

Dieses Dokument ist eine Zweitveröffentlichung (Postprint Version) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-752710

Martin Weißbach, Thomas Springer

A Dynamic Instance Binding Mechanism Supporting Run-Time
Variability of Role-Based Software Systems

Erstveröffentlichung in / First published in:

Modularity '16: Companion volume of the 15th International Conference on Modularity.
Malaga, 14.–17.03.2016. ACM Digital Library, S. 137–142. ISBN 978-1-4503-4033-5.

DOI: https://doi.org/10.1145/2892664.2892687

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-752710
https://doi.org/10.1145/2892664.2892687

A Dynamic Instance Binding Mechanism Supporting
Run-Time Variability of Role-Based Software Systems

Nguonly Taing1 Thomas Springer1 Nicolás Cardozo2 Alexander Schill1
1Faculty of Computer Science, Technische Universität Dresden, Germany

2Future Cities, DSG, Trinity College Dublin, Ireland
{firstname.lastname}@tu-dresden.de, cardozon@scss.tcd.ie

Abstract
Role-based approaches gain more and more interest for modeling
and implementing variable software systems. Role models clearly
separate static behavior represented by players and dynamic behav-
ior modeled as roles which can be dynamically bound and unbound
to players at run time. To support the execution of role-based sys-
tems, a dynamic binding mechanism is required. Especially, since
instances of the same player type can play different roles in a sin-
gle context, the binding mechanism is required to operate at in-
stance level. In this paper, we introduce a mechanism called dy-
namic instance binding for implementing a runtime for role-based
systems. It maintains a look-up table that allows the run-time sys-
tem to determine and invoke the currently active role binding at
instance level. We explain dynamic instance binding mechanism
in detail and demonstrate that it is flexible enough to support both
adaptation and evolution of software systems at run time.

Categories and Subject Descriptors D.2.11 [Software Architec-
tures]: Framework

Keywords Dynamic Binding, Roles, Adaptive Systems

1. Introduction
Variability is one of the major requirements for software systems
executed in highly heterogeneous and dynamically changing en-
vironments, as it is the case for ubiquitous computing or cyber-
physical systems, among others.

The degree of variability of a system is determined by the num-
ber of contexts it can differentiate, its ability to perform foreseen or
unforeseen changes, the granularity of change operations, and the
point in time these changes can be performed.

This paper focuses on a dynamic binding mechanism to en-
able program variations at run time. Dynamic binding supports the
selection and invocation of a particular behavior relevant for the
current context. Object binding is normally restricted to foreseen
changes where the set of variants of the binding mechanism is fixed,
and the number of considered contexts is static [9]. However, this is
rarely the case in highly dynamic environments. Thus, unforeseen

changes can be supported only if it is possible to extend the set
of contexts and behavior implementations at run time. Moreover,
the granularity of change operations indicates whether the binding
mechanism operates at type or instance level. Since two instances
of a certain type can behave differently if they execute in two par-
ticular executing contexts, we posit that an instance level binding
mechanism is suitable to support such cases.

Dynamic binding mechanisms are used to support run-time vari-
ability in several domains. Concepts based on Aspect-oriented Pro-
gramming (AOP) allow to weave crosscutting concerns into ob-
ject’s code, uniformly adapting all instances of a given type, limit-
ing the flexibility for rebinding variations, and not supporting un-
foreseen changes [11, 17]. Context-oriented Programming (COP)
addresses the support of behavioral adaptation based on context-
dependent layer activation. While some COP approaches allow to
integrate new behavior or operate at instance level, (un)foreseen
instance adaptations are not supported in a single language [18].

Role-oriented Programming (ROP) gains increasing interest as
a solution to support variability [13]. Roles encapsulate dynamic
behavior and can be bound to players containing static behavior
dynamically at run time in relation to a particular context. However,
existing ROP solutions bind roles at compile time, imposing a
challenge to bind other unforeseen roles at run time.

In this paper, we address the problem of run-time variability
for role-based software systems at the instance level, allowing both
anticipated and unanticipated adaptations coexist in a single solu-
tion. We introduce a mechanism called dynamic instance binding
that maintains a data structure representing the binding informa-
tion between player and role instances in a look-up table. That table
is used to dynamically invoke the behavior of the role to which a
player is currently bound. The mechanism is implemented as part
of the runtime, called LyRT, supporting the execution of role-based
software systems. Based on that implementation, we demonstrate
that dynamic instance binding can support flexible (re-)binding of
roles and object instances as well as the introduction of new role
implementations without the need to restart the system. The pro-
posed mechanism is a generic approach for any OOP language that
supports reflection. This mechanism can even be applied to stati-
cally type languages, enabling the evolution of legacy systems. The
LyRT prototype is a Java-based implementation to demonstrate the
challenge of live adaption in the statically typed languages.

