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Abstract—Software systems in domains like Smart Cities, the
Internet of Things or autonomous cars are coined by a high
degree of distribution across several independent computing
devices and the requirement to be able to adjust themselves
to varying situations in their operational environment. Self-
adaptive software systems are a natural choice to implement such
context-dependent software systems. A multitude of approaches
already implement self-adaptive systems and some consider even
distribution aspects. Yet, none of the existing solutions supports
the coordination of adaptation operations spanning multiple
independent nodes, which is necessary to ensure a consistent
adaptation even in presence of network errors or node failures.

In this paper, we tackle this challenge to execute adaptations
in distributed self-adaptive software systems in a coordinated
manner. We present a protocol that enables the self-adaptive
software system to execute correlated adaptations on multiple
nodes in a transactional manner ensuring an atomic and consis-
tent transition of the distributed system from its source to the
desired target configuration.

The protocol is validated to be free of deadlocks for any given
adaptation at any point in time using a model-checking approach.
The performance of our approach is investigated in experiments
that emulate the protocol’s execution on real devices for different
sizes of distributed applications and adaptation scenarios.

I. INTRODUCTION

Self-adaptive software systems are an established approach

to model and implement software systems that have to modify

their own computational behavior or structure in response to

changes in their operational environment. Applications that are

expected to modify their own behavior, e.g., from domains like

Smart Cities, the Internet of Things or autonomous cars, are

coined by a high degree of both logical and spatial distribu-

tion. Such applications are furthermore highly interconnected,

i.e., distributed parts of the system exchange messages and

information to provide their intended functionality. In response

to changes in the operational environment (i.e., context) the

self-adaptive software system is likely to be required to adapt

several application parts located on different nodes. Being able

to control the adaptation process without a central control

unit in an otherwise distributed environment is an essential

feature for self-adaptive software systems [1], [2] to overcome

performance bottleneck and single-point of failure issues every

centralized approach is prone to.

In this regard, we focus our work on the distributed and

decentralized execution of adaptations at run time, which

means that the components of the self-adaptive software

system responsible for the execution of run-time adaptations,

can only adapt local parts of the distributed system and

need to collaborate in order to perform the adaptation [2].

Our research so far was concerned with the decentralized

execution of adaptations in self-adaptive software systems [3],

i.e., components responsible for the execution of adaptations

are only able to perform adaptations locally, but have to

collaborate with each other to control the execution process.

Software systems able to modify their own behavior in

response to changes in their operational environment are

usually coined by static system behavior that is fix and does

not depend on external properties and dependent dynamic
system behavior that may be dynamically added or removed

to or from the system. Such context-dependent adaptations

are usually summarized as structural adaptations in contrast

to parameter adaptations, which only allow to set parameters

of an algorithm or a component, for example, to modify the

respective system behavior [4]. The approach presented in this

paper is concerned with structural adaptations of distributed

self-adaptive software systems. In order to capture dynamic

and static system behavior, we utilize the abstraction of Roles
and Players, which offers a wide set of features to model

and implement context-dependent applications [5]. A Role in

our approach has its own state and behavior and captures

context-dependent functionality of the application whereas a

Player implements static, context-independent functionality of

the application. By playing different roles, the perceivable

behavior of the player can be modified context-dependently.

A structural adaptation of the self-adaptive software system

resulting in a behavioral change is thus achieved by modifying

the plays relation between players and roles. Using the notion

of roles to abstract from the concrete implementation of the

adaptable application parts is not a limiting factor to our

approach with respect to the applicability to the existing work.

In [6], the notion of roles is applied to component-based

software systems whereas [7] translates roles to services and

[8] uses the abstraction on the level of Java objects to design

and implement self-adaptive software systems.

In this paper, we describe our approach to coordinate the

execution of adaptations in distributed self-adaptive software

systems. Our approach includes a set of role-based adap-

tation operations that describe atomic adaptation steps. We

introduced the term Adaptation Transaction [3] to encapsulate

dependent adaptation operations in order to ensure a consistent

transition of the self-adaptive software system from a source
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to a target configuration (Section II). The execution of such

an adaptation transaction is controlled using our proposed

Coordination Protocol to allow for an adaptation without

central coordinator. In this paper, we extend the coordination

protocol to ensure a consistent and decentralized execution

of adaptation transactions in unstable environments coined

by unreliable communication channels used to coordinate the

execution of adaptations. We address the issue of lost coor-

dination messages during the adaptation process to advance

our previously presented ideas in this matter and elaborate on

the protocol’s behavior in the presence of random adaptation

errors occurring at run time to ensure a consistent application

configuration (Section III). We validate our protocol using

a formal model checking approach to prove the proposed

protocol to be deadlock free even in failure scenarios and

perform emulated performance measurements of our protocol

executing adaptation transactions of different size in different

system sizes (Section IV). Subsequently, we focus on related

work and critically discuss our approach (Sections V and VI,

respectively) before we conclude this paper (Section VII).

II. FOUNDATIONS

Our previous research [9], [3] serves as foundation we

rely on in this paper and will be briefly summarized in the

following. First, we will outline the system architecture and

the assumed system model for our research. Subsequently, the

terms Adaptation Operation and Adaptation Transaction will

be discussed, which describe the concrete adaptations to be

executed. Lastly, the interface to locally modify parts of the

distributed software system will be briefly summarized.

