε is the effort level and κε is the only free parameter, which, as with probability dis-counting (Equation 3.2), represents effort scaling.The sigmoid discount function is given by:
fε(ε) =

(
1−

(
1

1 + e−m(ε−ε0)
− 1

1 + emε0

)(
1 + e−mε0

)) (3.4)
with free parameters m and ε0 that correspond to slope of the function at the center (wherethe value of the function is 0.5) and the coordinate of the center.While the interpretation of ε = 0 is clear (there is no effort), effort does not have a naturalscale like those of delay and probability. Instead, we chose the units of effort such that theeffort level of one number-sorting task is M − 1, where M is the number of digits of eachnumber to sort. In this scale, the probabilistic option (see Section ’Sequential task’) has aneffort level of zero and the effortful task has an effort level of four.
3.3.5 Sequential discounting models

In this work we present a novel family of models that bring the single-trial discounting modelsof the previous section into the realm of sequential decision-making models of goal-directedbehavior. To do this, we built on eqs. (3.1) to (3.4) and added a component that implementsforward planning over future trials to achieve the goal of filling the point bar during a mini-block.
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Action sequences

For our forward-planning model, we first introduce the concept of action sequences π, whichwe defined as a list of actions to perform in future trials, one for every trial left in the mini-block. Because in the sequential task, the participant must make forced choices between aneffortful and a probabilistic option, an action sequence consists of these binary choices, onefor each remaining trial until the end of a mini-block. For example, at the very beginning ofa mini-block (with ten trials left), an action sequence could consist of only the probabilisticchoices at every trial in the future. This would be the policy of a participant who, at thebeginning of the mini-block, prefers not to choose the effortful options throughout the mini-block. Another would be an action sequence consisting only of choosing the effortful options.Planning for more nuanced strategies is also possible, i.e. a mix of both options.The model evaluates every possible action sequence in a way that reflects the overarchinggoal leading to reward, i.e., filling the point bar. Since at every trial the choice is binary, thetotal number of possible action sequences at the beginning of trial t is 2T−t+1, including theone to be made at trial t, where T is the total number of trials in a mini-block (ten in ourexperiment).It is unlikely that human participants use such a brute-force, binary-tree search algorithmto find the best strategy, as the number of action sequences grows exponentially with thenumber of trials left; therefore, we created a model in which the only two strategies avail-able are (1) committing to choosing the probabilistic option for the remaining trials in themini-block and (2) committing to choosing the effortful option for the rest of the mini-block,or until the point bar has been filled. Using only these two action sequences captures theessence of the task, in which a frugal decision-making agent would choose to exert no effortunless it becomes absolutely necessary, and a more reward-sensitive agent (i.e., one thatwants to maximize the probability of obtaining reward, disregarding the cost of effort) wouldprefer exerting effort until the probability of winning the mini-block is high enough to risk theprobabilistic option. We discuss the validity and usefulness of this reduction in the numberof policies in the Discussion section.We define these two action sequences with πp as the action sequence of all-probabilisticchoices and πε as the action sequence of all-effortful choices. With these, we define the set
A = {πp, πε}.For every action sequence π ∈ A the model produces an evaluation z(π) which determineshow beneficial this action sequence is for achieving the goal. Then, the model selects anaction (probabilistic or effortful) using these valuations. Concretely, the action at at trial t issampled according to:

at ∼ σβ (z(πp), z(πε)) (3.5)
where σβ is the softmax function with inverse-temperature parameter β. We fix the value ofthis parameter to 5 for all models and participants, which produced posterior probabilities(for effort and probability) in the full range of 0 to 1.The evaluation function z is defined in terms of the single-trial discounting models dis-cussed in Section ’Single-trial discounting models’. In what follows, we discuss z(πp) and
z(πε) separately.
Forward planning with probability

When planning to choose the probabilistic option for every trial into the future, we proposetwo natural ways of calculating z(πp); one aim of the study was to use model comparison to
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disambiguate between these two ways. The first way is to stack the discounting function asmany times as there are trials left:
z(πp) = V fp(p)(T−t+1) (3.6)

= V

(
1

1 + κp
1−p
p

)T−t+1

(3.7)
where fp(p) is given by Equation 3.2 with s = 1. This simply means that the objective reward
V obtained at the end of the mini-block is discounted once for each remaining trial. We referto this variant as “stack”. Note that we explicitly do not call this variant ’multiply’ becausesome other discounting functions (not considered in this paper) are not multiplicative.With the second variant, the model calculates the overall probability of winning the rewardby choosing the probabilistic option in every remaining trial in the mini-block, as if it were asingle action with an overall probability. The calculation of this overall probability is done withthe binomial distribution and the resulting probability is used to apply hyperbolic probabilitydiscounting:

pall =
inf∑

x̂=X−x
B(x̂, p, T − t+ 1) (3.8)

z(πp) = V fp(pall) (3.9)
= V

(
1

1 + κp
1−pall
pall

)
(3.10)

where B(x̂, p, T − t+1) is the probability mass function of the binomial distribution, x̂ is thenumber of successes for the binomial, p is the probability of success and T − t + 1 is thenumber of trials left; X is the number of points necessary to win the mini-block and x is thecurrent number of points. fp(·) is given by Equation 3.2. We refer to this variant as “add”.These two alternative models represent two different ways in which participants could betaking future decisions into consideration. In the “stack” variant, each one of the future tri-als is seen as an independent probabilistic action, with an associated probability to win andto lose. In contrast, the “add” variant sees all future trials as one single probabilistic action,calculating an overall probability of winning using a binomial distributions. While we do notexpect participants to perform such complex calculation, they could calculate an approxima-tion to it and use that to make a decision.A key difference between these two alternatives is related to the way the discountingcurves change as a function of the number of trials left. As can be seen in Figure 3.2A,there is more variability across the curves for the “add” model, all in brown tones, than thosefor “stack”, all in green tones, as the number of points necessary to win (different shades)changes from five (beginning of the miniblock; lightest shades) to one (darkest shades); com-pared to the “stack” variant, the “add” variant is capable of both discounting less steeply whenfew points are needed and more steeply when many points are needed. The “stack” modelis unable to change the discounting curves as much, for any given value of κp.
Forward planning with effort

