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Abstract—In model-driven engineering, powerful query/view
languages exist to compute result sets/views from underlying
models. However, to use these languages effectively, one must
understand the query/view language concepts as well as the
underlying models and metamodels structures. Consequently, it
is a challenge for domain experts to create queries/views due
to the lack of knowledge about the computer-internal abstract
representation of models and metamodels.

To better support domain experts in the query/view creation,
the goal of this paper is the presentation of a generic concept
to specify queries/views on models without requiring deep kno-
wledge on the realization of modeling languages. The proposed
concept is agnostic to specific modeling languages and allows the
query/view generation by-example with a simple mechanism for
filtering model elements. Based on this generic concept, a generic
query/view language is proposed that uses role-oriented modeling
for its non-intrusive application for specific modeling languages.
The proposed language is demonstrated based on the role-based
single underlying model (RSUM) approach for AutomationML
to create queries/views by-example, and subsequently, associated
viewtypes to modify the result set or view.

Index Terms—query by-example, view by-example, role-based,
viewtype generation

I. INTRODUCTION

In all areas, more and more software-intensive systems

are developed, which are adapted over time to master new

situations, and thus, constantly evolve. In View-Oriented

Software Engineering (VOSE), the complexity of the underlying

model is reduced externally by dividing the entire model into

views. This allows developers to work only on those parts of

the model that are relevant to them. To use such an approach,

viewtypes must be generated on the underlying model. This

step can either be done at design time by predefining a set of

viewtypes, or runtime by defining and generating new viewtypes

on demand.

There are already approaches that provide languages to

define a query or viewtype on an underlying model, e.g.,

AutomationQL [1] and ModelJoin [2]. However, these lan-

guages are usually domain-specific or require deep knowledge

of the language and the underlying model [1], [3] making

This work has been funded by the German Research Foundation within the
Research Training Group ”Role-based Software Infrastructures for continuous-
context-sensitive Systems” (GRK 1907), by the Austrian Federal Ministry
for Digital and Economic Affairs, and the National Foundation for Research,
Technology and Development.

usage difficult for domain experts not being computer scientists.

In addition, current languages are usually a combination of

different existing languages [2], [4], which means an increased

training effort for the user. Since learning a language is a

time-consuming process, it should be possible to create queries

without advanced knowledge of the underlying model and

modeling language.

For this reason, the aim of this paper is to present a generic

concept for specifying queries and viewtypes. The presented

concept must not contain any domain dependencies, so that it

can be used universally on every domain model without specific

requirements to the underlying model. This point describes

the independence from the domain model. However, it is still

necessary to know the domain models in order to display the

links correctly in the queries and viewtypes. To reduce this

effort, queries and viewtypes are created based on example

elements of the underlying model. This ensures that each user

only creates queries and viewtypes on elements to which the

user has access and can filter them based on the appearance

of their attributes and reference values.

In this paper, we present a role-oriented approach that allows

to provide a by-example concept for generating queries and

viewtypes. For this, we define a novel query context, which

can be used by any element of a model. This context is

first introduced as a general variant, to subsequently apply

it for several modeling approaches. We show the usability

of the query context by adapting it to the Role-based Single

Underlying Model (RSUM) approach using AutomationML

(AML) as an example.1 In addition, the power of the query

concept and the creation of viewtypes are presented.

The remainder of this paper is structured as follows. The

next section summarizes background knowledge about closely

related topics like query languages, VOSE approaches, and the

role concept. Sect. III provides an in-depth discussion of the

overall concepts and describes the underlying process. Sect. IV

maps the presented concept to the RSUM approach exemplary

with AML. Sect. V evaluates the concept and RSUM realization

on the AML example. We demarcate our approach from related

work in Sect. VI. Finally, in Sect. VII, we conclude the paper

and discuss lines of future work.

1https://git-st.inf.tu-dresden.de/cwerner/rsum
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Figure 1. AutomationML metamodel excerpt.

