Dieses Dokument ist eine Zweitveroffentlichung (Postprint Version) /

This is a self-archiving document (accepted version):

Kai Herrmann, Hannes Voigt, Thorsten Seyschab, Wolfgang Lehner

InVerDa - co-existing schema versions made foolproof
Erstverdffentlichung in / First published in:

International Conference on Data Engineering. Helsinki, 16. - 20.05.2016. IEEE Xplore, S.
1362 - 1365. ISBN 978-1-5090-2020-1.

DOI: https://doi.org/10.1109/ICDE.2016.7498345

Diese Version ist verfiigbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-752855

TECHNISCHE
Wl SLUB UNIVERSITAT OucosA

Wir fiihren Wissen. DRESDEN Quality Content of Saxony

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-752855
https://doi.org/10.1109/ICDE.2016.7498345

Final edited form was published in "International Conference on Data Engineering. Helsinki 2016", S. 1362 - 1365. ISBN: 978-1-5090-2020-1
https://doi.org/10.1109/ICDE.2016.7498345

InVerDa — Co-existing Schema Versions Made
Foolproof

Kai Herrmann, Hannes Voigt, Thorsten Seyschab and Wolfgang Lehner
Database Technology Group
Technische Universitit Dresden, Germany
Email: <firstname>.<lastname> @tu-dresden.de

Abstract—In modern software landscapes multiple applica-
tions usually share one database as their single point of truth.
All these applications will evolve over time by their very nature.
Often former versions need to stay available, so database devel-
opers find themselves maintaining co-existing schema version of
multiple applications in multiple versions. This is highly error-
prone and accounts for significant costs in software projects, as
developers realize the translation of data accesses between schema
versions with hand-written delta code. In this demo, we showcase
INVERDA, a tool for integrated, robust, and easy to use database
versioning. We rethink the way of specifying the evolution to
new schema versions. Using the richer semantics of a descriptive
database evolution language, we generate all required artifacts
automatically and make database versioning foolproof.

I. INTRODUCTION

Relational database management systems (DBMS) lack
proper support for co-existing schema versions within the
same database. With today’s realities in information system
development and deployment — namely agile development meth-
ods, short release cycles, customization, stepwise deployment
and migration, large numbers of independent stakeholders,
varying update adoption time, etc. — such support becomes
increasingly desirable. Code versioning in GIT or SVN and
build systems such as Maven make it fairly easy to maintain
multiple versions of the same application and deploy and run
various application versions concurrently. The same is hard for
a database, though. Current DBMSs force developers to migrate
a database completely in one haul to a new schema version.
Keeping other schema versions alive before and after such a
migration typically requires manually written and maintained
delta code either in the database (views and triggers) or in the
application. This makes the handling of co-existing schema
versions very costly and error-prone. Valuable tools, such as
Liquibase', help to manage schema versions outside the DBMS.
The remarkable and inspiring research work PRIMA[1] adds
delayed propagation of data from an old to a newer version,
which enables forward propagation of updates and backward
propagation of reads. However, to our best knowledge, there
is no full-fledged support for co-existing schema versions,
including the propagation of data from new schema versions
back to older ones for both data accesses and migrations. In
consequence developers at the database end see themselves
forced into acting against their realities — forced into less
agile development, longer release cycle, more risky big-bang
migration, etc. — to organize co-existing schema versions and
reduce the overhead and bug potential attached to them.

Thttp://www.liquibase.org/

Database versioning provides a solution out of that dilemma.
With database versioning, the DBMS allows a single database
to have multiple co-existing schema versions. Developers can
evolve an existing database schema to add a new schema version
to the database. The DBMS makes the database available
through all co-existing schema versions. Data can be read and
written through all schema versions; writes in one version
are reflected in all other versions. On the administration
end, the database administrator can easily configure in which
schema version the data is primarily materialized. The DBMS
transparently decouples the logical availability of a schema
version from the physical migration of the data without the
need of any handwritten delta code.

