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Abstract

In this work, the crystal growth as well as structural and magnetic investigations of several
metal trichalcogenides compounds with a general formulaM2X2Ch6 are presented. M stands
for a main group metal or transition metal,X is an element of the IV or V main group and Ch
is a chalcogen. In particular, these compounds are the phosphorus sulfides Fe2P2S6, Ni2P2S6 as
well as intermediate compounds of the substitution regime (Fe1−xNix)2P2S6, the quarternary
phosphorus sulfides CuCrP2S6 and AgCrP2S6 and the germanium tellurides Cr2Ge2Te6 and
In2Ge2Te6. As members of the metal trichalcogenides, all these compounds have a van der
Waals layered honeycomb structure in common. This layered structure in combination with
their magnetic properties makes these compounds interesting candidate materials for the pro-
duction of magnetic monolayers by exfoliation from bulk crystals.
Crystals of the phosphorus sulfides were grown by the chemical vapor transport technique
and, for the growth of the germanium tellurides, the self-flux growth technique was used.
Crystals of all phases were extensively characterized regarding their morphology, chemical
composition and homogeneity as well as regarding their crystal structure. The structural anal-
ysis, especially for Ni2P2S6, yields insight into details of the stacking order and disorder of the
corresponding quasi-two-dimensional layers in the bulk.
Regarding the magnetic properties, both Fe2P2S6 and Ni2P2S6 order antiferromagnetically
but exhibit different magnetic anisotropies (i.e. Ising-like anisotropy for Fe2P2S6 and XYZ
anisotropy for Ni2P2S6). In this context, it is surprising to find that compounds in the solid
solution regime of (Fe1−xNix)2P2S6 up to x = 0.9 exhibit an anisotropic magnetic behavior
that is comparable to Fe2P2S6 and, thus, indicative of Ising-like anisotropy. For CuCrP2S6 and
AgCrP2S6, the ordering of the two different transition elements on the honeycomb sites yields
more complex magnetic structures. The magnetic Cr3+ atoms in CuCrP2S6 order in a trian-
gular arrangement and form an antiferromagnetic ground state with notable ferromagnetic
interactions. AgCrP2S6 exhibits pronounced features of low dimensional magnetism result-
ing from the (quasi-)one-dimensional stripe-like arrangement of magnetic Cr3+ atoms and no
onset of long-range magnetic order is unambiguously observed. Cr2Ge2Te6 exhibits ferromag-
netic order and an anisotropic feature in the temperature dependence of the magnetization.
Based on themagnetic phase diagrams for two orientations between themagnetic field and the
crystallographic directions, the temperature dependence of the magnetocrystalline anisotropy
constant as well as the critical exponents of the magnetic phase transition are extracted. Con-
cluding from this, the magnetic interactions in Cr2Ge2Te6 are dominantly of two-dimensional
nature and the anisotropy is uniaxial with the before mentioned anisotropic feature resulting
from the interplay between magnetocrystalline anisotropy, magnetic field, and temperature.
In2Ge2Te6 is diamagnetic as to be expected for a closed-shell system.
Additional to the investigations on single crystals, the quasi-binary phase diagram of
(Cu1−xAgx)CrP2S6 was investigated for regimes of solid solution behavior based on polycrys-
talline samples. Accordingly, isostructural substitution is most likely possible in the compo-
sition range of (Cu0.25Ag0.75)CrP2S6 to AgCrP2S6, potentially allowing to tune the magnetic
interactions of the Cr sublattice indirectly by substitution on the Cu/Ag sublattice.





Kurzfassung

In dieser Arbeit werden die Kristallzüchtung sowie strukturelle und magnetische Untersuchungen
an mehreren Metalltrichalkogenid-Verbindungen mit der allgemeinen SummenformelM2X2Ch6 vor-
gestellt. M steht für ein Hauptgruppen- oder Übergangsmetall, X ist ein Element der IV- oder V-
Hauptgruppe und Ch ein Chalkogen. Insbesondere handelt es sich bei diesen Verbindungen um die
Phosphorsulfide Fe2P2S6, Ni2P2S6 sowie um Verbindungen der Substitutionsreihe (Fe1−xNix)2P2S6,
die quaternären Phosphorsulfide CuCrP2S6 und AgCrP2S6 sowie die Germaniumtelluride Cr2Ge2Te6
und In2Ge2Te6. Als Mitglieder der Metalltrichalkogenide haben alle diese Verbindungen eine van-der-
Waals-Schichtstruktur mit Honigwabenmotiv gemein. Diese Schichtstruktur in Kombination mit ihren
magnetischen Eigenschaften macht diese Verbindungen zu interessanten Kandidaten für die Herstel-
lung von magnetischen Monolagen durch Exfoliation aus Volumenkristallen.
Kristalle der Phosphorsulfidewurdenmit der chemischenDampfphasentransporttechnik gezüchtet und
für die Züchtung der Germaniumtelluride wurde die Selbstflusstechnik verwendet. Die Kristalle aller
Phasenwurden sowohl hinsichtlich ihrerMorphologie, chemischen Zusammensetzung undHomogeni-
tät als auch hinsichtlich ihrer Kristallstruktur umfassend charakterisiert. Die Strukturanalyse, insbeson-
dere für Ni2P2S6, gibt Aufschluss über Details der Stapelordnung und -unordnung der entsprechenden
quasizweidimensionalen Schichten im Volumen.
Bezüglich der magnetischen Eigenschaften ordnen sowohl Fe2P2S6 als auch Ni2P2S6 antiferromagne-
tisch, zeigen aber unterschiedliche magnetische Anisotropien (d.h. Ising-artige Anisotropie für Fe2P2S6
und XYZ-Anisotropie für Ni2P2S6). In diesem Zusammenhang ist es überraschend, dass Verbindun-
gen im Mischkristallregime von (Fe1−xNix)2P2S6 bis x = 0.9 ein anisotropes magnetisches Verhalten
zeigen, das mit dem von Fe2P2S6 vergleichbar ist und daher auf Ising-artige Anisotropie hindeutet.
Bei CuCrP2S6 und AgCrP2S6 führt die Anordnung der beiden unterschiedlichen Übergangselemente
auf den Gitterplätzen der Wabenstruktur zu komplexeren magnetischen Strukturen. Die magnetischen
Cr3+-Atome in CuCrP2S6 ordnen sich in einer Dreiecksanordnung an und bilden einen antiferroma-
gnetischen Grundzustand mit ausgeprägten ferromagnetischen Wechselwirkungen. AgCrP2S6 weist
deutliche Merkmale von niederdimensionalem Magnetismus auf, welche aus der (quasi-)eindimensio-
nalen, streifenartigen Anordnung der magnetischen Cr3+-Atome resultieren, und das Einsetzen von
langreichweitiger magnetischer Ordnung kann nicht eindeutig beobachtet werden. Cr2Ge2Te6 weist
ferromagnetische Ordnung und einen anisotropen Verlauf der Temperaturabhängigkeit der Magneti-
sierung auf. Anhand vonmagnetischen Phasendiagrammen für zwei Orientierungen zwischenMagnet-
feld und kristallographischen Richtungenwurden die Temperaturabhängigkeit dermagnetokristallinen
Anisotropiekonstante sowie die kritischen Exponenten des magnetischen Phasenübergangs extrahiert.
Hieraus ergibt sich, dass die magnetischen Wechselwirkungen in Cr2Ge2Te6 überwiegend zweidimen-
sionaler Natur sind und die Anisotropie uniaxial ist, wobei der zuvor erwähnte anisotrope Verlauf
aus dem Zusammenspiel von magnetokristalliner Anisotropie, Magnetfeld und Temperatur resultiert.
In2Ge2Te6 ist diamagnetisch, wie es für ein System mit geschlossener Schale zu erwarten ist.
Zusätzlich zu den Untersuchungen an Einkristallen wurde das quasibinäre Phasendiagramm von
(Cu1−xAgx)CrP2S6 anhand von polykristallinen Proben auf Bereiche mit Mischkristallverhalten hin
untersucht. Folglich ist eine isostrukturelle Substitution höchstwahrscheinlich im Zusammensetzungs-
bereich von (Cu0.25Ag0.75)CrP2S6 bis AgCrP2S6 möglich, was es erlauben könnte, die magnetischen
Wechselwirkungen des Cr-Untergitters indirekt durch Substitution auf dem Cu/Ag-Untergitter zu be-
einflussen.
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1. Introduction

In 2004, Novoselov and Geim et al. reported the experimental discovery of graphene, a stable
modification of carbon in atomically thin layers [1], as illustrated in Fig. 1.1. Until then, atom-
ically thin layers were thought to be thermodynamically unstable following from the Mermin-
Wagner theorem (and its variants) [2–4], according to which long-range order cannot be stable
for an isotropic two-dimensional (2D) system. However, the discovery of graphene demon-
strated that stable 2D systems can be realized, which is attributed to crumpling of the layers or
interactions with a substrate [5, 6]. The importance of this finding for the scientific commu-
nity is likely best illustrated by the fact that Novoselov and Geim received the Nobel price in
physics ’for groundbreaking experiments regarding the two-dimensional material graphene’
in 2010 [7] — only six years after the publication of their initial report on graphene.

Fig. 1.1.: Illustration of the structure of graphene (i.e. a monolayer of graphite). Graphic created with
Blender (v2.9) [8].

The discovery of graphene motivated a whole new field in solid state science dealing with
monolayer materials, their properties and potential applications [9–12]. Several families of
2D materials were subsequently found, isolated and investigated [13, 14]. Special attention
was given to the electronic properties of these materials [15], as the electronic structure in
the monolayer limit is affected by quantum confinement along one dimension [16–18]. This
yielded a plethora of monolayer materials with different electronic properties, including met-
als, semimetals, topological insulators, semiconductors and insulators [19–24]. Furthermore,
more complex electronic phenomena such as superconductivity, charge density wave or Mott-
insulating states could be observed in these 2D materials [25–27]. The combination of materi-
als with different properties in heterostructures is promising to yield new physical effects and
develop new devices [9, 28].
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1. Introduction

Fig. 1.2.: Perspective drawing of a layer of (a) Cr2Ge2Te6 and (b) CrI3 with view perpendicular to the
layer illustrating a honeycomb structure similar to graphene. Structural data according to Carteaux et
al. [37] and McGuire et al. [38].

Over a decade after the discovery of stable monolayers, the realization and subsequent in-
vestigation of magnetic monolayer materials became a rapidly growing research area within
the 2D materials research. To a substantial part, this is due to the experimental detection of
long range ferromagnetic order in atomically thin samples of Cr2Ge2Te6 [29] and CrI3 [30]
in 2017 and the potential application of such ferromagnetic monolayers in devices and het-
erostructures [31–36]. The structure of these two compounds is shown in Fig. 1.2.

In general, materials that exhibit a structure of charge neutral layers in the bulk are suitable
to yield monolayer samples in a top-down approach, in analogy to the preparation of graphene
from graphite. In the bulk, such layers typically interact only via weak van der Waals forces
with each other. Consequently, bulk crystals are readily thinned down, potentially to the
monolayer, by mechanical or chemical exfoliation [13, 24, 39, 40]. Thus, bulk materials con-
sisting of such layers moved in the focus of research. To additionally exhibit magnetic order,
the material has to contain magnetic transition element or rare earth ions [32].

