View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Technische Universitat Dresden: Qucosa

Dieses Dokument ist eine Zweitveroffentlichung (Postprint Version) /

This is a self-archiving document (accepted version):

Martin Weillbach, Nguonly Taing, Markus Wutzler, Thomas Springer, Alexander Schill,
Siobhan Clarke

Decentralized coordination of dynamic software updatesin the
Internet of Things

Erstverdffentlichung in / First published in:

IEEE World Forum on Internet of Things (WF-IoT). Reston, 12. - 14.12.2016. IEEE Xplore, S.
171 - 176. ISBN 978-1-5090-4130-5.

DOI: https://doi.org/10.1109/WF-10T.2016.7845450

Diese Version ist verfiigbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-752826

W SLUB M @Oucos

Wir fiihren Wissen. DRESDEN Qualtty Content of Saxony

https://core.ac.uk/display/478591643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-752826
https://doi.org/10.1109/WF-IoT.2016.7845450

Final edited form was published in "IEEE World Forum on Internet of Things (WF-loT). Reston 2016", S. 171 - 176. ISBN: 978-1-5090-4130-5
https://doi.org/10.1109/WF-loT.2016.7845450

Decentralized Coordination of Dynamic Software
Updates in the Internet of Things

Martin WeiBbach*, Nguonly Taing*, Markus Wutzler*, Thomas Springer*, Alexander Schill* and Siobhdn Clarke™
*Computer Networks Group, Technische Universitidt Dresden, Dresden, Germany
*Future Cities Centre, Trinity College Dublin, Dublin, Ireland
{martin.weissbach1,nguonly.taing,markus.wutzler,thomas.springer,alexander.schill } @tu-dresden.de, siobhan.clarke @scss.tcd.ie

Abstract—Large scale IoT service deployments run on a high
number of distributed, interconnected computing nodes compris-
ing sensors, actuators, gateways and cloud infrastructure. Since
IoT is a fast growing, dynamic domain, the implementation of
software components are subject to frequent changes addressing
bug fixes, quality insurance or changed requirements. To ensure
the continuous monitoring and control of processes, software
updates have to be conducted while the nodes are operating
without losing any sensed data or actuator instructions. Current
IoT solutions usually support the centralized management and
automated deployment of updates but are restricted to broadcast-
ing the updates and local update processes at all nodes. In this
paper we propose an update mechanism for IoT deployments that
considers dependencies between services across multiple nodes
involved in a common service and supports a coordinated update
of component instances on distributed nodes. We rely on LyRT on
all IoT nodes as the runtime supporting local disruption-minimal
software updates. Our proposed middleware layer coordinates
updates on a set of distributed nodes. We evaluated our approach
using a demand response scenario from the smart grid domain.

Keywords-Coordinated dynamic update; decentralized middle-
ware; unanticipated adaptation; dynamic instance binding;

I. INTRODUCTION

The interconnection of things via the Internet as envisioned
by the Internet of Things (IoT) is a key technology for
a multitude of new application areas as autonomous vehi-
cles, factory automation, smart grid or smart home. Since
IoT is a fast growing and dynamically developing domain,
software changes to address bugs, quality issues or changed
requirements occur frequently. An efficient mechanism for the
distribution and installation of updates is therefore required.

Due to the vast number of devices involved in large setups
and their widespread spacial distribution, IoT systems enter a
new order of magnitude in terms of scale and heterogeneity.
This requires an automated distribution and update process.
In addition, all nodes should be continuously in operation
to ensure that no sensed data or actuator instruction gets
lost. Therefore, the update mechanism should be disruption-
minimal ensuring minimized stop time and zero data loss.
Finally, software running on a set of distributed IoT nodes
might be interdependent. A coordination of updates on all of
these nodes is thus required to ensure that the IoT system is
always in a consistent configuration.

Consider, for instance, a service for demand response that
is running in the cloud. It is connected to IoT Gateways
of houses to monitor energy production and consumption in
these houses. We foresee a communication component on each
node that is responsible for sending and receiving sensed data
and device commands (see Figure 1). Assuming that the data
is transferred unencrypted, the communication component on
each node has to be updated to support confidentiality of data.