In analogy to the probabilistic action sequence, we propose two variants of the effortful ac-tion sequence evaluation. The first variant is the direct counterpart of the stack variant in
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Figure 3.2: Hyperbolic discount curves for the “add” (brown tones) and “stack” (green tones). Mark-ers (circles and crosses) are placed at regular intervals (in probability and effort) only sothat it is clear when two lines are overlapping. (A) Probability discounting. Each curve rep-resents a probability discount curve for a number of needed points for the two variants.The parameter κp was set to 1 and 5, for the “add” and “stack” variants, respectively. Thedifferent values were used so the curves would be as similar as possible. The gray, verti-cal line represents the 0.5 probability of getting a point used in the experiment. (B) Effortdiscounting. Each curve represents the effort discount curve for the number of neededpoints for the “add” (brown tones) and “stack” (green tones) variants. For both variants, thediscount parameter was set to κe = 1. The gray, vertical line represents the value used forthe effort of a single effortful action.
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probability:
z(πε) = V fε(ε)

T−t+1 (3.11)
where f(ε) can be hyperbolic effort discounting (Equation 3.3) or sigmoid effort discounting(Equation 3.4). As for the probabilistic action sequence, we refer to this version as ’stack’.The second variant is the direct counterpart of the add variant in probability, and is definedby adding all the future efforts as if it were a single action and discounting the resulting addedeffort using the hyperbolic or sigmoid functions:

εall = (T − t+ 1)ε (3.12)
z(πε) = V fε(εall) (3.13)

where fε(·) can be the hyperbolic effort discounting (Equation 3.3) or sigmoid effort discount-ing (Equation 3.4). As for the probabilistic action sequence, we refer to this version as ’add’.As with probability discounting, these two alternative models represent different ways inwhich the model could consider future effortful actions. In the “stack” variant, as with prob-ability, future effortful actions are seen as independent from present effortful actions andeach is discounted separately, which, given that all effortful actions carry the same amountof effort in our task, is represented as a stacking of the discounting function. The “add” vari-ant, on the other hand, posits that effort itself is additive: performing an effortful task takesonly half the effort of performing two such tasks. In this variant, the model would think of theeffort necessary to perform N effortful actions into the future as having magnitude N timesthat of a single effortful action and would discount this action sequence based on that addedeffort.Additionally, in 3.2B we show how these two models display different behavior. The dis-count curves change more for the “add” and “stack” variants of the model as fewer futureefforts are necessary to win the miniblock. When many points are needed (e.g. at the be-ginning of the miniblock; darkest shades), the difference between the two variants’ discountcurves is at its greatest, but as fewer points are needed (close to winning; lightest shades),the curves look more similar between variants until they become the same, as can also beseen from Equation 3.11 and Equation 3.12 by setting t = T . It is important to note that the“stack” variant discounts rewards more steeply than the “add” variant when many points areneeded, which means that is has a greater range of discounting steepness across the mini-block; this is regardless of the value of the discount parameters. We further discuss thesedifferences in the Discussion section.
Model variants

We defined the different variants of the sequential model depending on the type of for-ward planning used for effort and probability, each of which could be “stack” or “add”. Thisgave us a total of four variants of the sequential component, naming the effort variant first:add/add, stack/add, add/stack, stack/stack. For example, we refer to the variant in whicheffort is stacked and probability is added as stack/add.In addition, two effort discount functions were considered –hyperbolic and sigmoid–, which,combined with the sequential component, yield eight models in total.
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3.3.6 Model comparison

In total, we propose a family of eight (2 × 2 × 2) models: (sigmoid or hyperbolic) × (stackingor adding effort) × (stacking or adding probability). In order to select the one that fits ourdata best, we implemented the hierarchical model proposed by Stephan et al. (2009), whichwe only briefly describe here. Note that Stephan et al. (2009) suggest using the so-calledexceedance probability to produce a ranking between several models, which takes into ac-count both how many times each model was inferred to be the best for participants, and theuncertainty derived from the inference procedure, making it a more appropriate measurefor model comparison than approximations to the model evidence such as the Bayesianinformation criterion (Schwarz, 1978).Stephan et al. (2009) defined a hierarchical model in which the models to be compared arefirst fit to the data of each participant using Bayesian methods. From this fitting, the modelevidence can be calculated for every combination of participant and model. This matrix ofmodel evidences is then used as “data” for the hierarchical model. Formally, the model evi-dence is introduced as p(d|m), where d is the data (participants’ choices) and m representsone of the 8 variants we propose, defined as a vector of zeros with a single 1 in the place ofthe model (for example, the third model is represented by m = (0, 0, 1, 0, 0, 0, 0, 0)). This isused to infer, using Bayes theorem, which model best fits the data of all participants together.The hierarchical model then defines the probability of the model m given an auxiliary vari-able r:
p(m|r) =

8∏
i=1

rmii (3.14)
The variable ri can be interpreted as the number of participants for which model mi was thebest model (highest model evidence), although this is a simplification. The last componentto define is the prior probability of r, which we defined as a flat Dirichlet distribution (as wasdone by Stephan et al. (2009) in their examples):

p(r) = Dirichlet(α) (3.15)
where α is a vector of ones, which reflects that we did not have any hypothesis a priori re-garding which of the variants of our model fits the data best.Finally, the full generative model is given by:

p(d,m, r) = p(d|m)p(m|r)p(r) (3.16)
which we inverted to produce the posterior probability q(m|d) by using the NUTS sampleras implemented in PYMC3 (Salvatier et al., 2016). These posterior distributions can thenbe used to perform model comparison via the computation of the exceedance probability,which is a way of determine how much more likely is one model to better describe the datathan all other models (Stephan et al., 2009).To calculate the exceedance probability for model i, it suffices to calculate the cumulativedistribution of p(ri|data) over all values for which p(ri|data) > p(rj |data), for all j 6= i.
3.3.7 Dividing participants into groups

