Dieses Dokument ist eine Zweitveroffentlichung (Postprint Version) /

This is a self-archiving document (accepted version):

Martin Weillbach, Thomas Springer

Coordinated Execution of Adaptation Operations in Distributed Role-
based Software Systems

Erstverdffentlichung in / First published in:

SAC 2017: Symposium on Applied Computing Marrakech, 03.04.-07.04.2017. ACM Digital
Library, S. 45-50. ISBN 978-1-4503-4486-9.

DOI: https://doi.org/10.1145/3019612.3019624

Diese Version ist verfiigbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-752682

TECHNISCHE
il SLUB UNIVERSITAT Oucosa

Wir fiihren Wissen. DRESDEN Quality Content of Saxony

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-752682
https://doi.org/10.1145/3019612.3019624

Final edited form was published in "SAC 2017: Symposium on Applied Computing. Marrakech 2017", S. 45-50. ISBN: 978-1-4503-4486-9
https://doi.org/10.1145/3019612.3019624

Coordinated Execution of Adaptation Operations in
Distributed Role-based Software Systems

Martin Wei3bach

Technische Universitat Dresden

Nothnitzer Stra3e 46, 01187 Dresden, Germany

martin.weissbach1@tu-dresden.de

ABSTRACT

Future applications will run in a highly heterogeneous and
dynamic execution environment that forces them to adapt
their behavior and offered functionality depending on the
user’s or the system’s current situation. Since application
components in such heterogeneous multi-device systems will
be distributed over multiple interconnected devices and co-
operate to achieve a common goal, a coordinated adaptation
is required to ensure a consistent system behavior. In this
paper we present a decentralized adaptation middleware to
adapt a distributed software system. Our approach sup-
ports the reliable execution of multiple adaptation opera-
tions that depend on each other and are performed transac-
tionally even in unsteady environments coined by message
loss or node failures. We implemented our approach in a
search-and-rescue robot scenario to show its feasibility and
conduct first performance evaluations.

CCS Concepts

eSocial and professional topics — Software selection and
adaptation; eSoftware and its engineering — Software
post-development issues;

Keywords

self-adaptive systems, decentralized coordinated adaptation,
multi-device systems, roles

1. INTRODUCTION

Software systems are more often distributed over multiple
physical or virtual devices collaborating to achieve a com-
mon goal or to provide services to users or other software
systems. Moreover, future software systems will have to ad-
just themselves to either the user’s current situation, their
computational environment or even both. In order to cope

©2017 Copyright held by the owner/author(s). Publication rights
licensed to ACM. This is the author’s version of the work. It is posted
here for your personal use. Not for redistribution. The definitive
Version of Record was published in MAC 2017, April 03-07, 2017,
Marrakech, Morocco.

DOL: http://dx.doi.org/10.1145/3019612.3019624

Thomas Springer
Technische Universitat Dresden

Nothnitzer StraBe 46, 01187 Dresden, Germany

thomas.springer@tu-dresden.de

with the high degree of distribution of such adaptive soft-
ware systems, the subsystems tasked with adaptation man-
agement will have to be decentralized as well [15]. A solid
body of research work is existing (cf. the survey conducted
in [8]) that focuses mainly on design approaches of such soft-
ware systems, reasoning and decision making including for-
mal foundations supporting these parts of an adaptive soft-
ware system. Decentralization aspects have already been in-
vestigated on the level of the decision making [10,12] in such
systems to determine which parts of the system have to be
adapted in response to changes in the computational envi-
ronment. The execution of such agreed changes has not been
subject to detailed investigation. In [7,14] a formal model
has been proposed to determine a state of run-time compo-
nents at which it is safe to exchange, update or remove them.
In [4] changes are limited so single devices without the need
for further coordination with other adaptation management
instances. None of the approaches considered the execution
of adaptations as a sequence of adaptation steps that are
related to or depend on each other.

