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Abstract—In the increasingly dynamic realities of today’s
software systems, it is no longer feasible to always expect human
developers to react to changing environments and changing
conditions immediately. Instead, software systems need to be
self-aware and autonomously adapt their behavior according
to their experiences gathered from their environment. Current
research provides role-based modeling as a promising approach
to handle the adaptivity and self-awareness within a software
system. There are established role-based systems e.g., for ap-
plication development, persistence, and so on. However, these
are isolated approaches using the role-based model on their
specific layer and mapping to existing non-role-based layers. We
present a global runtime model covering the whole stack of a
software system to maintain a global view of the current system
state and model the interdependencies between the layers. This
facilitates building holistic role-based software systems using the
role concept on every single layer to exploit its full potential,
particularly adaptivity and self-awareness.

I. INTRODUCTION

Software systems find themselves in increasingly dynamic

environments. This is not a new trend, so software developers

found agile and efficient ways to continuously implement new

features, fix bugs, or react to changing requirements while

maintaining a high software quality [4]. All these changes

keep the developer in the loop. However, in today’s scenarios

software systems need to adapt to changing environments

frequently and immediately. Keeping a human developer in the

loop is practically not feasible. Hence, software systems need

to be self-aware and adapt to their environment autonomously.

For instance a mobile phone should be able to recognize if the

user is in a meeting and mute the alarm.

Software systems are usually composed of multiple hetero-

geneous components, which is hard to control and handle

for a human. A self-aware software component recognizes

itself within the environment of other components of the

software system to behave and interact accordingly [15]. This

adaptation of the component’s state and behavior is the central

challenge to achieve the expected dynamics. Though, model-

ing this adaptivity hits the limits of current object-oriented

solutions (especially static objects), which require explicit

implementation of the adaptivity rendering the software system

more complex, hard to maintain, and less robust.

Current research develops the concept of role-based [2]

software to intuitively handle the dynamics, particularly the

self-awareness and adaptivity of software components [12].

Roles allow to easily adapt the behavior and states of software

components at runtime. For instance a person at a university

plays the student role, which adapts the state and behavior of

the person accordingly. In another context, e.g., a soccer team,

the same person could play the goalkeeper role resulting in

completely different states and behavior. Role-based software

establishes such dynamics as primary high-level concepts, so

we can easily model and implement them.

Role-based software is an established concept on the ap-

plication level. Current approaches map the role-based ap-

plication to existing runtime concepts, e.g., Object Teams1

is based on Java and SCROLL is based on Scala [14]. So,

already on the runtime level, we loose the role-based ab-

straction, even though there is promising research establishing

the role concept on the other layers of the software stack

as well. For instance, RSQL provides a role-based database

management system [11], Role Relational Mapping provides

a role-based persistence layer [5], and PROtEUS provides role-

based process management [18], and so on. These are isolated

approaches on the single levels of the software stack.

The runtime models of the isolated layers are well defined

and understood, however, a global runtime model and the

interactions between these layers are not defined so far. In

particular, each layer handles the states of a role individually,

which provides consistent role states for the specific layer, but

from a global software system perspective the combination of

those states may be invalid. For example, a role is registered in

the persistence layer (valid individual state) but not represented

in the database (valid individual state). Globally seen, this is

an invalid state, because each role that is registered in the

persistence layer needs to be represented in the database as

well. Additionally, a transition of a role state on one layer

may be not represented adequately on all others resulting in

an invalid global state of that particular role. This problem is

getting worse the more layers are involved in the system or

the more states can be represented on the layers.

1http://www.objectteams.org
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To overcome the problem of global invalid states, we create

a global runtime model to describe and track the state of roles

over the software stack to ensure a correct interaction between

the different layers. Hence, the behavior and states intended

at one layer are adequately represented at the other layer as

well. Our holistic role-based runtime model realizes the global

book keeping, so all layers of the software system are based

on one coherent knowledge. Precisely knowing which roles

are played by whom is essential to correctly adapt the state

and the behavior at any layer.

The contributions of this work are: As prerequisite we firstly

identify various local role states on several layers of a software

system. Secondly, we introduce a global crosscutting role sate

and thirdly define a management component conceptually,

which ensures a valid role state and state transitions on each

layer as well as on a global software system perspective.