II. BACKGROUND

A. Motivating and Running Example

For this paper, we select AutomationML (AML) [5] as

a motivating and running example. AML2 is a standardized

data format for representing engineering knowledge in the

area of process automation and control of production systems.

A metamodel excerpt is presented in Fig. 1 and an example

instance model is shown in Fig. 2. The basis for AML is CAEX

for representing plant topology information. The entire plant

topology model is represented as an InstanceHierarchy
in AML. Components of the plant are represented as (potentially

nested) InternalElements. The type of a component is

represented as SystemUnitClass. For expressing further

details about internal elements or system unit classes, attributes

can be defined to state internal properties of the components. To

utilize the benefits offered by modern model-driven frameworks

for AML, we have developed a model-driven engineering

workbench for AML in previous work [6].

Fig. 2 shows a small AML model. On the left hand side,

the figure depicts a typical pick and place unit (PPU) which

consists of a stack, crane, and ramp. The stack is modeled in

more detail by containing further internal elements. The main

components are typed by the system unit classes provided by

the library shown on the right hand side of Fig. 2.

Of course, query languages such as the Object Constraint

Language (OCL) may be directly employed for querying

AML models. Although such query languages offer powerful

query concepts and mechanisms, for domain experts it is

challenging to use such general query languages to formulate

queries. For instance, finding all leaf elements in an instance

hierarchy may require deep knowledge how internal elements

are queried and filtered with respect to a negative condition

of not containing further elements. In [1], we presented a by-

example query language for AML which provides a more user-

friendly interface to define queries for domain experts. However,

we used a generative approach to extract the query language

from the AML metamodel, which results in an additional

language to define the queries, additional tool dependencies,

and additional languages to represents the result sets of the

queries. Therefore, in this paper we aim for a different solution

2https://www.automationml.org

Relation
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Figure 2. Example instance model of AML.

which allows to work more natively and dynamically with the

given models and tools.

B. View-Oriented Software Engineering

View-oriented software engineering (VOSE) describes the

management of views that represent parts of the underlying

model. These parts are used to restrict access of specific

areas in the model, to ensure clarity, to only display relevant

information, and to separate responsibilities of user groups.

The first definition of views and viewtypes comes from the

IEEE 1471/ISO 42010 standard [7] where views are considered

as instances of viewtypes. Goldschmidt et al. [8] define views

as “the actual set of objects and their relations displayed using

a certain representation and layout” [8, p 63] and viewtypes

as “rules according to which views of the respective type

are created” [8, p 64]. Current view-based approaches can be

divided into two categories: (1) synthetic approaches where

an architect defines fixed views of an underlying model and

(2) projective approaches where the views are automatically

generated by means of a domain-specific language (DSL). The

OSM [9] approach is a synthetic approach, whereby a single

underlying model (SUM) is created in a top-down process, from

which fixed views are defined. Projective approaches are the

RSUM [10] approach, which is specified in more detail in the

next section, and the VITRUVIUS [11] approach. VITRUVIUS

generates a virtual SUM using a bottom-up approach by

keeping several models consistent using different constraints.

Therein, ModelJoin [2] is used to create editable views. The

MoConseMI [12] approach is a hybrid of both categories,

whereby special operators are used to transfer models into

each other, and thus, unify them.

C. Role Concept

The idea of role-oriented software development goes back to

the 1970s. In the 2000s Steinmann [13] and Kühn et al. [14]

identified 27 features of roles from analyzing related work.

The features can be divided into three categories that reflect

the nature of roles. (1) The behavioral nature expresses that

unrelated objects can play roles and that the roles change the

behavior of their playing object. (2) The relational nature

describes roles as ends of relations, as they are already used in
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Figure 3. RSUM approach with AML example.

conceptual modeling languages such as in UML. However,

relations are important when it comes to (3) the context-
dependent nature of roles, since relations and roles change

behavior with respect to a particular context, i.e., roles describe

different behaviors depending on the context, and thus objects

adapt to the active context.