We divided participants into three groups based on their effort exertion strategy which wedetermined given their choice data. The first group, called all-effort group, consisted of those
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participants who chose the effortful option in more than 90% of trials. This implies that theseparticipants used the effortful option even after winning the mini-block.The remaining participants were divided into two groups: those who applied effort earlyin the mini-block (early-effort group) and those who applied it late (late-effort group). Todivide participants we made use of the frequency of effort calculated at every trial numberacross mini-blocks. Intuitively, the frequency of effort for participants in the early-effort groupdecreases as the trial number increases (until the mini-block has been won), while late-effortgroup increases their frequency with trial number. To quantify this, we calculated the changein frequency of effort between each trial and the next one:
mt = Ft+1 − Ft, ∀t ∈ [0, 10) (3.17)

where Ft is the overall frequency of effort for trial number t. We found that to classify partici-pants based on when they exerted effort, the best strategy was to count the number of times,for each participant, that the slope was positive for all trials and subtracted the number oftimes it was negative:
ξparticipant = dim{t|mt > 0} − dim{t|mt ≤ 0} (3.18)

where dim() is a function that returns the number of elements in a set. ξparticipant deter-mines whether a participant belongs to the early-effort group (ξ ≤ 0) or to the late-effortgroup (ξ > 0).
3.3.8 Parameter estimation

Parameter estimation was done using a variational inference scheme implemented the NUTSMCMC sampler implemented in PYMC3 (Salvatier et al., 2016). The outcome of this Bayesianinference scheme is estimations for the mean and standard deviations of the posteriors foreach model parameter (see Section ’Sequential discounting models’), providing both a single-point estimate, e.g. the mean of the Gaussian posterior, and estimations for the uncertaintyof the inference.Additionally, the model evidence for all models and participants is calculated as the neg-ative loss produced by PYMC3, which is used for model comparison in Section ’Model com-parison’.Parameter estimation was done using the following generative model:
q(θ|d) = p(d|θ)p(θ) (3.19)
p(θ) ∼ Uniform (3.20)

where p(·) is a probability distribution, θ is the set of parameters to fit to the data and q(θ) isthe posterior distribution over the parameters. Uniform refers to uninformative priors, i.e.prior distributions in which no special prior information is encoded. p(d|θ) is the likelihoodfunction provided by our decision-making model.

3.4 Results

We first show that there were inter-participant differences in the strategies used to reach thegoal, which were reflected in the circumstances under which participants chose the effortful
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option instead of the probabilistic one. Furthermore, we divided the participants accordingto three behavioral categories, based on their strategies. This is followed by formal Bayesianmodel comparison to identify the best among eight different models, which differ in termsof how forward planning computes the subjective value of reward, and which out of twodiscount functions is used. Having selected the best model for our data, we show that thismodel correctly captured the overall preference for effort shown by participants. Finally,we show that the overall preference for effort can be understood in terms of the inferreddiscounting parameters (more specifically, their ratio), providing an intuitive description ofapparent effort preference in participants.
3.4.1 Behavioral analysis

Preference for effort

As a first step to determine whether our task elicited differences in the adaptation of effortfulchoices between participants, we calculated the overall frequency of effort for each partici-pant in the sequential task, i.e. in what percentage of trials the participant chose the effortfuloption. The results are summarized in Figure 3.3A; to determine whether participants hadfully understood the instructions regarding reward contingencies (i.e. that gaining points af-ter filling the point bar would bring no further reward), the trials were separated into beforeand after having won the mini-block (i.e. filled the points bar), displayed as blue and greenbars, respectively. It can be seen that, on average, participants chose the effortful optionmuch less frequently after having won the mini-block, which is congruent with the rules ofthe task (i.e. that getting more points after having filled the bar is of no use).In total, we identified three different groups of participants, differing on when they choseto exert effort (see Figure 3.3B and Section ’Dividing participants into groups’ in Methods formore details).We found that 14 (25%) of all participants continued to choose to do effort even afterthey had won the mini-block. We refer to these participants as the all-effort group for therest of this work. In the remaining participants we identified two further distinct categoriesof behavior when looking at those trials before the mini-block had been won, i.e. trials forwhich the number of obtained points is smaller than five. The first category comprises six(11%) participants that showed a lower frequency of effortful choices at the beginning ofthe mini-block, averaged across all mini-blocks, and only later increased their frequency. Werefer to these participants as the “late-effort” group. The second category, which included35 (64%) participants, pertains to participants with the opposite behavior; they started everymini-block with a high frequency of effort and only later in the mini-block, when they hadaccumulated many points (not necessarily having won the mini-block), started choosing theprobabilistic option. We refer to these participants as the “early-effort” group.We considered that all-effort participants may have misinterpreted the instructions of thetask. To discard this possibility, we asked all participants in a post-task questionnaire if theyunderstood that gaining points after filling the bar led to no further reward, to which allparticipants but one responded that they had understood this; the one participant who re-sponded that she did not understand was part of the all-effort group. Importantly, the taskwas designed such that all participants could easily win all mini-blocks; we found that acrossall participants, only four mini-blocks were lost (in all cases by a single point) and no partic-ipant lost more than one. We will discuss potential reasons for the choice behavior of theall-effort group in the Discussion.
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Figure 3.3: (A) Histogram of participants’ overall frequency of choosing effort averaged across all trials,separated into before (blue) winning the mini-block and after (green). (B) Classification ofparticipants into the three groups: all-, early-, and late-effort; see main text. (C) Frequencyof effort as a function of trial number for the three groups of participants, averaged overparticipants in each group. (D) Same as (C), but only decisions made before the mini-blockhad been won are included. The different ranges of the lines (e.g. all-effort only reachestrial 8) is because participants who chose effort more often won the mini-block earlier.
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The model-based analysis results we present in the following sections can account forthe all-effort group simply by inferring very low effort-discounting parameters so that theeffortful action no longer comes with disutility and thus can be selected freely. However, thechoice data of the all-effort group is rather uninformative about the way individuals resolvethe dilemma of when to invest effort to reach a goal that is a few trials away, as one mightexpect given that they always chose to exert effort. Therefore, the all-effort group will beexcluded from the following analyses except when explicitly stated.The dynamics of the frequency with which participants chose the effortful option can beseen in Figure 3.3C-D for the three categories of participants (late-, early- and all-effort). ForFigure 3.3C, we averaged, for every trial number, all the choices made by all the participantsin each group. We show in Figure 3.3D the same data but using only the trials before themini-block had been won. It can be seen clearly that towards the end of the miniblock par-ticipants tended to choose to do effort more frequently, because in those mini-blocks whenearly participants made it to such high trial numbers without having won the mini-block, theyurgently needed to accumulate points and thus effort was required to ensure filling the pointbar.
3.4.2 Model-based analysis