The metal trichalcogenides of the general formula M2X2Ch6 (M is a main group metal or
transition metal,X is an element of the IV or V main group and Ch is a chalcogen) are a class
of compounds exhibiting both a layered structure and containing a wide range of different
transition element ions [41, 42]. As all members of the metal trichalcogenides share virtually
the same structure in the layer, compounds of this class became model systems to study the
influence of different transition metals on 2D magnetism [43]. Additionally, physical prop-
erties can be tuned by chemical substitution and physical pressure in metal trichalcogenides
compounds.

Regarding 2Dmagnetism, a property that is of particular interest is the magnetic anisotropy,
as it determines the stability of magnetic order on the monolayer. Similar to 2D structural
order, magnetic order in 2D may be expected to break down following the Mermin-Wagner
theorem [2]. However, this theorem is only valid for isotropic systems and, thus, magnetic
anisotropy can stabilize long-range magnetic order in 2D [29, 32]. As an example, illustrat-
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ing the role of magnetic anisotropy on the stability of the magnetic order in 2D, magnetic
order is experimentally observed for a monolayer of the magnetically strongly anisotropic
Fe2P2S6 [44], while the bulk magnetic order breaks down for a monolayer of the isostructural
but weakly anisotropic Ni2P2S6 [45]. For a particular magnetic anisotropy of intermediate
strength which can be described by the XY model, a special kind of disordered ground state is
expected to be stabilized in 2D systems due to fluctuations described in the Mermin-Wagner
theorem. This state is predicted to be accessed via a phase transition from the paramagnetic
(disordered) state, which is unusual as the transition describes a disorder–disorder transition
and, thus, is of topological nature. The prediction and description of such a phase transition
and the corresponding states is part of the work of Thouless and Kosterlitz [46, 47] for which
they received the Nobel price in physics in 2016 together with Haldane — ’for theoretical dis-
coveries of topological phase transitions and topological phases of matter’ [48].

This work focuses on different compounds of the class of metal trichalcogenides, namely
Fe2P2S6, Ni2P2S6, CuCrP2S6, AgCrP2S6, Cr2Ge2Te6 and In2Ge2Te6, as well as the substitution
series (Fe1−xNix)2P2S6 and (Cu1−xAgx)CrP2S6. The conditions for the growth of bulk crystals
were investigated and optimized. As exfoliation of such bulk crystals is one of the suitable
ways to produce monolayer samples, reliable and reproducible crystal growth conditions are
essential. Crystals were extensively characterized to ensure a good crystal quality. Further-
more, the crystal structure and its defects were investigated to obtain a better understanding of
the interactions in the structural layers as well as between adjacent layers. Themagnetic prop-
erties were studied directly on the bulk crystals. Due to the absence of covalent bonds between
the layers, no significant interlayer magnetic exchange is expected in such a crystal. Thus,
even bulk crystals exhibit characteristic features of 2D magnetism. Furthermore, the material-
specific contribution to the magnetic anisotropy (i.e. the magnetocrystalline anisotropy) is
independent of the dimensionality of the sample. Consequently, the magnetic anisotropy is
studied in bulk samples to identify compounds with a suitable magnetic anisotropy for mono-
layer magnetism. The specific compounds are introduced in more detail in the beginning of
the experimental chapters, as listed in the following paragraph.

This work is structured as follows: Hereafter, the introduction chapter continues with the
introduction of the class of metal trichalcogenides in more detail regarding structure and
properties (Sect. 1.1) and a general introduction to magnetic phenomena in solid state ma-
terials (Sect. 1.2). The methods and techniques used in this work for synthesis, crystal growth,
characterization and physical measurements are introduced in Chapter 2. Subsequently, the
main experimental findings of this work are presented in Chapter 3 for the results on the
M2P2S6 compounds, i.e. Ni2P2S6 and the substitution series (Fe1−xNix)2P2S6, in Chapter 4
for the results on the M1+CrP2S6 compounds, i.e. CuCrP2S6, AgCrP2S6 and the substitution
series (Cu1−xAgx)CrP2S6, and in Chapter 5 for the results on the M2Ge2Te6 compounds, i.e.
Cr2Ge2Te6 and In2Ge2Te6. The main results of this work are shortly summarized and con-
cluded in Chapter 6.

3



1. Introduction

1.1. M2X 2Ch6 Class of Materials

The compounds investigated in this work belong to the class of metal trichalcogenides. Mem-
bers of this class exhibit a general formula ofM2X2Ch6 withM being a 2+ main group metal
or transition metal and Ch = S, Se for X = P, or M being a 3+ metal and Ch = Te for
X = Si, Ge [41, 42].

Although X may either be a group IV or group V element with the oxidation state of M
adapting accordingly to ensure charge neutrality, all members of this class of materials share
a specific structural motif: a X2 dumbbell octahedrally coordinated by six Ch atoms. This
X2Ch6 structural unit exhibits interatomic distances that imply covalent X–X and X–Ch
bonding. The notation of the chemical formula as M2X2Ch6 rather than as MXCh3, as fre-
quently found in literature, expresses the existence of such covalent X2Ch6 units in these
compounds. In the plane perpendicular to the bond axis of the X2 dumbbell and through its
center of mass, this covalent unit is surrounded by six M atoms forming a hexagon. The M
atoms interact with the X2Ch6 unit mainly by ionic bonding via the Ch atoms. Vice versa,
each M atom is surrounded by a hexagon of three other M atoms and three X2Ch6 units,
which results in a honeycomb patterned layer ofM with each void occupied by aX2Ch6 unit.
Such layers are stacked on top of each other with relatively large gaps in between them (i.e.
van der Waals gaps, as shown in Fig. 1.3), such that adjacent layers interact only via weak van
der Waals interactions.

Following from this general bonding behavior, the metal trichalcogenides are best under-
stood as M2+

2 [P2S6]4− and M3+
2 [(Si,Ge)2Te6]6− regarding their oxidation states. Conse-

quently, these compounds may be described as salts of the hypothetical hexathiohypodiphos-
phoric acid H4P2S6 with divalent cations and of the equally hypothethical hexatellurohypo-
disilicic and -hypodigermanic acids H6(Si,Ge)2Te6 with trivalent cations [49].

This type of structure descends from the structural aristotype CdI2 in agreement with Sei-
dlmayer [51]. CdI2 in the space group P3m1 (No. 164) [52] forms hexagonal closed packed
layers of I with the octahedral sites of every second interlayer being fully occupied by Cd. Such
CdI2 layers are stacked on top of each other without any shift between layers (AA stacking).
Consequently, the high-symmetry crystal structure of CdI2 can be understood as idealized par-
ent structure of all metal trichalcogenides with their different space groups being subgroups
of the CdI2 space group. An introduction to the group theory for crystallographic considera-
tions can be found in Ref. [53]. The group–subgroup relationship as well as the relationship
between the different structures in the different space groups is illustrated in Fig. 1.3 and 1.4,
following the Bärnighausen formalism, and discussed in the following paragraphs.

Compounds of the Al2Si2Te6 structure type (P3; No. 147) [54] exhibit the same hexagonal
closed packed layers as CdI2 but with a chalcogenCh instead of I.The octahedral sites of every
second interlayer are again fully occupied, in this case by 1/3 X2 dumbbells (i.e. the center of
mass of the dumbbells is located on the octahedral site) and 2/3M atoms. In particular,X2 and
M sites order such that each M octahedral site is surrounded by three octahedral sites with
X2 dumbbells and three sites occupied by M , while every X2 octahedral site is surrounded
by sixM octahedral sites. This ordering breaks the mirror symmetry of the layers in the CdI2

4



1.1. M2X2Ch6 Class of Materials

Fig. 1.3.: Graphical illustration of the structural relationship between the CdI2 structure type in the
P3m1 space group and the different structure types of the metal trichalcogenides. The colors of the
atoms corresponds to the colors in Fig. 1.4.

structure and , subsequently, causes a larger unit cell in the in-plane directions, containing
three octahedral sites instead of one.

Compounds of the Fe2P2Se6 structure type (R3; No. 148) [55] exhibit the same atomic struc-
ture in the layers as the Al2Si2Te6 type compounds but ABC stacking (i.e. a shift of 1/3a and
1/3b between adjacent layers) instead of AA stacking. By changing the centering of the space
group from primitive to rhombohedral, a three-fold screw axis is obtained. This screw axis to-
gether with a tripling of the c parameter and the adjustment of the atomic parameters ensures
the ABC stacking in the crystal structure of the Fe2P2Se6 structure type.

The Fe2P2S6 type compounds exhibit again the same structure of the layer as observed in
the Al2Si2Te6 structure type. The stacking of layers in these sulfides is similar to the ABC
stacking in the Fe2P2Se6 structure type. However, the periodicity in c direction is not exactly
three layers (as expected for ABC stacking) but differs slightly. The corresponding description
yielding the smallest possible unit cell is in the monoclinic space group C2/m (No. 12) [55].
As the angle β between the base plane in ab and the stacking direction c is variable in the
monoclinic space group, the relatively small deviations from the ideal ABC stacking can be
well accounted for. In particular, c cos(β) defines the distance between layers c∗ and c sin(β)
defines the shift between adjacent layers along the a direction. The monoclinic space group
C2/m is neither a subgroup of the R3 space group nor of the P3 space group. Yet it is a
subgroup of the P3m1 space group, demonstrating the important role of the aristotype CdI2

5



1. Introduction

Fig.1.4.:Bärnighausen
diagram

dem
onstrating

thestructuralrelationship
betw

een
theCdI2 structuretypeand

thestructuretypesofthem
etaltrichalco-

genides.Th
e
colors

forthe
differentatom

s
correspond

to
the

perspective
draw

ings
in

Fig.1.3.Th
e
notation

on
the

black
arrow

s
betw

een
the

different
space

groupsindicatesthe
nature

ofsubgroup
(i.e.

tfor’translationsgleich’and
k
for’klassengleich’)according

to
the

InternationalTablesofCrystalog-
raphy

[50]follow
ed

by
the

index
ofthe

subgroup
asw

ellaschangesofthe
lattice

param
eterand

shiftsofthe
origin.

6



1.1. M2X2Ch6 Class of Materials

for understanding the structural relationships. The changes of the lattice parameter and the
atomic positions between the CdI2 structure type and the Fe2P2S6 structure type are attributed
to the change of the crystal system from hexagonal to monoclinic. Furthermore, as the C2/m
space group does not contain any threefold rotation axis, two sites are necessary to describe
the hexagonal closed packed Ch layer.

A special case for theM2P2S6 compounds is observed forM2+ being replaced byM1+
0.5M

3+
0.5 .

In such compounds,M1+ andM3+ either order in stripes or triangular on the honeycomb lat-
tice ofM . The driving force for the triangular sublattice arrangement is an optimal separation
and distribution of the metal ions regarding the different oxidation states, while the stripe ar-
rangement follows from the minimization of the lattice deformation for notably different ionic
sizes of the 1+ and 3+ ions (i.e. chemical pressure), as discussed by Brec in more detail [56].
The stripe-like sublattice order violates the mirror symmetry of theC2/m space group parallel
to the b direction. Consequently, a unit cell in the space group P2/a (No. 13) is observed, e.g.,
for AgVP2S6 [57]. As the mirror symmetry is lost, an additional sulfur position is necessary
to describe the sulfur layer. For CuCrP2S6, Cu and Cr form a triangular arrangement which as
well violates the mirror symmetry of the C2/m space group. Additionally, CuCrP2S6 exhibits
an AB stacking with regard to the monoclinic c direction, such that a unit cell in the space
group C2/c (No. 15) is found [58].