This paper focuses on the Compartment Role Object Model

(CROM) [15], which represents the role features and a graphical

notation that permits correct visual representation of role

models. Fig. 3 shows a graphical representation of a role model.

The models consist of three different types that interact with

each other and constitute the role concept. Natural types form

the basic types in the role concept and have alone no interaction

possibilities with each other. It is possible for the natural types

to fulfill role types in compartment types. Compartment types

in turn contain role types that interact with each other and act

as a kind of context. In the role concept, each interaction takes

place in compartment types, where fills relations are used to

create links across compartment boundaries. The role-based

programming language used for this approach is the SCala

ROLes Language (SCROLL) [16], which is an embedded DSL

for Scala and provides many of the role features. It allows

binding and unbinding roles at runtime and with Scala, it is

possible to load new roles and compartments at runtime and

extend by this the runtime model.

The RSUM [10] approach already presents a role-based

view approach that enables and implements the creation and

consistency management of views from a SUM. The RSUM

approach provides a simple and fine-grained mechanism to

maintain consistency between views and an underlying model.

In this approach, views are represented as compartments, with

roles acting as connectors between the underlying model and

the views. Moreover, the fills relations act as traceability links.

The role concept allows runtime adaptation with roles so that

new mechanisms can be integrated into the core with small

effort. Fig. 3 shows the concept of the RSUM approach using

Query
+name: String
+addElement(obj: Object): QueryObject
+run(): Set[Set[Object]]
+isCorrect(): Boolean

QueryObject
+negated: Boolean = false
+transitive: Boolean = false
+returned: Boolean = true
+multi: Int = 1
+filters: Set[AttributeFilter]

AttributeFilter

+name: String
+value: String
+check: Equals/Bigger/Smaller

QueryResult matched 1

<<Interface>>
CAEXObject

+id: String
+name: String

InternalElement

SystemUnitClass

*

1..*

0..*

0..1

baseSystemUnit

IE IE*

IE SUC

IE IE

IE

IE * [> 2]IE

[id > 5]

Query 1:

Query 2:

Query 3:

Query 4:

Query 5:

Figure 4. Role concept for the query language with a visual query
representation of the properties.

a minimal piece of the AML metamodel from the previous

section. The core includes the base classes as natural types and

the relations as relational compartments. There is a mapping

for all relations to a relational compartment that allows the

runtime adaptation and extension of the RSUM. The RSUM

core can be seen as a graph with nodes and edges, because of

the usage of relational compartments and naturals. Therefore,

it is necessary to detect graph patterns in this construction

to query elements with specific properties. In addition, the

RsumManagement compartment is the global coordinator in

the RSUM to manage all naturals, relational compartments,

viewtypes, and views as instances of the viewtypes.

III. CONCEPT

This section presents the general concept for a role-based

query/view language that does not need the adaptation of an

underlying metamodel. It describes on the one hand the use

of this query language and on the other hand the variety of

queries that can be expressed. With the help of this concept,

it is possible to use existing or create new elements for the

specification and formulation of the queries. The disadvantage

of using an already existing element in the query is the addition

of new structural concepts to this element without changing the

element in the underlying model. On the contrary, the advantage

of using existing elements is the simple creation of queries.

However, if these elements are deleted from the underlying

model, the connected queries are changed because the queries

do not save copies of the elements. If queries are only created

with new elements that are not integrated into the underlying

model, the query objects do not have dependencies to the

underlying model and provide reusability and extendibility. In

the following subsection, the creation of suitable viewtypes

for the queries is presented that contain a minimal number of

view elements and allow the direct displaying and editing of

the query results.
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A. Role-based query/view language

Fig. 4 shows the query concept at meta level with a small

excerpt of the AML metamodel and a set of five sample queries.