In this section, we discuss several hypotheses on how exactly human participants selectchoices in the sequential task. To do this, we use a series of model-based analyses, usingBayesian model comparison to select the best models.It is important to note that the following analyses are not affected by the distribution ofparticipants across the three groups (early-, late- and all-effort). This is because the modelswere fitted for each participant separately and the model comparisons are made with allparticipants.For all analyses that follow, only trials before the mini-block were used, as only these trialsrepresent goal-seeking behavior.
Forward-planning strategies

We first determined which strategy participants used for forward planning, i.e., how they tookinto consideration all the possible actions that can be taken in the future and their potentialoutcomes to decide whether they would exert effort or not at any given trial. Effectively, thequestion we address here is how the discounting models used to describe single-trial behav-ior are used by participants in tasks that require forward-planning, goal-reaching behavior.We considered, for each discounting type (effort or probability), two different ways in whichparticipants computed the subjective value of a reward that can only be obtained after sev-eral trials. For future efforts, participants may have used either the strategy to apply the effortdiscount function as many times as necessary to win the mini-block (we call this “stack”), oradding all necessary efforts to win the mini-block and using the discount function on this sum(we call this “add”). For probability, the strategy can be stacking the discount function (“stack”),or calculating the probability of winning by choosing the probabilistic option all remainingtrials (“add”). In total, this resulted in four (two variants for effort × two variants for probabil-ity; for details see Section ’Sequential discounting models’). We refer to the model variantsas (effort strategy)/(probability strategy), with the four variants being: add/add, add/stack,stack/add, stack/stack. For example, add/stack refers to the strategy where effort is added
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Figure 3.4: The label effort: add/probability: stack, for example, refers to the forward-planning strat-egy where effort is added and probability stacked. Each of the four distributions, indicatedby a solid curve and a histogram, represents the estimated posterior probability of a spe-cific model. It can be clearly seen that the best model for all participants was the ’effort:stack/probability: add’ variant. The colored lines are an interpolation with a Gaussian ker-nel. The two effort discount functions (hyperbolic and sigmoid) have been marginalized tocompare only the forward-planning components. The y-axis is the probability density of
ri given the data (p(ri|data) in Equation 3.14); the x-axis spans all the possible values of
r. The peak of the red (add/stack) curve is not shown because the vertical range was cutshort for visual clarity.

and probability stacked. To determine which forward-planning strategy was used by partic-ipants, we performed formal model comparison between the four forward-planning strate-gies, following (Stephan et al., 2009).The results of the model comparison between forward-planning strategies, done by mar-ginalizing over discount functions, can be seen in Figure 3.4. The posterior distributionsover the different variants clearly favor the ’effort: stack/probability: add’ variant, with an ex-ceedance probability of ˜ 0.99, which means that this forward-planning strategy is orders ofmagnitude more likely than the others, given the participants’ choices.From our results we can see that the data strongly favors a forward-planning strategyin which future efforts are considered independently of each other (efforts are stacked),discounting the monetary reward at the end of the miniblock once for every future trial inwhich effort is planned. In contrast, future probabilities are not taken independently; instead,participants seem to calculate the overall probability of winning a miniblock without havingto exert any effort and using that calculation for discounting the reward. We further discussthese results in the Discussion section.
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Discount functions

Having selected the forward-planning strategy with the highest posterior probability giventhe data (i.e. effort: stack, probability: add), we set out to determine which effort discountfunction (sigmoid or hyperbolic) best fit our participants’ data. To do this, we performedmodel comparison between the two discount functions. Our results clearly indicate that hy-perbolic effort discounting fits the data better than sigmoid discounting, with an exceedanceprobability ˜1.These analyses were performed with the data of early- and late-effort participants only,excluding the all-effort group. For completeness, we performed the same analysis includingall participants and found that the results do not change. This is due to the fact that, forall models, the effort discounting parameter κε (from Equation 3.3) for all-effort participantswas estimated to be very low, which caused the model evidence of all models to be the samefor that participant. This greatly simplifies model-based data analysis, as it obviates the needfor arbitrary exclusion criteria.
Modeling effort preferences