Following from the common aristotype, all members of the class of metal trichalcogenides
share several structural motifs, although they exhibit different space group symmetries. These
common structural motifs go along with several physical properties that are comparable be-
tween different metal trichalcogenides. As all these structures have a van der Waals gap
between adjacent layers, corresponding metal trichalcogenides crystals are ductile and can
be easily exfoliated. For some compounds the preparation of monolayer samples by exfolia-
tion was already achieved [44, 45, 59]. Besides these common mechanical properties, metal
trichalcogenides are insulators or broad-band semiconductors [37, 41, 42, 60]. The electronic
properties of M2P2S6 are discussed in the context of Mott insulators and pressure-induced
Mott transitions could be observed in some compounds (e.g. V1.8P2S6 [61], Mn2P2S6 [62]
and Fe2P2S6 [63, 64]). A similar scenario is conceivable for the other members of the metal
trichalcogenides. With M being a magnetic ion (as explained in Sect. 1.2), the metal chalco-
genides exhibit long range magnetic order [41, 42]. While most metal trichalcogenides order
antiferromagnetically, some members exhibit ferromagnetic order (such as Cr2Ge2Te6) [37].
As the investigation of magnetic properties of some metal trichalcogenides is one focus of this
work, details regarding the magnetic properties are discussed in the corresponding introduc-
tions to the specific materials at the beginning of each experimental chapter.
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1. Introduction

1.2. Magnetism in Solid State Materials

The macroscopic magnetic properties of solid state materials originate from the microscopic
magnetic moments of atoms. These magnetic moments are, in turn, related to the total angular
momentum J , which is non-zero for atoms with partly filled electron orbitals [65, 66]. J
contains contributions of the orbital angular momentum li and the spin si (i.e. the ’intrinsic
angularmomentum’) of the electrons in these partly filled orbitals. These angularmomenta are
expressed in units of the reduced Plank constant h̄, as usual in the literature. The total angular
momentum operator Ĵ is related to the corresponding quantum number J by Eq. 1.1 and its
z component Ĵz (z being defined as the direction of quantization) to its quantum numbermJ

by Eq. 1.2 with Ψ being the wavefunction of the electron.

Ĵ
2
Ψ = J(J + 1)Ψ (1.1)

ĴzΨ = mJΨ (1.2)

Analogous equations relate l̂i and l̂i,z to the quantum numbers l and ml as well as ŝi and
ŝi,z to the quantum numbers s and ms. These quantum numbers, together with the primary
quantum number n define the electron orbital states in an atom, such that every electron of
an atom can be uniquely addressed by its full set of quantum numbers, as shown in Table 1.1.

Fundamentally, the orbital occupation of an atom is determined by the orbital occupation
rules, i.e. the aufbau principle (or Madlung rule), the Pauli exclusion principle and Hund’s
rule of maximum multiplicity [67], which consequently severely influence if an atom or ion
is magnetic. In this line, closed shell ions like main group ions, strictly following the octet
rule, or, e.g., Cu+ ([Ar] 3d10; closed d subshell) are non-magnetic, while several magnetic ions
of the d elements and the rare earth elements with stable oxidation states containing singly
occupied d and f orbitals exist.

Additionally in solid state materials, atoms are not isolated but form a crystalline lattice.
Assuming the interatomic interactions in such a lattice are well expressed by ionic interac-
tions, the crystal field theory describes the electrostatic influence of an anionic coordination
environment of a certain symmetry on the orbital energies of a central cation. Consequently,
orbital degeneracies of the highest occupied orbital shell may be lifted which, in turn, can
result in a different orbital occupation than expected for an isolated cation in vacuum.

Table 1.1.: Quantum numbers describing an electron in an atom.

Number Symbol Possible Values

Principal Quantum Number n 1, 2, 3, 4, ...
Angular MomentQuantum Number l 0, 1, 2, 3, ..., (n− 1)
Magnetic Quantum Number ml −l, ...,−1, 0, 1, ..., l
SpinQuantum Number ms +1/2,−1/2
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1.2. Magnetism in Solid State Materials

Fig. 1.5.: (a) Crystal field scheme illustrating the effect of the ligand electric field on the d orbital
energies of a octahedrally coordinated ion, as shown in (b). (c) d orbital occupation for a electronic
[Ar] 3d6 configuration, as for example observed for Fe2+, assuming octahedral coordination with a
small crystal field energy ∆ (left) and a large crystal field energy∆ (right).

For example, Fig. 1.5(b) shows an cation of an d element in a octahedral coordination envi-
ronment, i.e. the ligands are located along the x, y and z directions. Consequently, the energy
of d orbitals with a strong component of these directions (being the dz2 and dx2−y2 orbitals)
is lifted, while the other orbital energies are lowered, as illustrated in Fig. 1.5(a). The energy
difference ∆ between the orbitals with lowered and lifted energies is affected by several pa-
rameters, such as the nature of the cation and its charge, the arrangement of the coordination
environment as well as the nature and number of ligands. If the splitting ∆ is sufficiently
small, all orbitals of the subshell are first occupied singly, in agreement with Hund’s rule of
maximum multiplicity. Such complex is called high spin. However, if ∆ is larger than the
energy necessary to pair electrons in an orbital, first the lower lying orbitals are doubly oc-
cupied before the higher orbitals are filled. This configuration is called low spin. For example
for Fe2+, ∆ decides if unpaired electrons a present or not, as illustrated in Fig. 1.5(c).

The coupling between si and li of separate electrons to yield J for the complete ensemble of
unpaired electrons of an atom is determined by the strength of the spin-orbit coupling relative
to the electrostatic interaction between an electron, the nucleus and the other electrons of the
atom. If the spin-orbit coupling is weak compared to the electrostatic interactions, first a total
spin S =

∑︁
i si and a total orbital angular momentum L =

∑︁
i li are formed. These total

angular momenta are subsequently coupled to yield J = L+ S, with its quantum number J
taking values of |L−S| to |L+S| (L andS are the quantum numbers of the corresponding total
angular momenta). This coupling scheme is called LS coupling. If the spin-orbit coupling in
an atom becomes comparable in strength to its electrostatic interactions, the coupling follows
another scheme, called jj coupling. As the spin-orbit coupling strength scales with the atomic
number Z , the latter scheme is applicable for heavy elements (i.e. rare earth elements or 5d
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1. Introduction

transition elements). As the compounds in this work exclusively contain magnetic atoms of
the relatively light 3d transition elements, the LS coupling scheme is assumed.

The relation between the total angular moment J and the corresponding total magnetic
dipole moment µJ of an atom is shown in Eq. 1.3 with the Landé g-factor gJ and the Bohr
magneton µB = eh̄

2me
with the elementary charge e, the reduced Planck constant h̄ and the

electron rest mass me. The Landé g-factor gJ is given by Eq. 1.4. The electron orbital angular
g-factor gL is equal to one, while the spin g-factor deviates with gS ≈ 2.002 from the ideal
value of two obtained from the Dirac equation due to quantum electrodynamical corrections
already for the free electron [65]. With the approximation of gS = 2, Eq. 1.4 simplifies to
Eq. 1.5.

µJ = gJµBJ (1.3)

gJ = gL
J(J + 1)− S(S + 1) + L(L+ 1)

2J(J + 1)
+ gS

J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)
(1.4)

gJ(gL = 1, gS = 2) ≈ 3

2
+

S(S + 1)− L(L+ 1)

2J(J + 1)
(1.5)

For a macroscopic sample, the distribution of magnetic moments µJ in the sample volume
is expressed by the magnetization vector field M according to Eq. 1.6. The relation between
M , an external magnetic field H and the magnetic flux density B is given in Eq. 1.7 with
µ0 = 4π×10−7H/m being the permeability of vacuum. The direction of the magnetic fieldH
with the magnitude H = |H| defines the direction of quantization and, thus, the z direction
of the corresponding coordinate system. For systems with isolated spins (i.e. spins are not
interacting with each other), usually a linear relation between M and H is observed, as in
Eq. 1.8, with χ being the magnetic susceptibility. The z component of M and B along the
direction of quantization (i.e. ∥ H) is typically referred to simply asM and B.

µJ =

∫︂∫︂∫︂
MdV (1.6)

B = µ0(H +M ) (1.7)

M = χH (1.8)

The interaction of a magnetic moment with an external field is given by the Zeeman effect
describing the splitting of electronic energy levels in a magnetic field. In this line, the per-
turbation of the Hamiltonian Ĥ0 of the electron system of an atom by the application of a
magnetic field is shown in Eq. 1.9 with the constants introduced before and ri corresponding
to the position of the ith electron of the atom.

10



1.2. Magnetism in Solid State Materials

Ĥ = Ĥ0 + µBgJJ ·B⏞ ⏟⏟ ⏞
Ĥpara

+
e2

8me

∑︂
i

(B × ri)
2

⏞ ⏟⏟ ⏞
Ĥdia>0

(1.9)

Ĥpara corresponds to the paramagnetic moment (discussed in Sect. 1.2.2). For the optimal
orientation between the magnetic moment and the external field, the scalar product becomes
negative and Ĥpara causes a reduction of energy. In contrast, Ĥdia, which corresponds to the
field induced diamagnetic moment (discussed in Sect. 1.2.1), is always positive yielding an
energy increase. Typically, Ĥpara is the dominant perturbation of Ĥ0. However for specific
cases, such as L = S = 0, Ĥpara vanishes and the perturbation is caused purely by Ĥdia [65].

1.2.1. Diamagnetism

For compoundswithout unpaired electrons, no interactionwith an externalmagnetic fieldmay
be expected, as J = 0. However, typically such systems exhibit a negative magnetic response
of χ to the application of a magnetic field, which is caused by diamagnetism. The classical
explanation of this effect is that themagnetic field induces loop currents in the electron orbitals
which in turn give rise to a magnetic moment which opposes the magnetic field. However,
the Bohr-van Leeuwen theorem demonstrates that magnetism is a quantum mechanical effect
which cannot be explained by classical mechanics. The quantummechanical derivation (as e.g.
presented in Ref. [65]) yields Eq. 1.10 withN ions per volume V , the elementary charge e, the
vacuum permeability µ0, the electron rest mass me and ⟨r2⟩ being the mean square distance
between electrons and nucleus. The same prediction was obtained by Langevin using classical
mechanics.

χ = −N

V

e2µ0

6me

Z∑︂
i=1

⟨r2⟩ (1.10)

Consequently, the diamagnetic susceptibility is expected to be negative and temperature
independent. In fact, such a contribution is present in all materials and not just in closed
shell systems. However, the diamagnetic susceptibility is usually weak compared to other
contributions and therefore only clearly observable in systems without unpaired spins due to
the lack of other magnetic interactions.

1.2.2. Paramagnetism

For systems containing atoms with unpaired electrons (i.e. J > 0), the magnetic moments
alignwith the external magnetic field to reduce the systems energy (as observed based on Ĥpara
in Eq. 1.9) while thermal fluctuations disturb the field induced order. The correspondingly
expected dependence of the paramagnetic susceptibility χpara on temperature and magnetic
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1. Introduction

Fig. 1.6.: (a)The evolution of the Brillouin functionBJ(y) for several total magnetic quantum numbers
J = 1/2, 1, 3/2, ...,∞. (b) Evolution of the susceptibility and inverse susceptibility of a paramagnet
according to the Curie law.

field is given by Eq. 1.11, which can be derived based on the partition function of Ĥpara and
the relation between M , B and the free energy F as demonstrated, e.g., in Ref. [65].