Updating the communication components on the distributed
nodes completely independent from each other could lead to
a temporarily inconsistent system configuration. In the case
the encryption could be activated at the sender side first (e.g.,
an IoT Gateway), all messages sent by that communication
component are encrypted from that point in time. Depending
on the time difference between the update on the [oT Gateway
and the cloud server, a number of encrypted messages arrives
at the cloud server but cannot be processed since the server can
only handle plain messages, which results in the loss of the
transmitted data. If the demand response service updates first,
information will also be lost since the data is still transmitted
unencrypted while the service expects data to be encrypted.

Existing dynamic software update approaches still require
human interaction and cannot be realized completely auto-
mated [1], especially not in distributed infrastructures in which
applications deployed to several devices have to be updated.
Performing updates on a distributed application resembles the
(self-)adaptation of distributed software systems in which com-
ponents or services might be added, removed, exchanged or
migrated dynamically at run time. However, these approaches
require application-specific knowledge on the communication
patterns of the adaptable software system [2], [3], [4], which
we consider impracticable for a general approach for dynamic
software updates in distributed environments.

In this paper we propose an update mechanism for IoT
systems that coordinates the update of multiple distributed
nodes involved in a running service. Our solution consists
of two parts. First, a mechanism for consistent unanticipated
adaptation ensures disruption-minimal and safe updates on
local nodes. It is based on the principle of dynamic instance
binding as introduced in our previous work [5], [6]. The
mechanism is implemented by LyRT, the runtime we assume
to be installed on all IoT nodes. Second, a decentralized

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE World Forum on Internet of Things (WF-loT). Reston 2016", S. 171 - 176. ISBN: 978-1-5090-4130-5
https://doi.org/10.1109/WF-loT.2016.7845450

middleware layer coordinates software updates on distributed
nodes transactionally to ensure a consistent transition of the
application throughout the update process. We evaluated our
approach by implementing the demand response scenario
introduced above. We demonstrate the support of zero data
loss and measure the interrupt time in a setup with four nodes.

II. COORDINATED DYNAMIC SOFTWARE UPDATES

Our introductory example illustrated the need for a simul-
taneous update of software running on a set of distributed
IoT nodes to prevent mismatching communication due to
the added encryption functionality. Such an update requires
a reliable mechanism for local updates on the one hand
and a means for coordinating a number of local updates on
distributed nodes on the other hand. In this section we present
our solution for coordinated dynamic software updates that
consists of three parts. The first part is an architecture for
handling software updates in distributed IoT infrastructures.
The architecture incorporates the mechanism for local updates
and a middleware for the coordination of updates on multiple
nodes as parts two and three of our solution, respectively.

We assume our approach to be implemented on more
computationally powerful IoT devices, e.g., IoT Connectors
or Cloud Platforms, that are capable of hosting applications
that can contribute different services to the system. Devices
characterized by strict resource constraints, e.g., sensor nodes
or certain mobile devices, might not be able to provide
the required computational power to cater neither role-based
IoT applications nor our proposed update mechanism, but
may rely on specialized solutions for such resource-constraint
devices. Data providers, such as the Wind Turbine or the
Photovoltaic system (PS) in our introductory example, can be
considered such resource-constraint devices that would require
specifically tailored update mechanisms. We further assume
all involved nodes to belong to a single management domain,
which could be, for instance, a vendor specific IoT ecosystem,
e.g., Google Nest! or Samsung ARTIK?.

A. Architecture

Our approach follows a three-layer architecture as depicted
in Fig. 1. It is closely related to the feedback loop presented by
Oreizy et al. [7], which is split into the Adaptation Manage-
ment sub-loop responsible for calculating all necessary steps
to change the software system and the Evolution Management
sub-loop that ensures a consistent modification of the system.

The uppermost layer in our architecture consists of the
Update Initiator and the Repository and can be mapped to
the Adaptation Management control loop by Oreizy et al [7].
The Repository serves as a globally available hub to distribute
available updates within the system. The Update Initiator is
assumed to maintain knowledge on the distributed service
deployment and triggers the system to update by calculating an
Update Prescription which contains a set of update operations
that prescribe the parts of the system to be updated.