Having selected the best-fitting model for the participants’ data (hyperbolic effort discount-ing, with stacking effort and adding probability, to which we now refer to as HSA), we show inthis section that this model indeed captured participants’ behavior in a measure not directlyused for model comparison: the overall frequency of effort for each participant.To this end, we compared the HSA model to the experimental data by calculating the over-all frequency of effort for each participant across all mini-blocks and doing the same for themodels. We performed the analysis only for the early- and late-effort groups. We summarizethe results of the comparison in Figure 3.5A, where we show the observed (experimental)and modeled frequencies of effort for each participant separately. We separated the partic-ipants into the late- and early-effort groups; the division is shown as a vertical line, to the leftof which are the late-effort and to the right, the early-effort participants.As can be seen in Figure 3.5B, the HSA model estimated the probability of choosing effortvery well, being within 5% (in frequency of effortful choices) of the experimental data for mostparticipants. Only for three participants we found an error greater than 15%, which is a levelof uncertainty expected from binary data.It is clear from Figure 3.5A that the fit is better for higher frequencies of effort than forlower. This is because participants with a high frequency of effort have less variability intheir choices, which makes them easier to predict by a model. The extreme case of this wasparticipants with an overall frequency of effort (in the early- and late-effort groups) ˜ 1, whohad almost zero variability in their choices.Note that for the late-effort group in Figure 3.5A, one participant can be seen with a highfrequency of effort. For this participant, effort frequency started very high early in the mini-block and increased as the mini-blocks progressed, meeting our definition of the late-effortgroup.
Effort allocation

In this section, we show that the overall frequency of effort observed in participants can beexplained in terms of the discounting parameters fitted from the HSA model. More specifi-
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Figure 3.5: Frequency of effort for each participant (excluding the all-effort group) and the HSA model(hyperbolic discounting applied to the ’effort:stack/probability: add’ model variant). Onlytrials before winning the mini-block are included. (A) For each participant, two coloreddots are shown, which represent the experimental data (green) and the model prediction(brown). Each dot represents the total frequency of effort for the whole experiment. Thetwo dots for each participant are horizontally offset and connected by a line for visualclarity. Participants are divided by the vertical dashed line into late-effort and early-effort.
(B) Histogram of absolute error between the model and the experimental frequency oferror shown in (A).
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Figure 3.6: Each dot represents a participant, divided into late-effort (dark dots) and early-effort (lightdots). We plot the frequency with which a participant chose the effortful action (untilreaching the goal of a mini-block) on the x-axis and the log-ratio of the HSA model (hyper-bolic discounting applied to the ’effort:stack/probability: add’ model variant) parametersfor probability to effort discounting, i.e. κp to κε, on the y-axis (log-scale for clarity).

cally, we show that participants with a higher frequency of effort are those who discountedprobability more steeply than effort.To do this, we calculated, for each participant, the ratio of the posterior means of theHSA model’s probability discounting parameter κp from hyperbolic probability discounting,to κε from effort discounting. Figure 3.6 shows these ratios plotted against the individualoverall frequencies of effortful choices. It can be seen that there is a monotonically-increasingrelation between the ratio of discount parameters and the overall preference for effort, savefor two outliers (one of which has a large absolute difference in Figure 3.5, belonging to theearly-effort group).This monotonically-increasing relation can be interpreted in terms of the comparison be-tween the two options in the task: a participant with a high ratio discounted probability moresteeply than effort, which translates into a lower valuation of any probabilistic offer, com-pared to an effortful one. At values of the frequency of effort ˜1, the log-ratio increasesrapidly (faster than exponentially) due to the nature of the model, as the probability of effortgrows more slowly than exponentially as κε decreases linearly.
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3.5 Discussion

We designed a sequential decision-making task in which participants could choose, in eachtrial, to exert mental effort in order to improve their chances of obtaining reward at theend of a mini-block (i.e., sequence) of ten trials. In this task, participants had the option toexert effort immediately to ensure future reward or choose a probabilistic option and waituntil a later trial to re-evaluate if effort needed to be exerted. With this task, we aimed atdetermining when participants choose to exert effort and which forward-planning strategythey employed to make such a decision. To this end, we proposed a forward-planning modelfor goal-directed, sequential decision-making behavior that incorporates different strategiesfor the consideration of future exertion of effort.Our results show inter-participant variation in when they chose to exert effort, with mostparticipants choosing to start a mini-block with effort and only later choosing not to exerteffort. Additionally, the results of our model comparison between four different forward-planning strategies show that most participants considered future efforts by stacking theeffort discount function, i.e., by applying the function as many times as they planned to exerteffort in future trials. For probability discounting, we found that the best-fitting model calcu-lates the overall probability of reaching the goal (winning a mini-block) when always choosingthe probabilistic option. We also found that hyperbolic effort discounting fits the data of ourexperiment better than sigmoid effort discounting. Finally, we showed that the overall fre-quency of effort for a participant can be explained by the ratio of the inferred probabilitydiscounting to the effort discounting parameters.
3.5.1 Forward-planning strategies

In Section ’Forward-planning strategies’ we showed that the forward-planning strategy whichbest fits the data is one in which effort is “stacked” and probability “added”, which we call HSA(for hyperbolic discounting applied to the ’effort:stack/probability: add’ model variant). In thismodel, an overall probability of reaching the goal of the miniblock (i.e. accumulate enoughpoints to fill the bar) is calculated for the all-probability action sequence, and this overallprobability is used to discount the monetary reward at the end of the miniblock. In contrast,future efforts are taken into account one at a time, discounting the reward once for everyfuture effort necessary to win the miniblock.We speculate that this model reflects an important difference in which probabilities andeffort are processed by participants. While the probabilities of success of a number of futureactions can be collapsed into a single overall probability, this is not done for effort. Rather,effort seems to play a different role in forward planning, whereby a participant asks herselfhow she will value a reward after each single instance of (future) effort required to obtain it.Such piecemeal considerations could be prompted by the structure of the task itself, whereat each future trial, the participant can choose not to continue exerting effort. There could bea difference in the way future effort discounts reward if, instead of having five independentinstances of effort exertion, participants could simply choose to exert five times the effort,once. In real life, this would be the difference between having to decide whether to work forfive hours in one go, or having to make five sequential decisions to work for one hour, wherethe decision about each work hour is followed by a prospective, internal evaluation how onewill feel, in relation to an overall goal, after having completed one further hour of work.
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3.5.2 Future modeling perspectives