The paper is organized as follows: Section 2 introduces the con-
cept of roles. Section 3 presents the proposed dynamic instance
binding mechanism, and Section 4 describes the implementation
details of the mechanism as part of our role-based runtime. In
Section 5 we demonstrate that dynamic instance binding supports
unanticipated adaptation based on a case study. Section 6 com-
pares our work to related approaches, and Section 7 concludes and
presents our future work.

©2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in MODULARITY
Companion’16, March 14–17, 2016, Málaga, Spain.

DOI: http://dx.doi.org/10.1145/2892664.2892687

Final edited form was published in "MODULARITY Companion 2016. Malaga 2016", S. 137–142. ISBN: 978-1-4503-4033-5
https://doi.org/10.1145/2892664.2892687

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

2. Roles
The concept of roles has already been used in several domains
like access-control and database systems. The main idea of roles
is reflected in the Role Object Pattern [2]. It proposes to model
context-specific views of an object as a set of separate roles that
can be dynamically bound to and unbound from the resulting core.
While the core contains attributes and behaviors maintained over
its complete life-time, roles also contain attributes and behaviors
only presented in a particular context.

For example, a core object person has a name and social security
number that never change throughout the lifetime of a person. In
addition, the person can become a developer or an employee. Such
transient parts are made available dynamically (i.e., activated),
whenever they are needed in a concrete execution context, for
example in a company and its tax department.

A set of 26 features is introduced that can be used to characterize
role models [13]. In the following, we describe the set of features
valid for the role model we use in our work. The main elements of
our role model are roles which are played by a core object. Roles
are self-contained objects encapsulating their state and behavior.
They require to be bound to a player based on the play relationship.
A player may play several roles simultaneously and may acquire or
abandon roles dynamically.

Figure 1 introduces a payroll management system as an example
role model. In the example the class Person has different instances
(e.g., ely, bob, alice), each playing different roles. While ely
and bob play the Developer role, alice plays the Accountant
role.

The example adds the notion of a compartment [13] to the main
elements. A compartment defines a particular scope in which a
set of roles is valid and can interact with each other. It contains
state and behavior and may itself play roles. The figure includes
the compartments TaxDepartment and Company, in which the
Company compartment plays the role of a TaxPlayer.

The play relationship is not restricted to core objects and roles
but a role is also allowed to play another role. In our example
(Figure 1), a person ely plays the role Freelancer that plays the
role of TaxPayer in the context of the TaxDepartment.

Roles can interact with each other via method calls, affecting all
core players playing the role. For instance, the Accountant role
calls the paySalary() method to pay monthly salary to all objects
playing a Developer role. Roles in a compartment can access at-
tributes and methods of that compartment and vice versa. For exam-
ple, when the Accountant role calls paySalary(), this method
withdraws money from the revenue attribute of the Company com-
partment instance, to distribute it to the Developer instances. The
Company compartment may play a role (TaxPayer) inside other
compartments (TaxDepartment). Dynamic adaptation takes place
by unbinding roles of core instances, and binding them to some
other roles. For example, the ely instance can be unbound from
the Developer role and bound to the FreeLance role at run time.

The example in Figure 1 serves as the showcase that we will
use in the rest of the paper to illustrate our mechanism for dynamic
instance binding and the implementation of the LyRT runtime.

3. LyRT Framework for Run-time Adaptations
This section presents the main mechanisms used in LyRT to enable
a flexible run-time environment supporting continuous adaptations
even if these have not been foreseen at design time.

3.1 Dynamic Instance Binding
Code weaving is a mechanism to bind the implementation of two
objects [11]. This mechanism is used in different programming
paradigms geared towards dynamic object (re)composition, such as

Figure 1: Payroll management system run-time model.

Aspect-oriented Programming (AOP) [17], Context-oriented Pro-
gramming (COP) [9], and Role-oriented programming (ROP) [8].
Weaving allows to integrate a behavioral entity (e.g., aspect, layer)
implementation with that of a base class. Object binding is a higher
level abstraction used to express the combination of object models
regardless of their implementation (e.g., role binding).