The remainder is structured as follows: We detail the role

concept in Section II and describe our view on the layers of a

software system in Section III. Section IV identifies possible

local role states on each layer. These are the prerequisites to

define the states of our global runtime model and the respective

transitions in Section V. We discuss implementation tech-

niques, the architecture and metamodel variants in Section VI.

Finally, Section VII concludes the paper.

II. THE ROLE CONCEPT

The role concept is based on the idea of separations of

concerns such that the core will be separated by its fluent and

context-dependent parts. However, roles and the underlying

primitives, like dynamic role binding at run time, can be

utilized to describe and implement context-dependent behavior

and structure. Thus, role-based modeling and programming

enables self-aware adaption at runtime, too.

Originally, the role concept was introduced in the 1970s by

Bachman [2]. Over the last decades researchers have proposed

several role-modeling approaches. Surveys showed 26 features

associated to roles in general. Initially, Steimann identified

15 features for mostly relational roles [19]. On top of that,

Kühn et al. proposed 11 additional features to capture the

context-dependent nature of roles [12]. However, the term role

often causes confusion, because there is a different notion

of roles in each domain (like data modeling or software

engineering). In this paper we assume roles as objectified

roles encapsulating context-dependent behavior and structure.

Additionally, roles are used to extend a core object’s behavior

and structure at runtime. Thus, a player (the core object) is

able to dynamically start or stop playing roles resulting in

different behavior and structure of the same (core) object

during runtime. For example, in traditional object-oriented

languages, the behavior and structure of an object is statically

defined by its class, i.e., each situation an object can be

in has to be modeled in advance. In contrast, in role-based

approaches, the context-dependent behavior and structure is

moved from the core objects to roles. For instance, imagine a

person that becomes a student at a university, thus, the core

object of that particular person is extended by a new role of

TABLE I
ONTOLOGICAL FOUNDATION

Concept rigid founded identity
Natural Types yes no unique

Role Types no yes derived

Compartment Types yes yes unique

Relationship Types yes yes composed

type student enabling new structure (i.e., a student ID) and

new behavior (i.e., goToLecture()) of that specific person. In

particular, we assume the Compartment Role Object Model

(CROM) as metamodel for our notion of roles, which is briefly

introduced below [13].

Generally, CROM distinguishes between four elemental

meta types: (i) Natural Type, (ii) Compartment Type, (iii)

Role Type, and (iv) Relationship Type. Ontologically, these

types can be distinguished by the meta properties rigidity,
foundedness, and identity. The first one specifies an instance’s

need to be part of this type for its entire lifetime, whereas

the second one denotes the required existence of other types.

The last one distinguishes between whether a type’s identity

is unique, composed or derived [13]. A summary of these

types and their corresponding specification is shown in Table I.

Natural Types build a core object that does not depend on

any other types. Thus, it is rigid, non-founded and has a

unique identity. For instance, a person is such a Natural Type,

since persons can exist without any other types, each person

is uniquely identifiable and an instance will always be part

of this type. The opposite of Natural Types are Role Types,

which are anti-rigid, founded and have a derived identity. A

student, for instance, is a Role Type that depends on a player,

in our case the person, and the compartment university as

context. A Compartment Type builds a new core object, but

also depends on participating Role Types. Thus, it is rigid

and founded. Moreover, a Compartment Type can be seen

as objectified context that has participating Role Types in

it, but can also fill Role Types on itself. Additionally, this

type has a unique identity, because core elements have to be

uniquely identifiable. As mentioned before, a university is an

example for a Compartment Type. The last meta type is the

Relationship Type, that is applied between two Role Types

only, hence, it is rigid, founded and the identity is composed

by the players’ identity of the participating Role Types. For

example, imagine the Role Types testee and tester that are

related by the Relationship Type exam.

Additionally, CROM requires several constraints on the

relations between the aforementioned meta types. At first, each

Role Type needs to be connected to a player, that can be a

Natural Type or Compartment Type. Furthermore, a Role Type

needs to participate in exactly one Compartment. Additionally,

empty Compartments are prohibited, i.e., each Compartment

Type requires at least one Role Type to participate. Next,

Relationship Types are context-dependent, hence, participating

Role Types need to be of the same Compartment Type.
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These definitions and distinction of meta types allows a role-

based context-dependent representation of dynamic entities at

runtime. Nevertheless, the life-cycle of Natural Instances and

Compartments is straight forward and comparable to objects.