M =
N

V
gJµBJ⏞ ⏟⏟ ⏞
Ms

·
{︃
2J + 1

2J
coth

(︃
2J + 1

2J
y

)︃
− 1

2J
coth

y

2J

}︃
⏞ ⏟⏟ ⏞

BJ (y)

(1.11)

y ≡ gJµBB

kBT
J (1.12)

B∞(y) = coth(y)− 1

2J

2J

y
= coth(y)− 1

y
≡ L(y) (1.13)

Ms corresponds to the saturation magnetization and BJ(y) is the Brillouin function with
y defined in Eq. 1.12. As BJ(0) = 0 and BJ(∞) = 1, for small magnetic fields and high
temperatures M = 0 while for large magnetic fields and low temperatures M = Ms. The
evolution ofBJ(y) for different total magnetic quantum numbers J is shown in Fig. 1.12(a). As
shown in Eq. 1.13, for J → ∞ the Brillouin function simplifies to the Langevin function L(y).
The semiclassically derived Langevin function L(y) assumes a macroscopic magnetic moment
µ, instead of magnetic moments that are directly related to the total angular momentum of
the electrons by gJµBJ , such that y = µB

kT
.

For low magnetic fields, the paramagnetic susceptibility can be obtained from the Brillouin
function as shown in Eq. 1.14.

χ =
M

H
≈ µ0M

B
=

nµ0µ
2
eff

3kBT⏞ ⏟⏟ ⏞
≡ C

· 1
T

(1.14)

µeff = gJµB
√︁
J(J + 1) (1.15)
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1.2. Magnetism in Solid State Materials

Eq. 1.14 is the Curie law with the Curie constant C and the effective magnetic moment µeff
(as defined in Eq. 1.15). Following from the Curie law is a linear temperature dependence of
1/χ, which is characteristic for paramagnetism and illustrated in Fig. 1.12(b).

An additional contribution to the paramagnetic response can be obtained due to the popula-
tion of excited eletronic states at finite temperatures, which may yield a different J (van Vleck
paramagnetism) than expected for the groundstate. Furthermore if a system has delocalized
electrons (i.e. in a metallic state), additional contributions due to Landau diamagnetism and
Pauli paramagnetism can be expected [65].

1.2.3. Cooperative Magnetism

Until here, magnetic moments were considered to be isolated and to interact independently
with a magnetic field. However for long-range magnetic order as observed in ferromagnets
and antiferromagnets, a interaction between spins is necessary.

Exchange Interaction

The interaction between spins is attributed to the quantum mechanical interaction between
identical particles and is called the exchange interaction [65]. The spins of two electrons can
either align symmetrically (S = 1; parallel) or antisymmetrically (S = 0; antiparallel) to each
other. These states differ in energy, as the different alignments are related to changes in the
electrostatic potential of the reference frame, which may be an amount of spins on the same
atom or on adjacent atoms.

For two interacting spins S1 and S2, the spin dependent effective Hamiltonian can be writ-
ten as shown in Eq. 1.16 with J being the exchange constant1.

Ĥ
spin

= −2JS1 · S2 (1.16)

Ĥ = −
∑︂
ij

JijSi · Sj (1.17)

For J > 0 the symmetric S = 1 state is favored while for J < 0 the antisymmetric S = 0
is found. As the interaction described in Eq. 1.16 is likely to be the same between all adjacent
electrons, for a many-body system the Hamiltonian of the Heisenberg model, as shown in
Eq. 1.17, is obtained. Note that in this notation, the factor of 2 has to be omitted as each pair
of spins is already counted twice in the sum.

Considering spins on the same atom, J is in general positive, leading to parallel arrangement
of spins in one atom. This leads to a maximum spatial separation of the electrons minimizing
1J is used as symbol for the exchange constant to distinguish it from the total angular momentum J .
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Fig. 1.7.: Left: Linear M–O–M bonding in a magnetic oxide. One unpaired electron of M interacts
with an unpaired electron of an adjacent M via super-exchange involving two p electrons of oxygen.
Center: Ground state configuration and excited state configuration (Exc. 1 and Exc. 2) assuming anti-
ferromagnetic exchange. Right: Ground state configuration and excited states configuration assuming
ferromagnetic exchange. Note that the crossed-out configurations would violate the Pauli exclusion
principle and, therefore, do not represent valid configurations.

the Coloumb energy and, thus, is energetically favored in agreement with Hund’s rule of max-
imummultiplicity. Considering adjacent atoms, atomic orbitals overlap and bonds are formed.
Consequently, molecular orbitals have to be considered with bonding orbitals with lowered
energy and antibonding orbitals which are lifted in energy. To occupy the energetically fa-
vored bonding orbital together, the spin of two electrons must be aligned antisymmetrically
(Pauli exclusion principle). Consequently, often negative exchange constants are found for
interatomic exchange [65].

If electrons of adjacent atoms directly interact with each other via an exchange interaction,
then this is called direct exchange. However, this direct interaction is rarely dominant, as
it relies on the direct overlap of magnetic orbitals. For example for rare earth elements, the
magnetic 4f orbitals are strongly localized and close to the nucleus so that no sufficient 4f
orbital overlap between adjacent rare earth atoms is expected [65].

A similar scenario is observed for MnO. This ionic solid exhibits antiferromagnetic order,
although the Mn2+ atoms are spatially well separated from each other such that no direct
overlap of the magnetic 3d orbitals is possible. However, in this case the nonmagnetic O2− acts
as mediator for the antiferromagnetic exchange interaction, which is consequently considered
as an indirect super-exchange.

As illustrated in Fig. 1.7, such a super-exchange favors an antiferromagneticM–O–M inter-
action, as this arrangement allows for more excited states than a ferromagnetic arrangement,
which lowers the kinetic energy for this state. This is however only the case for a 180◦ bond
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1.2. Magnetism in Solid State Materials

angle between two singly occupied orbitals, as inMnO. For different bond angles or an interac-
tion between a singly occupied and an empty orbital via super-exchange, also ferromagnetism
may be stabilized. Furthermore, in some materials a super-super-exchange mechanism is dis-
cussed. Although the corresponding large distance between two magnetic atoms should cause
this interaction to be relatively weak, it is proposed to explain the magnetic coupling in some
materials [65].

The super-exchange mechanism is likely to be the most important exchange interaction for
the materials investigated in this work. However, there are also further indirect exchange
mechanisms. For example for materials with delocalized electrons, the RKKY (Ruderman,
Kittel, Kasuya and Yosida) interaction as well as the double exchange interaction are of im-
portance. Furthermore, the Dzyaloshinsky-Moriya interaction may cause a weak ferromag-
netic component in antiferromagnetically coupled materials due to the influence of spin-orbit
coupling [65].

Ferromagnetism

For J > 0, spins of neighboring atoms align parallel to each other. Consequently, such a
system exhibits a spontaneous magnetization even without the application of a magnetic field
and is called a ferromagnet. The Hamiltonian describing a ferromagnet in a magnetic field B
is given in Eq. 1.18. For simplicity, L = 0 and, consequently, J = S are assumed.

Ĥ = −
∑︂
ij

JijSi · Sj⏞ ⏟⏟ ⏞
Heisenberg Exchange Term

+ gµB

∑︂
j

Sj ·B⏞ ⏟⏟ ⏞
Zeeman Term

(1.18)

Ĥ = gµB

∑︂
i

Si · (B +Bmf) (1.19)

The Weiss model of ferromagnetism assumes that every spin in the system experiences a
fieldBmf (the molecular field) additional toB due to the parallel arrangement of all surround-
ing magnetic moments. Consequently, Eq. 1.18 can be reformulated to Eq. 1.19 as demon-
strated in detail in Ref. [65]. Thus, a ferromagnet can be treated as a paramagnet placed in a
magnetic field (B + Bmf) with Bmf = λM and λ expressing the strength of the molecular
field in terms of the magnetizationM [65]. Consequently, solving the Brillouin function with
an adapted expression for y, as shown in Eq. 1.21, yields the stable states for a ferromagnet
according to the Weiss model.

M

Ms
= BJ(y) (1.20)

y =
gJµBJ(B + λM)

kBT
(1.21)
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Fig. 1.8.: Graphical solution of Eq. 1.20 and Eq. 1.21 for J = 1 and B = 0 for different temperatures.
The intersections (i.e. the solutions) are marked with yellow squares. Additionally, the effect of increas-
ing B is shown as dotted lines.

Assuming B = 0 and consequently M = kBTy/gJµBJλ, the equations can be solved
graphically. The simultaneous solutions of both equations are given by the intersections of
the linear function of M(y) with the Brillouin function, as shown in Fig. 1.8. Above a critical
temperature, the only valid solution is M = 0. However, below this critical temperature two
additional solutions are found with M being ± a non-zero value. In fact in the presence of
non-zero solutions, the M = 0 solution describes no longer a stable state, as any fluctuations
in the system drive the system into a state corresponding to one of the two non-zero solu-
tions. Consequently, a ferromagnet exhibits a spontaneous magnetization at B = 0 up to a
critical temperature. Above this temperature the spontaneous magnetization vanishes [65].
This transition temperature, the Curie temperature TC, is defined as shown in Eq. 1.22.

TC =
gJµB(J + 1)λMs

3kB
=

nλµ2
eff

3kB
(1.22)

From the graphical solution of the model, the thermal evolution of M can be extracted,
as shown in Fig. 1.9(a). The evolution is continuous approaching TC, but the first derivative
(corresponding to the second derivative of the free energy) is not. Thus, the phase transition
at TC is of second order.

The application of a magnetic field shifts the linear functions in Fig. 1.8 along y by
gJµBJB/kBT . Consequently, a common non-zero solution for Eq. 1.20 and Eq. 1.21 can be
found at all temperatures. This means that it is always favorable for a ferromagnet to align
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1.2. Magnetism in Solid State Materials

Fig. 1.9.: (a) Thermal evolution of M/Ms for several total magnetic moments J and B = 0. (b)
Thermal evolution of M/Ms for J = 1 under increasing magnetic fields B.

its moments parallel to the external field. Furthermore, the difference between T ≥ TC and
T < TC vanishes, i.e. the phase transition is removed [65]. This is demonstrated in Fig. 1.9(b)
for increasing magnetic fields.

For a small magnetic field B and at T ≥ TC the Curie-Weiss law can be obtained from the
Brillouin function, analogous to the Curie law for a paramagnet.

χ ≈ µ0M

B
=

C

T − TC
(1.23)

The molecular field parameter λ is related to the exchange constant J as shown in Eq. 1.24
for S = J , as initially assumed and sufficient for 3d ions, as their angular momentum L is
quenched [68]. Here, z is the number of nearest neighbors of an ion over which J is effective.

λ =
2zJ

ng2Jµ
2
B

(1.24)

However, if L strongly contributes to J (e.g., as in 4f ions), S is no longer a good quantum
number and additional contributions to J need to be considered [65]. However, this is not
further elaborated here, as the materials in this work exclusively contain magnetic 3d ions.

Antiferromagnetism

For J < 0, the molecular field leads to a favored antiparallel alignment of adjacent magnetic
moments, which is called antiferromagnetism. The antiferromagnetic order can be consid-
ered as two interpenetrating sublattices each with parallel magnetic moments, as illustrated
in Fig. 1.10(a). Assuming the arrangement as shown in Fig. 1.10(a), any atom has the opposite
spin to all of its direct neighbors [65]. Consequently, the molecular field on one sublattice
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Fig. 1.10.: (a) Antiferromagnetic moments on a square net lattice. The different moment directions
have different colors to illustrate the two sublattices with parallel magnetic moments. (b) Thermal
evolution of the invers suceptibility χ−1 for a paramagnet withΘCW = 0, a ferromagnet withΘCW > 0
and a antiferromagnet with ΘCW < 0.

is proportional to the magnetization of the other sublattice. Labeling one sublattice + and
the other one -, the molecular field on each sublattice is given by Eq.1.25 with λ being the
molecular field constant which is negative for antiferromagnets.