Thttps://nest.com
Zhttp://developer.samsung.com/artik

| Update Initiator | Repository |

m Updale Prescrption

(B)Update - m oo e ,
Retrieval aleessssnnsssnsesnnssnnessnnennns .1

Local Update Manager

e e e A distribute (2) PP P VUR VUV U, i
4) Update nterface and | (4) Update Interface '
1

coordinate (4)

LyRT

'
1
-—>F |
I
I

' H B et

Communicator |t remote ! Communicator !odoT !

ommunicatol communication’ ommunicatol .Gateway:

1

.......

LyRT \ loT

update presc.

|Demand / Response Servlce i

.......

/

1 '
|

I ' '
S \Encrypt\on J : \ Encrypllon / :
— - 1 '
loT Gateway 1 1

DA ... Device Adapter | PP ... Pre-Processor | PS ... Photovoltaic System

Figure 1.
IoT infrastructure

Architecture to enable dynamic software updates in an exemplary

The set of Local Update Managers in the system represents
the second layer in our architecture: the Coordination Mid-
dleware Layer. The subset of update managers collaborate to
coordinate their respective local updates in order to ensure a
consistent update of the system. A consistent update is coined
by either performing all updates specified in the issued update
prescription successfully or none at all.

The lowest layer in our architecture is the Application
Layer which represents the actual application the user is
interacting with. This layer hosts an updatable application that
is implemented using LyRT3 [5], [6], which provides basic
functionality to allow for local dynamic software updates. The
Local Update Manger and LyRT share a common interface to
perform the update and control it locally. Since Coordination
Middleware and Application Layer collaborate to update the
system consistently, both layers can be mapped to the Evolu-
tion Management sub-loop presented by Oreizy et al. [7].

The general update procedure works as follows: the Update
Manager triggers the update process by issuing an Update
Prescription to a random Local Update Manager (LUM)
hosted on one of the devices affected by the update. Subse-
quently, the LUM examines the received update prescription
and forwards it to all LUMs on devices specified by the update
operations contained in the Update Prescription. All involved
local update managers download the updated role information
from the globally available repository (cf. steps (1) through
(3) in Fig. 1). After all local update managers acknowledged
the download, the coordination of the local update procedures
is started (cf. step (4) in Fig. 1).

B. Consistent Local Update

LyRT is a role-based run-time framework for context-
dependent applications. In accord with the concept of roles,
software implemented with LyRT is separated into static parts,
modeled as players, also referred to as core objects, and
dynamic parts, modeled as roles. In our demand response
scenario we modeled the Device Adapter, Pre-Processor and
Communicator in the [oT Gateway and the Demand Response
Service and the Communicator in the cloud platform as players
that are depicted as rectangles in Fig. 1. The updates for both
nodes are modeled as roles that are represented as ellipsis.

3Prototype is available at https://github.com/nguonly/lyrt-with-transaction

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE World Forum on Internet of Things (WF-loT). Reston 2016", S. 171 - 176. ISBN: 978-1-5090-4130-5
https://doi.org/10.1109/WF-loT.2016.7845450

Adding new
unanticipated
behavior

Watcher Service

P | Adaptation.xml

|
Unarjticipated Adaptation

XML Parser

Unanticipated Operations
|

ﬁﬁ

Instance Pool

Player/Object Role

Instance Level
Binding
Relation

Dynamic Instance Binding

Figure 2. LyRT’s Run-time Architecture

The framework’s design is based on the concept of dynamic
instance binding, which allows for arbitrary binding of players
and roles. At design time, players and roles are modeled as
unrelated types being initialized independently at run time. To
correlate these two entities at run time, a centralized look-
up table is used to store the role binding information for
the dynamic method dispatch. Method calls to the player are
intercepted by the dispatcher that delegates the invocations to
the responsible role instance using the binding information
in the look-up table. Roles can be reloaded, replaced or
transferred forcing the player’s run-time behavior to change.