We use the concept of roles to describe static and dynamic
parts of an adaptable entity [2]. The entity’s static part
is modeled as Player while dynamic parts are modeled as
Roles. A role, therefore, encapsulates context-dependent be-
havior of an entity, i.e., an adaptable entity’s behavior can
be accommodated to changes in its computational environ-
ment by having the player acquire or drop roles dynamically
at run time. Roles may also be migrated from one player
to another in response to context changes. On the appli-
cation level, Compartments set a collaboration context for
roles. Players may play roles in different compartments si-
multaneously, but only expose the behavior of the currently
active compartment. So far, the usage of the role concept
has focused on the abstraction of collaborations between sys-
tem entities, e.g., agents [1,11] or services [5], but has not
considered the contextual nature of roles.

In the remainder of this paper, we present an approach to
perform multiple related adaptations of a distributed soft-
ware system without the need for a central coordinator.
First, we will discuss related work in the field in detail (sec-
tion 2). Second, we will present our approach (section 3)
that incorporates (1) a high-level abstraction of the adap-
tive software system in which the adaptive subsystem as well
as the interaction with the managed subsystem is described;
(2) a set of platform-independent adaptation operators used
to describe the planned changes our solution is able to per-

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "SAC 2017: Symposium on Applied Computing. Marrakech 2017", S. 45-50. ISBN: 978-1-4503-4486-9
https://doi.org/10.1145/3019612.3019624

form; and (3) a decentralized coordination protocol that is
used by the managing subsystem to conduct the execution
of the planned changes. Third, we will evaluate our ap-
proach to show its feasibility to coordinate adaptations in
distributed environments. Finally, we will discuss the results
of the evaluation and conclude our presented approach.

2. STATE OF THE ART

A solid research body exists that focuses on the design and
architecture of self-adaptive software systems (see [8]) in-
cluding the MAPE-K feedback loop [6] as an architectural
means to enable self-adaptability of software systems through
self- and context-awareness. With an increasing degree of
distribution of adapted applications, centralized adaptation
management approaches become impractical, which leads to
several efforts to distribute the adaptation management sub-
system. Patterns of how to distribute phases of the feedback
loop [15] or the decentralization of the decision making pro-
cess have been the main research focus.

FlashMob [12] and DecAp [10] are examples of approaches
that share information about the system’s current configu-
ration to decide in a decentralized manner when and how
to (re-)assemble the system. A different approach by Geor-
giadis et al. [4] discusses the distributed execution of such
changes through distributed component managers. The com-
ponent managers synchronize using reliable broadcasts to
publish join/ leave messages of components entering or leav-
ing the system. Locks on the system, that ensures only one
component manager at a time to be able to perform local
changes on a globally consistent configuration, are also ac-
quired through broadcasting. However, a component man-
ager can only change its local component and a discussion
how several component managers would collaborate to per-
form multiple changes in a consistent way is missing. Our
approach takes the results of decentralized decision making
approaches as input to execute multiple, possibly dependent
changes in a coordinated and consistent manner.

Since adaptations are performed at run time, a state has
to be found in which it is safe to adapt the system or an
entity. In [7] this state is called the quiescent state of a
component and means the component not to be involved
in any communication and is, thus, safe for removal or up-
date, for example. Since the concept of quiescence imposes
the restriction of several system components for one compo-
nent to reach such a state, the conditions to reach this state
have been relaxed to achieve less system interruption sacri-
ficing the property to ever reach such a state; the resulting
concept is referred to as tranquility [14]. Different adapta-
tion semantics have been proposed that describe the system
behavior formally when adaptations are about to be per-
formed. In [3], three semantics are distinguished: (1) one-
point adaptation (system behavior changes from one point
in time to the next), (2) guided adaptation (the program is
restricted to reach a state at which it can be adapted), and
(3) overlap adaptation (a program temporarily exposes both
old and new behavior with the old system being restricted in
its functionally until the new behavior eventually takes over
completely). Our approach makes use of these foundations
to determine a point in time in the applications execution
that allows the safe modification of role bindings.

e T Adaptation Middieware|
|
| Adaptation Manager Adaptation Manager Adaptation Manager
|
| PN S WP SUN SR RSP W S S E Y S
modify monitor modify monitor modify monitor
I I I
Role Runtime Role Runtime Role Runtime
Node 1 Node 2 Node N

Figure 1: A decentralized adaptation middleware for
role-based software systems.