Normally, objects are woven either at source code or bytecode
level. Weaving at source code level usually happens at compile time
by means of a pre-processor and a modified compiler. This mech-
anism does not affect the performance of the system. However, it
does not allow to split woven code, or re-weave new behavior at
run time because when woven, two objects become one indivisible
system entity. Furthermore, it is not possible to weave two sys-
tem classes or legacy systems for which their source code is not
available. To solve this problem, bytecode weaving mechanisms
are introduced hoping that bytecode rewriting allows to split and
merge objects at some points during the system execution. Byte-
code weaving may happen at post-compile time, load time, or run
time. Nevertheless, like source code weaving, bytecode weaving at
post-compile and load time does not support (re)weaving, because
it generates a system snapshot. Run-time bytecode weaving pro-
vides code reweaving, however, this may result in a performance
overhead. System crashes may occur when reweaving as this mech-
anism does not assure the validity of woven code. Even though
weaving may happen at run time, bytecode weaving is usually ap-
plied to object types. Supporting bytecode weaving for instance
level is very limited as this may require to destroy the instance and
re-initialize it after weaving. Therefore, this process must wait until
the instance is idle, copying its state in order to map it back after the
newly woven instance has been instantiated. We classify the afore-
mentioned weaving mechanisms as tight weaving given that, once
woven, the objects become a single program entity.

We propose a dynamic instance binding mechanism in which,
rather than weaving at the source code or bytecode level, we dy-
namically bind two or more role instances to object instances by
constructing a transient relationship between them at run time. A
relationship shows the run-time association between binding in-
stances. For example, in our payroll management system, a Person

Final edited form was published in "MODULARITY Companion 2016. Malaga 2016", S. 137–142. ISBN: 978-1-4503-4033-5
https://doi.org/10.1145/2892664.2892687

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

instance binds to a Developer instance by saying that the Person
plays a Developer role. Note that bound instances remain com-
pletely decoupled from each other while appearing as a single ob-
ject. Programmers interact with a single object instances, however,
the two instances are two distinguishable objects throughout their
lifespan. A look-up table is used to store the binding relationship
at run time. Once bound, two instances are virtually woven. In our
example, the Person instance has access to all state and behavior
of the Developer. In order to do this, a proper method dispatching
mechanism is needed (c.f. Section 3.3). In our system, unbinding
object instances boils down to removing the association from the
look-up table and destroying unused instances, for example, remov-
ing the play association between the Person and the Developer
instances, the Person no longer has access to the state and behavior
of the Developer. The rebinding operation follows the same pro-
cess as the initial binding. Our mechanism enables dynamic behav-
ioral variations by merging and splitting different object instances.

To deal with unanticipated behavior at run time, the new behav-
ioral classes must be defined and compiled. Whenever the bytecode
classes are loaded to the run-time environment, they immediately
become available to be bound to other existing instances.

In summary, our dynamic instance binding concept is suitable
for highly dynamic run-time systems that require continuous mod-
ification to cope with an ever changing environment. As a result,
run-time variability can be achieved by allowing adaptation and
evolution at instance level.

3.2 Dynamic Role Binding
As mentioned earlier, roles are defined as regular OO classes, eas-
ing their binding to object instances that are to play them. Our
dynamic role instance binding differentiates the type of instances
and their binding relations conforming to the role playing model.
Based on the role features described in Section 2, instances are cat-
egorized as players, roles, and compartments; these instances are
called actors. As mentioned before, in order to bind two instances
we define the relation between them. The possible binding relations
we adopt in LyRT are: player-plays-role and role-plays-role. Com-
partment may also play role but it is a player-plays-role relation.
There are more binding relations such as role-inheritance and role-
constraints. However those relations are left out of the LyRT scope
at the moment to ease our discussion, but can be easily adopted by
our instance binding concept.

Actor types are normal OO classes that do not necessarily relate
to each other at the design time. At run time, they can be virtually
woven adhering to the role playing model. The relationship look-
up table is extended to capture the different types of instance bind-
ings. The structure of the look-up table is expressed in the form
of a relational database schema as shown in Figure 2. Each actor
instance identity of each type is stored in the respective table of
PlayerInstance, RoleInstance, and CompartmentInstance
according to their type. The Relation table holds the relationship
of those binding instances, used later by the method dispatch mech-
anism in order to use the appropriate instances when invoking a
specific behavior.