The concept is based on a general Query compartment, which

contains the roles QueryObject and QueryResult. The

two roles have fills relations to all classes in the underlying

model, which is represented by the existing fills relations

between CAEXObject and the roles. All elements can be

part of one or more queries and one or more result sets

of different queries. There is also a matched relationship

between QueryObject and QueryResult that expresses

why elements are part of the solution set. The matched
relationship is built during the execution of the query by

storing in each QueryResult by which QueryObject it

was created. After executing the query, the query compartment

contains all information about the query itself and its results

through the played roles.

Fig. 4 also presents a graphical notation of five queries that

can be formulated with our approach. The graphical language

is only used to visualize the queries and is not linked to the

presented approach. The relations between the query objects are

not shown directly in the general concept of Fig. 4. However,

they can be recognized by the fills relations, because each role

has access to its attributes and references via its player. This

allows the recognition of the relations between the base objects.

Since this method is very complex it is extended in the RSUM

implementation with roles for relations.

In the query language, it is possible to combine all query

blocks from Fig. 4. There are certain rules which must be

considered: (a) an object may only play a QueryObject
role once in a query compartment. (b) A relation must always

be defined with exactly one direction. (c) With a transitive

query object, any attached object can be placed anywhere in the

chain. (d) The negating and prescribing of an equals connection

between two objects must not take place. This list describes the

most important points and limitation to consider when creating

a query.

The process of creating a query is a five-step process:

(1) creating an instance of the query compartment type, (2)

assigning elements to the query (binding QueryObject
roles using the addElement method), (3) adjusting the pro-

perties for each QueryObject in the query, (4) adding

AttributeFilters to QueryObjects, and (5) execu-

ting the query on a set of objects using the run method. The

result of a query now is comprised by a set of objects that fulfill

the query and play QueryResult roles in it. To determine the

results, the properties of the QueryObject play an important

role, which are explained next in more detail.

• Transitive: This property creates the transitive hull

of a specific relationship. Query 1 returns a chain

of all InternalElements and their associated

InternalElements.

• Negated: The negated field searches for the non-existence

of relations. In Query 2, all leaf nodes in the chain or tree

structure of the InternalElements are searched.

• Returned: The returned field specifies whether elements

that map to this QueryObject should be represented in

the solution set. In Query 3, this capability is used to return

only InternalElements that have a baseSystemUnit.
The corresponding SystemUnitClass does not appear

in the solution set (not underlined).

• Multi: The multi value specifies the minimum number

of connected elements of a relationship. In Query 4,

InternalElements are searched which are linked to

at least three InternalElements.

• Filters: With this option, the solution set can be filtered

by different attribute values. Query 5 filters out all

InternalElements whose id value is less than six.

It is now possible to directly generate a result set based on

the existing element set with the run method specified in the

query compartment. However, this step only creates a general

set of sets of untyped objects, because it is not possible to

return the typed elements due to the generality of the query

concept. For this reason, an interface must be provided to

visualize and modify the result set. The next section describes

how to use queries for generating viewtypes to make the result

set easier to edit and display.

B. Definition of views using queries

After creating a query, the query is used to define and gene-

rate a corresponding viewtype. First, a textual representation of

the query is generated. This step creates a textual abstraction of

the query removing the dependencies to the example elements.

This textual representation is usable in other query frameworks

as well. Either the query language used in our example can be

directly employed or a transformation into another language

can be carried out. Second, a viewtype is generated from the

textual language, which only represents the types from the

result set. For Query 1, i.e., that only InternalElements
are visible in the viewtype and all other elements cannot be

visualized. After creating the viewtype, a view is created as

an instance of the viewtype which gets the result set as input

and provides a link between the view, the result set, and the

query. Afterwards, the elements can be modified directly via

the provided interfaces in the view. In Sect. IV, AML is used

as an example to illustrate how the query and view concept

are implemented using the RSUM approach. The generated

viewtype no longer represents a unique state of the underlying

model, i.e., it must react to changes of the underlying model

and may change it itself. These requirements raises two new

questions: (1) Which changes can be made in the view? (2)

To which changes in the underlying model must a view react?

These questions depend on the properties presented in the

previous subsection.