In multi-agent-systems, roles serve as abstraction to describe
collaborations of agents within a group of agents [1,11]. Sim-
ilarly, roles abstract from the concrete capabilities an agent
has to provide in order to play a role. For example, in
a peer-to-peer network, super peers can be established to
structure the network, but a super peer is essentially only a
role played by a peer with enough computational resources.
Apart from that, the collaboration between super peer and
its set of child peers clearly describes communication flows in
the system. Due to the collaboration-centric notion of roles,
an agent’s possible behaviors remain static at run time and
are either executed actively or not depending on the collab-
orations the agent participates in, but it is not possible to
dynamically add behavior or roles to an agent that was not
foreseen to be played by the agent at design time.

In summary, to the best of our knowledge, no current re-
search effort exists that investigates how to perform multiple
changes of a highly distributed software system in a coordi-
nated and consistent manner across several devices. Please
note that we are not concerned with the decision making
process itself as it was discussed in [10,12], but with the ex-
ecution of such calculated change prescriptions at run time.

3. APPROACH

Our approach relies on a clear separation of application and
adaptation logic as it was presented in [6]. First, we briefly
discuss the architecture of the overall system including our
proposed adaptation middleware. Subsequently, we describe
the adaptation operators supported by the adaptation mid-
dleware that describe how the application can be changed.
Lastly, we discuss the decentralized coordination protocol
used to execute the adaptation of the application.

3.1 System Overview

Relying on a clear separation of application and adaptation
logic, the two main components of our adaptive system’s
architecture are: (1) a role-based application and its respec-
tive runtime and (2) the adaptation middleware, which both
are distributed over multiple devices (see Figure 1). Due to
our focus on the coordinated execution of adaptations, we
omitted other necessary components of (self-)adaptive soft-
ware systems, such as monitoring of the computational en-
vironment or reasoning and planning components to derive
adaptation decisions in Figure 1.

The Adaptation Middleware is composed of autonomous Adap-
tation Managers that control the adaptation of the parts of
the distributed role-based application located on the same

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "SAC 2017: Symposium on Applied Computing. Marrakech 2017", S. 45-50. ISBN: 978-1-4503-4486-9
https://doi.org/10.1145/3019612.3019624

device. Since the adaptation managers collaborate to per-
form the adaptation, we consider the adaptation middleware
not only distributed but also decentralized [15]. The local
role-based application can be changed through the modify
interface of role-runtime and adaptation manager. Modifi-
cations such as creating or destroying role instances as well
as binding them to or unbinding them from players are real-
ized by that interface which adheres mainly to role features
three to five of [9], i.e., players may play different roles si-
multaneously and multiple times while players may acquire
and abandon roles at run time dynamically. The current
configuration of the role-based application in terms of roles
being played by which players can be obtained through this
interface, which is represented by the monitor arrow in Fig-
ure 1. The details of the interface between the adaptation
managers will be presented in section 3.3.

3.2 Adaptation Operators

In response to changes in the computational environment of
the distributed application, modifications may have to be
applied to the application to meet the new situation. Such
modifications are specific steps, represented by adaptation
operators that describe the transition of an application from
a source configuration to a valid target configuration [3].
The adaptation middleware is responsible for the execution
of this transition and supports operators to (1) create and
bind new instances of roles of a specific type to players, (2)
remove role instances from players as well as a combination
of both, namely, (3) exchanging a bound role instance with
a newly created instance of a different type of role, e.g., to
exchange data encoding context-dependently. Furthermore,
we support the (4) migration of a role from one player to
another, which might be located on a different node, and
the (5) replication of a role to other players.