Thus, the rest of this paper is going to focus on roles2 only.

III. SOFTWARE SYSTEM LAYERS

A software system, in general, describes various compound

software components to fulfill a dedicated task. Those tasks

can range from graphical user interface on the front-end

side over application server to low level components like an

operating system. However, for persistent software systems we

can identify four layers performing special subtasks: (i) Appli-
cation Layer, (ii) Runtime Environment Layer, (iii) Persistence
Layer, and (iv) Database Layer.

Application Layer

The Application Layer describes all software components

that are directly related to application software. This includes

any sort of user interfaces, communication services, and back-

end solutions. Mostly, the business logic is embedded in the

Application Layer. Additionally, this layer is often consid-

ered as software from a user and programmer perspective,

neglecting the fact that other layers enable this separation3. For

example, imagine a java-written application managing exams

at a university that provides a sign up process for exams while

checking exam preliminaries at the same time. Concerning

our proposed 4-layered architecture, the Application Layer is

considered top-most, since it is visible to the end-user.

Runtime Environment Layer

The second considered layer integrates all components

necessary to compile and run any kind of application. It takes

care of producing executable code out of high level program-

ming languages, memory management, and instantiation and

deletion of objects. Thus, no application will be executed

without services out of this layer. For instance, consider the

Java Software Development Kit (JDK) including the Java

Runtime Environment (JRE). Image a student who logs in

to the aforementioned exams management application and

registers for an exam, thus, a new testee role will be created.

First, the memory is allocated and second the new instance is

create by the runtime environment. Finally, the newly created

role instance is bound to the person who registered and to the

university compartment. Since the Application Layer requires

mechanisms provided by the runtime environment, e.g., for

creating and binding role instances, the Runtime Environment

Layer sits below the Application Layer.

Persistence Layer

The next layer integrates all components of a software sys-

tems that provide persistence services to applications. Those

are desired from an application’s perspective to store objects

beyond application’s runtime. Additionally, the durable storage

2Within this paper the term role refers to an instance of a role type.
3In this paper the term application refers to software related to this layer.

is beneficial in case of application errors or breakdowns. Since

the data model of applications and databases usually differ, this

layer often provides mapping services to transform runtime

objects into database objects and vice versa. In case of object-

oriented applications and relational database management sys-

tems this issue is known as object-relational impedance mis-

match. Along with the mentioned tasks, the persistence layer

also keeps track of loaded and stored objects to decide whether

an object needs to be inserted or updated in the database.

Exemplarily, the Java Persistence API (JPA) specifications

can be seen as representative for such a layer. Consider a

student signs up for an exam and that information needs to

be persisted, the Persistence Layer transforms the object into

relations and creates proper statements. From a software stack

perspective this layer comes third seen from above, since it

is not necessary to implement and communicates with the

application layer and runtime environment layer.

Database Layer

Finally, we consider a Database Layer that provides at

least durability and consistency characteristics. The former is

important to guarantee object storage beyond runtime whereas

the latter one ensures proper and application schema con-

form storage. Isolation and atomicity properties may not be

required, especially in case a NoSQL database management

system is deployed in a software system. Additionally, this

layer takes care of efficient data access and storage. Imagine

the student signed up for an exam and the persistence layer

called a statement, that database layer inserts this information

into the data storage while logging this action at the same

time. In our 4-layer software stack perspective, this layer is

the bottom one, since all others are built on top.

IV. LOCAL ROLE STATES

Applying the role concept on each of these layers causes

different states a role may have on each layer. In this section

we elaborate the possible states on each layer. Thus, we firstly

introduce those states in general and secondly apply them onto

the different layers.

A. States of Roles

Within the role life-cycle roles appear in different states

having different characteristics. In general, we distinguish

between the following main states: not existent (nex), unbound
(ub), and bound (b),

On the one hand, the not existent state describes the situation

in which a role is unknown to a certain layer. On the other

hand, unbound and bound describe states of roles if they are

known to a specific layer. In the unbound case, the role is

neither bound to a player nor a compartment, which results in

the two sub-states unbound player and unbound compartment.
The former is applied if the role is bound to a compartment

but not to a player, hence, the latter one describes the situation

that a role is not bound to compartment but to a player. In

contrast to the unbound state, the bound state describes the

situation a role is bound to a player and compartment. This
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Fig. 1. Local Role States in the Software Stack

state can be separated into two sub-states, too. The first one

is bound passive describing a role is currently unused. The

second one, bound active, defines the opposite situation, when
a role is currently used and methods are actively performed on

it. Figure 1 illustrates the particular role states for each layer.