To answer question (1), there is an optimistic and a pessimis-

tic solution. The pessimistic solution is to prohibit changes that

result in removing query results from the view. The optimistic

solution, on the other hand, is to allow all modifications, i.e.,

changes can cause query results to disappear from the view.

Examples of such changes are changing attributes that are part

of a filter that is no longer fulfilled or deleting relations that

Final edited form was published in "Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). München 2019", 
S. 379 - 386. ISBN: 978-1-7281-5125-0 

https://doi.org/10.1109/MODELS-C.2019.00059

4 
 
 

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden



SUCtoATT

SourceTarget
11

BaseSystemUnit

SourceTarget
11

IHtoIE

SourceTarget
11

SUCtoIE

TargetSource
11

RsumQuery

RelationalQuery
Result target

HelperCAEXObject

Attribute

+value: String<<Interface>>
CAEXObject

+id: String
+name: String

InternalElement InstanceHierarchySystemUnitClass

NaturalQuery
Result

RelationalQuery
Object

NaturalQuery
Object

10..*
source

matched

1

matched

1 0..*1..* 0..* 0..*

10..*
target

1 0..*
source

1 0..*

RsumManagement

ExtensionsExtensions
Extensions

Extension

…0..*

0..*

RSUM

…

QueryFactory

has 1

QueryFactoryElement

0..*

Query

+name: String

QueryResultQueryObject matched1
0..*1..*

1

connect

BaseSystemUnitQueryFactory

SystemUnitClass InternalElement

BaseSystemUnit

11

0..10..*

0..*

0..*

0..*

SUCtoIE 0..10..*

0..*

11

RsumManager

Figure 5. Map the AML example to the RSUM approach.

are necessary to include elements in such a view. As a result,

the pessimistic approach does not allow deletion or creation of

elements or changing of filter attribute values. On the contrary,

the optimistic approach allows all changes to the objects in

the view that can remove such objects afterwards.

Question (2) can also be answered in two ways. First, a

complete recalculation of the query result could be performed

after each change in the underlying model, or the view could

only react on important changes in the underlying model. The

recalculation of the complete view is easy to perform but time

and resource consuming. For this reason, we only look at the

second approach in more detail. We distinguish between what

general changes need to be considered and how the properties

of the query objects affect change propagation. In general, only

the instances of the class types that occur in the query need

to be considered. This minimizes the effort enormously. An

occurrence of the properties transitive, negated, or multi can

lead to a recalculation of the query, since previously excluded

elements can slip back into the result set. In most cases,

changes of elements only result in changes in these elements

and directly connected elements slipping back into the query

result. This fact reduces the computational effort. In general,

i.e., that changes of elements usually only affect neighboring

elements that must be investigated for integration into the

query result set. If the internal dependencies of the model

and the complexity of the query are too high, the complete

recalculation of the query results could be more efficient than

incremental modification. In the next section, this process is

presented using the current example of AML and the RSUM

approach presented in Sect. IV.

IV. CONCEPT IMPLEMENTATION WITH RSUM

This section describes how to adapt and apply the previously

described query concept to the RSUM approach. Fig. 5 shows

the adaptation of the Query compartment to the RSUM

approach and visualizes it using AML as an example. In order

to adapt the AML metamodel of Fig. 1 to the RSUM approach,

all classes are converted to natural types as shown in Fig. 5

and all relations are represented as relational compartments.

Since the RSUM approach distinguishes between these two

types of elements, we also separate these types in the modified

query compartment (RsumQuery). This separation represents

a graph structure with nodes (natural types) and edges (relati-

onal compartments). The RsumQuery compartment inherits

from the Query compartment and implements all defined

methods adapted to the RSUM approach. The compartment

is able to verify the correctness of a query, as only queries

with one connected structure are allowed. Thus, it is not

possible to formulate queries that simply consist of two

QueryObjects that are not connected to each other. If

the user still wants to formulate such queries the user has

to define two queries and combine the result sets. Like

the general compartment, the roles NaturalQueryResult
and RelationalQueryResult are specifications of

the QueryResult role and NaturalQueryObject
and RelationalQueryObject are specifications of the

QueryObject role. A distinction between the specific roles

must be made because roles with the prefix Natural can only

be played by natural types and roles with the prefix Relational
can only be played by relational compartments. However, this

specification makes it possible for queries to be formed on

all possible natural types and relational compartments without

making any adjustments.