Adaptation operators consist of a set of parameters (cf. Fig-
ure 2) to unambiguously describe the modifications to be
performed by the adaptation middleware: The unique Iden-
tifier identifies a single operation at run time; the Order
number allows to partially order multiple adaptation oper-
ators, e.g., to setup predecessor/successor relationships be-
tween operators; the Type identifies the concrete operator
and currently supports to establish and release collabora-
tions between roles in addition to operations (1) through
(5) mentioned above; the State is present if internal state
information of the role is supposed to be transferred from
the source to the target configuration; the Target Node and
Source Node specify the system configuration afterwards and
before operator’s execution, respectively. Both source and
target node are composed of four parameters: The player
and compartment parameters identify the core object on
which the respective role operation is supposed to be exe-
cuted on and in which compartment, respectively. The role
parameter either specifies only the type of the role or an in-
stance identifier as well. If a new role is to be created, only
the type information is provided, the latter case is used for
operations, e.g., a role’s migration or removal. We use the
term operation or adaptation operation if we speak about
the fully parameterized adaptation operator at run time.

The adaptation operators provided by the adaptation mid-
dleware are abstract operations that provide a specific se-

| I;I-a—y_e‘r_| Role | Compartment | Address i

[Imandatory i """ "ioptional parameters

Figure 2: Structure of Adaptation Operators.

mantic to the component that is responsible for planning
the changes. Each adaptation operation is decomposed into
a sequence of lower level adaptation operators provided by
the role runtime which we mentioned in the last section.

3.3 Coordinating Adaptation Operations

Using the previously described adaptation operators, the
configuration of the role-based application can be changed
at run time in response to changes in the computational en-
vironment. We introduce the term Transaction for a set of
related adaptation operations that defines a scope to reliably
transfer the adapted application from a source to a target
configuration. We assume each adaptation manager to have
complete knowledge about the current transaction, which
means that the transaction has to be distributed before the
adaptation process can commence.

Subsequently, we present the coordination protocol used by
the adaptation managers to perform the adaptation of the
distributed application and subsequently discuss error sce-
narios in distributed environments and the protocol features
addressing these scenarios.

3.3.1 The Coordination Protocol

The coordination protocol specifies messages and a scheme
on which adaptation managers exchange messages in order
to adapt a distributed role-based application. The protocol
specifies two types of coordination messages: Report and
State Transfer messages. A Report message contains a refer-
ence to the identifier of the transaction it is part of as well
as at least one tuple of {operationID, status}. The opera-
tionlD refers to the adaptation operation on which progress
is reported and the boolean status indicates whether the
operation was conducted successfully or not. The State-
Transfer message contains the same information as the re-
port message, but the status information on the operations
progress is replaced with a serialized representation of the
role’s internal state. Consequently, StateTransfer messages
are only transmitted from the source to the target config-
uration, e.g., as part of the migration of a role from one
(source) node to another (target) node.

In the following, we use a small example of a role’s migra-
tion from one player to another on a different node to outline
the exchange of Report and State Transfer messages between
adaptation managers to coordinate the adaptation. The mi-
grating role is assumed to collaborate with other roles, i.e.,
communication channels exist between the roles.

A planning component within the overall system is respon-
sible to calculate the resulting transaction, which consists of
Disconnect and Connect operations to release and reestab-

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "SAC 2017: Symposium on Applied Computing. Marrakech 2017", S. 45-50. ISBN: 978-1-4503-4486-9
https://doi.org/10.1145/3019612.3019624

.1 Remove Role 2.1 Add Role

A 2.6 Report State Transfer
@ 2.5 Transfer State
< 2.5 Report Add
1.5 Report 2.8 Report
Migrate

Disconnect
™ 1.8 Report
§ Disconnect

1.1. Disconnect

1.1. Disconnect

Figure 3: Exchange of Coordination messages for a
migrate operation.

lish collaborations of the migrating role, and a Migrate op-
eration. The previously discussed adaptation operators are
parameterized by the planning component to instruct the
adaptation middleware with the modifications that are sup-
posed to executed, e.g., specify operation IDs for each opera-
tion that is unique within the scope of the transaction, or use
the Order Number parameter to ensure the operations to be
performed in the order Disconnect < Migrate < Connect.