Additionally, the bidirectional arrows indicate a communica-

tion interface between corresponding the layers.

B. Applying Role States to the Layers

Runtime Environment Layer: As mentioned in Section III

the Runtime Environment Layer instantiates and destroys

objects. In case of roles, this layer additionally binds the role to

a player and adds it to a compartment. During this instantiation

process, a role appears as unbound (ub), unbound player (ubp)
or unbound compartment (ubc). The same states may appear

during the destruction process, where roles must be unbound

from their players and compartments before deleting them.

Finally, if the role is related to a player and compartment, it

switches to the bound state. Only the bound state is consistent

to the role metamodel we assume, thus, only this state is

exposed to other layers. Referring to our student example, in

response to the enrollment of a new student at a university,

the system would instantiate a new student role, bind it to

the respective instance of the Natural Type person within

the university compartment. After the first step, the new

student role is in unbound state. Afterwards, the person is

connected to this particular role, hence, the state switches to

unbound compartment. Finally, the student role is associated

to the university resulting in the bound (b) state.

Application Layer: The Application Layer distinguishes

between not existent (nex) and bound (b) roles, in which

it may be in an active or passive state. Again, not existent
refers to an unknown role from an application perspective.

Nevertheless, the role might be present in other layers. If a role

is known to an application, it is in state bound passive (bp)
or bound active (ba). The former is applied in case no action

is performed on the role, contrarily the latter one is applied

if an action is performed on this particular role. For instance,

the student role is present and signs up for an exam. While

signing up, the role is in bound active and switches back to

bound passive if this sign up process is completed and no

other actions are running on this role.

Persistence Layer: In general, this layer communicates with

the Runtime Environment and Application Layer. Usually, an

application triggers a storage or loading operation to the Per-

sistence Layer by providing role references. These references

are used to retrieve the corresponding roles from the runtime

environment. Afterwards, the runtime roles are transformed

into the database data model and query language statements

are generated. The Persistence Layer distinguishes between

not existent (nex) and bound (b) states only. As mentioned

before, unbound states of the Runtime Environment Layer are

not exposed to any other layer, hence, they cannot be repre-

sented in this layer. Additionally, the differentiation between

bound active and bound passive roles is not required, because

these states only depend on application internal method calls.

Furthermore, unfinished method calls can be rerun in case

of application failures and crashes. Thus, all roles will be

recovered in bound passive state and methods recalls set them

to bound active automatically. Imagine the exam sign up

application crashes while the student is currently signing up for

an exam. After recovery, the student role is in bound passive

state. If the student signs up again, the role will be set to

bound active automatically, until this process has finished.

Database Layer: The Database Layer communicates with

the Persistence Layer only, hence, it must represent any

additional states. Consequently, the Database Layer distin-

guishes between not existent (nex), if the role is unknown

and bound (b), if the role is known. Sub-states like unbound

are conceivable in a database system, especially if the storage

process requires multiple statements to create and connect the

role. Nevertheless, there exist query languages, like RSQL,

that capture special role semantics and enable role creation

and binding within a single statement [11]. Not existing refers

to an unknown role from the database perspective, hence, it is

a transient role that is only known to the Application Layer

and Runtime Environment Layer. In contrast, the bound state

describes a known role to the Database Layer. Imagine, a

person enrolls at the university and thus, gets a student role

attached. In case this information needs to be persistent, the

Database Layer directly reflects this information by processing

the statements generated by the Persistence Layer accordingly.
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Fig. 2. Global Role State Changes for Adding a Role to a Player

V. GLOBAL ROLE STATES

The previously discussed life cycle states of roles in the

respective software system layers do not exist in isolation, but

relate to each other in order to ensure a consistent behavior of

the overall software system. Therefore, we integrated the sep-

arately developed life cycle models of each system layer into

a global model that precisely describes the software system’s

role-based adaptation behavior. As a result, we get a set of

4-tuples ({{ba, bp, nex}×{b, ubc, ubp, ub, nex}×{b, nex}×
{b, nex}}) describing the state of a role on each respective

layer, e.g., the tuple {ba, b, nex, nex} describes a role that is

actively played by a player on the Application Layer (ba), is

hence bound (b) on the Runtime Environment Layer and not

persisted yet, thus, not existent (nex) on the Persistence and

Database Layer. Evidently, not all tuples generated through

mere combination of all possible states are valid, e.g., a role

cannot be actively played in the application while it is unbound

in the runtime environment. Figure 2 depicts the set of global

states after elimination of all invalid combinations.