In addition, there are two other elements shown in Fig. 5

that are necessary for creating queries of any kind. First, there

is a new natural type (HelperCAEXObject) that inherits

from the CAEXObject interface which allows on the way the

instantiation of a CAEXObject for queries. We implemented
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Figure 6. Queries and results on the AML instance model example.

a generator that generates helper classes for each interface and

abstract class. These types allow the definition of more general

queries, e.g., it is now possible to query all inherited types

using a natural of this type.

The other new elements are the QueryFactories, which

own one query. These factories create queries from new objects,

which are not integrated in the underlying model. This me-

chanism allows to create queries with completely new objects

with an easily understandable interface. The QueryFactory
compartments also hide the helper classes described before to

the user by returning the interfaces or abstract class types.

In Fig. 5, a minimal example of such a factory is mo-

deled. The BaseSystemUnitQueryFactory can create

new InternalElements and SystemUnitClasses and

relations between them for a query. It can be used to create

all queries in Fig. 4. To improve the clarity of Fig. 5, all fills
relations between the RSUM and the query factory are not

shown. Such fills relations must exists between elements of

the same name, i.e., the natural type SystemUnitClass
fills the role SystemUnitClass etc. The query factories

are special kinds of viewtypes because they do not influence

the instances or react on changes in the RSUM.

After a query has been defined in this way, a textual

representation is created in the ModelJoin [2] language, since

the viewtype generation process is already implemented with

ModelJoin in the RSUM approach. Support for other languages

will be offered in the future. This textual representation can be

used in approaches like VITRUVIUS [11] to create viewtypes.

In our case, we use the language in a generator that creates

viewtypes for the RSUM approach. In the viewtypes, we

currently implement an optimistic mechanism to allow all

possible changes. However, it is possible to manually modify

these manipulation rights for each viewtype. The generated

viewtypes behave like all other viewtypes in the RSUM

approach, in that any number of views can be generated. The

only difference is that it has a reference to the query to be

able to recalculate the result set if necessary.

V. EVALUATION

This section presents the complete process from creating a

query from existing or newly created elements to the generated

result set and viewtype. This process is visualized on four

queries of the AML example. These queries are shown in

Fig. 6 with the solution sets below using the example model

1 AmlQueryFactory q2 = new AmlQueryFactory
2 InternalElement ie1 = q2.createInternalElement()
3 InternalElement ie2 = q2.createInternalElement()
4 ie1.addInternalElements(ie2)
5 //Set Properties
6 ie2.getQueryObject.negated = true
7 //Run Query
8 Set[Set[Objects]] result = q2.getQuery().run()

Listing 1. Creation of Query 2 in RSUM with factory.

from Sect. II. The queries 2 and 4 are taken from Fig. 4

and refer to the properties multi and negated. Query 6 is new

and combines all properties of the previous queries 1, 3, and

5 from Fig. 4. For this query, all InternalElements are

searched that belong to an InstanceHierarchy with an id
value smaller than 5. In addition, the InstanceHierarchy
elements are not mapped in the result set because they are

not returned (not underlined in Fig. 6). In contrary, Query 7

collects all CAEXObjects from the underlying model.

After describing the queries, they must be created with the

proposed by-example concept. As described in the previous

section, there are two different instantiation mechanisms for

the creation process. The QueryFactory compartments

can be used for this or objects from the underlying model

are transferred directly into an instance of the RsumQuery
compartments.