After receiving a transaction, each involved adaptation man-
ager calculates Order Groups based on the adaptation oper-
ations’ order number. This step is required to structure to
execution of dependent operations and contributes to reduce
the amount of transmitted coordination messages. Adapta-
tion managers that are addressed within the source or target
parameter of operations that belong to the first order group
commence the execution of the transaction while other adap-
tation managers wait. In our example, AM 1 and AM 2 per-
form the disconnection of the role collaboration (step 1.1)
and report the local results to each other (step 1.5). Please
note that these Report messages are only exchanged between
the AMs of the source and target node of the operation.
Since AM 2 was specified as target node of the operation, it
propagates the overall result to all other AMs that are part
of the transaction, which is shown representatively in step
1.8 in Figure 3.

Upon receiving all Report messages, an adaptation manager
continues immediately with the execution of the next Order
group. In our case, AM 3 creates a new local instance of the
role under migration, while AM 1 performs the removal of
the role, which consists of a passivation of the role and the
retrieval of its internal state after it was passivated. Both
actions are displayed as step 2.1 in Figure 3 to indicate the
parallel execution of these sub-tasks of the migration. Step
2.5 in Figure 3 shows the Report and StateTransfer messages
exchanged between the two. After the received state infor-
mation was injected into the newly created role instance,
AM 3 sends another Report message to AM 1 (step 2.6) and
notifies all peers about the successful migration of the role
(step 2.8). Subsequently, roles would be reconnected, which
we will not present since the general idea follows the previ-
ously discussed disconnection. Local changes are activated
after all Order Groups were executed successfully and the
application resumes to work unrestricted. The passivation
of roles can be considered a restriction of the application’s
functionality since this passive state can be mapped to a

quiescent state of a component [7]. Please note that parts of
the application not affected by the adaptation continue to
carry out their tasks. Roles of higher Order Groups remain
active, too, until their Order Group is executed.

3.3.2 Handling Error Scenarios

We foresee the loss of coordination messages exchanged be-
tween adaptation managers, software failures of adaptation
managers or parts of the adapted application, and adap-
tation failures due to insufficient resources available on a
node as infrequently occurring errors during the execution
of adaptation processes. Leaving these errors unattended
can result in an inconsistent application configuration, which
may render the application inoperable. In the remainder of
this section, we discuss how these error scenarios are ad-
dressed by the coordination protocol. Previously received
Report messages of the currently executed Order Group are
accumulated in outgoing Report messages. If an adaptation
manager is still missing Report messages, a RequestReport
message is transmitted to the adaptation managers of which
reports are missing to request the transmission of the re-
port. Ultimately, a RequestReport message is broadcast to
peers of the Order Group to obtain the missing report infor-
mation. If no other peer could provide status information
about the progress of the operation on the node, the adap-
tation is continued assuming optimistically that the node
will be back online soon. However, the decision whether to
continue or abort the transaction also depends on the con-
crete adaptation operation. Assume the source node of a
migrate operation is unavailable during the adaptation pro-
cess. Since no state information can be obtained in such
a case, the collaborating adaptation manager of the target
node would have the transaction abort immediately after
the request for the report retransmission fails.

In the case of lost State Transfer messages, the procedure is
similar, but if the state information could not be obtained
after a requested retransmission, the target node’s adapta-
tion manager broadcasts a negative Report message to all
adaptation managers participating in the transaction, which
aborts the transaction immediately.

In case of a failed transaction, all changes that have already
been performed have to be reverted. The steps necessary
are calculated by the adaptation managers autonomously
upon the receipt of a negative report message. A rollback
of a transaction requires only minimal further coordination
since passive roles only have to be reactivated and newly cre-
ated but still passive role instances are removed. Reestab-
lishing collaborations between roles follows the scheme of
(dis-)connecting roles, which we already discussed.