Based on previous research, we believe effort and probability are the main driving forcesbehind behavior in our task. However, this does not preclude the possibility of other effectsbeing in place. Some of these effects could be included in the value of the discount functionparameters, like a preference for cognitively-demanding tasks (Westbrook et al., 2013), whichwe directly infer from the data and therefore implicitly model. Others can be thought of ascompeting goals in the form of intrinsic motivation, like wanting to please the experimenter,as discussed by Pessiglione et al. (2018), whose effects are constant throughout the experi-ment, and could be added to the model as part of the reward to be obtained (e.g. with theall-effort action sequence, but not the all-probability one).A third type of effects comprises dynamic effects, whose influence on decisions changesfrom trial to trial. In our task, one such effect may be an avoidance of negative feedback,which would differ from extrinsic motivation by reward (obtained when winning a miniblock).We do not believe that such an effect may explain participants‘ choice because feedbackfor every trial continues even after the point bar has been filled. This would imply that itseffects would need to disappear, or at least be greatly lowered, once enough points havebeen secured in the miniblock, although winning the miniblock should not affect the desireto avoid negative feedback. However, the effects of feedback could be added as anothercomponent of the model, either in the reward space, i.e. that the obtainable reward from theall-effort action sequence is modeled as 20cents + (T - t)(Feedback), where “feedback” is thepredicted positive or negative feedback for the action sequence, or as a discounting force,i.e. Subjective Reward = f(negative feedback, monetary reward), where f(., .) is a discountfunction which decreases with negative feedback.It would be the subject of future research to determine which of these effects significantlyaffects behavior to build a more complete account of behavior in such sequential tasks.
3.5.3 Preference for effort

We found that most participants had a strong preference for effort. A quarter of participants(the all-effort group) went as far as choosing to exert effort even when it brought no extramonetary reward. In particular, participants in the all-effort group did not seem to be follow-ing the instructions of the task. A similar phenomenon, i.e., continuing to exert effort whenit no longer is necessary, has been observed in physical effort experiments (Schmidt et al.,2008; Bouc et al., 2016).There may be two possible reasons for this phenomenon: First, the level of cognitive effortin our number-sorting task could be too low to trigger a cost/benefit analysis in participantsin the all-effort group. In our task, the effortful option came implicitly tied to an increase inthe probability of earning monetary reward, which added to the overall benefit of exertingsome effort. Moreover, other reasons may be that for some participants, the number-sortingtask was interesting on its own (Inzlicht et al., 2018), participants did not want to wait for thenext trial while doing nothing, and wanted to make sure they did not lose practice, all ofwhich were reported by our participants in a post-task questionnaire. A related possibilitywas suggested by Pessiglione et al. (2018), namely that participants might want to “make animpression on the experimenter” by always choosing to exert effort.Second, we speculate that highly motivated individuals might “flatten” their effort discountcurves (e.g., by making κε smaller) to more easily attain highly-valued rewards in a scenariolike a psychological experiment, which they might misunderstand as a competitive scenario.
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As volunteer participants can be assumed to be highly motivated, especially when monetaryreward is contingent on performance (Hertwig and Ortmann, 2001), this would mean thattheir effort discounting parameters are lower, causing the observed high frequency of effort.Testing these two possible explanations could prove fruitful in future research. Testingthe low-effort level possibility would require a task that parametrically varies the effort levelto establish higher levels of cognitive effort, as is done typically with physical effort (Prévostet al., 2010). Based on these variations, the proposed model-based approach can be used toinfer meta-control by establishing differences in individual effort and probability discountingparameters between different levels of effort requirements.
3.5.4 Action sequences

As part of the present model’s definition, we limited the action sequences considered bythe model to the all-effort (πε) and the all-probability (πp) action sequences (see Section ’Se-quential discounting models’). Here, we discuss the reasoning behind this choice and itsinteresting ramifications.We posit that as a means to prune the decision tree, participants developed a strategyin which they evaluate the current state of the task and determine it to be “good” or “bad”,which in turn allowed them to simplify the decision tree to the two action sequences πε and
πp. A good state is one in which the participant is close to winning. A bad state is one in whichlosing seems likely. A good state is then one in which the participant can afford to choose theprobabilistic option without it becoming too likely to lose the mini-block, while a bad one isone in which effort needs to be exerted to continue to have a chance at winning. It dependson the participant where exactly this change from good to bad state lies.In a bad state, effort is, by definition of the bad state, necessary not only in the currenttrial, but also for all the remaining ones, as otherwise the probabilistic option would still beviable and the state would be good. Therefore considering a mixed action sequence (i.e. onein which both effort and probability can be planned for future trials) is unnecessary in badstates.In contrast, in a good state, the probabilistic option is still viable. This definition does notpreclude future necessity of effort, as things could go wrong and all probabilistic options belost, which eventually would lead to a bad state. However, as states are evaluated at everytrial during the experiment, it is unnecessary to consider this possibility when evaluating theaction sequences during a good state; instead, the participant can simply wait until the statehas actually become bad in the future and then switch to the all-effort strategy. This impliesthat good states only require the evaluation of πp.How is this state evaluation carried out? Since the only viable option in a good state is πpand the only viable option in a bad state is πε, one can turn this around and define a goodstate as one in which z(πp) > z(πε), where z(·) is the valuation function (Equation 3.7), anda bad state as one in which the opposite is true. Therefore, the decision-making agent candecide between effort and probability by comparing the valuations of πp and πε, as done inthe proposed model. This evaluation could be affected by the meta-control we discussed inSection ’Preference for effort’; for example, a highly-motivated individual would classify statesas “bad” more often than one with low motivation. Whether motivation and, more generally,meta-control could change which action sequences are evaluated at all should be the targetof future research.
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3.5.5 Effort and goal reaching