Listing 1 shows the process using a QueryFactory
compartment by creating Query 2 in pseudocode. In line 1 a

new instance of the AMLQueryFactory is created, which

automatically creates a new instance of the RsumQuery
compartment in the query-factory. The new query-factory

provides functions for creating new elements as used in

lines 2 and 3. Creating an object automatically creates a

new QueryObject in the owned RsumQuery instance. The

objects can now be connected with relations (line 4). The

interfaces in the query-factory provide functions that are used to

modify these elements and automatically create attribute filters.

However, to change the properties of the QueryObjects of

these elements, it is necessary to go one step into the connected

QueryObject (line 6). After the query has been completely

created, it can be executed on all elements of the underlying

model using the run method (line 8). In the run method, the

correctness of the query is proven before the computation of

the query is started.

Listing 2 shows how existing objects can be used to

create Query 4 in pseudocode. In line 1, an instance of

the RsumQuery compartments is created. In line 2 to 4,

objects are shown to which the user already has access. These

objects describe two InternalElements and the ownership

relationship between them. Adding these objects to the query

is shown in line 6 to 8. In line 10, the multi property of the

ie2 object is set to three and in line 11 the return value is

set to false. Query 4 searches for all InternalElements
containing more than three InternalElements. In line 13

the query is than executed. The first type of query creation

uses the query-view as a wrapper around the process as shown
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1 RsumQuery q4 = new RsumQuery("Query 4")
2 InternalElement ie1 = /*InternalElement in RSUM*/
3 InternalElement ie2 = /*InternalElement in RSUM*/
4 SUCtoIE ieToIe = /* Relational Compartment between

ie1 & ie2 */
5 //Add Query Roles
6 QueryObject r0 = q4.addQueryRole(ie1)
7 QueryObject r1 = q4.addQueryRole(ie2)
8 QueryObject r2 = q4.addQueryRole(ieToIe)
9 //Set Properties

10 r2.multi = 3 //means > 2
11 r2.returned = false
12 //Run Query
13 Set[Set[Objects]] result = q4.run()

Listing 2. Creation of Query 4 in RSUM with objects from RSUM.

in Listing 2 to simplify the process for the user.

The execution of the queries leads to a set of sets of untyped

objects which can be modified again, when the query is not

read-only. To make this possible, a textual representation can

be created from a query to create a viewtype in which new

elements can be created and old elements can be modified

or deleted. Listing 3 shows how Query 2 looks like as a

ModelJoin representation. Since ModelJoin always starts with

a join statement, the query produces a neutral natural join

that connects a type to itself. The RsumQuery compartment

creates this representation by displaying all query objects and

their relations.

The ModelJoin representation for Query 4 is illustrated in

Listing 3. Since only InternalElements are considered

in the query, a natural join between these elements is created

first. Since this step creates mental overhead, a ModelJoin

query must always has such a join statement. It is planned to

develop a modified language for this approach that no longer

requires this join statement. In lines 2 to 4, the attributes and

references are determined that should still be contained in the

viewtype. References are the ones used in the query, whereby

all attributes of the elements are included in the ModelJoin

query as name and id here.

However, we currently only support a subset of ModelJoin

with a minimum number of OCL constrains, i.e., a viewtype

created from this query does not know that the link between

the InternalElements must exist at least three times. For

this reason, a view only displays elements that are contained in

the result set of the query. If a query has no special properties,

it is possible to omit the extra step about executing the query.

In simple queries like Query 7, where no special filter operators

are used, it is possible to omit this computation step in the

query. The created viewtype can subsequently simply display

any element from the underlying model. In addition, this query

shows the usage of the natural type HelperCAEXObject.

Without this type, no instance of the CAEXObject may

be created for the query. The overall process shows how a

ModelJoin representation can be created using the presented

query/view concept without having any special knowledge

about the underlying model. However, since join statements

cannot be represented in the query concept, this is a point to

1 natural join aml.InternalElement with aml.
InternalElement {

2 keep attributes aml.CAEXObject.name
3 keep attributes aml.CAEXObject.id
4 keep outgoing aml.InternalElement.has {}
5 }

Listing 3. ModelJoin Representation of Query 4.

extend the query/view concept in the future.