A. System Model and Architecture

We assume the self-adaptive software system to follow

an external adaptation [4] approach, i.e., application specific

concerns are strictly separated from adaptation concerns, e.g.,

adaptation mechanisms. The architecture of our proposed

solution, which is depicted in Figure 1, reflects this con-

sideration. A Node is a computational unit that hosts the

distributed parts of the self-adaptive software system, which

are the Adaptation Manager and the Managed Application.

The Managed Application provides all the static and dynamic

behavior of the application and is being adapted at run time

in response to changes in the operational environment of

the system. We assume the managed application to use the

notion of roles and players as well to implement dynamic

and static parts of the system, respectively. The managed

application itself is distributed across several Nodes. Different

parts of the application may perform different tasks at run

time, i.e., the set of application behavior distributed across all

nodes of the system is not assumed to be homogeneous. Each

managed application maintains a run-time model of its local

configuration including the set of players and the roles each

player is playing as well as the local and remote collaborations

of each role. Each local part of the managed application is

accompanied by an instance of the Adaptation Manager, which

can adapt the local subsystem of the managed application

Node 1 Node 2 Node N

Managed 
Application

Adaptation Manager

introspect
modify

Managed 
Application

Adaptation Manager

introspectmodify

Managed 
Application

Adaptation Manager

introspectmodify

Adaptation Execution Middleware

Figure 1. System Overview

but has to collaborate with other adaptation managers on

remote nodes in order to perform the overall adaptation of

the managed application as a whole.

With respect to Kephart and Chess [10], a node can be seen

as an autonomic element in which the managed application

represents the managed element. Since our approach focuses

on the consistent execution of adaptations at run time, the

adaptation manager can be mapped to the execution compo-

nent of an autonomic manager implementing the MAPE-K

feedback loop. Our approach, in contrast, is only concerned

with decentralizing the execution phase and is thus a subsys-

tem of the autonomic manager.

In terms of the underlying communication infrastructure

of the system, we assume that each node in the system is

able to reach any other node. The communication channel

between nodes, however, is not expected to be reliable, i.e.,

messages exchanged by the adaptation managers to perform

the adaptation, might be lost during transmission.

B. Adaptation Operation and Transaction

We describe a consistent application configuration as a

configuration of the managed application in which all static

and dynamic behavioral parts adhere to a specific run-time

model for the currently active context. In response to context

changes, the adaptation management’s Planning phase derives

a system configuration that is consistent with the new context

and issues an adaptation plan to the Execution phase of the

feedback loop. We define the term consistent adaptation as the

transition of the system from a given source configuration to a

target configuration. Such a transition is described by the de-

rived adaptation plan of the adaptation management’s planning

phase. Our work is focused on the consistent adaptation of the

distributed self-adaptive software system, hence we expect the

change plans to be provided as input to our approach.

We proposed the notion of an Adaptation Transaction [3] to

describe the necessary adaptations to transition a distributed

software system from a source to a target configuration. An

adaptation transaction is composed of multiple Adaptation
Operations that describe a single adaptation step, e.g., adding

or removing context-dependent behavior, i.e., roles, to or from

the running system [3]. In order to ensure a consistent adap-

tation, an adaptation transaction is executed atomically, i.e.,

the execution cannot be interrupted, and either all adaptation

operations are executed successfully or none of the adaptation

operations take effect. Using this atomic execution approach,

an adaptation transaction ensures a consistent application con-
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figuration. Evidently, rollback mechanisms to revert temporary

changes are supported by the execution middleware as well.

Frequent context changes possibly require adaptation trans-

actions to be serialized before execution or to be performed

otherwise in isolation to maintain the consistency of the

managed application. Currently, however, we do not support

the isolation of adaptation transactions.

C. The Local Adaptation Interface

We follow an external adaptation approach [4], which allows

for a clear separation of adaptation and application concerns.

The notion of roles to distinguish context-dependent system

behavior from context-independent behavior, i.e., players, is

reflected in the interface between adaptation manager and

managed application as well. The interface allows the adap-

tation manager to monitor the internal configuration of the

managed application, i.e., information about players and the

roles currently played by them can be obtained as well as

internal state information of any given role instance, which is

required for certain types of adaptation operations, e.g., the

relocation of a role instance between devices [3]. Furthermore

the interface allows the adaptation manager to locally adapt

the managed application, i.e., creating new role instances and

establishing a plays relation to a given player or removing role

instances deemed discardable by the adaptation management

from a player. Especially the last step includes mechanisms

to transition the role to a quiescent state [11] or to otherwise

ensure the role to be in a state in which no computational tasks

are performed. Since roles encapsulate application behavior

that can be executed at any time, the interface needs to enable

the adaptation management to observe and affect the execution

state of roles to allow for a consistent adaptation at run time.

We will elaborate on the protocol support to reach such a state

for the overall adaptation process in the following section.

III. DECENTRALIZED COORDINATION PROTOCOL

The previously discussed adaptation operations and trans-

actions describe the modifications the decentralized execution

middleware is expected to perform on the managed applica-

tion. In this section, we focus on the Decentralized Coordina-
tion Protocol that enables the execution middleware to perform

adaptations without a central control system. We first outline

the protocol’s support to reach a stable application state before

the actual adaptation process commences. Subsequently, we

discuss the protocol and its coordination messages to ensure a

consistent adaptation covering local adaptation failures. Lastly,

the extended protocol behavior to cope with link failures, e.g.,

lost coordination messages during the execution of adaptation

transactions, will be presented.