For the recovery from failures of single adaptation managers
or the adaptable application, the execution of operations
and the progress of the transaction is logged locally by each
adaptation manager. Having knowledge about the last exe-
cuted transaction and the state of the execution allows the
adaptation manager to reintegrate and finish the execution
of the transaction. However, in a first step, reports from
peer adaptation managers are requested to determine if the
transaction is supposed to be continued or if it has been
aborted in the absence of the local adaptation manager.

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "SAC 2017: Symposium on Applied Computing. Marrakech 2017", S. 45-50. ISBN: 978-1-4503-4486-9
https://doi.org/10.1145/3019612.3019624

<< Player>>
<< RoleType>> RobotMoveManagement
SearchAndRescue -currentPosition
+calculateRoute() -currentOrientation
ZA +calculateRoute()
|
f 7777777777777777 1
1 I
<<Role>> !
Rescuer << Role>>
— — Searcher
-victimPosition
+calculateRoute()
+calculateRoute()

---- D realizes —— & plays

Figure 4: Role Diagram for the Search-And-Rescue
Robot scenario.

Since local adaptation errors due to resource constraints re-
sult in a negative Report message sent to all adaptation man-
agers involved in the transaction, the transaction is immedi-
ately aborted and already performed changes are reverted.

4. EVALUATION

We implemented the coordination protocol in the adapta-
tion middleware using Java 1.8 and LyRT [13] to implement
the managed role-based application. LyRT is a role-based
framework that uses dynamic instance binding to modify
a player’s run-time behavior through role bindings, which
meets our role requirements. An extension to LyRT was
implemented that allows our adaptation managers to mod-
ify the role bindings of the managed application. A robot’s
movement is controlled by the RobotMoveManagement player
that can play roles of the type SearchAndRescue to de-
termine and modify the exact movement behavior at run
time. If a victim’s location is unknown, the player plays the
Searcher role (random movement) whereas the robot moves
straight to the victim and on the shortest way out of the dis-
aster site after the victim has been recovered (Rescuer role)
if the location is known (see Figure 4). Assume, one robot
finds a victim and exchanges the Searcher with the Rescuer
role, but detects itself to be unable to finish the rescue due
to low battery power. An adaptation is triggered that mi-
grates the Rescuer role to another robot nearby. Since both
roles provide behavior that is specific to the robots move-
ment, the Searcher role has to be removed from the second
robot before the migration can be performed. Please note
that finding a nearby robot or calculating adaptation plans
are responsibilities of the self-adaptive infrastructure built
on top of our adaptation middleware, e.g., [10,12].

We conducted the experiment in a partially virtualized en-
vironment on one of our office’s computers. That means
the second robot was executed directly on the host system
whereas the source robot was executed within a virtual ma-
chine. A third system simulated the decision making process
by issuing the transaction to the nodes involved in the exper-
iment. It was hosted on a different virtual machine on the
same physical hardware. Delays to the adaptation process
introduced by the network communication of the adaptation
managers are purposefully neglected using such a virtualized
environment for the experiment. The underlying network’s

T T
1,200 |~ ° —
® RDT --- ¢gRDT
1.000 |- ® SNAD - - - gSNAD) N
® TNAD - - - ¢gTNAD
£ 800 e e ° -
) °
7 e e _ e T T T TTTTTTTTT °
o ° o © []
E 600 [[} . L) ° [] 1
g _ @ o_o
a3 ° o ® . o °
400 |- ° e oo ° ~
200 — o ____@-- e ®_ ___________. —
hmaial S A 4 o ee 4
° °
0 \ \ \ -
0 5 10 15

Iteration

Figure 5: Results of the Adaptation Measurements;
RDT...Role Downtime; S/TNAD...Source/Target
Node Adaptation Duration.

performance cannot be influenced by the adaptation pro-
tocol and a mitigated network communication allows for a
better assessment of the protocol’s performance with respect
to the execution of the adaptation.