B+ = −|λ|M−; B− = −|λ|M+ (1.25)

Analogous to the considerations for the ferromagnetic order, the magnetization on each
sublattice can be expressed by the Brillouin function as shown in Eq. 1.26.

M±

Ms
= BJ

(︃
−gJµBJ |λ|M∓

kBT

)︃
(1.26)

M

Ms
= BJ

(︃
gJµBJ |λ|M

kBT

)︃
(1.27)

As both sublattices are identical (M+ = M− = M ) except for the direction of the magnetic
moment, Eq. 1.26 simplifies to Eq. 1.27. This relation is virtually the same as introduced for
ferromagnetic order before. Consequently, the thermal evolution of the molecular field on
each sublattice in an antiferromagnet is the same as for the magnetization in a ferromagnet
(shown in Fig. 1.9(a)) and it vanishes above a critical temperature [65]. This temperature is
called Néel temperature TN and is defined in Eq. 1.28 (analogous to TC).

TN =
gJµB(J + 1)|λ|Ms

3kB
=

n|λ|µ2
eff

3kB
(1.28)

Although each sublattice behaves independently like a ferromagnet, the netmagnetization
of an antiferromagnet at B = 0 is zero, as both sublattices negate each other.
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1.2. Magnetism in Solid State Materials

Fig. 1.11.: (a) Thermal evolution of the magnetic susceptibility of an antiferromagnet for magnetic
fields applied parallel and perpendicular to the zero-field magnetization direction. (b) Field dependence
of the magnetization of an antiferromagnet for magnetic fields applied parallel to the intial magneti-
zation direction. The black dotted line shows the the evolution of the magnetization in case of a spin
flip in a strongly anisotropic antiferromagnet. The horizontal dashed grey line indicates the saturation
magnetization Ms.

Analogous to ferromagnets above the ordering temperature and at small magnetic fields,
for antiferromagnets Eq. 1.29 is obtained, which is again the Curie-Weiss law but with +TN
instead of −TC.

χ =
C

T + TN
(1.29)

Consequently, the Curie-Weiss lawmay be generalized as shown in Eq. 1.30 withΘCW being
the Weiss temperature.

χ =
C

T −ΘCW
(1.30)

The susceptibility of a magnetic systems can be expressed by Eq. 1.30 above the magnetic
ordering temperature in the paramagnetic state. Following the considerations above, ΘCW
indicates if a system is paramagnetic (ΘCW = 0), ferromagnetic (ΘCW > 0) or antiferromag-
netic (ΘCW < 0) with corresponding intercepts with χ−1 = 0 as shown in Fig. 1.10(b). For
the two latter cases, the long range magnetic ordering temperature (TC or TN) is expected to
be at |ΘCW|. However, ΘCW often significantly deviates from the magnetic ordering temper-
ature in experiments (especially common for antiferromagnets). This can be attributed to the
assumptions that were made above and more complex magnetic interactions in real systems.
Consequently, the sign ofΘCW indicates the dominant magnetic interactions in a systemwhile
its value may be rather used as an estimate for the strength of the magnetic interactions [65].

The effect of a magnetic field on an antiferromagnetically ordered system strongly depends
on the direction of the magnetic field relative to the direction of the magnetic moments, as
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illustrated in Fig. 1.11(a). Assuming T = 0, applying a small magnetic field parallel to the
magnetization direction of one sublattice (i.e. antiparallel to the other sublattice), slightly
increases the energy of the antiparallel sublattice and slightly lowers the energy of the parallel
sublattice. However, since both sublattices are already saturated, the external field has no
effect and the netmagnetization remains zero. But if the field is applied perpendicular to the
magnetization direction of the sublattices, it causes a small tilt of the magnetization of both
sublattices and a small magnetization component along the field direction is obtained [65].

Increasing the temperature to T < TN, the observed magnetization for the magnetic field
(anti-)parallel to the magnetization direction increases gradually. While the molecular field
decreases for both sublattices by increasing T , the magnetization for the parallel sublattice is
energetically lowered and, thus, less affected from thermal fluctuations than the energetically
lifted antiparallel sublattice. For the magnetic field perpendicular to the initial magnetization
directions of the sublattices, no notable temperature dependence is expected, as both sublat-
tices are affected equally by the temperature increase [65].

Furthermore the field dependence of this direction dependence in the antiferromagnetic
state has to be considered. For a magnetic field applied perpendicular to the initial direction
of themagnetization of both sublattices, increasing the field yields a gradually increasing tilt of
the magnetization direction of both sublattices and, thus, a gradually increasingmagnetization
along the field direction.

For a magnetic field applied (anti-)parallel to the initial magnetization direction, zero mag-
netization is obtained up to a critical field as explained before, as illustrated in Fig. 1.11(b).
However, increasing the magnetic field above the critical value causes a spontaneous rotation
of both sublattice magnetization directions so that both sublattices have their main compo-
nent of the magnetization parallel to the field, while still having an angle between each other.
This field driven (metamagnetic) reorientation of the magnetization direction is called spin-
flop transition. Further increasing the magnetic field gradually decreases the remaining an-
gle between the two sublattice magnetization directions until the saturation magnetization is
reached for an angle of zero. As, e.g., demonstrated in Ref. [65], at fields above the spin-flop
field Bspin-flop, no longer the antiparallel antiferromagnetic phase but the spin-flop phase is
energetically stabilized by the applied magnetic field.

The initial direction of the magnetization of a material in the ground state (i.e. T = 0 and
B = 0) is given by its magnetic anisotropy. However, if themagnetic anisotropy is very strong,
no intermediate spin-flop phase is stabilized. Instead zero magnetization is observed up to a
critical field at which the spins of the antiparallel sublattice flip around by 180◦ immediately,
shown as a dotted line in Fig. 1.11(b). This transition is called spin-flip transition. Regardless
of spin-flop or spin-flip, the typical behavior in the field dependent magnetization allows to
identify the preferred direction of the magnetization in an antiferromagnet [65].

In Fig. 1.10(a), an antiferromagnetic square net lattice was considered. The corresponding
antiferromagnetic order is called G-type or checkerboard order. Yet, depending on e.g. the un-
derlying atomic lattice, the magnetic ions and the exchangemechanism, several different types
of antiferromagnetic order can be stabilized. One example are ferromagnetic planes which
align antiferromagnetically to adjacent planes (A-type antiferromagnetism) as observed, e.g.,
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in LaMnO3. Such an interplay between different exchange interactions can pose a challenge
for the investigation of antiferromagnetic systems, as it can cause deviations from the expected
behavior presented before [65].

Further Magnetic Ordering Phenomena

Beyond pure ferromagnetic or antiferromagnetic order, magnetic systems may exhibit other
magnetic ordering phenomena. For example, ferrimagnets contain two sublattices, which are
antiferromagnetically coupled (as illustrated in Fig. 1.10(a) for antiferromagnetism) but do not
have the same sublattice magnetization.

In some magnetic systems, not all magnetic exchange interactions can be satisfied at once,
leading to magnetic frustration. This can be due to the geometric arrangement of magnetic
ions (i.e. geometric furstration; e.g. antiferromagnetic arrangement in a plane triangle or
tetrahedron) or due to different exchange interactions between different magnetic ions that
cannot be simultaneously fulfilled. In a frustrated system, no unique magnetic ground state
exists which ideally causes the absence of magnetic order down to zero temperature. However
inmany frustrated systems, metastablemagnetic arrangements are formed and below a critical
temperature the system adopts randomly one of these metastable states. Such states exhibit
magnetic order only on a short range, similar to the structural order in glasses. Thus, the low
temperature state in such systems is called spin glass with the freezing temperature Tf being
the critical temperature [65].

1.2.4. Magnetic Anisotropy

As already mentioned in the context of the temperature and field dependence of an antiferro-
magnet in Sect. 1.2.3, magnetic systems often exhibit a preferred direction of themagnetization
in the ordered ground state. This direction is defined relative to the high symmetry directions
of the underlying crystal lattice and it may originates from the magnetocrystalline anisotropy,
which is a material specific property and/or from the shape of the specific sample.

Magnetocrystalline Anisotropy

The magnetocrystalline anisotropy arises mainly from spin-orbit coupling and causes a di-
rection dependent change of the energy of the magnetic system. In first approximation, this
direction dependence is often well expressed as uniaxial, as shown in Eq. 1.31 for a ferromag-
netic system, withKU being the uniaxial magnetocrystalline anisotropy constant, ϕ being the
angle between direction of the magnetic field and the magnetization direction and θ corre-
sponding to the direction dependence of the magentocrystalline anisotropy energy.
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F = −µ0 ·Ms ·H · cos(ϕ)⏞ ⏟⏟ ⏞
Zeeman Energy

+ KU · sin2(ϕ− θ)⏞ ⏟⏟ ⏞
Uniaxial Anisotropy Energy

(1.31)

At θ = 0, the magnetocrystalline energy is either minimized for KU > 0 or maximized for
KU < 0. If it is minimized, θ = 0 is the magnetic easy axis (i.e. preferred orientation) and
the perpendicular plane is the magnetic hard plane. However if the energy has a maximum at
θ = 0, this direction is the magnetic hard axis with the perpendicular plane being the magnetic
easy plane [65].

Shape Aniostropy

A magnetic sample with a non-zero netmagnetization generates a magnetic field (the demag-
netizing field), which may even be the case for antiferromagnetic compounds (e.g. due to the
sample surface, other crystallographic defects or ferromagnetic contributions to the exchange
interactions). If such a sample is not perfectly spherical, the energy of the demagnetizing field
may differs for different magnetization directions. For example, a ferromagnetic thin plate fa-
vors any in-plane direction of the magnetization over the out-of-plane direction, as the latter
orientation causes a larger magnetic stray field, which is energetically unfavorable. This direc-
tion dependence of the demagnetizing energy is called shape anisotropy. As it is a property
of the specific sample, the effect of the shape anisotropy has to be considered separately to
obtain the material-specific magnetic properties [65].

The demagnetizing field effectively reduces the magnetic field that the material experiences.
For a principle direction i, this is described by Eq. 1.32, with Hi being the effective magnetic
field, (H0)i being the applied magnetic field and Ni being the demagnetizing factor for this
direction, which is given by the shape of the sample.

Hi = (H0)i −NiMi, i = x, y, z (1.32)

By approximating the sample shape as an ellipsoid, demagnetizing factors can be obtained
as reported by Osborn [70]. One limiting case, which is especially relevant for this work, is
the infinite thin plate (i.e. an ellipsoid with relative radii of ry/rx = 1 and rz/rx = 0). The
corresponding demagnetizing factors are Nx = Ny = 0 and Nz = 1 according to Osborn.
Consequently, the maximum demagnetizing field is observed for H ∥ z while no effect of
the shape anisotropy is obtained for H ⊥ z. This is in agreement with the aforementioned
behavior for a ferromagnetic thin plate.