It has been suggested that individuals generally tend to avoid cognitive effort (Kool et al.,2010; Westbrook et al., 2013). However, in the tasks used in the experiments by Kool et al.(2010) and Westbrook et al. (2013), there was no set goal that could be reached more read-ily via the exertion of cognitive effort. In the study by Kool et al. (2010), participants couldnot earn additional money if they chose the more effortful task more often. In the experi-ments in (Westbrook et al., 2013), the association between the actual investment of effort inan increasingly difficult n-back task, the choice behavior in the titration procedure used todetermine the subjective value of redoing the different n-back levels, and the actual paymentbased on four randomly selected choices in the titration procedure may simply have beentoo unconstrained. In the present task, it was clear in every trial and mini-block that choosingthe effortful option would be beneficial for obtaining the reward.This caveat to the assumption of a general tendency of individuals to avoid the exertionof cognitive effort is also backed by the observation that stable individual differences in per-sonality traits related to the tendency to willingly exert cognitive effort have been found tobe associated with effort discounting: Kool and Botvinick (2013) found that individuals withhigher scores in Self-Control showed less avoidance of cognitive demand, and Westbrooket al. (2013) observed that participants with higher scores in Need for Cognition showed lesseffort discounting. While Self-Control is characterized by the investment of mental effort tocontrol one’s impulses that interfere with long-term goals (Tangney et al., 2004), Need forCognition refers to the tendency to engage in and enjoy effortful mental activities (Cacioppoet al., 1996), which can be summarized as cognitive motivation. It remains to be determinedwhether our participants’ habitual cognitive motivation may have played a modulatory rolein their decisions to choose the effortful condition more frequently because of their intrinsicmotivation to invest cognitive effort. Taken together, our results partly corroborate the semi-nal findings by Kool and Botvinick (2013) and Westbrook et al. (2013) in pointing to individualdifferences in the willingness to invest cognitive effort and extend them by showing that theassumption of a general tendency for the avoidance of the exertion of cognitive effort onlyholds if there is no goal that can be achieved more readily by the exertion of effort.In conclusion, we have presented a novel combination of a sequential decision making taskand a computational model based on discounting effects to describe how participants planforward to exert effort to reach a goal. We believe that this computational-experimentalapproach will be highly useful for future studies in the analysis of how participants meta-control the cost/benefit ratio during goal reaching.

68



4 General discussion

Summary

In this work, I presented two studies on sequential decision making under risk and effort witha strong focus on computational models and their use in model-based data analysis.In Chapter 2, a computational model of behavior in a sequential task based on the activeinference framework (Friston et al., 2015) was described. Fitting this model to each partic-ipant’s choices enabled the analysis of their behavior with a resolution of single-trial deci-sions, inferring how certain the participant was that the choice they made was the correctone. In addition to capturing summary statistics with all participants pooled together, as iscommonly done in data-based analysis to obtain more reliable statistics, it was shown thatthe model-based approach is able to do trial-by-trial analysis by using all trials to infer whatthe certainty of the participant was during each trial.In Chapter 3, I showed how traditional discounting models, which were made for single-trial decisions, were extended by including a component of forward-planning to model be-havior in a sequential task. The purpose of this model was to show that our understandingof probability and effort discounting needs not be revised for tasks outside of the scope ofthe original experiments (which were single-trial), but instead needs only be extended to thesequential domain. As before, the models were fitted to each participants’ choices. I showedthat participants’ behavior, which adapts to the ever-changing nature of the context in whichtheir choices must be made, can be explained by a set of static discount parameters. Addi-tionally, a comparison was made different possible strategies for taking into considerationfuture exertion of effort and it was shown that participants are more likely to apply the dis-count function for every instance of planned effort. It was also showed that the inferredparameter values for each participant correlate with their propensity to wait until later tostart investing mental effort into a task, when the evolving environment made it clear thateffort had become necessary.

4.1 Applications

A theme common to the two presented studies is that of model-based data analysis. As thename suggests, it is the idea of analyzing the behavioral data through the lens of a computa-tional model, which provides a more in-depth look into the decisions being analyzed. In the
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case of the models presented here, the most important output is the probability distributionfrom which each decision is sampled in the model. These distributions encode the certaintywith which an agent, mimicking a participant, makes a decision. Importantly, this informationis not directly accessible in the choice data, and to approximate it with traditional analysismethods, many different trials must be pooled together to obtain reliable statistics, e.g. bypooling all participants’ decisions together.Such summary statistics are not without merit. Indeed, a crucial step in establishing the va-lidity of the model-based analysis was to show that it can reproduce these summary statistics.In both studies discussed above, I showed that the model-based analysis captured elementsof the participants’ behavior that were not directly used to fit the models, which is formallyknown as posterior predictive checks (PPC; Gelman et al., 1996). This can be seen in Figure2.7 and 3.5, where the posterior probabilities given by the models for each trial are aver-aged and compared to the decisions made by individual participants and by all participants,respectively.Beyond reproducing traditional analyses, model-based data analysis provides additionalinsights. In this work, two different types of insights are presented and discussed: (1) InChapter 2, the fitted model was used to essentially extend the available data by calculatingthe posterior probability of an action in situations (contexts) which were not observed duringthe experimental session. This extrapolation answers the question: what would the partic-ipant do in this new context? (2) In Chapter 3, the fitted parameters from the models wereused directly to describe a trend in the behavior of all participants which cannot be seen fromthe data alone. While the latter form has seen many uses, e.g. with discounting parameters(Shamosh and Gray, 2008; Jullien et al., 1999; Myerson et al., 2003), to my knowledge, theformer has seen limited use in psychology or neuroscience due to the difficulty of buildingand verifying an adequate behavioral model.The most straightforward application of model-based data extrapolation is that of fitting amodel with (abundant) training data in a behavioral experiment and using the fitted modelto predict and study the behavior of participants during an imaging (e.g. fMRI) session, inwhich the number of trials might not be enough to reliably fit the model. In this situation,the extrapolated data is not different from the data used for fitting, as the participant is typ-ically performing the same task (with variations due to, for example, stochasticity). However,a more involved application of model-based extrapolation is that of predicting and under-standing the behavior of people in situations in which participants cannot be placed duringan experiment due, for example, to potential danger to the participant, or to time constraintsin the performance of the task (e.g. when comparing behavior against a control condition inpharmacological interventions that can only be applied for a short duration).In addition to the two tools discussed above, model-based analysis also provides an extratool for analysis: the posterior distribution over actions for each trial. These distributionswere used in all model-based analyses in Chapter 2 and Chapter 3. In this sense, the fittedmodels can be seen as a tool that maps the binary choices of a participant to the certaintywith which the participant made these choices, in a trial-by-trial basis. This could enable trial-by-trial analyses of, e.g., the neural underpinnings of the preference for risk which go beyonda binary regressor (as done in Schwartenbeck et al., 2015) essentially cleaning up the noiseinherent to forced binary choices from the behavioral measures (e.g. Kolling et al., 2014).Further development of these methods is of paramount importance in the future, as directlyobtaining these certainties from participants is difficult in most cases, downright impossiblein some.
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4.2 Limitations and future work