1) LyRT’s Runtime Architecture: The architecture of LyRT
that is depicted in Figure 2 comprises four main components:
Preparation, Watcher Service, Unanticipated Adaptation and
Dynamic Instance Binding Runtime. To add unanticipated
behavior to a player, seven steps implemented by these
components have to be performed: unknown, new behavior,
which is implemented as a role is taken (step 1) and is
subsequently compiled in step 2 (Preparation). New roles are
going to be bound to existing core objects, so that the core
instances’ identities must be queried from the runtime (step 3).
Subsequently, the required (un-)bind operations are configured
in the Adaptation.xml (step 4). The Watcher Service, a daemon
executing in a separate thread, monitors the change of the
XML file and fires events to the Unanticipated Adaptation
component, which parses the XML file (step 5). In step 6,
the runtime prepares for the adaptation with respect to the
operations defined in the XML file. Finally, in step 7, classes
are reloaded and bound to particular running objects granting
new behaviors. In LyRT, dynamic parts or roles are adaptable
entities that can be replaced or reloaded.

2) Consistent Unanticipated Adaptation: LyRT is designed
to safely feature both anticipated and unanticipated adaptation
applicable to the instance level. Supporting unanticipated
adaptation consequently results in Dynamic Software Update
(DSU) as the static parts change their behaviors [1]. The
watcher service triggers the asynchronous (un-)binding of
roles and players thus changing the behavior of the running
instance of the player. As a consequence, a system may behave

unexpectedly, which is undesirable. To solve this issue, LyRT
introduces the notion of transaction at object level, inspired
by the concept of tranquility [2], to safeguard the consistency
of objects’ behaviors inside a particular transaction [6]. This
allows for disruption-minimal behavioral updates of the same
instance that is executed in a different thread.

A transaction in LyRT works on top of the centralized
dynamic method dispatch that propagates the right invocation
to the valid roles of a particular executing transaction. We
illustrate two showcases — binding and unbinding roles. (1)
Assume there is an object instance running inside a transaction
Ty when later new roles are bound asynchronously to that
instance caused by an update. In this scenario, the role is
disregarded by the method dispatcher for the resolution of
the method invocation target. If another transaction 75 runs
in parallel but starts after the role binding process finished,
the same core object instance now shows the new behavior
because the role is now used by the method dispatcher for the
invocation resolution. (2) As a result of another evolution, roles
may be removed while they are performing computation tasks
within a transaction. Since the transaction is still ongoing,
these roles cannot be removed immediately. Instead, they will
be marked as phantom roles in order to ensure consistency.
These phantom roles will be garbage-collected as soon as all
transactions executing these roles have been finished.

C. Coordinated Adaptation Management

LyRT offers the possibility to dynamically update applica-
tions but is limited to a local runtime. In the case of our
introductory example, we add a new Encryption role to
the Communicator as a software update due to changed
requirements. Imagine the update would be disseminated
and deployed to each computing device individually without
further coordination. The transmission times of the update
prescription and the download speed of the actual update
surely differs between the computing devices. As described in
the introduction, uncoordinated installation of related updates
on two nodes can lead to a mismatch between encryption and
decryption at sender and receiver IoT nodes. Consequently,
data would be lost. With respect to our introductory example,
Listing 1 depicts an excerpt of an Update Prescription showing
one update operation to add the encryption functionality to
the communicator core object on the cloud platform, which is
represented by the Address attribute of the operation.

Listing 1. Example of a Transaction showing one update operation
Transaction : TOl : command

OperationID :005: update

OperationType :ADD

TargetNode:
Player:de.tud.rosi.da.iot.Communicator
Role:de.tud.rosi.da.iot.evolution.Encryption
Address:10.211.55.4

The LUMs use Report messages to indicate the status of
the download, i.e., whether it could be finished successfully or
not (cf. Distribute Update in Figure 3). A Report message
contains information about the (1) transaction it belongs to

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE World Forum on Internet of Things (WF-loT). Reston 2016", S. 171 - 176. ISBN: 978-1-5090-4130-5
https://doi.org/10.1109/WF-loT.2016.7845450

and (2) a set of pairs of unique IDs of the operation and
the actual status information (i.e., true or false), cf. Listing 2.
LUMs incorporate all previously received status information
from updates on other devices and share it when propagating
their own reports to increase the coordination protocol’s tol-
erance against loss of report messages. If a LUM still misses
status information about other updates, it starts requesting the
information proactively from the LUM, from which a report
is still missing, and other peers.