A. Stable Application State Support

The adaptation of a running program requires the program

to reach a stable application state [12] first. In such a state no

parts of the program that are subject to the adaptation perform

computational tasks and all data has been saved. The concept

of quiescence [11] proposes a set of criteria that specify when a

given adaptable entity, e.g., a component, has reached a stable

state. Consequently, any coordination protocol needs to ensure

all context-dependent parts of the managed application, i.e.,

roles, affected by an adaptation to reach a quiescent state.

In terms of our approach, a role instance that is part of an

adaptation operation and thus an adaptation transaction, has

to reach such a quiescent state before it can be removed

or relocated, for example. Players are able to play multiple

roles simultaneously. Roles that are not subject to the ongoing

adaptation process can be continued to be actively played by

the system’s player resulting in only fractions of the system

affected by the consequences of a quiescent state.

In a distributed application, roles also collaborate with other

roles located on remote nodes in order to provide the appli-

cation’s intended functionality. In [7], this relational nature of

roles is explored in detail from an engineering perspective for

collaborative software systems. Since an Adaptation Transac-
tion only specifies the concrete adaptation operations supposed

to be performed by the adaptation management, the Adaptation
Managers have to determine a quiescent application state

for the managed application. In order to ensure a consistent

adaptation of the application, the adaptation managers need to

obtain information on which locally managed roles collaborate

with roles on remote nodes. When the information has been

obtained, the coordination protocol provides the Passivate
message, which is sent to all adaptation managers managing

roles supposed to be passivated locally. The successful passi-

vation of a role locally is indicated using the Report message,

which is used to disseminate status information among adapta-

tion managers. As soon as a role was successfully passivated,

the adaptation of that specific role can commence.

B. The Coordination Protocol

The coordination protocol provides the following messages,

which were partially presented in [3], to coordinate the

progress of an adaptation transaction: Report messages are

used to disseminate status information on the execution of

local parts of individual adaptation operations as well as on

the adaptation transaction. A Report message contains the

unique identifier of the adaptation operation as well as a status

flag to indicate, whether the adaptation step was performed

successfully, not successfully or whether the execution is

still ongoing. Unsuccessful report messages will cause the

adaptation transaction to be terminated and thus the managed

application to remain in its source configuration. StateTransfer
messages are used to transfer internal state information of

a role from the source to the target node. It contains the

identifier of the adaptation operation which requires the state

transfer and the state information itself. TransactionActivation
messages are issued when all adaptation operations of the

adaptation transaction could be performed successfully. This

message triggers the activation of the managed application’s

behavior of the target configuration. TransactionRollback mes-

sages are used in response to a negative report message

and will cause all adaptation managers to rollback temporary
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AdaptationGroup

reportMsg / [numberOfSAGs > 0]

reportMsg /
[numberOfSAGs == 0]

Rollback

reportMsg / [neg.Message]

reportMsg /
[numberOfSAGs == 0]

reportMsg / [numberOfSAGs > 0]

(a) Transaction State Chart

Waiting

/ [inAdaptationGroup]

/ [¬inAdaptationGroup]

reportMsg /
[No.Missing < 0]

reportMsg / [numberOfMissing == 0]

/ [success && remainingLocal]

/ [success && ¬remainingLocal]

PerformOperation

exit / sendReportToPeers

(b) Adaptation Group State Chart

Active Waiting

stateTransferMessage

/ [localFinished]

reportMsg /
[missingReports==0]

(c) Local Operation

Figure 2. The Coordination Protocol State Chart of an Adaption Manager

modifications locally made. Finally, the source configuration’s

behavior of the managed application will be reactivated.

The coordination protocol for an adaptation transaction is

depicted in Figure 2(a). The received adaptation transaction

is structured into Adaptation Groups, which contain adapta-

tion operations that are allowed to be executed in parallel.

The Order parameter of the adaptation operation (cf. [3])

indicates if adaptation operations can be executed in parallel,

i.e., adaptation operations of the same order belong to the

same adaptation group. The adaptation groups are executed

sequentially and the next group is started as soon as all

report messages the respective adaptation manager expected

for the current adaptation group have been received indicating

a successful execution. Otherwise, the adaptation transaction

will be terminated unsuccessfully and the Rollback state will

be entered in which all temporary adaptations are reverted.

If an adaptation group does not contain any operations that

require the adaptation manager to coordinate local adaptations,

the adaptation manager immediately enters the Waiting state

in which it remains idle until all expected report messages

were received. If the adaptation manager is required to perform

local adaptations based on the specified adaptation operations

within the adaptation group, the adaptation manager enters the

PerformOperation state. In this state, adaptation operations are

executed according to the state chart depicted in Figure 2(c).

The concrete execution behavior and the interplay of the

adaptation manager with the managed application through

the shared interface, which we briefly discussed earlier, was

described in [3]. Local modifications are made in the Active
state and the state chart is immediately exited for local adap-

tation operations such as the addition or removal of context-

dependent behavior. If the collaboration of a remote adaptation

manager is required, the Waiting state of the local operation

state chart will be entered, in which the adaptation manager

waits for progress reports from the remote adaptation manager.

When the local operation was performed, a report message

is sent to all peers of the adaptation transaction. If further

adaptation operations are supposed to be performed locally

(indicated by the remainingLocal condition in Figure 2(b)),

the respective adaptation manager remains in the Perform
Operation state. The adaptation manager enters the Waiting

state otherwise until all Report messages have been received.