In the remainder of the section we will outline three concrete

scenarios where the combined model prescribes life cycle

transitions of roles during the run time of the application.

First we address the addition of a new role to a player and

its subsequent storage into the system’s database. Secondly,

we will discuss the removal of a role from its bound player

including the deletion of the role from the Database Layer. In

general, the removal of a role can be considered the inverse

operation of the previously described add operation. Lastly,

we will consider the restoration of a role from the database.

Imagine the basic scenario in which a player is supposed

to start playing a new role. First of all, only the Application

Layer and the Runtime Environment Layer are concerned with

the procedure. The Runtime Environment Layer creates a new

instance of the role, which is now unbound on this layer and

not existent on the other layers, and binds it subsequently to

the player and a compartment that determines the context in

which the role is active. If the role is furthermore supposed

b
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Fig. 3. Global Role State Changes for Removing a Role from a Player

to be persistent, it receives a save command eventually that

is handled by the Runtime Environment Layer. The role is

written to the Persistence Layer that writes it through to the

Database Layer. Consequently, the role is now in a bound state

on each layer of the software system. The entire process is

displayed in Figure 2. Please note that the information whether

a role is actively played, i.e., whether its compartment is active

or not, is an information that is transparent for all layers below

the Application Layer since it is only required for the internal

method dispatch within the role-based application.

Similarly, the removal of a role from a player can be

described as the sequence of global role states indicated by

the numbered arcs: First, the role is in a bound state on each

layer – we assume the role to be persistent, too, otherwise

the process would stop after the removal of the role from the

Runtime Environment Layer – and has to be transitioned to a

bound and passive state on the Application Layer. This step is

necessary in order to make sure the role finished all internal

processes and stopped exchanging messages with other roles

and players. If the role was still active, the loss of data or

undesired system behavior would be the consequence. After

the role was passivated, it will be unbound from its player and

compartment entering the not existent state on the Application

Layer. As soon as the role is in the unbound state on the

Runtime Environment Layer, the role is removed from the

Persistence and Database Layer using a delete command on the

Persistence Layer. The sequence of visited global role states

for the removal is shown in Figure 3.

As a last example we discuss the restoration of roles from

the database. Assume the reference to a player has been nulled,

because the instance was no longer needed, which would

result in a role that is in the bound state on the Database

Layer, potentially on the Persistence Layer, but nowhere else.

Figure 4 displays the state changes of this scenario.

When a player is restored from the database, the required

role information is retrieved as well. The initialization process
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Fig. 4. Global Role State Changes for Loading a Role from the Database

of the role differs in this case from the first discussed scenario

in a way that the Persistence Layer is asked to retrieve the

information from the database. Consequently, the role joins

the Persistence Layer in the bound state as soon as it has

been loaded. The role instance is forwarded to the Runtime

Environment layer where the role enters the unbound state

immediately. Subsequently, the role is attached to its destined

player and compartment, thus, moving to the bound state in

the Runtime Environment Layer. Through the binding, the role

is furthermore visible as bound passive on the Application

Layer. The role’s compartment’s activity status decides if the

role directly transitions into an active state or remains passive

for the time being.

VI. DISCUSSION

Within this section we provide discussions on available

solutions and possible conceptual extensions. First, we will

focus the discussion on technical solutions currently available

and their limitations for each layer. Second, our architecture

model and possible additional layers is discussed. Finally, we

elaborate the impact of variation in the metamodel on the

concerned layers.

A. Technical Solutions

This section gives an overview on how to technically imple-

ment the aforementioned role states throughout the different

layers. The research field is highly fragmented and suffers

from continuous reinventions of the same concepts over and

over again [12], which leads to a missing common understand-

ing of roles and, ultimately, no common model applicable

the various approaches. Nevertheless, one can find certain

commonalities in the basic concepts among the competitive

approaches to achieve the implementation of our role states.

On the Application Layer, most of the languages are trans-

lations to Java (e.g., Chameleon [6], Rava [7], powerJava [1]

or JavaStage [3]) or JVM-Bytecode (e.g., OT/J [8]), but

without any actual representation of role (-binding) states.