4.2.1 Model validation

The power and reliability of model-based analyses naturally depend on the validity of themodel. Because of this, it is of great importance to find ways to ensure that the model accu-rately simulates human behavior or, put another way, find and apply tools to determine howwell the model fits the available data and predicts unavailable data.While for some types of models (e.g. linear models) known measures of model fit existwhich can be interpreted on their own, the generic case of a non-linear model with arbitraryform is more complicated.If a standard model already exists, and a new, possibly better model is presented, modelcomparison can be used to determine whether the new model better fits the data than theincumbent one. In all other cases, like those presented in Chapter 2 and Chapter 3, one formof model validation left is that of posterior predictive checks (PPCs). As discussed above, PPCswere used to validate the models used in the presented studies.PPCs take the form of summary statistics that are highly dependent on the data being usedto fit the models. In the case of participant choice data, participant-level statistics like overallperformance on the task (e.g. number of accumulated points), average reaction times (e.g.in the drift diffusion model (Ratcliff and McKoon, 2008)) or propensity for one choice overthe others (as discussed in Chapter 2 and Chapter 3) make for simple PPCs which are easilyinterpretable.A more general PPC, which could potentially be applied to most behavioral experiments,is that of comparing the posteriors over actions to the certainty reported by participants.In future works, an essential step in the introduction of a new behavioral model could beto directly validate a subset of these posteriors. To do this during a behavioral task, theexperimenter need only ask the participant how certain she was about the previous decision.While this can be disruptive and, in some cases, impractical, for the purpose of PPC, this couldbe done only for a small but significant subset of trials. The decisions in these trials can beexcluded from all analysis, and the reported certainties used exclusively as a PPC.These reported certainty levels can be compared against the posterior probabilities overactions produced by the fitted model to ascertain whether there is a close fit. Having donethis, we can be sure not only that the model accurately captures human behavior, but alsothat the posterior probabilities themselves can be taken at face value.
4.2.2 Implicit vs explicit modeling of risk

In the two models presented, there is a significant difference in how risk is modeled. Whilethe models of Chapter 3 (henceforth, the explicit models) incorporate a specific componentof probability discounting (i.e. risk discounting), the active inference-based models (hence-forth, the implicit models) do not, instead relying on an elaborate forward-planning machin-ery which culminates in the evaluation of sequences of actions using a goal function.In the explicit models, risk aversion is inferred for each participant and the interpretationof the inferred values can be made as has been made in single-trial experiments (e.g. Greenand Myerson, 2004): if the parameter κp (see Equation 3.2) is bigger than one, the participantis risk-averse. The opposite for 0 < κp < 1, and if κ = 1, the participant follows the expectedvalue.
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On the other hand, implicit models do not lend themselves to such interpretation. In thesemodels, how much the agent should accept risk is determined based on how many pointsare needed, as well as on the goal shape used by the participant. In a sense, risk aversionis calculated optimally for each trial, given the (subjective) goal shape for the participant. Assuch, one cannot say that a participant is more or less risk averse, but rather that she is moreor less accepting of lower-point outcomes (of the miniblock): for example, an agent with veryflat goals (see Figure 2.2) is not as concerned with making it past the threshold, and thuscould choose the safe option more often.The difference between the two types of models goes beyond mathematical definitions.The implicit models posit that risk aversion does not exist in isolation, but is rather a conse-quence of both the goals and the predictions during forward planning. In this perspective,a person does not simply prefer risk (e.g. riskier bets with higher payoffs), but instead findssub-maximal outcomes (e.g. when the reward at the end is not as high as it could have been)unacceptable, making risk a necessity. The explicit models, on the other hand, posit that riskaversion is an independent mechanism from that of reward evaluation (although affected byit (Estle et al., 2006)), manifesting as a direct preference for safer bets.Whether risk aversion and the value function are separate entities is not a new question.Dyer and Sarin (1982) argued that what might appear as risk aversion can be better explainedin terms of a nonlinear evaluation of possible rewards and what they call relative risk aversion.In contrast, prospect theory Kahneman and Tversky (1979); Tversky and Kahneman (1992)explicitly separates the effect of risk aversion and the value function.The high adaptability of implicit models could provide a mechanistic explanation for thefinding that inferred discount parameters are affected by, among others, reward magnitude,gains vs. loss, and context. However, establishing such models has proven to be difficult, asthey have, by necessity, many components, each of which would need to be verified inde-pendently. The importance of this question cannot be overstated and, as such, I believe itshould be the focus of future studies.
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