In that case, the adaptation manager will continue with the

execution of the next adaptation group if there is another

adaptation group to be executed or terminate the adaptation

transaction successfully otherwise cf. Figure 2(a).

In case of adaptation failures at run time, e.g., a specific

role cannot be bound successfully, the adaptation manager will

react with the transmission of a TransactionRollback message

to all peers, which terminates the adaptation transaction and all

adaptation managers revert temporary changes resulting in the

managed application remaining in the source configuration.

C. Handling Link Failures

The coordination protocol presented so far is able to main-

tain a consistent configuration of the managed application

in the presence of randomly occurring adaptation failures at

run time using a transactional execution of adaptations with

a rollback mechanism. The protocol ensures the application

to either reach the desired target configuration or to remain

unmodified in the source configuration.

Without an extended protocol behavior, the execution of

an adaptation transaction would run into a deadlock while

waiting for report messages if those messages would be lost

during transmission. The part of the protocol that coordinates

the execution of an adaptation transaction depicted in Fig-

ure 2(a), does not require any extension to cope with link

failure since the main responsibility is the coordination of the

execution of adaptation groups and the failure case behavior if

an adaptation transaction was terminated unsuccessfully. The

current execution state of an adaptation transaction, however,

is determined within the adaptation group. Furthermore, no ad-

ditional information except the Report messages are required

to continue with the next adaptation group or to terminate

the transaction. Thus, the part of the protocol to control the

execution process of the overall adaptation transaction does

not require any additional mechanisms to handle link failures.

The other parts of the protocol coordinating the execution

of adaptation groups and individual adaptation operations, in

contrast, require additional mechanisms to detect and handle

lost coordination messages.
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Figure 3. The Coordination Protocol State Chart of an Adaption Manager with extensions to handle Link Failures

We first consider the extended protocol behavior for the

execution of adaptation groups depicted in Figure 3(a). As-

suming all local adaptation operations of the adaptation group

were performed successfully, the adaptation manager is in the

Waiting state to collect report messages of other adaptation

managers for all remaining operations that are part of the

adaptation group. If no Report messages from peers were

received after a timeout during the Waiting state, the adaptation

manager sends a RequestReport message for every missing

report on an adaptation operation to the adaptation manager

that handles the execution of the respective operation. A Re-
questReport contains the identifier of the adaptation operation

of which the Report is missing. The receiving adaptation

manager will respond accordingly with the retransmission of

the requested Report message. In case a report message was

received, the protocol continues as described in the previous

section unless further reports are missing. After the first time-

out, another two escalations are performed by the adaptation

manager. In a first step, a RequestReport message is issued to

all adaptation managers within the same adaptation group and

in a second step, after another timeout, all adaptation managers

within the adaptation transaction are requested for the report.

Assuming link failures to occur only sporadically, the different

levels of escalation serve the purpose to reduce the number of

messages transmitted to retrieve missing progress information

from remote adaptation managers. Since report messages are

always issued to all adaptation managers within a transaction,

any adaptation manager is able to provide status information

on any other adaptation operation if requested.

In the Waiting state or any other escalation state to obtain

progress information on the execution of remote adaptation

operations, the adaptation manager may receive a Report
message for an adaptation operation with a higher value for

the Order parameter, i.e., the adaptation operation belongs

to an adaptation group that is supposed to be subsequently

executed. Evidently, at least one remote adaptation manager

was able to establish knowledge on the successful execution

of the adaptation group still in execution by the local adap-

tation manager and continued with the execution of the next

adaptation group. If such a report message is received, the

local adaptation manager will consider its currently executing

adaptation group as finished successfully and continues with

the execution of the following one. Consequently, not every

lost coordination message immediately results in a timeout that

delays the execution of the adaptation transaction.

The same protocol behavior is implemented for the co-

ordination of distributed adaptation operations between two

adaptation managers performing the adaptations of the source

and target node respectively (cf. [3]). The behavior differs

for the target and source node of the distributed adaptation

operation, though. After transitioning the role into a passive

state the source node sends the internal state information to

the target node and enters the Waiting state. The adaptation

manager of the target node, in contrast, creates a new instance

of the role, reports the success to the peer and awaits the

transmission of the source node’s role’s state information.

The adaptation manager of the source node follows a similar

behavior as described for the execution of adaptation groups

when waiting for Report messages from the target node’s

adaptation manager (cf. Figures 3(b)). Since the target node

depends on the receipt of the state information from the source

node’s adaptation manager, the behavior differs. The protocol

was designed to perform three requests as well, but all those

requests are directed to the source node to obtain the missing

state information. If either source or target node failed to ob-

tain the required number of report messages for the execution

of the adaptation operation, a TransactionRollback message

will be issued to all peers of the adaptation transaction. No

protocol extensions for the rollback of adaptation transactions

are required in the case of local adaptation failures.

