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Abstract—Model-driven Software Development (MDSD) pro-
motes the use of multiple related models to realize a software
system systematically. These models usually contain redundant
information but are independently edited. This easily leads to
inconsistencies among them. To ensure consistency among mul-
tiple models, model synchronizations have to be employed, e.g.,
by means of model transformations, trace links, or triple graph
grammars. Model synchronization poses three main problems
for MDSD. First, classical model synchronization approaches
have to be manually triggered to perform the synchronization.
However, to support the consistent evolution of multiple models,
it is necessary to immediately and continuously update all of
them. Second, synchronization rules are specified at design time
and, in classic approaches, cannot be extended at runtime,
which is necessary if metamodels evolve at runtime. Finally,
most classical synchronization approaches focus on bilateral
model synchronization, i.e., the synchronization between two
models. Consequently, for more than two models, they require
the definition of pairwise model synchronizations leading to a
combinatorial explosion of synchronization rules. To remedy
these issues, we propose a role-based approach for runtime
model synchronization. In particular, we propose role-based
synchronization rules that enable the immediate and continuous
propagation of changes to multiple interrelated models (and
back again). Additionally, our approach permits adding new and
customized synchronization rules at runtime. We illustrate the
benefits of role-based runtime model synchronization using the
Families to Persons case study from the Transformation Tool
Contest 2017.

Index Terms—Model-driven engineering, model synchronisa-
tion, role-oriented programming

I. INTRODUCTION

Model-driven Software Development (MDSD) focuses on

models as the primary development artifact to systematically

realize a software system. Therefore, multiple models naturally

coexist to express different concerns of interrelated concepts.

These interrelated concepts can lead to an increasing number

of related models that usually contain redundant information.

Yet, independently editing one of these models easily leads to

inconsistencies among them, making it imperative to ensure

the consistency between them. Typically, model consistency

is ensured by defining model synchronizations between those

interrelated models, e.g., by means of model transformations,

trace links, or Triple Graph Grammars (TGGs). As such,

model synchronization is a crucial aspect of MDSD.

This work was funded by the German Research Foundation within the
Research Training Group "Role-based Software Infrastructures for continuous-
context-sensitive Systems" (GRK 1907).

The literature distinguishes between unidirectional and bi-

directional model synchronizations. Standard unidirectional

synchronization approaches utilize transformation languages

like SyncATL [1] and GRoundTram [2]. These provide well-

behaved forward and backward transformations, i.e., they

enforce consistency between multiple models and satisfy the

roundtrip property [15]. Bidirectional model synchronizations

are written as declarative consistency relations between two

metamodels. The Query/View/Transformation (QVT) stan-

dard [3] of the Object Management Group (OMG), especially

the QVT Relations (QVT-R) language, and TGGs [4] are

famous instances of bidirectional transformation languages.

While these already support model synchronization, they do

not address the following three issues:

(1) Classical model synchronization approaches have to be

triggered manually to perform the synchronization process be-

tween two models. In practice, systems and underlying models

evolve at runtime. This evolution of multiple models requires

immediate and continuous updates at runtime. Such behavior

makes updates of the whole model impossible, which leads to

the use of incremental (delta) updates for the synchronization

of two models. The lens approach by Pierce et al. [5] is an

often used concept for runtime model synchronization. Anot-

her issue stems from synchronization rules themselves, i.e., (2)

the fact that they are specified at design time and, in classical

approaches, cannot be extended at runtime. However, when

metamodels or synchronization strategies change at runtime,

these changes must be reflected by extending transformation

rules. Moreover, the lifecycle of tools and models will be

shorter in the future demanding a more flexible and extensible

approach to model synchronization. Consequently, model sy-

nchronization tools will need to support adding and removing

synchronization rules to fulfill these requirements. Finally, (3)

most classical synchronization approaches focus on bilateral

model synchronization, i.e., bidirectional synchronizing two

models. Yet, if the number of related models increases, the

number of model synchronizations grows quadratically to the

number of involved models (i.e., n(n-1)/2 where n is the

number of tools). To eliminate this combinatorial explosion of

synchronization rules, a combination of synchronization rules

over multiple models is essential.