Theoretical Models

Systems with different magnetic anisotropies are typically discussed in terms of different the-
oretical models to describe the magnetic interactions. The classical Heisenberg model was
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already introduced before in Eq. 1.17. In this model, the dimensionality of the spins is d = 3,
as a spin is classically expressed by a three-dimensional vector. Consequently in the ground
state, the spin can rotate in any direction as it is the case for an isotropic magnetic system.
This is in contrast to the Ising model, in which d = 1. Thus, spins can only align (anti-)parallel
to a defined axis, as expected for a magnetic system with a well pronounced magnetic easy
axis. The anisotropic magnetic behavior of a system with easy plane anisotropy can be well
described by the XY model for which d = 2.

Ĥ = −
∑︂
ij

JijSi · Sj (1.33)

Ĥ = −
∑︂
ij

(︁
JxijS

x
i · Sx

j + JyijS
y
i · S

y
j + JzijS

z
i · Sz

j

)︁
(1.34)

This is generalized in the n-vector model, with the Hamiltonian shown in Eq. 1.33 and the
dimensionality of spins being d = n with the special cases discussed before. Furthermore, the
Heisenberg model may be generalized by assuming a direction dependence of the exchange
constant J, as shown in Eq. 1.34. Consequently in the generalized Heisenberg model, the
anisotropy is not expressed by the dimensionality of the spins but by the anisotropy of the
exchange coupling. A special case of this model is known as the XXZmodel for Jxij = Jyij ̸= Jzij
[65].

Fundamentally, real systems can be classified by the theoretical model that expresses the
experimental behavior most accurately, allowing for an easier comparison between different
systems. Furthermore, predictions for the real system can be made based on results obtained
for the model from theoretical considerations (i.e. the critical behavior around a phase tran-
sition). Also for some models under specific conditions, exotic physical phenomena are pre-
dicted (e.g., the Berezinskii-Kosterlitz-Thouless transition for the XY model in 2D) which have
to be experimentally realized and investigated in order to further improve the corresponding
model. Thus, investigating which model corresponds best to the experimental magnetic be-
havior of a system is worthwhile and the magnetic anisotropy can be a good indicator for this.
Another method to investigate which model corresponds best to the experimental magnetic
behavior of a system is via the critical exponents, as discussed in Sect. 1.2.6.

1.2.5. Magnetism in D < 3

Additional to the dimensionality of the spins d, the dimensionality of the underlying atomic
latticeD plays an important role for the behavior of a model. While long range order can occur
in the isotropic Heisenberg model on a 3D lattice, the isotropic Heisenberg model cannot order
for reduced dimensions of the atomic lattice at finite temperatures. This was demonstrated by
Mermin and Wagner [2]. The reason for the absence of an ordered state in this model is that
spinwaves can be excited and disturb any long range ordered state at all finite temperatures for
reduced lattice dimensions. In a simplified approach, the direction of all spins can be globally
rotated in an isotropic system without energy differences between directions. Consequently,
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to excite a long wavelength spin wave (i.e. the difference in the direction of adjacent spins is
small) virtually no energy is necessary. These spin fluctuations destroy any long range order.
However, if the system is anisotropic, the rotation of spins away from the direction in the
ground state costs energy. Thus for the Ising model on a 2D lattice, an ordered state can be
theoretically be formed. This demonstrates the importance of the magnetic anisotropy for the
magnetic order in 2D systems [65, 66].

Another exotic physical behavior is predicted for the XY model in a 2D system. As demon-
strated by Berezinskii [71] as well as Kosterlitz and Thouless [46] (BKT), this model does not
exhibit long-range order but a phase transition between two disordered phases. Above the
transition temperature TBKT = πJ/2kB, the system may spontaneously forms vortices and
the spin–spin correlation decays exponentially as expected for a disordered phase. Below the
transition, the spin–spin correlation decays with a power law behavior which does not agree
with the behavior expected for a long range ordered state. The low temperature phase is dis-
cussed as previously independent vortices and anti-vortices being bound together in pairs. In
this context, the BKT transition is considered a topological phase transition as it is not related
to any symmetry breaking.

Reducing the dimensions of themagnetic lattice further yields 1D spin chains. If such chains
are magnetically well isolated from each other, no long range order is stable at finite temper-
atures due to magnetic fluctuations. As a disordered state is entropically favored for a 1D
system, not even magnetic anisotropy can stabilize long range order. Yet in real systems,
magnetic chains are potentially not completely isolated from each other and interchain inter-
actions cause deviations from the expected behavior at low temperatures, such as the existence
of long range magnetic order. In the disordered state, 1D spin chains allow the investigation
of complex excitations [65, 66].

1.2.6. Critical Exponents

The evolution of the spontaneous magnetization approaching the ordering temperature in a
ferromagnet can be experimentally found to be proportional to (TC − T/TC)

β . As the sponta-
neous magnetization in a ferromagnet corresponds to existence of the ordered phase and van-
ishes in the disordered paramagnetic phase, it can be defined as order parameter for the ferro-
magnetic state. In fact, also the thermal evolution of the magnetic susceptibility approaching
TC from above as well as the field dependence of the magnetization at TC can be described
by a similar exponential behavior [65]. The corresponding exponents are called critical expo-
nents [72]. According to Griffiths’ hypothesis of universality [73], these exponents are inde-
pendent of system specific details and only depend on general features of a physical system.
These general features are the dimensionality of the system D, the internal dimensionality d
(e.g. spin dimensionality for magnetic systems) and the range of the interaction.

For a ferromagnetic–paramagnetic phase transition, the spontaneous magnetizationMs be-
low, the initial magnetic susceptibility χ0 above and the field dependence of the magnetization
M(H) at the critical temperature TC can be described by critical exponents β, γ and δ as shown
in Eq. 1.35, Eq. 1.36 and Eq. 1.37, respectively.
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Ms(T ) = M0(−ε)β for T < TC (1.35)
χ−1
0 (T ) = (h0/m0)ε

γ for T > TC (1.36)
M(H) = DH1/δ for T = TC (1.37)

Here, ε = (T − TC)/TC is the reduced temperature whileM0, h0/m0 and D are the critical
amplitudes [74]. Using the scaling hypothesis, the magnetic equation of state can be written
as shown in Eq. 1.38 with the regular functions f+ for T > TC and f− for T < TC.

M(H, ε) = εβf±(H/εβ+γ) (1.38)
m = f±(h) (1.39)

Defining a renormalized magnetizationm ≡ ϵ−βM(H, ϵ) and a renormalized magnetic field
h ≡ ε−(β+γ)H and substituting in Eq. 1.38 yields Eq. 1.39. The latter implies that for correct
values of β, γ and δ, m(h) exhibits two universal behaviors, one above and one below the
critical temperature.

The critical exponents for different models depending on the aforementiond general fea-
tures, such as the Ising model (d = 1) or the Heisenberg model (d = 3) on a D = 2 or D = 3
lattice, are known. Thus, the extraction of such exponents from experimental data allows to
identify which model expresses the physical behavior of a real system most accurately.
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2.1. Synthesis and Crystal Growth

In solid state science, each compound corresponds to a phase with a defined elemental com-
position (or range of composition) and a certain atomic structure. The structure may be only
short-range (amorphous) or exhibit a long-range order (crystalline). In this line, these phases
are stable arrangements of atoms in the solid state in the thermodynamical equilibrium at a
certain temperature and pressure [67, 75].

For example, different atomic structures (allotropes) for elemental iron are known in the
solid state which are stable at different temperatures and pressures. At a pressure of 1 bar,
liquid iron solidifies in the δ-Fe phase with body-centered cubic arrangement of atoms below
approximately 1540 ◦C. Below approximately 1400 ◦C, the γ-Fe phase with face-centered cubic
structure becomes thermodynamically stable and, thus, the δ-Fe phase transforms to the γ-
Fe phase in equilibrium. Below approximately 910 ◦C, the body-centered cubic α-Fe phase
corresponds to the stable structure [76].

The relation between different phases are illustrated in phase diagrams. While for pure
elements, the dependence of the phase on both temperature and pressure can be shown as an x-
y plot, for binary compounds different phases may be stable for different elemental ratios and,
thus, the phase diagram contains three parameters (elemental ratio, temperature, pressure). To
simplify the graphical representation from three dimensions to two, one parameter is typically
fixed [67, 75]. A schematic binary phase diagram at constant pressure between the elements
A and B with the binary phases A1−xBx and A1−yBy is shown in Fig. 2.1.

The phases A, B and A1−xBx melt congruently, i.e. a liquid phase of the same composition
as the solid phase is formed during the solid–liquid phase transition at the melting point Tm,
which is the case for the phases A, A1−xBx and B in Fig. 2.1 (i.e. Tm(A) is the melting point of
phase A, etc.). This is illustrated in Eq. 2.1 for A1−xBx as an example.

(A1−xBx)solid ⇌ (A1−xBx)liquid (2.1)
(A1−yBy)solid ⇌ u (A1−xBx)solid + v L (2.2)

In difference, A1−yBy decomposes at Tdecomp, forming a solid phase and a liquid phase, both
of different composition than A1−yBy. This is illustrated in Eq. 2.2 and, consequently, A1−yBy

is considered an incongruently melting phase [67, 75].
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Fig. 2.1.: Schematic phase diagram of a binary systemAB as function of temperature T . The grey areas
correspond to twophase regions. Eutectic points are marked by red squares. Two specific compositions
referred to in the text are marked by the green and blue arrows.

According to the position in the phase diagram and, consequently, the relation to adjacent
phases, different phases may be synthesized and crystals may be grown by different tech-
niques [77]. To form a phase as polycrystalline material (i.e. a bulk or powder sample contain-
ing a large amount of independent, small and randomly oriented crystals) solid state synthesis
is used, as introduced in Sect. 2.1.1. As in this technique the crystal growth speed is limited,
specialized methods are used to grow larger crystals which employ a liquid phase and high
temperatures to improve the growth speed (Sect. 2.1.2). Such crystal growth methods yield
good results for phases with a low vapor pressure (e.g. for intermetallics and some oxides).
For compounds with high vapor pressure components, crystal growth via the vapor phase is
widely used. Compounds containing some non-volatile component may also be grown via the
vapor phase using a so-called transport agent in the chemical vapor transport technique. This
is introduced in Sect. 2.1.3.

2.1.1. Solid State Synthesis

According to thermodynamics, any solid state phase can be formed by an elemental mixture
with the stoichiometry of the phase which is exposed to a temperature and pressure at which
the phase is stable. However, the process of formation may take a while due to the corre-
sponding kinetics. In the solid state, diffusion is limited. Consequently, it may takes a long
time until an atom arrives at the correct place in the structure of the phase. This is especially
true if a loose powder of elemental educts is considered as starting material [75].

Thus, for solid state synthesis, high temperatures (in the stability region of the desired phase)
and short diffusion paths between particles of the different educts are preferable. The former is
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achieved by a furnace resulting in faster kinetics and the latter by grinding the educts to a fine
homogeneous powder and subsequent pressing of the powder to a pellet. The close packing of
particles in a pellet without large cavities minimizes the diffusion paths. The heat treatment
is typically performed under an inert atmosphere to avoid reactions with the atmosphere or
in an atmosphere that contains a constituent of the phase (e.g. oxygen or air for oxides).
During the heat treatment, the phase formation starts randomly at several points in the pellet
(nucleation) and slowly a large number of small crystallites form. Thus, a polycrystalline
sample is obtained.