Sadly speaking, often there is no compiler available for them

anymore or they are abandoned projects [20]. Others are

library approaches and actually usable. For a detailed compar-

ison please refer to [12]. Except the two library approaches

(ScalaRoles [17] and SCROLL [14]) none of them allows

to have unbound and/or compartment-less roles at any time.

Because ScalaRoles and SCROLL use simple classes, case

classes, and traits for implementing roles with Scala4 as host

language, they can be instantiated at any given point in time,

regardless whether or not there is a player or compartment

object available to bind them to. This violates the constraints

set up in CROM but gives more flexibility, e.g., when dealing

with legacy code or recovering from a failed system state.

To our knowledge, no role-aware runtime environment

for the Runtime Environment Layer is available yet. Certain

features for dynamic objects from VMs are promising (like

InvokeDynamic from the JVM [16]) for implementing roles

at this layer. Furthermore, with modular compiler systems like

LLVM5, one may add the required functionality without too

much effort. For future work, it is necessary to investigate if

the given features of those systems are sufficient to implement

roles and their states on top of them or if there are certain

requirements that impose new functionality at this layer.

From a Persistence Layer perspective there have been only

few investigations regarding the persistence of role-based run-

time objects. A Role Relational Mapping approach is presented

in [5] enabling role-based programming languages like OT/J

to automatically persist runtime objects in a relational DBMS.

Within this approach, the role semantics will be discarded

during the mapping process onto relational tables. However,

the local states identified for this layer (not existent and bound)

can be applied to the Role Relational Mapping approach. The

DOOR concept presented in [21] combines the Persistence and

Database Layer within a single one. It has been designed as

an object database featuring roles for persistence purposes.

Unfortunately, there is neither a query language nor result

representation available, hence, objects can be stored and

retrieved only without capabilities of external views on the

data stored in a DOOR-DBMS.

Database systems are often neglected as integral part of

software systems, which is feasible in a single-application sce-

nario, but for multi-application scenarios the Database Layers

acts as single point of truth for various applications. Thus, role

semantics need to be represented in this layer, too. As men-

tioned previously, DOOR is a database system featuring roles,

but lacks a well-defined external interface. Another approach

is RSQL [10], [9], [11], a role-based contextual database

system based on the CROM metamodel. RSQL provides role

semantics including the notion of compartments for both the

query language and the result representation. Thus, role-based

consistency is ensured by RSQL and the identified local

role states are natively supported, which directly facilitates

4See: http://www.scala-lang.org/
5See: http://llvm.org/
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RSQL to be used with our global state manager. Consequently,

mapping roles and compartments in the Persistence Layer

becomes obsolete.

B. Architecture Model

Multilayered and n-tier architectures are a common princi-

ple to separate different concerns and to increase reusability

and maintainability of the system. The 3-tier architecture

consisting of (i) a presentation tier, which is the top-most

tier of the application and usually provides the user with an

interface through which the application can be accessed, (ii)

a logic tier that provides the business logic of the application,

processes commands or makes logical decisions and (iii) a

data tier that stores and retrieves non-volatile data of the

application is a typical representative of such architectures.

If the second tier is tiered itself, the resulting architecture is

called an n-tier architecture.

Although no dedicated role runtime is existing at the

moment, we decided to introduce the Runtime Environment
Layer as distinct tier in the application. A great majority

of the previously discussed technical solutions that introduce

roles to the Application Layer can be considered a framework
solution, i.e., albeit providing abstractions for application

developers typical tasks of runtimes, e.g., method resolution

and dispatch, are provided, too. Consequently, it is safe to state

that these solutions are bridging the role concept to already

existing runtime environments, e.g., the Java Virtual Machine

(JVM). Applications often intend to store data and persist

runtime objects. Role-based applications are no exception,

hence, the Persistence and Database Layer are also present

in our discussed architectural approach. Especially the idea to

follow the role concept through the entire application stack

to investigate the implications on each respective layer was a

main driver to incorporate these two layers.