If the source node’s adaptation manager happens to be

temporarily isolated after the transmission of the role’s internal

state information and the successful receipt by the target

node’s adaptation manager, the source node might send a

TransactionRollback message to the other adaptation man-

agers. If the adaptation operation has already been reported

successfully by the target node’s adaptation manager, all

peers that received the rollback instruction will send a report

Final edited form was published in "International Conference on Self-Adaptive and Self-Organizing Systems (SASO). Tucson 2017", S. 111 - 120. 
ISBN: 978-1-5090-6555-4 

https://doi.org/10.1109/SASO.2017.20

5 
 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



message for the respective operation to the source node’s

adaptation manager and ignore the rollback, thus, continuing

the execution of the adaptation operation. If no information

from the target node could be received by the other adaptation

managers, the operation is considered to have failed and they

send TransactionRollback messages to their peers as well and

the adaptation transaction is considered terminated.

The worst case scenario for link failures is a successful

transmission of RequestReport message and a complete loss

of all responses. Assume n denotes the number of adaptation

managers involved in the execution of the adaptation trans-

action and m denotes the number of adaptation managers

collaborating to execute the currently active adaptation group.

In the worst case are then 2n+2m+2 messages transmitted per

executed operation within an adaptation group if the adaptation

manager is not involved in the execution of the adaptation

operation or if the adaptation manager handles the source node

adaptation. From a target node’s perspective of a distributed

operation, 6 additional messages are transmitted in total.

IV. EVALUATION

Our approach to evaluate the Coordination Protocol will

be presented within this section. First, we formally verify

the protocol to be free of deadlocks during its execution,

which means every executed adaptation transaction either

finishes successfully or the coordination protocol terminates

the execution and the managed application remains in its

source configuration. Subsequently, we focus on the evaluation

of the performance of our proposed protocol in scenarios that

differ with respect to the number of nodes involved in the

adaptation transaction, the number of adaptation operations

within an adaptation transaction and the probability of lost

communication messages.

A. Formal Verification

We created a formal model of the adaptation protocol and

established its deadlock freedom by means of model check-
ing [13]. Model checking is a formal verification technique

that checks whether a given model of the system under

consideration satisfies a formal specification. A model checker
systematically explores all possible states of the system to

verify whether the system satisfies the formal specification. We

modeled the protocol in the ProFeat1 [14] modeling language.

ProFeat extends the input language of the probabilistic model

checker PRISM2 [15] by feature-based concepts, and follows

a translational approach, i.e., ProFeat models are translated

into standard PRISM models. Subsequently, the analysis of

the model is carried out using PRISM.

In the following, we give a short overview of the char-

acteristics of our model3. The model represents one or more

nodes with their respective adaptation managers. The behavior

of the adaptation managers follows the state charts depicted

in Figure 2. The managed application and the behavior of

1https://wwwtcs.inf.tu-dresden.de/ALGI/PUB/ProFeat/
2http://www.prismmodelchecker.org/
3https://www.rn.inf.tu-dresden.de/martin/saso-17/

the roles are not modeled, since the adaptation mechanisms

are strictly separated from the application. The nodes are run-

ning concurrently and may exchange protocol messages asyn-

chronously. The network is modeled as a finitely sized buffer

that stores messages until they are received by their respective

nodes. Messages may get lost and can be reordered. The

model implements the add role, remove role and migrate role

adaptation operation (cf. [3]), which are executed according to

a specified scenario, i.e., the adaptation transaction describing

the roles affected by the change and the adaptation managers

responsible for the adaptation transaction’s execution. In order

to handle message loss, the modeled adaptation managers also

implement the first protocol extension, where a RequestReport
message is sent to peers in case of missing Report messages.

The two additional escalations (where a request is sent to all

members of the adaptation group and the transaction) are not

modeled. The model is parametrized over the number of nodes,

the network buffer size and the probability for message loss.

Furthermore, the protocol extension for handling message loss

may be deactivated. Thus, the model can be easily adapted to

check and analyze different scenarios.

We have analyzed a model instance with 3 nodes, 2 roles

and an adaptation consisting of one role transfer and one

local operation (add or remove role). In order to keep the

model small, it only describes a single transaction with exactly

one adaptation group. However, since adaptation groups are

executed sequentially the analysis results also apply to multiple

transactions with possibly more than one adaptation group. We

could establish that the protocol never runs into a deadlock.

Furthermore, the analysis showed that the adaptation is always

successful in case of no message loss.

B. Performance Evaluation

Having established the protocol to be free of deadlocks

while performing an adaptation transaction, we subsequently

evaluate the performance of our approach using an emulated

setup to analyze the duration of adaptation operations and

the unavailability of roles that are subject to the adaptation.

First, aspects of the protocol’s prototypical implementation

important for the execution of the emulation will be stated.

Subsequently, the setup of the experiments will be described

and the obtained results will be presented and discussed.

1) Implementation: The adaptation managers were imple-

mented on the Java Virtual Machine (JVM) 1.8 using the

JVM’s standard UDP implementation for the message-based

communication to manage the adaptation process. A time of

2.5 seconds was used as timeout of the coordination protocol

to decide if messages were lost during the execution of

adaptation transactions. The distributed managed application

was implemented using LyRT [16], which is a role-based

runtime based on Java allowing the dynamic binding of roles,

i.e., context-dependent behavior, to players, i.e., static system

behavior. We relied on interprocess communication between

each adaptation manager and its respective managed appli-

cation to execute local adaptations. We extended the LyRT
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runtime to support the communication interface we discussed

earlier for that purpose.

2) Experiment Setup: The experiment was conducted on

one of our lab’s computers equipped with 16GB RAM and 4

CPU cores running Debian 8. To simulate different sizes of

the distributed system in terms of devices (nodes), we utilized

Docker4 to easily scale the size of the experiments with

respect to the number of nodes involved in the experiments.