In this demo, we present INVERDA. INVERDA adds
database versioning functionality to a DBMS. To specify the
evolution from one schema version to another, INVERDA
provides a declarative Database Evolution Language (DEL)
called INDEL. INDEL is very similar to established DELs [2],
[3], with the distinction that its Schema Modification Operators
(SMOs) are specifically designed to be invertible. Based on
an INDEL-specified schema evolution, INVERDA is able to
generate all required delta code in the DBMS — particularly
views and triggers — to make the database instantly available
through the new schema version. INVERDA also offers a
foolproof migration statement that allows changing the actual
materialization of the data to another schema version without
a single line of SQL. Upon such a migration statement,
INVERDA migrates the data and regenerates all necessary
delta code to reflect the new materialization and keep all
existing schema versions fully available. INVERDA decouples
the logical schema versions from the physical materializing
schema, and hence allows to freely adapt the materialization
to the workload. The contributions of INVERDA are

Invertible database evolution language INDEL is an evolu-
tion language with invertible SMOs. INDEL SMOs allow
establishing bi-directional translations between schema
versions, which is the basis for database versioning.

Co-existing schema versions INVERDA automatically gener-
ates delta code to continuously support read and write
operations on all co-existing schema versions. All schema
versions provide an individual view on the same shared
dataset.

Foolproof migration INVERDA makes manual migrations
obsolete by generating migration scripts from INDEL
scripts and executing them on the database. The generated
migration scripts include the physical data movement as
well as the adaptation of all involved delta code.

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "International Conference on Data Engineering. Helsinki 2016", S. 1362 - 1365. ISBN: 978-1-5090-2020-1
https://doi.org/10.1109/ICDE.2016.7498345

The aim of this demo is to showcase the benefits and
convenience of database versioning with INVERDA, i.e., of
the proper support for co-existing schema versions within the
same database. During the demo, participants can practically
experience INDEL by writing own evolution declarations and
creating new schema versions with the comfortable INVERDA
CONSOLE. The INVERDA EXPLORER allows the participants
to easily inspect the different schema versions existing for a
database. Finally, participants can trigger migration statements
to directly experience the simplicity of physical data migration
with INVERDA as well as how migration is transparently
decoupled from the availability of schema versions.

In the remainder of the demo proposal we introduce IN-
VERDA using a comprehensible example (Section II), elaborate
on chosen technical aspects (Section III), and outline demo
details (Section IV).

II. INVERDA — USER PERSPECTIVE

In the following, we take the perspective of a database
developer. Let us assume we are the developer of a simple
task management system called TasKy, which users can install
on their desktops and which is backed by a central database.
TasKy allows users to create new tasks, list, update, and delete
them. Each task has an author and a priority ranging from 1 to
3 with 1 being most urgent. The first release TasKy stores all
its data in a single table Task (author, task,prio). TasKy has
productive go-live and users begin to feed the database with
their tasks as shown in Figure 1.

A. Creating New Schema Versions

TasKy gets widely accepted and after some weeks we collect
some user feedback to discover that users like to have their
most urgent tasks listed on their phone. To quickly respond to
this demand we incorporate a third party phone app called Do!.
However Do! expects a different database schema than TasKy is
using. The Do! schema consists of a table Todos (author, task)
containing only tasks of priority 1. Obviously, the initial schema
version needs to stay alive for TasKy, which is broadly installed.
Traditionally, we would use a view to create an external schema
fitting Do!. Since views are not necessarily updatable this likely
also includes writing triggers for the propagation of writes
in Do! back to what TasKy sees in the database. INVERDA
greatly simplifies this process and handles all the necessary
delta code for us. We merely have to execute the following
INDEL evolution script with INVERDA to create the new
schema version called Do!:

EVOLUTION START FROM 'TasKy';

PARTITION TABLE Task INTO Todos WITH prio=l;
DROP COLUMN prio FROM Todos DEFAULT 1;
EVOLUTION COMMIT AS 'Do!';

The script instructs INVERDA to derive schema Do! from
schema 7asKy by creating a horizontal partition of Task with
prio=1 and dropping the priority column. Executing the script,
immediately creates a new schema including the view Todos
as well as triggers for write propagation. When a user inserts
a new todo to the Todos view, the triggers will automatically
insert an corresponding task with priority 1 to Task in TasKy
instead. Equally, updates and deletes are propagated back to the

Write paper

Organize party 3
: Clean room

Learn for exam 2
BAnn Write paper 1
Cleanroom 1 :

. TasKy2
| Task
@ | task | prio author | !
Organize party 3 Author :
| FA Learn for exam 2 [| hame |

5
6
: HWrite paper 1 5
nCIean room 1 6

Fig. 1. Exemplary database evolution.

TasKy schema. Hence, the TasKy data is immediately available
to be read and written through the newly incorporated Do! app
by simply executing the above INDEL evolution script. At this
point INVERDA has already simplified our job significantly.