All three issues have been addressed individually by recent

approaches. Reactive ATL [6] and VIATRA3 [7] introduce re-

active programming principles to model synchronization, i.e.,

synchronization rules do not need to be manually executed,
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but are triggered by changes in the source models. Moreover,

reactive ATL applies the same principle to synchronization

rules themselves, which allows changing the rules at runtime.

Finally, in [8], a TGG-based approach for multi-model sy-

nchronization rules is presented and in [9], the VIATRA3

approach is extended with the same feature.

This paper addresses all three issues with one approach

leveraging on the expressiveness of role-oriented development,

a successor of object-oriented development. We propose a

role-based approach for runtime model synchronization to

investigate the following research questions:

• RQ1: How can the role concept increase the quality of

runtime model synchronization between multiple models?

• RQ2: How can the role concept create a flexible and

extensible model synchronization?

To answer these questions, we utilize the role concept

to establish runtime model synchronization between multiple

interrelated models. In particular, we establish role-based

model synchronization rules utilizing the Compartment Role

Object Model (CROM) [10] and the SCala ROLes Lan-

guage (SCROLL) [11] to model and respectively implement

runtime model synchronization. As a result, our approach

enables the immediate and continuous propagation of changes

to arbitrarily many interrelated models (and back again). Addi-

tionally, role-based model synchronization permits adding new

and customized synchronization rules at runtime by dynami-

cally adding and removing synchronization rules and binding

and unbinding synchronization roles to model elements. To

illustrate the benefits of the presented role-based runtime

model synchronization, we illustrate the approach employing

the Families to Persons case study from the Transformation
Tool Contest 2017 (TTC’17).1 First, we describe role-based

runtime synchronization for the families and persons models

incorporating a third simplified EMF-based model. Finally,

we outline the addition of custom synchronization rules to

account for model evolution. In conclusion, this works applies

the role concept to improve runtime model synchronization, to

permit the evolution of synchronization rules at runtime, and

to support multilateral model synchronization.2

The remainder of this paper is structured as follows. Sect. II

briefly describes model synchronization and the notion of

roles. Afterwards, Sect. III presents the running example

that leads through the whole paper. Sect. IV introduces our

role-based approach to model synchronization. Subsequently,

Sect V elaborates on our prototypical implementation and

illustrates its use. We demarcate our approach from related

work in Sect. VI. Finally, Sect. VII concludes the paper and

highlights possible lines of future work.

II. BACKGROUND

A. Model Synchronization

Model synchronization is the process of keeping two or

more related models consistent. For this, three main appro-

1www.transformation-tool-contest.eu/2017
2https://github.com/st-tu-dresden/RoleSync

aches can be distinguished.

First, transformation rules can describe how elements of

a source model translate into elements of a target model

(e.g., as in ATL [12]). Second, transformation rules can be

composed of model queries to determine source elements,

model change operations to describe how the target model

shall be changed and execution schemata, which combine

both to represent the transformation rule. An example of this

approach is the VIATRA framework [13]. Finally, triple graph

grammars can be used to describe transformation rules using

three graphs per rule: the first describing a pattern in the

source model, the second a pattern in the target model, and the

third an intermediate model. We refer the interested reader to

Czarnecki et al. [14], who introduce a feature-oriented classi-

fication of model transformation approaches. Although there

are some bidirectional and few multilateral synchronization

approaches, most approaches only support one-way batch-

oriented model synchronization. However, for MDSD with

round-trip engineering [15] bidirectional synchronizations or

backward transformations are required, because software is de-

veloped in cycles of analysis, design, implementation, test, and

deployment. When synchronizing two related models, Hettel

et al. [16] distinguish between relevant and non-relevant parts

for synchronization. The relevant part of a model describes the

elements that trigger changes in the other model. In case of

changes in the non-relevant part, however, the related model

does not need to be changed. Changes in a model are produced

at runtime. Thus, they must be propagated and integrated into

the related models at runtime. In other words, synchronization

rules need to be reactive instead of imperative.