To ensure a good intermixing of the educts, intermediately formed phases and the target
phase, the heat treatment may be interrupted by a regrinding and repressing of the pellet.
During such a synthesis, stoichiometry has to be ensured. Changes in the composition of the
sample (i.e. due to partial evaporation) may cause the formation of secondary phases due to the
shift of the overall sample composition into a multiphase region in the corresponding phase
diagram. A technique to investigate the phase composition of a sample after the synthesis is
pXRD (as explained hereafter in Sect. 2.2.2) [75].

Although this technique is in general suitable to form any solid state phase, it rarely yields
large crystals in a reasonable amount of time. Crystallites from solid state synthesis are typ-
ically in the size of several tens of µm, which may be sufficient for a determination of the
crystal structure by scXRD (as explained hereafter in Sect. 2.2.1) but are too small for most
physical measurements techniques [75].

In this work, solid state synthesis was used to synthesize polycrystalline precursors for the
growth of (Fe1−xNix)2P2S6 (Sect. 3.2.1 and polycrystalline samples of the substitution series of
(Cu1−xAgx)CrP2S6 (Sect. 4.3.1).

2.1.2. Crystal Growth via the Liquid Phase

To accelerate the crystal growth process compared to the solid state synthesis, the kinetics of
the phase formation have to be improved. In the solid state, a limiting factor is the diffusion,
which is much higher in a liquid phase. Accordingly, forming the desired phase directly from
the melt or a solution can notably improve the crystal growth speed and potentially allows to
grow large crystals in reasonable time frames [77, 78].

For congruently melting phases, a melt of the same stoichiometry as the phase can be used
to grow crystals. By slowly reducing the temperature below the corresponding melting tem-
perature, the melt crystallizes. If such a melt is cooled homogeneously, it is likely that multiple
nuclei form as the nucleation conditions are fulfilled everywhere in the melt simultaneously.
Consequently, a sample containing several crystals is obtained after the complete solidifica-
tion of the melt. To minimize the amount and, thus, maximize the size of crystals obtained
from such a melt growth, the melt can be cooled with a spatial temperature gradient, as used
in several melt growth techniques (e.g. the Bridgeman-Stockbarger technique, the Czochral-
ski technique and the floating zone technique). Using a spatial temperature gradient, the melt
solidifies at one spot first and crystallizes from there continuously. Due to the initial local
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solidification, only few (ideally one) nucleation centers are created from which only few crys-
tallites grow. As the crystallization front is moved through the material, a grain selection
process takes place, which yields even less large crystals in the resolidified melt [77].

If the desired phase does not melt congruently or the congruent melting point is too high
and, thus, not practical for a melt growth, solution growth techniques are used. Instead of
growing a crystal of the phase A1−xBx in Fig. 2.1 from a stoichiometric melt at high tempera-
tures around Tm(A1−xBx), adding a small amount of the phase A in the startingmixture reduces
the solidification temperature along the curved line above the two phase regime ’A1−xBx + L’,
called liquidus line. Assuming a homogeneous melt with the composition corresponding to
the green arrow, if the temperature is reduced below the liquidus line, the two phase region
’A1−xBx + L’ is accessed. Thus, solid A1−xBx forms and the stoichiometry of the liquid phase
shifts along the liquidus line under further cooling [78].

Fig. 2.2.: Temperature dependence of the concentration of a solution or melt containing a stable,
metastable (Ostwald-Miers) and labile regime. The black arrows illustrate the evolution of the con-
centration of a solution from a concentration α to β under cooling as discussed in the corresponding
section. In the style of Ref. [78].

For the crystal growth, this solidification process is of interest. The starting mixture can
be considered as a solution of the solute A1−xBx in the solvent L with a temperature depen-
dent solubility, as illustrated in Fig. 2.2. The liquidus line corresponds to the the temperature
at which the equilibrium solubility is reached. However, if the temperature is initially re-
duced slightly below the liquidus line, no solidification happens as the solution supersaturates
(Fig. 2.2 (1)). Only if the temperature is reduced further, stable nucleation centers form. This
behavior is observed as nucleation centers have to reach a critical radius to be stable, which is
only possible below the regime of supersaturation (i.e. Ostwald-Miers regime). Consequently,
the concentration of the solution is reduced until it is again stable (Fig. 2.2 (2)). In the Ostwald-
Miers regime, only growth of already present nucleation centers or crystals takes place. Thus
after the initial nucleation, the temperature change of the liquid can be adjusted to the growth
speed of the crystal to keep the solution supersaturated but avoid the spontaneous formation
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of additional nucleation (Fig. 2.2 (3)). In practice, slow cooling (typically in the order of 1 ◦C/h
or less) is used if detailed thermodynamic data on the system is missing [78].

The temperature limit of this growth towards low temperatures is determined by the eu-
tectic point between A and A1−xBx marked by a red square in Fig. 2.1. By cooling below the
corresponding temperature, the two phase region of ’A + A1−xBx’ is accessed and the residual
melt abruptly solidifies as a phase mixture. To minimize the presence of secondary phases on
the crystal, the temperature is slowly reduced to just above the eutectic point and then the
residual melt can be separated from the grown crystals (e.g. by centrifugation) [78].

The growth of A1−xBx from ’A1−xBx + A’ is called self flux growth, as the solvent A is a
constituent of the target phase. By a self flux growth with the solvent B and the starting com-
position marked by the blue arrow in Fig. 2.1, crystals of the incongruently melting phase
A1−yBy can be grown. The scenario is in general the same for a conventional solution growth,
like the growth of NaCl crystals fromwater as a solvent [79]. In this specific case, it is also pos-
sible to keep the temperature constant and remove solvent via slow evaporation to influence
the solubility of the solution [77, 78].

In this work, self flux growth experiments were performed for the growth of Cr2Ge2Te6 and
In2Ge2Te6 crystals from a GeTe rich starting composition. Details are discussed in Sect. 5.1.1
and Sect. 5.2.1.

2.1.3. Crystal Growth via the Vapor Phase

Elements and compounds with high vapor pressures pose a challenge to high temperature so-
lution and melt growth techniques, as the overall stoichiometry of the liquid phase changes
due to evaporation. In some techniques, high pressure reaction atmospheres are used to sup-
press evaporation with some success [77].

Yet, it is also possible to use such high vapor pressures and grow crystals directly from the
vapor phase. For this, the high vapor pressure reactants are evaporated at high temperatures
and precipitated at another spot in the reaction volume at lower temperatures. Based on Le
Chatelier’s principle, the reactants are gradually transported to the colder spot via the vapor
phase providing the matter for the growth of large crystals. The vapor phase exhibits an
Ostwald-Miers regime, too and, thus, acts analogous to a melt or solution by supersaturating
and the formation of nucleation centers and crystals under certain system-specific conditions.
For example, crystals of iodine and arsenic are grown via the vapor phase to purify these
elements [80].

The chemical vapor transport (CVT) technique differs from the scenario mentioned before,
as it is used to transport a per se non-volatile (low vapor pressure) element or compound via
the vapor phase, which is illustrated schematically in Fig. 2.3. In CVT, a so-called ’transport
agent’ is added to the system, which forms volatile intermediate species with the reactant at
certain temperatures. At different temperatures, this intermediate vapor species is no longer
stable and decomposes back to the transport agent and the reactant. By spatially separating
the two temperature zones and thermodynamically controlling the decomposition reaction,
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Fig. 2.3.: Schematic drawing of the processes during a chemical vapor transport reaction for an en-
dothermic formation of the intermediate species (T1 > T2). Grey: transported material; red: transport
agent. In the style of Ref. [80].

the transport of material based on Le Chatelier’s principle and the growth of crystals of the
reactant can be achieved. In this process, the transport agent acts as a catalyst and, thus, may
only be added in low amounts. Depending on the nature of the formation and decomposition
of the intermediate vapor species, the crystal growth in CVT takes place either in the colder
or in the hotter zone [80].

For example, Fe2O3 crystals can be grown by CVT using HCl as transport agent by transport
from hot (approx. 1000 ◦C) to cold (approx. 800 ◦C) as the formation of the transport species
FeCl3 is endothermic [81]. In contrast, the purification of Ni by the Mond process with CO as
transport agent is based on the exothermic formation of gaseous Ni(CO)4 at low temperatures
(approx. 50–60 ◦C) and its decomposition to solid Ni and CO at higher temperatures (approx.
220–250 ◦C) [75, 82].

In this work, CVT was used to growM2P2S6 crystals withM being a 3d transition element
as well as for crystals of the quarternary phases CuCrP2S6 and AgCrP2S6. As P and S are rela-
tively volatile, these constituents readily evaporate. However, the transition element exhibits
a low vapor pressure and a transport agent is necessary to bring it in the vapor phase at the
growth temperatures (approximate temperature range: 600–900 ◦C). For the CVT of 3d tran-
sition elements, halogens are suitable transport agents forming volatileMX3 species. Conse-
quently, iodine was added as transport agent. Details are discussed in Sect. 3.1.1, Sect. 3.2.1,
Sect. 4.1.1 and Sect. 4.2.1.

2.2. X-ray Diffraction

Electromagnetic radiation interacts with a periodic arrangement of optical slits (i.e. an opti-
cal grating) under diffraction, if the width of the slits is in the same order of magnitude as
the wavelength of the electromagnetic radiation λ. In this line, the periodic arrangement of
atoms in a crystal can act as three dimensional grating for electromagnetic radiation in the
X-ray region of the optical spectrum (i.e. 10 pm < λ < 10 nm)1. Thus for any orientation

1It may be mentioned that also other types of radiation (i.e. matter waves, such as neutrons or electrons) may
exhibit a similar wavelength and, thus, can interact with a crystal lattice under diffraction.
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of the crystal to the (incoming) primary beam, measuring the intensity of the X-ray radiation
in a sphere around the crystal yields a spatial distribution of the intensity, i.e. a diffraction
pattern [53, 83].

Fig. 2.4.: (a) Graphical representation of the Laue condition for diffraction for radiation with the initial
wave vector k and the wave vector ks after elastic scattering on two scattering centers with the distance
R. (b) Ewald sphere for the illustration of the Laue condition in reciprocal space. Details are explained
in the text. In the style of Ref. [83].

For certain angles, reflections (i.e. maxima of the X-ray intensity) are found, which are
obtained due to constructive interference of the X-ray beam which was elastically scattered
on different scattering centers in the crystal. The condition for constructive interference is
given by the Laue description. Fundamentally, a crystal can be defined as an infinite three
dimensional array generated by a set of translation operations acting on a basis, i.e. a Bravais
lattice. The crystals basis may be an atom, an ensemble of atoms, molecules or polymer strings
with a certain point group symmetry and acts as one homogeneous scattering center in the
Laue description of diffraction. As illustrated in Fig. 2.4(a), the lattice vector R describes the
distance between two of these scattering centers. With the wave vector k of the primary
radiation and ks of the scattered radiation, the path difference ∆x is obtained as in Eq. 2.3.

∆x = R · k

|k|
−R · ks

|ks|
(2.3)

nλ = R ·
(︃

k

|k|
− ks

|ks|

)︃
(2.4)

R · (k − ks) = 2πn ⇒ eiR·(k−ks) = 1 (2.5)
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As constructive interference is only observed if the path difference is an integer multiple of
the wavelength (∆x = nλ, n being an integer), Eq. 2.4 is obtained. For elastic scattering (|k| =
|ks| = 2πλ−1) this simplifies to Eq. 2.5. This is equal to the relation between a lattice vector
R and the corresponding reciprocal lattice vectorK (eiR·K = 1). Consequently, constructive
interference is observed if the change of the wave vector∆k from k to ks due to scattering is
equal to a reciprocal lattice vector, as shown in Eq. 2.6 [53, 83].