Listing 2. Example of a Report message for an Update operation
Transaction:TOl:report
AdaptationOperation : 005
SuccessState : true

Besides lost coordination messages, devices or local parts
of the application may fail during the update process. Thus,
LUMs might be unreachable or might not reach their local
LyRT runtime. Our coordination protocol tries to continue the
update process on nodes that are not affected from the failure,
i.e., roles and players do not communicate with the peers on
the failed device. Please note that affected peers continue their
service due to updates being inactive at first when performed.
When the device or local runtime is available again, com-
pensation mechanisms provided by the LUM eventually finish
the update process. Due to space restrictions, we focus on a
failure-free scenario in the remainder of the section.

Having confirmed the distribution of the update, the local
update managers start to prepare the actual update procedure.
In a first step, the updated role information is injected to
the local application’s runtime and the update is performed
as described previously. However, changes are still inactive
unless they are explicitly activated by the LUM, which means
the system continues to work as before the update. Accessing
the local run-time model of the application, LUMs determine
local and remote roles the role under update is collaborating
with and force them into a passive state. In the case of remote
collaborations, LUMs send Passivate commands to remote
LUMSs to enforce the passivation of the remote role. Remote
LUMSs respond with Report messages to indicate that their
local roles are now in a passive state. Other approaches were
proposed that reach such a safe state to perform updates or
adaptations without explicit messages to inactivate parts of the
system [3], [2], but they rely on knowing the communication
patterns within the system’s components to determine inactive
components.

In order to determine, when all local updates could be per-
formed successfully, the LUMs exchange Report messages
following the pattern previously described. Having confirmed
the successful update of all application parts, the LUMs
start activating their locally performed updates and all remote
roles and players they passivated. Transmitted Act ivate and
Passivate operations between LUMs contain the same set
of information about roles and players that is to be activated
or passivated, respectively, as the update operation depicted in
Listing 1. Fig. 3 exemplarily displays the coordination of the
update process among two LUMs.

:LocalUpdateManager :LocalUpdateManager

T

r—Update Prssmptvon%ﬁ—\ |
|
t
|

| :Repository H :Updatelnitiator
T T

derive related LUMs,

|
|
t
|
| |

Retrieve / Download Updates [—Forward Update Prescription-S—r—
Preprocess Update Prescription
otrieve / Download Updates—————— f@—
Report: Update Fetched—>|

Distribute
Update

lc—Report: Update Fetched

]

Prepare local Update
~ Prepare local Update

[Report: Preparation Success—|

Jt

Passivate

l&—Report: Preparation Success—

Install Update
And

| Perform Update

t

Perform Update

Report: Local Update Done

—Report: Local Update Done—=>1 F—1
Activate Update

Activate
Changes

—
Activate Update

Report Update Su((cssfu\u
LJ

Figure 3. Message Exchange of Local Update Managers to coordinate the
distributed update

III. IMPLEMENTATION

We implemented the Local Update Manager using Java
1.8 without relying on any additional frameworks or libraries.
Each local update manager maintains two interfaces: (1) to
communicate with other update managers on remote devices,
and (2) with its local application runtime, i.e., LyRT. Both
interfaces use a socket-based communication channel that
provides transport layer functionality to the update manager. In
order to receive messages from other update managers, each
local update manager listens to a specific port for inbound
messages, e.g., new update prescriptions or coordination mes-
sages throughout the update procedure. The overall exchange
of messages between the local update managers is depicted
in Figure 3. The Local Update Managers transition through
the three stages during the update procedure is depicted in
Figure 3. The most significant phase is the second (/nstall
Update and Passivate) since LUMs coordinate the transition
of the application to a safe state using the previously described
protocol messages, which are currently implemented in plain
text format as depicted in Listings 1 and 2.

The Update Initiator was implemented as a plain Java appli-
cation which we provided with a predefined update definition
in order to generate the transaction script that triggers the
update. Since the planning and (semi-)automated generation
of such update prescription is not part of our work, we
only provided a simple implementation to simulate the update
initiator for evaluation purposes.

IV. EVALUATION

We used our introductory example to validate the feasibility
of our approach. Our experimental setup involved four devices
each hosting an instance of the Local Update Manager and
an updatable application implemented using LyRT.