Table 1 shows the sample data of the run-time model depicted
in Figure 1. Instead of using an integer for the instance identity, we
use plain text easing the identity tracking. The first row in the table
represents the type of a player-plays-role (PPR) relation, between
the bob and developer instances inside a company compartment
instance. Whereas, bob plays a different role, as shown in Row 2.
Rows 3 and 4 demonstrate the role-plays-role (RPR) relation that
ely has the freelance role and this role has the taxpayer one.
These two relations virtually weave the freelance and taxpayer
roles to the ely instance. A compartment is just like any player
that may play a role. For example, the company compartment

Figure 2: Relationship Look-up Table

plays the taxpayer role inside the tax compartment under a PPR
relation in Row 5. The binding level (Lvl in Table 1.) represents
the depth from a core object instance that occurs in a role-plays-
role relation. The binding sequence (Seq in Table 1.), represents
the order of binding at each binding level. These two attributes are
used by the method dispatch mechanism to find the correct behavior
implementation of all bound instances.

Table 1: Sample Data in the Relation table

Id Com.Id CoreId PlayerId RoleId Type Lvl Seq
1 company bob bob developer PPR 1 1
2 company bob bob accountant PPR 1 2
3 company ely ely freelance PPR 1 1
4 company ely freelance taxpayer RPR 2 1
5 tax company company taxpayer PPR 1 1

3.3 Dynamic Method Dispatching
In the role playing relation, a player has access to the state and
behavior of all roles bound to it. Whenever there is a method call
from a core object, a method dispatch mechanism looks for the
method to call among all bound roles in the Relation table, and
invokes it. If the look-up method is not found in the bound roles,
the dispatcher will look into the core object itself, and raise a run-
time error if no method is matched. This process applies to binding
relations that have no duplicated method signatures (i.e., no method
polymorphism) between player and role instances.

In case of method polymorphism, the method invocation is al-
ways resolved firstly for the role implementation. The priority of
invocation is given to a role through a traversing process start-
ing from the latest binding of the closest relation with respect
to the player, cascading recursively to the latest binding of the
farthest relation. Finally, this process returns the role instance
that has no next binding level. To follow this process we use the
RelationType, BindingLevel and BindingSequence attributes
of the Relation table, finding the proper role instances to the
invoked method. The process to find the proper role instance is
showcased in Snippet 1.

Snippet 1: Method dispatching for multiple role bindings
1 Object findRole(Object obj){
2 if(obj.hasNextBindingLevel ()){
3 Object [] roles=obj.nextBindingLevelRoles ();
4 Object role=findMaxBindingSequence(roles);
5 return findRole(role); // recursively call
6 }
7 else { return obj; }
8 }

As an example, Figure 3 presents a core object O and the roles
it plays in the same compartment, where both roles implement the
same m1()method. When invoking m1(), based on our method dis-
patching algorithm, the m1() implementation in R2 will be invoked
(Figure 3a). This is because in the same binding level (level=1),

Final edited form was published in "MODULARITY Companion 2016. Malaga 2016", S. 137–142. ISBN: 978-1-4503-4033-5
https://doi.org/10.1145/2892664.2892687

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

(a) (b)

Figure 3: Method Dispatch

R2 has the highest binding sequence number. In case of Figure 3b,
the dispatcher initially returns R2 as the responding role, however
this still has the next binding relation (level=2). Thus the dispatcher
recursively cascades to the next level and returns R3 as the proper
role instance for invocation.

4. LyRT Implementation
This section discusses how to implement the dynamic instance
binding mechanism for role-based systems. LyRT1 is a generic
framework that can be implemented in any OOP language with
support for reflection. Reflection is used for method dispatching.
The code snippets shown below are written using the standard Java
syntax.

As already explained in the previous section, our dynamic role
binding deals with instances. Thus at the type level, players, roles,
and compartments are decoupled from each other and are virtually
woven together at run time by means of relations formation.

LyRT consists of three main parts: a registry, an instance pool,
and a look-up table. The registry works as a mediator to manage
all instances and their instance relations. The method dispatch-
ing algorithm is also implemented in the registry. All types of
instances are stored in the instance pool while relations are cap-
tured in the look-up table. The instance pool stores each type of all
instances that map to the PlayerInstance, RoleInstance and
CompartmentInstance table, respectively. The instance pool is
used to get the references of the actual instances for method invo-
cation.