We continue to improve and extend 7asKy to make it a
more useful tool for its users. While adding functionality, we
also refactor the code every now and then. For the next release
TasKy2, we decide to normalize the table Task into Task and
Author. Since we plan a stepwise roll-out of 7asKy2, the old
schema of TasKy has to remain alive until all clients have been
updated. Again, we use INVERDA to simplify the task. With
the INDEL evolution script

EVOLUTION START FROM 'TasKy';

DECOMPOSE TABLE Task INTO Task (task,prio)
AND Author (author)
ON FK author;

RENAME COLUMN author IN Author TO name;

EVOLUTION COMMIT AS 'TasKy2';

INVERDA creates the schema version TasKy2 and decomposes
the table Task to separate the tasks from their authors, as shown
in Figure 1. INVERDA supports three kinds of decomposition.
It can eliminate duplicates in both resulting tables, only in the
second table, or in neither of them, which fits a many-to-many,
one-to-many, and one-to-one relationship, respectively. In case
of TasKy2, we decide for the second option, which is denoted in
INDEL by on Fk rk, where rx names the foreign key column
in the first table. Additionally, we state in the evolution script
that column author, which contains the author’s name after
the decomposition should be renamed to name. Based on the
script, INVERDA generates delta code (views and triggers)
for Task and Author to make the TasKy2 schema immediately
available. The delta code ensures that all write operations to
any of the three schema versions are propagated to all other
schema versions. Assume user Ann has already upgraded to
TasKy2 and changes the priority of Organize party to 1, then
this task will immediately occur in the Do/ app on her phone.
After the party, Ann deletes this todo using Do/, which also
removes this task from the other schema versions.

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "International Conference on Data Engineering. Helsinki 2016", S. 1362 - 1365. ISBN: 978-1-5090-2020-1
https://doi.org/10.1109/ICDE.2016.7498345

e CREATE TABLE R(ci,...,Cn)

e DROP TABLE R

e RENAME TABLE R INTO R’

e RENAME COLUMN c IN R; TO ¢

e ADD COLUMN ¢ AS f(ci,...,cn) INTO R;
¢ DROP COLUMN ¢ FROM R; DEFAULT f (ci,...,Cn)
e DECOMPOSE TABLE R
INTO S (S1,...,8n)
[, T(t1,...,tm) ON (PK|FK fk|cond)]

e [OUTER] JOIN TABLE R, S INTO T cond
e PARTITION TABLE R INTO S WITH condg
[, T WITH condr]
e MERGE TABLE R (condgr), S (condg) INTO T

Fig. 2. INDEL Syntax.

B. Migrating Data

The initial materializing schema of the stored data is
determined by the initial schema. All other schema versions
are implemented with the help of delta code. However, the
initial schema is likely not the optimal internal structure. The
delta code introduces an overhead on read and write accesses
to new schema versions. The more SMOs are between schema
versions, the more delta code is involved, the higher is the
overhead.

In case of our task management system, the schema versions
TasKy2 and Do! have delta code towards the initial schema
version TasKy. Assume, some weeks after releasing TasKy2 the
majority of the users have upgraded to the new version. TasKy2
comes with its own phone app, so that the schema TasKy and
Do! are still accessed but merely by a minority of users. Hence,
it seems appropriate to migrate data physically to the TasKy2
schema, now.

Traditionally, we would have to write a migration script,
which moves data, and implements new delta code. All that
would accumulate to some hundred lines of code, which we
would have to test intensively to prevent from messing up our
data. With INVERDA, we achieve the same blindfold with the
one-liner:

MATERIALIZATION 'TasKy2';

Upon this statement, INVERDA transparently runs the phys-
ical data migration to schema 7TasKy2, maintaining the well-
established transaction guarantees, and updates the involved
delta code of all schema versions. We do not need to perform
any further manual adjustments. All schema versions stay
available; read and write operations are merely propagated
to a different materializing schema, now.

III. INVERDA — SYSTEM PERSPECTIVE

With INVERDA developers specify the evolution from one
schema version to another with a DEL. Existing DELs describe
the forward evolution from schema version n to schema version
n + 1. Database versioning with co-existing schemas also
requires backward evolution to propagate data manipulations
from the schema version n + 1 back to schema version n.