A fifth device simulated the Update Initiator that calculates
and transmits the Update Prescription. One device, which
represents the cloud-platform, hosted the demand response

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE World Forum on Internet of Things (WF-loT). Reston 2016", S. 171 - 176. ISBN: 978-1-5090-4130-5
https://doi.org/10.1109/WF-loT.2016.7845450

Table T
AVERAGE TIME MEASUREMENTS OF THE DISTRIBUTED DYNAMIC
SOFTWARE UPDATE. ALL VALUES IN MILLISECONDS (MS).

Node Overall | Start-Finish | Local Adapt | Activation
DS 244 182 12 5
PS1 168 140 11 4
PS 2 105 53 42 6
WT 168 131 51 5
Across | 171 126 26 5

service (DS) that is responsible for balancing the supplied
and demanded energy. The other devices representing IoT
Gateways hosted energy producers, namely two Photovoltaic
Systems (PS) and one Wind Turbine (WT). In order to conduct
our experiments, we assumed the updates to be already avail-
able locally on each device, since the distribution of updates
does neither affect the running system nor its interrupt time.

The DS and PS 1 were hosted on a 3.3GHz Intel Core
15-4590 with 8GB RAM running Ubuntu 15.10, whereas PS
2 was hosted on a 2.53GHz Intel Core 2 Duo P8700 with
4GB RAM running OS X 10.10.5, and WT was hosted on
a 2.6GHz Intel Core i5-4278U with 16GB RAM running
OS X 10.11.5 devices. We performed 10 iterations of the
described test setup in our lab’s local area network. The results
of the experiment are summarized in Table I. Evidently, the
addition of new and previously unforeseen behavior to the
distributed application can be achieved in a feasible amount
of time for small examples because the system only needed
26ms in average to add the new behavior. The majority
of the time consumed for the update (171ms on average
across all platforms) is consumed by the coordination of
the update procedure to ensure a consistent activation of the
added behavior. The average time the coordination middleware
required to determine and propagate the successful addition
of the new behavior amounted to 126ms across all devices.
We randomly chose the cloud-platform hosting the demand
response service to receive the update prescription first. On this
local update manager, the time that was required to actually
forward the update prescription is included in the overall time
the update took place, which leads to a slightly higher mean
time for the entire update process. Please note that the demand
response service is still up and running during the time the
local update manager takes to forward the update prescription.
The application does thus not suffer from significantly longer
system interruption due to being the initial receiver of the
update. On average, the interrupt time of the system amounted
to Sms across all devices, which is the time in which the
Communicator players have to halt their communication
temporarily to activate the previously accommodated new
behavior.

V. RELATED WORK

This section discusses related approaches of two domains:
local runtime supporting dynamic software updates and coor-
dination techniques to push updates in distributed settings.

A. Run-time Support for Dynamic Software Update

LyRT [5], [6] comprehensively supports dynamic behavior
of software systems at the instance level, which is comparable
to applications leveraged by dynamic software updates (DSU).
We discuss LyRT’s relation to context-dependent systems at
the programming language level and DSU techniques.

Context-oriented Programming (COP) [8] and Role-oriented
Programming (ROP) [9] significantly contribute to building
dynamic run-time systems that enable objects to change their
behavior through adaptation techniques. Generally, both do
not support unanticipated adaptation which introduces new
behavior later during execution. Some languages, such as
Context]S [10] and Context Traits [11], underpinning the
meta-object protocol, provide open mechanisms for possible
unanticipated adaptation. Yet, these mechanisms have not dealt
with inconsistencies arisen from newly incorporated behavior.

LyRT is closer related to adaptive software systems than to
DSU techniques. DSU is being transparent to programmers
allowing them to almost completely update the live system
without the knowledge of DSU [1] whereas in LyRT program-
mers need to adopt the concepts of adaptive software systems,
i.e., explicitly define static and dynamic parts. This extra work
is beneficial for mobile and IoT applications that dynamically
adapt to the surrounding environment.