Figure 4: An overview of role run-time framework

4.1 Binding and Unbinding Roles: Flexibility and
Adaptability

Section 1 discusses the flexibility and adaptability properties of a
dynamic runtime. This section demonstrates how our framework
satisfies these properties by means of role binding and unbinding.
In the payroll management example, type declarations are regular
OOP class definitions as shown in Snippet 2. Snippet 3 shows
the main program of the payroll management example, exhibiting
flexibility and adaptability. Line 2 gets the reference to the registry,
LyRT’s core. A Company compartment and the ely instance of
a Person type are initialized in Lines 3-4. Line 5 is the binding

1 https://bitbucket.org/RoSIDA/local-runtime

for the role-playing relation of ely as a Developer role. In this
case, Developer is instantiated and loosely woven to ely —that
is, the objects are not fused together. Once a player and a role
are woven, the state and behavior of the role are accessible by the
player; only then the player can invoke a role method (Line 6). The
flexibility of our framework is shown when alice instance of type
Person plays the Accountant role (Lines 9-10). The behaviors
of these two instances differ according to the roles they play. The
framework’s adaptability is shown when the ely instance abandons
its current role to bind the FreeLance role in the TaxDepartment
compartment (Lines 13-18).

Snippet 2: Type Declaration
1 class Person{ // Player
2 private String name; //get/set
3 private String saving; //get/set
4 }
5 class Developer{ //Role
6 private double salary; //get/set
7 public void work(){...}
8 }
9 class Company{ // Compartment

10 private double revenue; //get/set
11 private double tax =0.2; //20%
12 public double taxToBePaid (){...}
13 }

Snippet 3: Main Program
1 public static void main(String [] args){
2 Registry reg = Registry.getInstance ();
3 Object abc = reg.newCompartment(Company.class);
4 Object ely = reg.newPlayer(Person.class);
5 reg.bind(abc , ely , Developer.class);
6 reg.invokeRole(abc , ely , "work"); //ely.work();
7

8 Object alice=reg.newPlayer(Person.class);
9 reg.bind(abc , alice , Accountant.class);

10 reg.invokeRole(abc , alice , "paySalary");
11

12 //ely unbinds developer from abc compartment
13 reg.unbind(abc , ely , Developer.class);
14

15 //ely binds FreeLance in another compartment
16 Object td=reg.newCompartment(TaxDepartment.class);
17 Object fl=reg.bind(td, ely , FreeLance.class);
18 reg.invokeRole(td, ely , "setRevenue", 2500);
19

20 //role plays role. Bind FreeLance to TaxPayer
21 reg.bind(td, fl, TaxPayer.class);
22 //ely now can call pay() method
23 reg.invokeRole(td, ely , "pay"); //ely.pay();
24 }

4.2 Roles Play Roles: Object Transformation
In order to further enhance the flexibility and adaptability of the
system, roles can play roles. This is done by transforming the core
object beyond its own capacities. Figure 1 shows how the ely in-
stance becomes a TaxPayer after being bound to the FreeLance
role, because FreeLance is bound to the TaxPayer role. Note
that without the FreeLance binding, ely would not have the
taxToBePaid() method, required for a TaxPayer (Line 21-23 of
Snippet 3). According to our method dispatching, if ely is bound
to the two aforementioned roles at the same binding level, then ely
cannot invoke the pay() method because the two roles have no
relationship to each other. Hence, ely does not have the required
taxToBePaid() for the TaxPayer role.

4.3 Role Evolution: Dealing with Unanticipated Behavior
The adaptations discussed so far are foreseen at design time. This
section describes how to manage unforeseen adaptations by intro-
ducing new roles to the system, without having to restart it. As

Final edited form was published in "MODULARITY Companion 2016. Malaga 2016", S. 137–142. ISBN: 978-1-4503-4033-5
https://doi.org/10.1145/2892664.2892687

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

seen in Snippet 2, roles are declared as classes. These classes can be
loaded at run time using Java’s ClassLoader. Once roles are loaded,
they can be bound to core objects at run time. To achieve this, new
behavior must be defined in a role class, later compiled. Then the
system evolves as part of an independent daemon thread that loads
role instances to the runtime. Loading role instances fires an event
that returns the instance’s identity from the instance pool (Figure 4).
At this point, the role can be bound enabling the new role behavior
to the binding instance (Snippet 4). Finally, when the binding op-
eration is completed, method dispatcher delegates to the behavior
introduced by the new role.