INVERDA’s INDEL combines standard SMOs for forward
evolution with strategies to fill missing information and resolve

ambiguity occurring in backward evolution. INDEL builds
on CODEL [3], a relationally complete database evolution
language with precisely defined syntax and semantics. Because
of its completeness property, CODEL basically has for every
SMO another SMO that achieves the opposite kind of evolution.
To account for backward evolution, INDEL essentially adds to
each SMO the arguments of its opposite SMO. This provides
INVERDA the required information to propagate data forward
as well as backward.

As a simple example, consider dropping a column ¢ from
source schema version .S to derive the target schema version 7.
In case the user inserts data in the new schema version 7', the
delta code for backward propagation to .S has to provide a value
for missing column c. The opposite add-column SMO provides
a value for the new column during forward propagation based
on a value generator function given by the user. Accordingly,
INDEL’s drop-column SMO also features a user-given value
generator function to enable backward propagation. Figure 2
summarizes the INDEL SMOs. As can be seen, INDEL is of
similar complexity and hence similar usability as established
DELs.

However, guaranteeing correct forward and backward prop-
agation from one version to another is not trivial. Since many
SMOs are not information-preserving, INVERDA manages
additional auxiliary tables. For instance, when adding a column,
INVERDA stores the data of this column in an auxiliary table
next to the original table until this new schema version is
materialized.

INVERDA defines each SMO in two templates of Datalog
rules for the forward propagation S — T (read: getp / write:
putg) and for the backward propagation S <— T (read: getg /
write: putr), respectively. As example, say we evolve schema S
to T by dropping column c¢ from table R with the primary key
p and the remaining columns A. Let R’ be the resulting table
in the target schema 7. The auxiliary table C' stores the data
of the dropped column ¢ and relates it to the remaining data
with the primary key p. The corresponding Datalog templates
are:

getr/puts 1 R'(p,A) « R(p, A,)
C(p,c) < R(p,_,¢)
getS/pUtT : (va C) «— Rl(p7) C(pv C)

(vaa C) — R/(pv A)7 _'O(p7—)7 c= f(A)

An INDEL SMO is correct if sequential evaluation of the
Datalog rules keeps any initial payload data unchanged. In other
words, after a propagation round trip from schema version S
to 71" and back to S (and also from 7" to S and back to T'), the
initial payload data is still correct and complete. Formally, for
every INDEL SMO the two following conditions hold:

Data = gets(puts(Data))
Data = getp(putp(Data))

To execute an SMO, INVERDA instantiates the correspond-
ing Datalog templates based on the arguments provided by
the user. From the instantiated rules INVERDA generates the
necessary delta code — views for reads (getx) and triggers
for writes (putx). Migration scripts are generated in similar
manner.

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "International Conference on Data Engineering. Helsinki 2016", S. 1362 - 1365. ISBN: 978-1-5090-2020-1
https://doi.org/10.1109/ICDE.2016.7498345

INVERDA CONSOLE INVERDA EXPLORER

Evolution 3,
~,
N,
E

Migration t*

Version Tree

Read & Write

|Generator

Fig. 3. INVERDA tooling.

File Edit Source Refactor Navigate Search Project Run Window Help
i NBrO-QR-rHFC SO Y =

>t S v v Quick Access & ||§Java |

1% Package Explorer i = Demo_Evolutiondvl 2 =g
=2%| A4 1 CONNECT TO inverda USER "postgres" USING "pw";
4 & InVerDa_Sample 2
4 & sample 3 EVOLUTION START FROM tasKy;
PARTITION TABLE task INTO todo WITH "prio=1";
= Demo_Clean.dvl

- 5 DROP COLUMN prio FROM todc DEFAULT "1";
2 L Bl el ¢ EVOLUTION COMMIT AS dox;

£ Demo_Initial.dvl 7
Demo_Materialize.dvl § EVOLUTION INFO PREPARE;
5 Console.launch ¢ CONNECT RESET;

s

S InVerDajar

Fig. 4. INVERDA CONSOLE with INDEL editor evolving 7asKy to Do!.

IV. DEMONSTRATION

For the sake of demonstration INVERDA consist of two
parts as illustrated in Figure 3. The first part, the INVERDA
CONSOLE allows to execute INDEL evolution scripts and
migration statements; it is where the INVERDA functionality is
implemented. The screenshot in Figure 4 shows the INVERDA
CoNSOLE with the INDEL script for the evolution from TasKy
to Do!. When executing such a script, INVERDA creates the
respective schema within a given database. Applications can
now access the schema by standard database connectivity
without INVERDA in the loop.