Previous experiments were conducted with a very limited

system and transaction size [3], which we wished to extend. In

the experimental setup, each Docker container served as a node

hosting an instance of the adaptation manager and the managed

application each. All Docker containers shared a common

network, which allowed them to directly communicate with

each other. As a consequence, the network latency can be

neglected for the measured results due to this virtualized

network of Docker containers in which the distributed self-

adaptive software system is emulated. The experiment itself

was controlled from a tool hosted on the Docker host, commu-

nicating with each container using a predefined port to obtain

information about the progress of the experiments’ execution.

Proposed solutions to generate adaptation plans without a

central management instance suggested system sizes compris-

ing up to 100 nodes [17], [18]. We argue that not all nodes

involved in the decision-making process will actually have

to perform structural adaptations in response to a context

change and chose node sizes below that threshold for our

experiments. Following this consideration, we decided to run

the coordination protocol for adaptation transactions including

10 and 20 nodes, to which we will refer to as system size.

For each system size, we generated different sizes of adapta-

tion transactions with respect to the number of adaptation oper-

ations to be executed as depicted in Table I (transaction size).

The composition of the adaptation transactions, representing

different workloads or adaptation scenarios of real world ap-

plications, was set up as follows: The first application scenario,

named Workload 1 (WL 1), contains solely distributed adap-

tation operations, e.g., context-dependent behavior is migrated

between nodes (cf. experiments #1, 5, 9, 13). The second

application scenario (WL 2) contains only adaptations that can

be executed locally on one device (cf. experiments #2, 6, 10,

14). The third and last application scenario we investigated

contains both local and distributed adaptation operations. A

composed adaptation transaction in that class of scenario

contains three types of adaptation operations, namely add,

remove and migrate behavior, all equally represented within

the adaptation transaction. These scenarios were applied to

both system sizes with different transaction sizes resulting in

adaptation transactions containing twice as much (WL 3a) and

five times as much (WL 3b) operations as nodes within the

respective system. The adaptation transactions were generated

automatically and adaptation operations within a generated

adaptation transaction were distributed over at most 10 adapta-

tion groups, i.e., the value of an adaptation operation’s Order

4https://www.docker.com

Table I
TRANSACTION AND SYSTEM SIZES USED FOR EXPERIMENTS AND THE

DEGREE OF MESSAGE LOSSES ON THE CHANNEL.

# Transaction Size System Size Message Loss
1 5 (WL 1)

10

0
2 10 (WL 2)
3 20 (WL 3a)
4 50 (WL 3b)
5 5 (WL 1)

10
6 10 (WL 2)
7 20 (WL 3a)
8 50 (WL 3b)
9 10 (WL 1)

20

0
10 20 (WL 2)
11 40 (WL 3a)
12 100 (WL 3b)
13 10 (WL 1)

10
14 20 (WL 2)
15 40 (WL 3a)
16 100 (WL 3b)

parameter ranged from {0..9}. Consequently, adaptation trans-

actions with more adaptation operations may perform better

since the ratio of adaptation operations that can be executed

in parallel is higher for more adaptation operations and a fixed

number of adaptation groups.

The experiments were conducted for each system size with

(10%) and without message loss of coordination messages.

Report and StateTransfer message types were exposed to the

random message loss since both are essential for the execution

of the adaptation transaction. The same rules were applied to

the RequestReport message type, which is issued if reports of

peer adaptation managers could not be received. The message

loss itself was configured by setting an iptables5 rule

in each Docker container for the inbound communication

channel. Report messages are small enough in size to fit into

a single UDP packet, which makes the usage of iptables
a viable solution to simulate random message losses on the

channel. As a consequence, the information transferred in a

StateTransfer message had to be kept small enough to also

fit into one UDP packet, because these messages would more

often fail to be successfully transmitted than other messages,

which would distort the results.

3) Results: Each experiment (i.e, #1 through #16 in Table I)

was repeated 100 times and the duration of the adaptation

process, which is the time between the receipt of the adaptation

transaction and of all Report messages, was measured for

every adaptation manager. For the evaluation of the protocol,

which is focused on the execution of adaptation operations,

we considered only context-dependent roles, i.e., roles did not

collaborate with each other but solely modified their players’

behavior context-dependently. Thus, roles are passivated as

soon as their operation group is ready to execute.

In Figure 4, the results of experiments #1 through #8

are displayed for the execution with and without message

loss on the communication channels between nodes. The

average execution for WL 2 and WL 3a took approximately

5https://linux.die.net/man/8/iptables
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Figure 4. Average adaptation duration and standard deviation for a system
size of 10 nodes per workload (WL).
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Figure 5. Average adaptation duration and standard deviation for a system
size of 20 nodes per workload (WL).

501ms and 476ms, respectively. The slightly larger standard

deviation for WL 3a in fact indicates both workloads not

to differ significantly from each other. The additional effort

required to coordinate the execution of distributed adaptation

operations in WL 3a in contrast to WL 2 is compensated by the

higher degree of parallel execution of adaptation operations.

WL 3b contained five times the operations of WL 2, but only

required approximately twice as long (1136ms) to perform an

adaptation transaction in average, which is also a consequence

of the higher degree of parallel execution per adaptation group.