This mechanism is more beneficial than directly modifying ob-
ject’s source code, which is prohibited in Java, as the evolved be-
havior is modular and reversible. Using this approach new methods
or bug fixes are defined in a new role class, taking into account that
the signature of the new methods have to match that of the existing
ones.

Snippet 4: Evolution for Unexpected Behaviors
1 public void evolutionPerformed(Event e){
2 Class roleCls = Class.forName("runtime.NewRole");
3 Registry reg=Registry.getInstance ();
4 //Query from instance pool via registry
5 Object [] elys=reg.query(abc , Person.class);
6 //bind instance to role type in abc compartment
7 reg.bind(abc , elys[0], roleCls);
8 }

5. Managing Unforeseen Adaptations in LyRT
This section demonstrates how our framework deals with unfore-
seen adaptations. To do this, we use a real world example of a snake
game. Figure 5a shows the default game settings, where the snake
crashes whenever it hits the walls. Figure 5b shows the (unforeseen
adaptation) behavior of the snake passing through walls. This adap-
tation takes place by defining, loading, and binding new role during
the game play.

(a) Default Settings (b) Passing Wall

Figure 5: Snake Game User Interface

In order to evolve the system and adapt to unforeseen func-
tionality, new behavior is encapsulated in a role, having the same
method signature as a core object. Once the core object plays the
new role, the invocation priority is given to it. In the snake game the
getNextCell() method is part of a Router object. This method
gets the next cell where the snake is going to move, based on its
current direction. In the normal game play, if the next moving cell
is a wall or the snake body then the snake crashes. To present the
variability of the game settings, we want to enable the snake to pass
through walls. This modification should happen without restarting
the game. Rather than directly modifying the code of the Router

object, a PassingWall role is defined and loaded at runtime (Snip-
pet 5). The getNextCell() method in the PassingWall role has
the same signature in the core object (Router). The main difference
between the core method and the role method is the passing wall
logic, added in Lines 12, 15, 18 and 21. As soon as the binding op-
eration is completed, the call to getNextCell() in the Router ob-
ject is resolved by the method defined in the PassingWall role. At
this moment, the snake can pass through walls lively in the game.

Snippet 5: PassingWall Role
1 public class PassingWall {
2 public Cell getNextCell(Cell currentPosition) {
3 Router router = (Router)Registry.getInstance ().

getCorePlayer(this); //get player instance
4 Board board = router.getBoard ();
5 int row = currentPosition.getRow ();
6 int col = currentPosition.getCol ();
7 int dir = router.getDirection ();
8

9 if (dir == Router.DIRECTION_RIGHT) {
10 col ++;
11 if(col==board.getColCount () -1) col =1;
12 } else if (dir == Router.DIRECTION_LEFT) {
13 col --;
14 if(col == 0) col = board.getColCount () - 2;
15 } else if (dir == Router.DIRECTION_UP) {
16 row --;
17 if(row == 0) row = board.getRowCount () - 2;
18 } else if (dir == Router.DIRECTION_DOWN) {
19 row ++;
20 if(row == board.getRowCount () -1) row = 1;
21 }
22 return router.getBoard ().getCells ()[row][col];
23 }
24 }

6. Related Work
LyRT offers dynamic binding of roles and object instances at run
time. This section compares our approach with other mechanisms
for dynamic object binding, such as AOP, COP, and ROP.

AOP enables run-time adaptation by injecting crosscutting con-
cerns, explicitly into a class by means of join points and pointcuts
defined in an aspect module [11, 12]. Adaptations are injected by
weaving the aspect code into a class before the program is exe-
cuted [11]. Dynamic aspect weaving is introduced [3, 4, 16, 19–21]
to apply aspects at run time to enable adaptations. In this approach,
whenever an aspect is woven with an object, they are bound to-
gether at bytecode level —that is, they become one new object.
The main advantage of using AOP approaches is the performance
of method calls. However, AOP approaches operate at type level
adapting all object instances with the same state and behavior and
thus, hampering the flexibility of the system. While there is an ap-
proach enabling instance level weaving [17], this fuses together ob-
ject’s and aspect’s code, making it difficult to retract adaptations.