B. Roles in a Nutshell

Roles are not a new concept. Yet, there is still no common

understanding of roles in the literature [17], [18]. On the

contrary, [17] and [18] identified 26 features attributed to

roles that we group into the following three natures. The

behavioral nature establishes that unrelated objects can play

roles and roles adapt the behavior of playing objects [17],

[18]. Additionally, objects can play roles of a different type

multiple times. This nature is usually captured by the fills-
relation between classes and role types denoting those classes

whose objects can play roles of the given type. In contrast,

the relational nature states that roles denote the binding

ends of relationships. This nature is present in most modeling

languages, e.g. ER and UML. Still, these languages do not

foster the dynamism and flexibility of roles, as roles degenerate

to named placeholders. Hence, researchers introduced roles

tied to relationships as first-class citizens permitting them to

be played by unrelated objects and having relationship specific

properties. However, these relational languages assume that

relationships are context-independent and cannot play roles

themselves [10]. To resolve this, recent role-oriented languages

incorporated the context-dependent nature of roles, that cha-

racterizes roles and relationships as context-dependent. Both

are encapsulated in a context as a definitional boundary. Yet,

different approaches use different terms for this conceptual
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entity. Consequently, compartments were introduced in [18]

to generalize the different terms. Compartments can have

properties and behavior, as well as play roles themselves. In

contrast to context-dependent roles, only a few approaches also

include context-dependent relationships [10].

Including these natures into one role-oriented language alre-

ady leads to an expressive framework. The Compartment Role

Object Model (CROM) [10] is one such modeling language

and the SCala ROLes Language (SCROLL) [11] a correspon-

ding programming language. Henceforth, we utilize CROM

to specify role-based model synchronizations and SCROLL

to implement them in our case study. Our implementation

utilizes two main features of SCROLL. The play operator

binds a role to its player, i.e., another natural, compartment

or role. The unary operator + before a method call performs

a dynamic dispatch to a suitable role played by the receiver.

These features enable runtime model synchronization.

III. RUNNING EXAMPLE

To illustrate the functionality of our role-based model

synchronization approach, we use a preexisting scenario as

running example, i.e., the Families to Persons use case for

incremental model synchronization. Before describing our

prototype, the full scenario is described including three models

and corresponding synchronization issues. Fig. 1a and Fig. 1b

depict the two models from the case study. As our approach

supports multilateral model synchronization, Fig. 1c denotes

an additional model for persons. For brevity, we denote

these three models A, B and C. In detail, we synchronize

instances of Member from A, Male and Female from B
and SimplePerson from C.
The three models have the reference of persons and their

respective relations as a common theme. In A, the Family
exists as a core element and the Members are classified as

father, mother, daughters, and sons. Moreover, the Members
cannot exist on their own, only with an associated Family. In
this way, any necessary information, e.g., family relationships,

can be derived from A. B relies on the simple structure of male

and female persons. Except for the full name and the birthday

nothing is given as information. By inheritance, it is possible

to identify the gender of a person at runtime. However, it is

not possible to identify the relationship between the individual

persons. In C, all persons are SimplePersons, regardless
of their gender or family state. As well as in the other models,

we have unique instances for each person. We have a single

SimplePerson instance per person at runtime, carrying

the actual values of name, gender, and an arbitrary (non-

synchronization related) value named address. Synchronizing

these three models entails certain problem cases. To illustrate

them, we will shortly discuss individual bilateral transforma-

tions between the three models.

The first transformation direction from A to B is trivial.

If we know the Member instance with its attributes (e.g.,

familyDaughter), we are able to decide which Male
or Female instance is affected in B. Moreover, the as-

sociated Family instance gives access to the last name
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Figure 1: The example scenario of family-person models.