As we have seen, roles exist in several layers of the

application sharing a common identity to relate instances of

a role through all layers of the application. A single role

instance, however, has no knowledge of its state within this

layer and is entirely oblivious to its representation on other

layers. Consequently, a role cannot maintain its global state in

the system itself. The global state of a role is a rather cross-

cutting concern, cf. Figure 5, where each layer can potentially

influence the role’s state independently of all other layers that

could potentially result in invalid configurations. To tackle

the issue, we introduced the Global State Manager to the

architecture of the role-based system, which is responsible for

maintaining the global state of a role. Complex and cross-

cutting tasks, e.g., restore a role from database, are supervised

by the Global State Manager to ensure that (1) no invalid

global state is reached and (2) only valid transitions of global

role states are conducted within and across single layers.

C. Metamodel Variations

The Compartment Role Object Model (CROM) we assume

as metamodel for the layers has strict constraints for valid

instances [13]. Thus, no layer, except for the Runtime En-

vironment Layer, allows for an unbound state, otherwise, a

consistent and coherent role life cycle along the layers is

not possible. Consequently, relaxing the metamodel in some

constraints would enable more role states that help to handle

and describe special situations more precisely. For instance,

imagine a president role in a club when the person suddenly

dies. In CROM the president role has to die as well, but

for legal reasons there must be a president at any point in

time. Thus, modelers and software engineers need to introduce

workarounds when using the current CROM specifications.

But, allowing an unbound state as valid situation in the

metamodel would raise consequences for all layers. On the

one hand, the Application Layer needs an additional register

and bookkeeping for unbound roles. On the other hand, extra

runtime methods are required to dispatch method calls on

bound roles only.

In terms of the Database Layer a constraint relaxation would

impact the query language as well as the result representation.

In our scenario users and the Persistence Layer have to be

able to query for unbound roles in particular. Adding unbound

roles extends the query language by an extra dimension,

resulting in more complex queries. In current role-based query

languages, like RSQL [11], there is only the bound state,

whereas roles in unbound state would need to be marked

separately. Furthermore, result representation would become

more complex, because unbound roles can neither be accessed

by a player nor by a compartment.

A second variation of the metamodel is allowing deep roles,

i.e., a role can play other roles. For example, a person who

is a student at a university becomes a student assistant, too.

The student assistant role obviously depends on the student

role, hence, the person plays a student role and this particular

role plays the student assistant role. This variance would lead

to marginal changes on the Application Layer, Persistence

Layer, and Database Layer, where only the relation between a

player and the played role needs to be extended. The Runtime

Environment Layer would need to additionally ensure a rigid
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type (see Section II) in the role object’s transitive closure.

However, the states of a role remain the same on each layer

and in the Global State Manager.

In sum, metamodel variations may affect all corresponding

layers of the architecture independent of the particular vari-

ance. As shown in the first variation, small changes like an un-

bound state on the Application Layer lead to dramatic changes

on the layers underneath. However, to enable a coherent global

role state model the Application Layer, Persistence Layer, and

Database Layer always have to share a common role notion.

VII. CONCLUSIONS

Software developers use the role-based software develop-

ment to implement adaptive and flexible applications. How-

ever, the role-based concept is no longer limited to the ap-

plication layer. We see upcoming role-based systems at many

levels of the software stack, like runtime environments and

databases. Each system itself works on one particular layer of

the software stack and maps to existing technologies at the

borders of its specific layer.

So far, the role-based layers of a software system were

considered in isolation, each maintaining its own states for

runtime objects. The valuable role-based abstraction is thereby

lost immediately. This poses several problems like inconsistent

representations on each layer, when the system needs to

be self-aware and adapt to new situations and environments

autonomously. In this paper, we proposed a runtime model for

a Global State Manager component that ensures a coherent

object representation along the software stack. At first, we

identified several local role states on each considered layer.

This foundation has been utilized to describe valid global

states, which are a subset of all local role state combinations.

Finally, we discussed currently available technical solutions

for each layer and variations from a software system’s meta-

model and architecture perspective.

The argumentation throughout this paper is focused on the

role concept, however, our global crosscutting state manage-

ment approach is applicable to various domains and modeling

paradigms. For example, aspect-oriented, context-oriented, and

component-based software systems would benefit from our

approach by maintaining the specific states globally.

In sum, the proposed runtime model in combination with

the Global State Manager helps to realize adaptivity and

self-awareness for role-based software systems in general.

Developers can holistically model the system, as the role-

based concepts are established at all layers and interactions

are clearly defined. This greatly increases robustness as well

as maintainability and paves the way for role-based software

systems.
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