COP is a programming technique for the introduction of behav-
ioral adaptations [9]. Behavioral adaptations are grouped in lay-
ers that can be (de)activated at run time. Whenever a layer is acti-
vated, its behavioral adaptations are composed with the base level
object, generating a new object. However, behavioral adaptations
and objects are not fused together, so it is possible to retract adap-
tations, by means of layer deactivation. Finally, adaptation of spe-
cific object instances is achieved by scoping layer (de)activation
locally [10] using dynamic dispatching techniques similar to the
ones explained in Section 3.3. Note that most COP languages [18]
require the upfront definition of behavioral adaptations (e.g., lay-
ers). Nonetheless, in some COP languages implemented in dynam-
ically typed languages, it is possible to include unexpected behav-
ior at run time. This, however, requires the extension of the solu-
tion exploiting the underlying language’s features, as it is the case

Final edited form was published in "MODULARITY Companion 2016. Malaga 2016", S. 137–142. ISBN: 978-1-4503-4033-5
https://doi.org/10.1145/2892664.2892687

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

in JavaScript implementations [5]. Therefore, COP languages en-
able the main features offered by our framework that is dynamic
instance binding and unanticipated evolution. However, bringing
both adaptations at the instance level while the system is running is
not directly supported in current COP implementations. Our frame-
work uses a novel technique to incorporate (un)foreseen adapta-
tions to object instances in statically typed languages that support
reflection.

ROP is the programming paradigm arising from the role-object
design pattern, such that roles are not tangled with base objects.
While current implementations of ROP [13, 14] support dynamic
adaptation through role-object bindings, none of them addresses
unanticipated adaptation. ObjectTeams/Java [8] uses bytecode li-
braries (e.g., BCEL2, ASM3) to weave role-specific behavior to an
object at either compile or load time and enables adaption at run
time by means of teams activation. However, (un)bindings roles at
run time are not feasible because bindings are static. Rava [7], Ep-
silonJ [15], Chameleon [6], and powerJava [1] need a pre-compiler
to translate to standard Java, making their bindings static; and
therefore (un)binding operations are not supported at run time.
SCROLL [14] uses Scala’s language features for method rewriting
at compile time, and compounds dynamic types for implicit conver-
sion; so it is also considered as a static mechanism. Our framework
also uses a ROP approach to achieve adaptivity. In contrast to cur-
rent ROP implementations, it supports run-time role (un)binding at
instance level as it does not fuse together objects and roles.

7. Conclusion and Future Work
Supporting run-time variability is still a challenging task in soft-
ware engineering. To address this challenge, we proposed the run-
time LyRT that supports run-time variability of role-based software
systems. We used a role model for system development since it
provides a clear separation of static and dynamic system behavior
in combination with the ability to bind and unbind dynamic be-
havior dependent on a particular context. A central component in
our runtime is the dynamic instance binding mechanism that sup-
ports the binding and unbinding of roles at instance level. As we
demonstrated, the runtime is capable to dynamically (re-)bind role
and object instances as well as to incorporate new behavior that is
dynamically added to the system.

As a next step we will conduct a series of experiments to explore
the performance overhead introduced by dynamic instance binding.
As a second aspect, we will examine the robustness of LyRT for the
incorporation of new behavior by implementing a set of example
systems. In the future, we will also work on a language syntax for
Role-oriented Programming with the objective of easing the further
implementation of systems using ROP, and the ambition to assure
safety properties of the run-time adaptation.

Acknowledgments
This work is partially funded by Erasmus Mundus Program, the
German Research Foundation (DFG) through the Research Train-
ing Group on Role-based Software Infrastructures for Continuous-
Context-Sensitive Systems (RoSI) (GRK 1907), and the EU FP7-
ICT-2011-9 No. 600654 DIVERSIFY project.

References
[1] M. Baldoni, G. Boella, and L. Van Der Torre. Roles as a coordination

construct: Introducing powerjava. Electronic Notes in Theoretical
Computer Science, 150(1):9–29, 2006.

2 https://commons.apache.org/proper/commons-bcel/
3 http://asm.ow2.org/

[2] D. Bäumer, D. Riehle, W. Siberski, and M. Wulf. The role object
pattern. Technical report, 1998.

[3] C. Bockisch, M. Haupt, M. Mezini, and K. Ostermann. Virtual ma-
chine support for dynamic join points. In Proc. of the Int. Conf. on
Aspect-oriented software development, pages 83–92. ACM, 2004.