Listing 1: Example of an ATL transformation rule.

1 rule Member2Female {
2 from s: Families!Member ( s.isFemale() )
3 to t: Persons!Female (
4 fullName <- s.firstName+’ ’+s.familyName() )
5 }

from the family member. For example, if we know that

the A creates an instance Eva:Member that has set the

attribute familyDaughter to the related family instance

Smith:Family, then we can infer that in B the transforma-

tion rule would create the instance of Eva-Smith:Female.
This case works similarly for the father, mother, and son
association. Consider, for instance, the ATL model transforma-

tion from A to B shown in Listing 1. This rule transforms each

female member of a family Families!Member into a single

female person Persons!Female. The name is then compo-

sed by the single attributes. Notably, this implementation relies

on two more complex helper functions, i.e., isFemale()
and familyName().
By contrast, the transformation from B to A is not trivial.

Consider, an instance of B (e.g., Eva-Smith:Female) we
want to transform into A. Then we simply lack the information,

whether Eva is a mother or a daughter, and whether her family

already exists or not. A solution would be to ask the user or

always creating a new family and set females as daughters
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and males as sons.
The transformation from A to C is straightforward. All infor-

mation about a person is carried within the SimplePerson’s
instance. Thus, if we create, modify, or delete a family

member Eva:Member, then we simply create, modify, or

delete the corresponding Eva:SimplePerson instance in

C, as all needed attributes are already available in A. In

contrast, the transformation from C to A is more complica-

ted, as we lack necessary information for deciding whether

Eva:SimplePerson is a mother or a daughter in A. In
fact, this is the same issue encountered before, such that

the same resolution strategy is applicable, i.e., assuming

that male SimplePersons are always sons and females

daughters. Besides that, a more advanced solution might

be to check the family (via the person’s complete name) for

already existent family members first.

Finally, the transformation from B to C and back again is

very simple, since all necessary information is present in both

models. If an instance Eva:Female is created, deleted, or

modified, then we simply have to add, delete, or modify the

corresponding instance of SimplePerson and vice versa.

Thus, both models can be fully synchronized.

Depending on the application, various model elements can

be efficiently synchronized. Granted, it might be impossible

to fully synchronize every detail of every new, deleted, or

modified instance to all models in all directions. For instance,

the address and birthday fields are unique attributes in

C and B, respectively. Accordingly, these cannot be set when

instantiating the corresponding classes. As these values are

“optional values”, this is no issue, because such fields can be

set to null instead. In case of “mandatory” fields, however,

we are unable to synchronize in this direction without someone

providing the missing value to set. Henceforth, we employ this

example and entailed synchronization issues to motivate and

illustrate our approach.

IV. ROLE-BASED MODEL SYNCHRONIZATION

The advantage of role-oriented programming is its ability to

dynamically adapt object’s behavior by binding and dropping

roles at runtime. For model synchronization, this entails that,

when synchronizing preexisting models, roles permit introdu-

cing “synchronization management” for background, black-

boxed, automated, non-invasive, and runtime model synchroni-

zation. Our approach realizes this by representing synchroniza-

tion rules as compartments, which define synchronization roles

played by the concrete model elements. Fig. 2 exemplifies

our conceptual model as CROM model, whereas Fig. 3 and

Fig. 4 showcase two typical runtime processes by means

of CROM instance models illustrating the construction and

synchronization of elements.

In general, we aim to synchronize multiple related models

with a different structure. For instance, if two classes should be

synchronized between two models, the synchronization needs

to cover the creation, deletion, and modification of instances

of such classes and has to propagate all changes to all related

models. Our approach can cover those operations with a

SynchronizationContext

SyncAttribute

ModelC

Compartment

ModelB

ModelA

Person
fullName
birthday

SimplePerson
completeName

address
male

ConstructionContext

Constructor

+construct()

DestructionContext

Destructor

+delete()

SyncAttributeSyncNames

Sync

+syncValue()

RoleManager

+manage()

Class

Role

Fills Relation

Family
lastName

Member
firstName

Composition

Figure 2: Role-based model synchronization.

minimal effort and maximal expressiveness. However, the user

of our approach can define synchronization of arbitrary fields

and specify dedicated rules for synchronization compartments.