The second part, the INVERDA EXPLORER conveniently
allows browsing all schema versions existing in a database. To
demonstrate the effect of the INVERDA-generated delta code,
the INVERDA EXPLORER offers the possibility to manipulate
data in any of the schema versions and observe the effect on
the data in the other schema versions. Figure 5 shows the
INVERDA EXPLORER with the schema versions 7asKy and
Do! and the insertion of new data in Do!.

During the demo, we will have a prepared example database
with schema evolutions. For example, we will execute INDEL
evolution scripts with the INVERDA CONSOLE and demonstrate
the genuinely co-existing schema versions by manipulating data
with the INVERDA EXPLORER. However, the demo is by no
means limited to the prepared example. INVERDA is a working
system and we encourage participants to try it interactively.
Participants can experience both the developer perspective by
writing own INDEL evolution scripts and issuing migration
statements, as well as the user perspective by probing the delta
code generated by INVERDA with own data manipulations. The
INVERDA CONSOLE and INVERDA EXPLORER have simple
GUIs to be mastered in a minute by every participant.

The aim of the demo is twofold. First, we want to show the
benefits of proper support for co-existing schema versions as
provided by INVERDA. Specifically, participants can experience
the simplicity and power of INDEL and INVERDA. First
and foremost, however, participants can feel the freedom that
transparent decoupling of the logical availability of a schema

(' @ localhost/index.php?m=schema&u
= ¥ INVERDA
. r EXPLORER
Evolutions: (sclecr) (deselect) @ & tasky (o:1)
v task
dg,x {m} # task
[] tasky2 {m} tid | task author | prio
InVerDaExplorer v1.0 | Impressu 1 Go shopping Ann 3 i
2 | Write paper Ann il W
3 |Learn for exam | Ben 2 W
4 |Clean room Ben 1 @&
@ & dox (mb:2)
=+ todo
tid | task author
2 | Write paper Ann &
4 |Clean room Ben ol
Organize party| Ann 'ﬁ
Fig. 5. INVERDA EXPLORER with TusKy and Do!.

version from the physical migration of the data brings to data
management.

Second, we want to stimulate discussions. Particularly, we
like to discuss with practitioners about use cases of schema
versioning, practical applicability, missing aspects, etc.. With
researchers we are happy to exchange views on technical details
of the solution as well as future research questions. On a
more general level, we hope to promote our idea of a more
comprehensive DBMS support for schema evolution and co-
existing schema versions.

INVERDA is a first step towards such a comprehensive
support for co-existing schema versions. With INVERDA
multiple applications in multiple versions can share one
database as a single point of truth, each having an individual
view on the data. Traditional management of multiple schema
versions requires the costly implementation and maintenance
of delta code and migration scripts. We show with INDEL
that it is possible to use the semantics of a data evolution
language to (1) generate delta code and migration scripts and
(2) transparently decouple the logical availability of a schema
version from the physical migration of the data.

ACKNOWLEDGMENT

This work is funded by the German Research Foundation
(DFG) within the Research Training Group RoSI (GRK 1907).

REFERENCES

[1] H. J. Moon, C. Curino, M. Ham, and C. Zaniolo, “PRIMA - archiving
and querying historical data with evolving schemas,” in SIGMOD
Conference, Providence, USA. ACM Press, 2009, pp. 1019-1022.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1559845.1559970

[2] C. Curino, H. J. Moon, A. Deutsch, and C. Zaniolo, “Automating the
database schema evolution process,” VLDB Journal, vol. 22, no. 1,
pp. 73-98, 2013. [Online]. Available: http://link.springer.com/10.1007/
s00778-012-0302-x

[3] K. Herrmann, H. Voigt, A. Behrend, and W. Lehner, “CoDEL
- A Relationally Complete Language for Database Evolution,” in
ADBIS 2015, Poitiers, France, ser. Lecture Notes in Computer
Science, vol. 9282. Springer, 2015, pp. 63-76. [Online]. Available:
http://dx.doi.org/10.1007/978-3-319-23135-8_5

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

	InVerDa_Vorsatz.pdf
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint Version) /
	This is a self-archiving document (accepted version):
	Kai Herrmann, Hannes Voigt, Thorsten Seyschab, Wolfgang Lehner