In the experiment we conducted, the total time the transac-
tion was running on both source (SNAD) and target (TNAD)
nodes was measured. We also measured the downtime of the
role (RDT) that was migrated. The role downtime is a mea-
sure for the interruption of the specific behavior, and hence
the managed application. This downtime of the roles begins
when the role is passivated on the source side, thus, ceases to
perform its designated behavior and ends after the activation
of the role on the target side. Figure 5 displays the results
of the experiment. The downtime of the migrated Rescuer
role averages at 182ms over all performed 16 iterations of the
experiment. Iterations 10 and 11 show an increased adap-
tation duration time and role downtime for which we deem
Java’s garbage collection mechanisms responsible.

S. DISCUSSION

Our approach can be classified as a Guided Adaptation [3]
using the notion of guiescence [7] to reach a safe state that
allows for the safe execution of adaptation. The concept of
quiescence is applied to roles only, which means players con-
tinue to operate as long as the role-specific behavior is not
performed. Consequently, the time of system interruption
can be reduced, which is beneficial for the measured results
of our approach.

Due to the decentralization of our adaptation middleware,
our approach could easily be integrated into approaches re-
lying on a decentralized planning of changes, e.g., [10, 12].
Our approach is not limited to role-based software systems
if an abstraction layer, which maps to the local role-runtime,
can be built on top of the adaptable application. The role-
abstraction allowed us to define adaptation operators inde-
pendently from the managed application’s platform.

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

Final edited form was published in "SAC 2017: Symposium on Applied Computing. Marrakech 2017", S. 45-50. ISBN: 978-1-4503-4486-9
https://doi.org/10.1145/3019612.3019624

We consider the loss of coordination messages the most com-
mon error source during ongoing adaptations. The aggre-
gation of report messages and the optimistic continuation
of the adaptation process are the coordination protocol’s
means to cope with message loss. Furthermore, the reinte-
gration of failed nodes during an adaptation process is ad-
dressed by the coordination protocol. However, we want to
stress that mechanisms known from self-healing approaches
are expected to detect node failures or application crashes
and to restart them in order for our adaptation middleware
to be able to recover the transaction from the failure.

6. CONCLUSION

In this paper, we presented an approach to coordinate the
adaptation of a distributed application in a consistent and
decentralized manner. The execution phase of a self-adaptive
system has not been subject to major research efforts except
for [4] that ensures consistent local adaptations of a dis-
tributed system. However, performing several adaptations
that depend on each other in a consistent manner has not
been investigated yet. The decentralized coordination pro-
tocol presented in this paper fills this gap. We use the ab-
straction between static and dynamically exchangeable ap-
plication parts provided through the concept of roles [2] as
a foundation for the adaption operators that serve as in-
put for the coordination protocol and describe the changes
supposed to be made to the managed application.

We conducted experiments in the domain of autonomous
search-and-rescue robots to show the feasibility of our ap-
proach. The first measures we obtained indicate a general
feasibility of our idea for adaptations that encompass a few
changes with respect to local execution times of the actual
adaptations. Our evaluation environment was coined by low
network latency which allowed us to get insight about the
general performance of local execution of the coordination
protocol. Exhaustive experiments with respect to the dis-
cussed error scenarios still have to be conducted.

The concept of roles allows the coexistence of old and new
application behavior due to the invocation resolutions at run
time. Taking advantage of this behavior through a refine-
ment of the adaptation protocol beyond the plain passiva-
tion and activation of roles would allow us to reduce the time
the system is interrupted throughout the adaptation. Future
work in this direction is likely to result in improvements of
the proposed coordination protocol.

Acknowledgements

This work is funded by the German Research Foundation
(DFG) within the Research Training Group “Role-based Soft-
ware Infrastructures for continuous-context-sensitive Systems”
(GRK 1907).

7. REFERENCES

[1] M. Becht, T. Gurzki, J. Klarmann, and M. Muscholl.
ROPE - Role Oriented Programming Environment for
Multiagent Systems. CooplS, 1999.