In particular, each change of a model element’s state is

immediately propagated at runtime and only alters attributes

of related objects.

Our approach supports two modes of model synchroni-

zation: (a) establishing the synchronization between models

(initially or with additional objects at runtime), as well as

(b) ensuring consistency between multiple models at runtime.

To establish a model synchronization, the user defines all

related classes within the different models with the related

synchronization rules. To ensure consistency between multiple

models, the actual synchronization is performed behind the

scenes without the knowledge of the model user, acting as a

black-box. In our approach, each model element is bound to

a RoleManager within a SynchronizationContext,
to introduce synchronization management of its player. Mo-

reover, each RoleManager plays multiple synchronization

roles in inner compartments that manage the construction,

destruction, and content synchronization of model elements, as

presented in Fig. 2. For each SynchronizationContext,
there exists only one ConstructionContext and one

DestructionContext. Yet, there are as many synchro-

nization compartments, e.g., SyncNames compartments, as

synchronized model elements. This design allows for dyn-

amically adding or replacing synchronization rules without

affecting the model elements, as new synchronization ro-

les are only bound to the corresponding RoleManagers.
Fig. 3 and Fig. 4 illustrate the synchronization of concrete

instances of the three models including each object to the

SynchronizationContext, which covers the creation,

deletion, and modification of the corresponding objects.
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SO:SynchronizationContext

ModelA
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firstName=Eva
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lastName=Smith

mother
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Figure 3: Example Model with construction rule process.

This is done at runtime, as we simply let instances of Member,
Family, Person, and SimplePerson play multiple roles

in instances of SynchronizationContext that realizes

the synchronization.

Moreover, Fig. 3 depicts how model synchronization is

established. First, a new Member named "Eva" is in-

stantiated, who is the mother of family "Smith". After-

wards, a new instance of the RoleManager is bound

to "Eva". In (3), the corresponding construction role

from the ConstructionContext is chosen and bound

to the RoleManager of "Eva". As specified in the

MemberConstruction role, (4) creates new objects in both

other models and binds new RoleManagers to these objects.

Finally, each new RoleManager is bound to the correspon-

ding roles of synchronization compartments, as depicted in

Fig. 4. For clarity, this step is not visualized in Fig. 3. After

establishing the synchronization the RoleManager dropped

the construction role, to avoid redundant object creation. The

deletion is handled similarly, whereby the RoleManagers
delegates this process.

To ensure consistency upon changes to one of the three mo-

del instances, the RoleManager employs specialized com-

partments for each synchronization rules, e.g., SyncNames.
The synchronization compartment propagates changes to

all participating roles updating the respective attributes of

their players. Fig. 4 presents the synchronization of the

names of persons. Assuming the completeName of the

SimplePerson "EvaSP" is changed (1), the Sync role is

notified (2) and propagates the changes to the other Sync roles

in the compartment (3). Finally, they apply the corresponding

changes to the players of the corresponding RoleManagers
(4). This process automatically synchronizes all elements

participating in the synchronization compartment.

SO:SynchronizationContext

ModelA

Eva:Member
firstName=Eva

Smith:Family
lastName=Smith

mother

ModelB
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fullName=Eva Smith
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address=NY1234
male=False
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DC: DestructionContext

PersonDestructor

FamilyDestructor

MemberDestructor

SimplePersonDestructor

CC: ConstructionContext

PersonConstructor

FamilyConstructor

MemberConstructor
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syncRoles=[S1,S2,S3,S4]

S3:Sync

S1:Sync

S4:Sync

S2:Sync

1

2

3

4

4

4

Figure 4: Example Model with synchronization rule process.