The existing Java-based DSU techniques [12], [13], [14]
which provide complete transparency to programmers regard-
less of their architecture preferences modify a particular Java
Virtual Machine (JVM). As a result, these JVM-dependent
solutions break compatibility with other JVM releases. More-
over, engineering efforts and exhaustive tests are necessary as
there were crashes documented [12]. JavAdaptor [15] does not
modify the JVM but still relies on Java HotSwap to change the
method body. The application states must be mapped manually
by the programmer. Rubah [16] also works on the stock JVM
and supports state transition. However, it is not completely
transparent to programmers as they need to know how to
inject Rubah’s code for future updates. LyRT works on the
standard JVM, too, and programmers need to conform to
the framework design. (Re-)loading roles at run time relies
on the simple dynamic class loader that has been adopted
in all major frameworks, e.g., OSGi*. Since OSGi supports
hot swapping of components, the overhead to update only
one class is much higher since the whole component has to
be reloaded. LyRT allows fine-grained modifications through
object instance adaptations.

B. Coordination

Dynamic software updates focus on the realization of up-
dates at run time using appropriate mechanisms and techniques
to achieve the desired degree of variability. Performing multi-
ple updates on different devices in a coordinated manner has
not yet been addressed by this community. However, the issue
of changing the behavior of a software system at run time is
subject to the self-adaptive software systems community.

4www.osgi.org

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "IEEE World Forum on Internet of Things (WF-loT). Reston 2016", S. 171 - 176. ISBN: 978-1-5090-4130-5
https://doi.org/10.1109/WF-loT.2016.7845450

Works of Kramer & Magee [3] and Vandewoude et al. [2]
propose mechanisms to determine a safe point in time to
perform the adaptation but rely on complete knowledge of
the component’s interaction pattern to detect idle hence updat-
able components. Relying solely on dynamic object binding
techniques, we do not have this knowledge of the interaction
pattern between parts of the system. However, performing
updates only in safe states of the system is a necessary
requirement to prevent inconsistent behavior and data loss.

Therefore, we restrict the system’s behavior (i.e., the pas-
sivation of roles) before we perform updates with the aim
to reach a safe state to perform the update in an reasonable
amount of time. As soon as a safe state is reached we conduct
the update at a given time ¢, and experience the updated sys-
tem’s behavior at a time ¢+ 1. In their formal specification of
adaptation semantics, Zhang et al. [17] considered adaptations
that restrain the system’s functionality to reach a safe state
guided adaptation, which is also applicable for our approach.

Approaches like FlashMop [18], DecAp [19] or Clonal
Plasticity [20] consider the adaptation of distributed software
systems but focus on the decentralized generation of change
prescriptions and how independent agents have to collabo-
rate to derive those plans without complete knowledge of
the system. Coordinating the actual adaptation or update of
the software system imposes different requirements on the
protocol, e.g., ensuring a safe state to update or perform related
updates simultaneously or in an ordered manner.

Other approaches focus on the design and architecture of
self-adaptive software systems. Kramer & Magee, for example,
proposed a widely acknowledged reference architecture for
self-adaptive software systems, called 3L [3]. Our coordination
middleware and application layer are a conceptual refinement
of their component control layer, which provides mechanisms
for the modification of the component-based applications.

VI. CONCLUSION

In this paper we addressed the issue of software updates in
IoT infrastructures. From the domain of self-adaptive systems
we adopt a mechanism for consistent unanticipated adaptations
to safely update software on local IoT nodes in a disruption-
minimal manner. To extend our solution to scenarios where
software is running on a set of distributed nodes, we introduced
a decentralized middleware layer that coordinates such soft-
ware updates transactionally to ensure a consistent transition
of the application throughout the update process.

In certain setups it is still possible for data to get lost
through mismatched communication endpoints as a conse-
quence of performed updates. For instance, in case the en-
cryption on a sender is activated before the receiver, data
would be lost since it cannot be processed by the receiver. We
intend to continue our research to prevent such inconsistencies
from occurring without sacrificing the unawareness of the
application’s internal communication pattern. A first intuitive
approach would utilize NTP On-Wire® or the SNTP® protocol

Shttps://tools.ietf.org/html/rfc5905
Shttps://tools.ietf.org/html/rfc4330

to synchronize clocks between devices participating in the
update process and subsequently agree on a common point
in time to activate the changes using a decentralized decision
making or voting protocol. Eventually, only a logical point in
time, e.g., a point in the instruction flow of the distributed
application, is required for simultaneous activation of changes
across multiple devices. The approach proposed in [21] could
serve as a foundation for further investigation.