In Figure 5, the results of experiments #9 through #16 are

displayed for the execution with and without message loss on

the communication channels between nodes. The observation

of the execution time for workloads 3 can also be made

for adaptation transactions involving the collaboration of 20

adaptation managers. WL 3b finished faster in average than

WL 3a, but is coined by a greater standard deviation over all

100 iterations. Overall, the difference of the execution duration

of workloads 3 is within 200ms considering the average of

WL 3a and the upper bound of WL 3’s standard deviation. It

is also interesting to see the execution time for 10% message

loss of WL 3b to be 68ms shorter than without message loss,

which is can be explained with differing load on the nodes,

e.g., caused by the Garbage Collection of Java. In general the

results indicate an increasing execution time for adaptation

transactions for a larger number of adaptation operations.

The results for workloads 1 and 2 are comparable for all

performed tests, i.e., the execution took longer for a system

size of 10 nodes and was roughly 150ms faster in average for

a system size of 20 nodes. Since both workloads had exactly

one adaptation manager perform exactly one local part of a

distributed operation (WL 1) or one local adaptation operation

Table II
AVERAGE DOWNTIME OF MIGRATED APPLICATION BEHAVIOR FOR

EXPERIMENTS #12 AND #16 IN SECONDS.

Adaptation Group
# 0 1 2 3 4 5 6 7 8 9
12 2.4 – 1.3 1.1 1.0 0.8 0.6 0.5 0.4 0.2
16 2.4 – 1.2 1.0 0.9 0.7 0.6 0.4 0.3 0.2

(WL 2), the results are as expected. WL 1 requires a higher

coordination effort due to the migrate operations whereas

WL 2 contains more adaptation operations, which require only

the dissemination of progress information.

In Table II the average downtime of the migrating roles

is depicted for the two largest experiments, i.e., #12 and

#16. The automatically generated adaptation transaction did

not contain any adaptation operations configured with the

value 1 for the Order parameter, which is the reason no

values could be measured for the resulting adaptation group. A

first evident observation is the decline of the role’s downtime

with increasing adaptation groups, which is expected since

the coordination protocol only passivates a given role when

it is due for adaptation and not as soon as the execution of

the adaptation transaction commences. The second observation

is the small offset of the measured downtime between both

experiments, which indicates the protocol to tolerate 10%

message loss well for the largest workload in the system.

Apparently, the impact of lost coordination messages is

decreasing as the number of adaptation operations increases

for a given system size, which holds true in particular for

workloads 3, which have similar compositions of the executed

adaptation transaction. Workload 2 contains adaptation groups

that only contain one adaptation operation. This results in the

poor performance of the experiments with message loss, since

a single lost Report message immediately leads to a timeout

period as knowledge of the successful execution of the of the

previous adaptation group cannot be established.

In the performed experiments, role collaborations were not

considered, i.e., roles could be immediately passivated. Both

network latency and the required time to reach a stable state

for the respective role part of the adaptation process would

therefore have to be added to the results.

V. RELATED WORK

A solid research body exists that focuses on the design

and architecture of self-adaptive software systems (see [19])

including the MAPE-K feedback loop [10] as an architectural

means to enable self-adaptability of software systems through

self- and context-awareness. With an increasing degree of

distribution of adapted applications, centralized adaptation

management approaches become impractical, which leads to

several efforts to distribute the adaptation management sub-

system. Patterns of how to distribute phases of the feedback

loop [2] or the decentralization of the decision making process

have been the main research focus.

FlashMob [18] and DecAp [17] are examples of approaches

that share information about the system’s current configuration
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to decide in a decentralized manner when and how to (re-

)assemble the system. A different approach by Georgiadis et

al. [20] discusses the distributed execution of such changes

through distributed component managers. The component

managers synchronize using reliable broadcasts to publish

join/ leave messages of components entering or leaving the

system. Locks on the system, that ensures only one component

manager at a time to be able to perform local changes on

a globally consistent configuration, are also acquired through

broadcasting. However, a component manager can only change

its local component and a discussion how several component

managers would collaborate to perform multiple changes in a

consistent way is missing. Our approach takes the results of

decentralized decision making approaches as input to consis-

tently execute multiple dependent changes.

Since adaptations are performed at run time, a state has

to be found in which it is safe to adapt the system or an

entity. In [11] this state is called the quiescent state of a

component and means the component not to be involved in

any communication and is, thus, safe for removal or update,

for example. Since the concept of quiescence imposes the

restriction of several system components for one component

to reach such a state, the conditions to reach this state have

been relaxed to achieve less system interruption sacrificing the

property to ever reach such a state; the resulting concept is

referred to as tranquility [21]. Different adaptation semantics

have been proposed that describe the system behavior formally

when adaptations are about to be performed. In [12], three

semantics are distinguished: (1) one-point adaptation (system

behavior changes from one point in time to the next), (2)

guided adaptation (the program is restricted to reach a state

at which it can be adapted), and (3) overlap adaptation (a

program temporarily exposes both old and new behavior with

the old system being restricted in its functionally until the

new behavior eventually takes over completely). Our approach

makes use of these foundations to determine a point in time

that allows the safe modification of role bindings.

In multi-agent-systems, roles serve as abstraction to describe

collaborations of agents within a group of agents [22], [23].

Similarly, roles abstract from the concrete capabilities an agent

has to provide in order to play a role. For example, in a peer-

to-peer network, super peers can be established to structure

the network, but a super peer is essentially only a role played

by a peer with enough computational resources. Apart from

that, the collaboration between super peer and its set of child

peers clearly describes communication flows in the system.