Besides that, binding and dropping roles at runtime allows

for dynamically updating and extending synchronization rules

by adding or replacing synchronization compartments within

a SynchronizationContext including the construction

and destruction compartment. We argue that introducing roles

to model synchronization has the following benefits:

1) Reducing the effort to establish synchronizations be-

tween models or objects, due to the adaptive nature

of roles and direct definition of synchronization rules.

Additionally, it is possible to dynamically decide, which

objects to synchronize.

2) The content to synchronize is exactly defined and encap-

sulated within synchronization compartments. Finally,

roles allow for specifying synchronization on the same

level as traditional object-oriented mechanisms, e.g.,

employing the adapter pattern [19].

3) The applicability of model synchronization is improved

because any preexisting object can participate in a

synchronization compartment with minimal additional

implementation effort.

4) The approach supports automation, as all necessary sy-

nchronization compartments and roles can be generated

from transformation rules (e.g., ATL rules).

Although our prototypical implementation demonstrates the

first three benefits, the last benefit is part of future work.

V. IMPLEMENTATION WITH SCROLL

For our case study, we use SCROLL to prototypically

implement the role-based model synchronization approach of

the three introduced models. SCROLL is an open source Scala

library and implements most role features [11]. It is flexible,

lightweight, and easily extensible.
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Listing 2: Class extension example.

1 case class SimplePerson(completeName:String,
2 male:Boolean) extends Player {
3 bindSynchronization()
4 def getMale(): Boolean = male
5 def getCompleteName(): String = completeName
6 def setCompleteName(n: String): Unit = {
7 completeName = n
8 +this changeCompleteName()
9 }
10 }

Listing 3: Construction role example.

1 @Role class PersonConstructor() {
2 def construct(playerManager:RoleManager) {
3 var player: PlayerSync = this.player
4 var fullName: String = +this getFullName()
5 var simple: SimplePerson = new SimplePerson
6 (fullName,player.isInstanceOf[Male)
7 /* Create Family & Member */
8 var simpleManager = new RoleManager()
9 simple play simpleManager
10 simpleManager play new SimplePersonDelete()
11 playerManager play new PersonDelete()
12 /* Create roles for Family & Member */
13 playerManager.addRelated(simpleManager)
14 simpleManager.addRelated(playerManager)
15 /* Add RoleManagers from Family & Member */
16 new SyncNames() {
17 playerManager play new Sync
18 simpleManager play new Sync
19 memberManager play new Sync
20 familyManager play new Sync
21 }
22 }
23 }

In SCROLL, each compartment object contains a role graph

and handles calling the role’s methods. Moreover, SCROLL

permits executing more than one role method, i.e., when an

instance plays more than one role of one type, a call of a role’s

method is successively executed for all roles. This function is

crucial for instances of the Family, because changes to the

last name must be propagated to all related Persons and

SimplePersons that are members of this family. To find

role methods across different compartments, role graphs of the

two compartments are merged. These merge commands are

not presented in the listings but are imperative for the correct

implementation of the synchronization.

To apply the synchronization approach, currently, the model

code has to be slightly refined as outlined in Listing 2. First,

each model class must extend the compartment type Player
to add a role graph and permit calling the role functionality.

Moreover, after setting attributes in the constructor, each

class has to call the bindSynchronization method (Line 3)

defined in the Player to bind the RoleManager and other

synchronization roles. To propagate changes of attributes to

roles, each setter or state modification includes a call to a

role method (Line 8). If a corresponding method is found in

a played role, it is immediately forwarded to it. Granted these

modifications limit our approach, they are easy to overcome

with aspect weaving or modified code generation.
After instantiating a model class, a new RoleManager

is bound and its manage method is called. In this function,

the type of the Player chooses the correct functionality

and binds the right construction role and calls the construct
method, as depicted in Fig. 3. Therein, all specified syn-

chronization roles are bound and all related, synchronized

instances in other models are created. Listing 3 exempli-

fies the construction role for Person that creates a related

SimplePerson. Moreover, each construction method im-

plements five steps:

1) Line 3-4: Get the player and other values for the

construction of instances from other models.