[4] J. Bonér. Aspectwerkz-dynamic aop for java. In Invited talk at 3rd
International Conference on Aspect-Oriented Software Development
(AOSD), 2004.

[5] N. Cardozo and S. Clarke. Context slices: Lightweight discovery of
behavioral adaptations. In Proc. of the Context-Oriented Programming
Workshop, COP’15, pages 2:1–2:6. ACM, July 2015.

[6] K. B. Graversen and K. Østerbye. Implementation of a role lan-
guage for object-specific dynamic separation of concerns. In AOSD03
Workshop on Software-engineering Properties of Languages for As-
pect Technologies, 2003.

[7] C. He, Z. Nie, B. Li, L. Cao, and K. He. Rava: Designing a java ex-
tension with dynamic object roles. In Engineering of Computer Based
Systems, 2006. ECBS 2006. 13th IEEE International Symposium and
Workshop on, pages 7–pp. IEEE, 2006.

[8] S. Herrmann. Programming with roles in objectteams/java. In proc.
AAAI Fall Symposium, 2005.

[9] R. Hirschfeld, P. Costanza, and O. Nierstrasz. Context-oriented pro-
gramming. Journal of Object Technology, 7(3), 2008.

[10] T. Kamina, T. Aotani, and H. Masuhara. Eventcj a context-oriented
programming language with declarative event-based context transi-
tion. In Proc. of the 10th Conference on Aspect Oriented Software
Development, AOSD’11, pages 253–264. ACM, March 2011.

[11] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.
Loingtier, and J. Irwin. Aspect-oriented programming. Springer, 1997.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.
Griswold. An overview of aspectj. In ECOOP 2001Object-Oriented
Programming, pages 327–354. Springer, 2001.

[13] T. Kühn, M. Leuthäuser, S. Götz, C. Seidl, and U. Aßmann. A meta-
model family for role-based modeling and programming languages. In
Software Language Engineering, pages 141–160. Springer, 2014.

[14] M. Leuthäuser and U. Aßmann. Enabling view-based programming
with scroll: Using roles and dynamic dispatch for establishing view-
based programming. In Proc. of the Joint MORSE/VAO Workshop on
Model-Driven Robot Software Engineering and View-based Software-
Engineering, pages 25–33. ACM, 2015.

[15] S. Monpratarnchai and T. Tetsuo. The implementation and execution
framework of a role model based language, epsilonj. In Software Engi-
neering, Artificial Intelligence, Networking, and Parallel/Distributed
Computing, Int. Conf. on, SNPD’08., pages 269–276. IEEE, 2008.

[16] A. Nicoara, G. Alonso, and T. Roscoe. Controlled, systematic, and
efficient code replacement for running java programs. In Proc. of
the 3rd ACM SIGOPS/EuroSys European Conf. on Computer Systems,
pages 233–246. ACM, 2008.

[17] H. Rajan and K. Sullivan. Need for instance level aspect language
with rich pointcut language. SPLAT: Software engineering Properties
of Languages for Aspect Technologies, 2003.

[18] G. Salvaneschi, C. Ghezzi, and M. Pradella. Context-oriented pro-
gramming: A software engineering perspective. Jour. of Systems and
Software, 85(8):1801–1817, August 2012.

[19] Y. Sato, S. Chiba, and M. Tatsubori. A selective, just-in-time aspect
weaver. In Generative Programming and Component Engineering,
pages 189–208. Springer, 2003.

[20] W. Vanderperren, D. Suvée, B. Verheecke, M. A. Cibrán, and V. Jon-
ckers. Adaptive programming in jasco. In Proc. of the 4th Int. Conf.
on Aspect-oriented software development, pages 75–86. ACM, 2005.

[21] A. Villazón, W. Binder, D. Ansaloni, and P. Moret. Hotwave: creating
adaptive tools with dynamic aspect-oriented programming in java. In
ACM Sigplan Notices, volume 45, pages 95–98. ACM, 2009.

Final edited form was published in "MODULARITY Companion 2016. Malaga 2016", S. 137–142. ISBN: 978-1-4503-4033-5
https://doi.org/10.1145/2892664.2892687

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	A Dynamic Instance Binding_Vorsatz.pdf
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint Version) /
	This is a self-archiving document (accepted version):
	Martin Weißbach, Thomas Springer