2]

3]

[4]

[5]

[6]

7]

8]

[9]

(10]

(11]

(12]

(13]

(14]

(15]

G. Boella and F. Steimann. Roles and Relationships in
Object-Oriented Programming, Multiagent Systems
and Ontologies. In Object-Oriented Technology.
ECOOP 2007 Workshop Reader, pages 108—122.
Springer, Berlin, Heidelberg, July 2007.

B. H. C. Cheng and J. Zhang. Specifying adaptation
semantics. ACM SIGSOFT Software Engineering
Notes, 30(4):1-7, May 2005.

I. Georgiadis, J. Magee, and J. Kramer.
Self-organising software architectures for distributed
systems. ACM, New York, New York, USA, Nov. 2002.
R. Haesevoets, D. Weyns, and T. Holvoet.
Architecture-centric support for adaptive service
collaborations. ACM Transactions on Software
Engineering and Methodology (TOSEM), 23(1):2-40,
Feb. 2014.

J. O. Kephart and D. M. Chess. The Vision of
Autonomic Computing. Computer, 36(1):41-50, Jan.
2003.

J. Kramer and J. Magee. The evolving philosophers
problem: Dynamic change management. Software
Engineering, IEEE Transactions on,
16(11):1293-1306, 1990.

C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele,
and C. Becker. A survey on engineering approaches for
self-adaptive systems. Pervasive Mob. Comput.,
17(PB):184-206, Feb. 2015.

T. Kiihn, M. Leuth&user, S. Go6tz, C. Seidl, and

U. Afimann. A Metamodel Family for Role-Based
Modeling and Programming Languages. In Software
Language Engineering, pages 141-160. Springer
International Publishing, Cham, Sept. 2014.

S. Malek, M. Mikic-Rakic, and N. Medvidovic. A
Decentralized Redeployment Algorithm for Improving
the Availability of Distributed Systems. In Component
Deployment, pages 99—-114. Springer Berlin
Heidelberg, Berlin, Heidelberg, Nov. 2005.

J. Odell, M. Nodine, and R. Levy. A Metamodel for
Agents, Roles, and Groups. In Agent-Oriented
Software Engineering V, pages 78-92. Springer Berlin
Heidelberg, Berlin, Heidelberg, July 2004.

D. Sykes, J. Magee, and J. Kramer. FlashMob:
distributed adaptive self-assembly. distributed adaptive
self-assembly. ACM, New York, USA, May 2011.

N. Taing, T. Springer, N. Cardozo, and A. Schill. A
dynamic instance binding mechanism supporting
run-time variability of role-based software systems.
ACM, New York, USA, Mar. 2016.

Y. Vandewoude, P. Ebraert, Y. Berbers, and

T. D’Hondt. Tranquility: A Low Disruptive
Alternative to Quiescence for Ensuring Safe Dynamic
Updates. IEEE Transactions on Software Engineering,
33(12):856-868, Dec. 2007.

D. Weyns, B. Schmerl, V. Grassi, S. Malek,

R. Mirandola, C. Prehofer, J. Wuttke, J. Andersson,
H. Giese, and K. M. Géschka. On Patterns for
Decentralized Control in Self-Adaptive Systems. In
Software Engineering for Self-Adaptive Systems II,
pages 76—107. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2013.

Provided by Sachsische Landesbibliothek - Staats- und Universitatsbibliothek Dresden

	Coordinated Execution_Vorsatz.pdf
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint Version) /
	This is a self-archiving document (accepted version):
	Martin Weißbach, Thomas Springer

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move up by 18.00 points
 Normalise (advanced option): 'original'

 32

 D:20170118110126
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Up
 18.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 5
 6

 1

 HistoryItem_V1
 TrimAndShift

 Range: From page 1 to page 1
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Down
 1.8000
 0.0000

 Both
 1
 SubDoc
 1

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 6
 0
 1

 1

 HistoryList_V1
 qi2base