2) Line 5-7: Create related instances in the other models

(e.g., create a SimplePerson instance with the full-
Name from the person and define whether it is male or

female).

3) Line 8-12: Add deletion roles to all instances of this

construction process. All roles are bound to the corre-

sponding RoleManagers to generate a single point for

changes of roles. The related instances from step two do

not get any construction role, because their construction

is handled in this method.

4) Line 13-14: To manage related instances of the ot-

her models, each RoleManager saves its related

RoleManagers.
5) Line 16-21: Add specific compartments for the runtime

synchronization of different attributes. In this case, a

new SyncNames compartment is created and each

RoleManager binds a new Sync role.

The destruction roles are implemented similar to the con-

struction roles, but have fewer steps. In the delete method, the

role iterates over all played roles and drops them. Moreover,

it takes all related RoleManagers, as defined in the con-

struction process, and calls their delete methods. In summary,

this method recursively drops every synchronization role and

removes the related instances from all models.
Finally, the runtime synchronization of names among the

family-person models is handled in the synchronization com-

partment implemented in Listing 4. The compartment can

contain different synchronization roles, e.g., the Sync role,

that supports synchronization behavior for name attributes.

Furthermore, the compartment permits each role to get access

to all other roles in this compartment (Line 2). If the

completeName is changed in a SimplePerson instance

the function changeCompleteName of the Sync role is called.

In this method (Line 5-18) the complete name of the player of

this role is extracted, separated into the first and last name, and

propagated to all roles in this compartment, as full, complete,

first, or last name. The isSyncing variable ensures one-time

execution avoiding infinite loops. In sum, these listings present

the PersonConstruction and SyncNames compartment

for the running example.
Additionally, the SyncNames compartment can be exchan-

ged at runtime, for instance, to account for a model evo-
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Listing 4: Synchronization of names.

1 class SyncNames() extends Compartment{
2 var syncRoles = List[Sync]()
3 var isSyncing = false
4 @Role class Sync() {
5 def changeCompleteName(): Unit = {
6 if (!isSyncing) {
7 isSyncing = true
8 var comN: String = +this getCompleteName()
9 var r: Array[String] = comN.split(" ")

10 syncRoles.foreach{a =>
11 +a setFullName(comN)
12 +a setCompleteName(comN)
13 +a setFirstName(r.head)
14 +a setLastName(r.last)
15 }
16 isSyncing = false
17 }
18 }
19 def changeFirstName():Unit = {...}
20 def changeLastName():Unit = {...}
21 def changeFullName():Unit = {...}
22 }
23 }

lution. In essence, to exchange the SyncNames, all ro-

les in the SynchronizationContext are queried for

RoleManagers playing roles in a SyncNames compart-

ment. All these roles are removed from their RoleManagers
and replaced with new roles of the extended SyncNames
compartment. In sum, this process only drops and binds roles

without requiring changes to model elements.

Although the case study shows that the current implemen-

tation has limitations, e.g., modifying the model code, these

can be removed with aspect weaving or code generation.

Moreover, SCROLL does not allow for dynamic loading of

roles into compartments, which requires loading and exchan-

ging complete compartments at runtime. Despite that, domain-

specific languages, such as ATL (Listing 1), can be utilized

to generate the synchronization compartments and roles. Fi-

nally, the complete synchronization process can be changed at

runtime and new models can be integrated at runtime.

VI. RELATED WORK

As a core discipline of model-driven engineering, the field

of model transformations has enjoyed tremendous popularity.

Most notably, QVT is a language for model transformation

standardized by the OMG [20]. ATL builds on top of the

Eclipse Modeling Framework [21] and provides a language as

well as an execution environment [22]. A special kind of model

transformation is model refactoring [23], which has been

studied intensely and is integrated into programming tools

like Eclipse for the definition of transformations that leaves

the functionality unchanged. Roundtrip engineering [15] is the

combination of forward and backward transformations and is

one of the major challenges of model-driven engineering.