ACKNOWLEDGEMENTS

This work is partially funded by the German Research
Foundation (DFG) within the Research Training Group “Role-
based Software Infrastructures for continuous-context-sensi-
tive Systems” (GRK 1907) and the Erasmus Mundus Program.

REFERENCES

[1]1 H. Seifzadeh et al., “A survey of dynamic software updating,” Journal
of Software: Evolution and Process, vol. 25, no. 5, pp. 535-568, 2013.

[2] Y. Vandewoude et al., “Tranquility: A Low Disruptive Alternative to
Quiescence for Ensuring Safe Dynamic Updates,” IEEE Transactions
on Software Engineering, vol. 33, no. 12, pp. 856-868, Dec. 2007.

[3] J. Kramer and J. Magee, “Self-Managed Systems: an Architectural
Challenge,” in FOSE °07. 1EEE, May 2007, pp. 259-268.

[4] H. Gomaa et al., “Software adaptation patterns for service-oriented
architectures.” SAC, pp. 462469, 2010.

[5] N. Taing et al., “A dynamic instance binding mechanism supporting
run-time variability of role-based software systems,” in Modularity
Companion. ACM, 2016, pp. 137-142.

[6] N. Taing et al., “Consistent unanticipated adaptation for context-
dependent applications,” in COP’16. ACM, 2016, p. to appear.

[7]1 P. Oreizy et al., “An architecture-based approach to self-adaptive soft-
ware,” IEEE Intelligent Systems, vol. 14, no. 3, pp. 54-62, May 1999.

[8] G. Salvaneschi er al., “Context-oriented programming: A software
engineering perspective,” Journal of Systems and Software, vol. 85,
no. 8, pp. 1801-1817, 2012.

[9] T. Kithn et al., “A metamodel family for role-based modeling and

programming languages,” in SLE. Springer, 2014, pp. 141-160.

J. Lincke et al., “An open implementation for context-oriented layer

composition in contextjs,” Science of Computer Programming, vol. 76,

no. 12, pp. 1194-1209, 2011.

S. Gonzdlez et al., “Context traits: dynamic behaviour adaptation

through run-time trait recomposition,” in AOSD’13. ACM, 2013, pp.

209-220.

A. R. Gregersen and B. N. Jorgensen, “Dynamic update of java

applications-balancing change flexibility vs programming transparency,”

Journal of Software Maintenance and Evolution: Research and Practice,

vol. 21, no. 2, pp. 81-112, 2009.

T. Wiirthinger et al., “Dynamic code evolution for java,” in PPPJ’10.

ACM, 2010, pp. 10-19.

T. Gu et al., “Low-disruptive dynamic updating of java applications,”

Information and Software Tech., vol. 56, no. 9, pp. 1086-1098, 2014.

M. Pukall et al., “Javadaptor — flexible runtime updates of java applica-

tions,” Software: Practice and Experience, vol. 43, no. 2, pp. 153-185,

2013.

L. Pina et al., “Rubah: Dsu for java on a stock jvm,” in OOPSLA’14,

vol. 49, no. 10. ACM, 2014, pp. 103-119.

B. H. C. Cheng and J. Zhang, “Specifying adaptation semantics,” ACM

SIGSOFT Software Engineering Notes, vol. 30, no. 4, pp. 1-7, 2005.

D. Sykes et al., FlashMob: distributed adaptive self-assembly, ser.

distributed adaptive self-assembly. ACM, May 2011.

S. Malek et al., “A Decentralized Redeployment Algorithm for Improv-

ing the Availability of Distributed Systems,” in Component Deployment.

Springer Berlin Heidelberg, 2005, pp. 99-114.

V. Nallur et al., “Clonal plasticity: a method for decentralized adaptation

in multi-agent systems,” in SEAMS’16. ACM, May 2016, pp. 122—128.

B. Ensink and V. Adve, “Coordinating Adaptations in Distributed

Systems,” in ICDCS’04. 1EEE Computer Society, 2004, pp. 446-455.

[10]

[11]

[12]

[13]
[14]

[15]

[16]
[17]
(18]

[19]

[20]

[21]

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

	Decentralized coordination_Vorsatz.pdf
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint Version) /
	This is a self-archiving document (accepted version):
	Martin Weißbach, Nguonly Taing, Markus Wutzler, Thomas Springer, Alexander Schill, Siobhan Clarke