Due to the collaboration-centric notion of roles, an agent’s

possible behaviors remain static at run time and are either

executed actively or not depending on the collaborations the

agent participates in, but it is not possible to dynamically add

behavior or roles to an agent that was not foreseen to be played

by the agent at design time.

In summary, to the best of our knowledge, no current

research effort exists that investigates how to perform multiple

changes of a highly distributed software system in a coordi-

nated and consistent manner across several devices. Please

note that we are not concerned with the decision making

process itself as it was discussed in [17], [18], but with the

execution of such calculated change prescriptions at run time.

VI. DISCUSSION

In this paper, we proposed a Decentralized Coordination
Protocol to ensure a reliable execution of multiple adaptation

operations within a distributed self-adaptive software system

without the need for a central management instance. We used

the notion of an Adaptation Transaction to capture correlated

adaptation operations and to define a scope that describes a

consistent transition of the system from a source to a target

configuration through these operations. We directly address

the atomicity and consistency criteria well known from trans-

actional systems and support the durability property but leave

the implementation to the managed application of the self-

adaptive software system. The isolation property is considered

out-of-scope in this work and left for future investigation based

on the assumption that a run-time adaptation can be finished

before the next context change occurs. In highly dynamic

software systems in which frequent context changes require

the system to modify its structure, isolation becomes crucial

when adaptations overlap but contradict each other.

The a-priori specification of the execution order of adapta-

tion operations by the adaptation management’s planning com-

ponent is a strong assumption we made, which can be relaxed

in the future for certain scenarios. Assume a role instance that

is collaborating with other roles is supposed to be exchanged,

migrated or removed in response to a context change. The

(dis-)connection adaptation operations, which are required to

be performed before and after the actual adaptation and which

are still required to be specified explicitly, can be performed

by the adaptation managers implicitly if information on role

collaborations can be obtained from the managed application.

A role-based software system, which incorporates either

quiescence [11] or tranquility [21], requires complete knowl-

edge about the collaborations among roles and their run-time

instances. Run-time models derived from design time models

that are capable of specifying role collaborations, e.g, [7], [24],

are an important prerequisite to achieve consistent adaptations

of context-dependent, behavioral and relational software sys-

tems using the role-abstraction. Both quiescence and tranquil-

ity may not be a suitable criterium to define a stable application

state for any role-based software system. We used the notion

to express a state of a role in which it is safe to perform the

adaptation operation on the role without negative side effects

on the managed application. A more thorough investigation on

reaching such a stable state for a collaborative role therefore

remains an interesting research task for future work.

The experiments have furthermore shown that the duration

of an adaptation transaction’s execution is influenced by the

amount of comprised adaptation operations and the degree of

parallel execution of adaptation operations for a given system

size. For many application scenarios, such as the coordinated

exchange of application behavior on multiple nodes only little

ordering is required during the execution of an adaptation
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transaction. Hence, our approach is best suited for systems that

require a consistent execution of several adaptation operations

in response to change in the computational environment, but

require only little hierarchical structure among the performed

adaptation operations. The unavailability of roles also becomes

short if less adaptations are executed sequentially due to their

specified Order within the adaptation transaction.

The average adaptation duration for the largest experiments,

i.e., WL 3 for 20 nodes, is 5 times higher than for our previous

experiments (cf. [3]), which is an acceptable result compared

to the fact that 10 times more nodes and 100 times more

adaptation operations were performed. The average downtime

of a role was 3 to roughly 6 times higher compared to the

previously performed experiments, but covers the execution

of multiple adaptation groups. If only the last executed adap-

tation group is considered, the measured average downtime of

roles involved in this group are comparable to the previously

conducted experiments. Compared to the greatly enlarged size

of both the involved nodes and the size of the adaptation

transaction, the coordination protocol scales reasonably well.

VII. CONCLUSION

In this paper we presented a Decentralized Coordination
Protocol to control and manage the adaptation of a distributed

self-adaptive software system. The protocol ensures a consis-

tent adaptation of the managed application in the presence

of link failures, i.e., lost coordination messages during the

adaptation process, and local adaptation failures. We rely on

the notion of Roles to describe adaptation operations supported

by the coordination protocol and as an abstraction to separate

static and dynamic behavior of the managed application. The

term Adaptation Transaction was introduced to consistently

perform adaptation operations at run time.

We validated our approach using a formal model checking

technique to prove the coordination protocol to be free of

deadlocks in the presence of lost coordination messages.

Hence, the consistent adaptation is ensured in any case since

the managed application can be ensured to reach the desired

target state described by the adaptation transaction or the

managed application is ensured to remain in the source con-

figuration otherwise. The coordination protocol’s performance

was investigated in experiments that emulated the protocol’s

execution on real devices for different compositions and sizes

of adaptation transactions and different system sizes.

Future research can resolve around the notion of Roles
as an abstraction for adaptable entities to investigate the

issue of reaching a quiescent or tranquil state for highly

interconnected applications that require the adaptation of dif-

ferent interconnected parts of the application consistently. A

relaxed consistency constraint for the execution of adaptation

transactions would be interesting as well. Such a relaxed

constraint could allow parts of the system to be activated

while other parts of the system are still under adaptation

providing compensation mechanisms in case of adaptation

failures instead of a rollback.
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