VI. RELATED WORK

The concept of defining queries by-example has been used

since 1975 [17] when a concept was introduced for using

database tables as an example to formulate queries. A notation

was introduced, which is still in use. However, the by-example

concept is rarely used and often textual query, view, and

transformation languages are developed. On XML documents

query languages like XQuery, XSLT, XPath etc. have prevailed.

These languages work on the abstract tree structures and

are applicable to general XML models. The disadvantage of

XML based languages is the learning of concepts like path

descriptions and navigation in documents.

The query/view language presented in this paper is based on

graph pattern structures, therefore some of these languages [3]

are presented here. FUJABA [18] (From Uml to Java And Back

Again) is a graph replacement system where manipulations

on the object structure are graphically specified and then

performed. Cypher is a textual SQL-like language used by

Neo4J. Other graph-based languages are SPARQL, GraphQL,

and Gremlin. SPARQL, like Cypher, is a textual language based

on SQL. It works declaratively and was developed by the W3C

consortium to generate queries on RDF. GraphQL is developed

by Facebook, where users describe the structure of the data

they want to query. Finally, Gremlin is a DSL that traverses

the graphs and can be easily programmed in native languages

like Java, Python, etc. In contrast, AutomationQL [1] is a by-

example query language based on AML. Since, it is based on

the AML metamodel, it is not possible to use the language

in other areas. The concept to define languages by-example

is already used in the area of transformation languages [19].

It is possible to define by-demonstration [20], [21] or by-

correspondence [22] transformations. By-demonstration means

that the transformations are demonstrated in a model editor by

the user, whereby the editor records the changes and creates

a transformation. This process is already used for in-place

and out-place transformations. Current approaches usually take

a semi-automatic approach, since the rules usually must be

adapted at the end. If one wants to define transformations

by-correspondence, the user defines the source, target, and

correspondence model, whereas the comparison describes the

final query. Usually several of these relationships are defined

to cover critical cases.

Finally, we consider related work in the area of view langua-

ges. In the work of Brunelier et al. [23] an overview of current

view approaches is presented. The approaches are examined

regarding their query and view languages. The ModelJoin [2]
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approach was already mentioned in Sect. V and uses a textual

SQL-like syntax where complicated comparison operators are

described using OCL. EMF Views [4] also uses a SQL-like

language and describes complex expressions with the Epsilon

Constraint Language (ETL). Epsilon Merge Language [24]

connects models and uses the complete collection of Epsilon

languages like the Epsilon Object Language (EOL). In Epsilon,

all DSLs are linked to each other and use similar concepts,

whereby each language is adapted to its field of application. The

discussed languages of this paragraph as well as VIATRA [25]

all have their own textual languages to define views. In contrast,

Triple Graph Grammars (TGGs) [26] work with a graphical

notation to represent relationships between models and views.

VII. CONCLUSION

In this paper, we have presented a generic approach for a

by-example query/view language. This approach is based on

the role concept and rests upon a graph pattern-based query

language. The concept supports the formulation of positive and

negative graph patterns and can search for specific structures

in the underlying model. In addition, we have shown the

applicability of this approach using the example of AML,

where the concept is implemented upon the RSUM approach

and queries are executed on the underlying structures. The

query language is also used to create viewtypes and may be

applied to other approaches as well.

Although many different queries are already supported, the

expressive power of the concept must be extended in the

future to deal with, e.g., properties such as the order and

the merging of elements in the query/view concept. This would

potentially allow in the future to represent all properties of the

ModelJoin language through our query by-example concept and

to create other existing viewtype or graph query languages from

this concept. Moreover the current implementation does not

automatically optimize the queries to speed up the generation of

the result set. This is left as future work. Finally, the question

arises how to adapt the by-example query/view concept to

generate and implement a by-example transformation concept

in order to make the definition of transformations easier and

to minimize the learning effort in this area.
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