If manual changes in code cannot be propagated back to

the model from which the code (skeleton) was originally

generated, then models and code quickly get out of sync.

Table I: Comparison with State-of-the-Art.

Reactive
ATL

VIATRA3 TGGs RbMS

Change propagation � � � �
Runtime rule changes � � � �
Multilateral rules � � � �

Roundtrip engineering presents the beginning of the model sy-

nchronization process. Finally, graph transformation languages

as, e.g., in FUJABA [24] and GReAT [25], denote important

previous work w.r.t. current model synchronization approaches

as described in the following.

In [6], Reactive ATL is introduced as the successor of In-
cremental ATL [26] and Lazy ATL [27]. The basic principle of

reactive ATL is two-fold. First, the meta-modeling framework

was extended to support change propagation for individual

properties of the source model of model-2-model transforma-

tions (i.e., incremental ATL). Second, target model elements

are only computed when they are explicitly requested (lazy

ATL). By this, the one-shot approach to model transformations

is changed to follow the reactive programming paradigm [28],

i.e., the handling of changes and requests to models is fully

decoupled. A comparable approach w.r.t. incremental ATL has

also been proposed by Xiong et al. [1].
The VIATRA framework [7] provides an alternative model

synchronization approach, which since its third edition [29]

follows the reactive programming paradigm, too. In contrast

to Reactive ATL, VIATRA aims at high scalability, i.e., is

suitable for very large models and, since its first version,

VIATRA is based on graph transformations [13]. In 2010, in-

cremental evaluation of model queries was introduced (EMF-

IncQuery) [30]. In [9], this approach has been broadened

to support distributed model queries, too (IncQuery-D). In

comparison to Reactive ATL, VIATRA3 does not use trans-

formation specifications, which explicitly refer to source and

target model elements, but use model queries as preconditions

for transformations, model manipulation actions and execution

schemata as composition programs over both. Another class of

alternative approaches to model synchronization is based on

the formalism of TGGs as, for instance, shown by Trollmann

and Albayrak [8] and Giese et al. [31].
As shown in Table I, in comparison to the approaches

described above, our role-based runtime model synchroniza-

tion approach offers a solution to all three issues of model

synchronization (reactive change propagation, runtime chan-

ges to synchronization rules and multilateral synchronization

rules). Our approach allows to directly propagate changes from

the source to the target model and back again. Moreover,

it is possible to describe unidirectional, bidirectional, and

multilateral transformations. Furthermore, the role concept

enables the runtime integration of models for synchronization

and the evolution of synchronization rules at runtime.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have described the potential advantages

of using the notion of roles as the foundation to realize a
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runtime model synchronization approach. In general, role-

oriented languages extend the object-oriented paradigm featu-

ring dynamic, context-dependent behavioral adaptation. These

features are beneficial for model synchronization, as they allow

for creating fine granular transformation rules, where each role

is responsible for its own part of the synchronization process,

e.g., creation and deletion of model elements or propagation

of specific changes. Moreover, roles provide a natural way to

hide information between players and roles and introduce a

new encapsulation layer [32] for the synchronization process,

wherein the players do not need any information about the

synchronization. Our prototypical implementation showcased

the feasibility of the role-based model synchronization ap-

proach by synchronizing three related models in the family-

person context. We employed the role-based modeling lan-

guage CROM to model and the role-oriented programming

language SCROLL to implement our case study. Moreover,

we described the extensibility of our approach and the ability

to apply changes to synchronization rules at runtime.

In the future, we will extend the implementation from

Sect. V to create a framework that connects uni- and bidi-

rectional synchronization languages with the role-based syn-

chronization approach. Therefore, we will create an abstract

version of this approach that is adaptable with new custom

synchronization rules for different kinds of models. Finally,

the approach should be utilized to integrate and synchronize

a multitude of both new and legacy models.
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