∆k = k − ks = K (2.6)

This can be illustrated by the Ewald sphere, as shown in Fig. 2.4(b) [84]. In the center of a
sphere, the origin of real space is located. The sphere has a radius of λ−1 and, thus, describes all
wave vectors kwith |k| = λ−1. The origin of the reciprocal space is defined at the intersection
of the primary X-ray beam with the sphere, such that the primary beam is always parallel to a
diameter of the sphere. Rotating the crystal around the origin of real space causes a rotation of
the reciprocal lattice around its origin. However, the relative position of these origins in this
construction is not affected. For certain rotations of the crystal in real space, a second lattice
point of the reciprocal lattice is on the surface of the sphere (the first one always being at the
origin of reciprocal space). For such an orientation of the crystal to the primary X-ray beam,
the corresponding wave vector fulfills the Laue condition with the reciprocal lattice parameter
K and, thus, elastic scattering is observed in the direction of ks. Consequently, the diffraction
process describes a Fourier transform of the crystal lattice into a direct image of its reciprocal
lattice as diffraction pattern [53, 83].

The maximum possible K corresponding to a scattering direction different from the direc-
tion of the primary beam is |K| < 2|ks| = 2λ−1 (i.e. less than the diameter of the sphere).
In this line, only lattice points with a distance from the origin of reciprocal space of less than
2|ks| can at all fulfill the Laue condition (i.e. be rotated on the surface of the Ewald sphere by
rotation of the crystal in real space). As 2|ks| = 2λ−1, increasing λ reduces the number of
reciprocal lattice points that can fulfill the Laue condition. If λ becomes too large, the Laue
condition is no longer fulfilled for anyK and, thus, no diffraction can be observed anymore [53,
83].

According to Laue, the reciprocal lattice vectorK can be expressed as a linear combination
of the primitive lattice vectors of the reciprocal lattice bi with the Laue indices h, k and l as
shown in Eq. 2.7.

K = hb1 + kb2 + lb3 (2.7)

As shown by the Ewald sphere, the reciprocal lattice vector K describes the translation
from the origin to a lattice point in reciprocal space. Each lattice point in recriprocal space
corresponds to a family of lattice planes in real space. In this line, a reciprocal lattice vector
with the Laue indices h, k and l describes the lattice point at hb1, kb2 and lb3 in reciprocal
space, yielding the reflection hkl and corresponding to the family of lattice planes with the
Miller indices (hkl) in real space. These lattice planes have a distance d between each other.
According to the Bragg equation, as shown in Eq. 2.8, for such lattice planes, a reflection is
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observed at an angle θ [85], which is half the angle that is obtained in the Ewald sphere for
the aforementioned reciprocal lattice vector. Accordingly, the Laue description and the Bragg
description of diffraction are equivalent [53, 83].

nλ = 2d sin(θ) (2.8)

Both descriptions relate the position of a reflection to the crystal lattice. Thus, the symme-
try of a crystal can be determined by the positions of the reflections. However following from
Friedel’s law [86], the diffraction pattern is always centrosymmetric, regardless of the actual
point group of the crystal. Adding an inversion center to each of the 32 point groups yields
11 Laue classes. Based on the position of reflection in the diffraction pattern, only the Laue
class of a crystal can be determined additional to the translation symmetry. Due to anomalous
(i.e. inelastic) scattering, which is always observed to some degree, Friedel pairs (the reflec-
tions h k l and h k l unrelated by the Laue class) may exhibit slightly different intensities. This
allows to identify the presence or absence of inversion symmetry and to determine the space
group [53, 83].

The intensity of a reflection hkl is determined by the structure factor Fhkl, which describes
the scattering potential of the crystals basis, i.e. the unit cell. It is given by the structure of
the unit cell as well as the scattering potential and thermal motion of the contained atoms. In
the case of X-ray scattering, the electromagnetic radiation interacts with the electrons of the
atoms in the unit cell and, thus, the structure factor is the Fourier transform of the electron
density distribution. While Fhkl contains the amplitude and phase of the diffracted beam, only
the intensity of the diffracted beam I ∝ |Fhkl|2 is obtained as result of the diffraction exper-
iment and the phase information is lost. Yet, the phase information of the Fourier transform
is necessary to gain access to the electron density distribution of the unit cell via an inverse
Fourier transformation and, subsequently, to determine the atomic structure (phase problem
of X-ray crystallography). Therefore, several methods were developed to initially estimate the
phase information exploiting general properties of the Fourier transformation and of specific
details of the diffraction pattern (e.g. direct methods, Patterson method, charge flipping) [53,
83].

After an initial estimate for the phases is obtained, the electron density distribution can
be calculated and an initial structural model can be constructed. Based on this structural
model, a new set of phases is simulated, which can be used to recalculate the electron density
distribution from the diffraction pattern. According to the new electron density distribution,
the initial structural model is optimized. This iterative process is called a refinement. The
agreement between between experimental and simulated reflection intensities is expressed by
reliability factors, which are optimized over several refinement cycles [53, 83].
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2.2.1. Single Crystal X-ray Diffraction

For single crystal X-ray diffraction (scXRD), a crystal is mounted in the optical path of an X-
ray beam. In laboratory devices, the X-ray beam is generated by an X-ray anode. An electron
beam is emitted on an anode, which consequently emits X-ray white light, i.e. bremsstrahlung
together with the characteristic X-ray spectrum of the anodematerial (most commonly Co, Cu,
Mo). Via a monochromator or an X-ray filter all wavelengths except of a narrow wavelength
regime, typically corresponding to the high intensity characteristic Kα transitions, are filtered
out before the beam interacts with the crystal [83].

Fig. 2.5.: Schematic drawing of a 4-circle goniometer as used in scXRD, illustrating the rotations along
the φ, χ, ω and θ circle [83].

The sample mount, as illustrated in Fig. 2.5, allows a precise rotation of the crystal in the
beam along three circles (φ, χ and ω) while the X-ray detector (typically a CCD point or area
detector) moves on a fourth circle with the sample in its center (θ). Consequently, this setup
corresponds to a 4-circle diffractometer and allows to detect sections of the diffraction pattern
(corresponding to sections of reciprocal space) for any orientation of the crystal to the primary
X-ray beam [83].

Depending on its symmetry, the crystal needs to be rotated step-by-step through an angle
of up to 180 ◦ (e.g. for crystals with low symmetry) to reconstruct all necessary details of
reciprocal space. To avoid blind spots of the reciprocal space, rotations around independent
axis are necessary. Additionally, a high amount of measured reflections is of advantage for the
structural solution process, allowing for additional degrees of freedom for the initial phase
estimation as well as for the structural refinement and, thus, improves the reliability of the
resulting crystal structure model [83].

After the measurement, the indices of the reflections of the separate sections have to be de-
termined (indexing) before the sections can be combined together (integrated) to obtain a sin-
gle datafile containing all reflection indices and corresponding intensity information. Based on
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the integrated data, initial phases for the inverse Fourier transform are estimated as mentioned
before and a model for the crystal structure of the unit cell is determined and refined [83].

In this work, scXRD was performed at room temperature on a Bruker X8 Apex2 CCD4K
diffractometer with Mo-Kα radiation. The data collection consists of large ω and φ scans of
the reciprocal space. The frameswere integratedwith the Bruker SAINT software package [87]
using a narrow-frame algorithm in APEX2 [88]. The data were corrected for absorption effects
using a semiempirical method based on redundancy with SADABS program [89], developed
for scaling and absorption corrections of area detector data. The symmetry determination,
structural determination and refinement were performed using charge flipping with the Su-
perflip algorithm [90] within Jana2006 [91] and SHELXL [92].

2.2.2. Powder X-ray Diffraction

Instead of a single crystal, a crystalline powder can be used as a sample in diffraction exper-
iments (powder X-ray diffraction; pXRD). Such a powder consists of a large number of small
crystals (crystallites) that are randomly oriented to each other. While the reciprocal space of
a single crystal exhibits distinct lattice points, continuous spheres are formed for a powder
due to the overlap of the reciprocal space lattices of all differently oriented crystallites. This is
illustrated in Fig. 2.6(a). Considering such spheres instead of well defined lattice points in the
Ewald sphere shows that for every orientation of the sample to the primary beam every re-
ciprocal lattice vectorK (up to the maximumK with |K| < 2λ−1) fulfills the Laue condition
for a certain scattering angle. Correspondingly, the orientation between the sample and the
primary beam does not affect the diffraction pattern for a powder sample. Thus, in pXRD only
one circle is needed, which is the θ circle with the detector moving around the sample in the
center. This simplifies the experimental setup and reduces the measurement time. However,
the spatial resolution of the reflections in reciprocal space cannot be observed in pXRD. All
reflections corresponding to the same length |K| overlap as the direction of K is lost due to
the smearing of reciprocal space [83, 93].

The considerations before assume an ideal powder with a homogeneous distribution of ev-
ery possible orientation for the crystallites. In reality, often some orientation of the crystallites
to the primary beam is preferred following from their shape (e.g. plate-like crystallites for
layered compounds). As consequently not all reflection conditions are fulfilled by the same
fraction of the powder, some reflections exhibit a higher and other reflections a lower intensity
than expected for the ideal powder [83, 93].

pXRD can be measured in different geometries with the most common one being the Bragg-
Brentano reflection geometry, as shown in Fig. 2.6(b). In this geometry, the sample is prepared
as a film by mixing powder and an X-ray amorphous glue and applying this mixture as a film
on an X-ray amorphous substrate. This film is placed in the center of the goniometer circle
on which the X-ray source and the detector are located. The angle between source, sample
and detector is changed such that the sample is always tangent to an imaginary circle through
source and detector (focusing circle). This is called parafocusing and can be achieved either by
moving the source and the detector on the goniometer circle (fixed sample, θ-θ geometry) or by
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Fig. 2.6.: (a) Top: Schematic two dimensional cut through the reciprocal space lattice of a single crys-
tal. Bottom: Smearing of reciprocal space due to the superposition of the reciprocal lattices of several
crystallites. Note that the smearing is much stronger in a real powder with a higher number of crystal-
lites. (b) Illustration of the Bragg-Brentano geometry for pXRD. The arrangement with the solid grey
square as sample corresponds to the reflection geometry, while the dotted square corresponds to the
transmission geometry.

moving only the detector and simultaneously rotating the sample (fixed source). This reflection
geometry ensures that the scattering vector is always perpendicular to the film surface [53,
93].

In the Bragg-Brentano transmission geometry (also shown in Fig. 2.6(b)), the sample is a
thin film of a mixture of powder and X-ray amorphous glue which is applied to an X-ray
amorphous foil. This sample is placed between source and detector as before. However, for
the transmission geometry the thin film is kept always normal to the focusing circle. Conse-
quently, the scattering vector is parallel to the film surface. This geometry was mostly used
for the pXRD investigations in this work [53, 93].

The difference in the orientation of the scattering vector relative to the surface of the sample
can be exploited to investigate preferred orientation effects. As the scattering vectors for the
reflection and the transmission geometry are perpendicular to each other, reflections, which
exhibit increased intensity due to preferred orientation of the crystallites in one geometry, are
expected to show reduced intensity in the other geometry and vice versa [53, 93].

In addition to the aforementioned geometries, the Debye-Scherrer transmission geometry
as well as the Guinier geometry are used in pXRD devices. The Debye-Scherrer transmission
geometry may be understood as a special case of the Bragg-Brentano transmission geometry
for samples with a homogeneous, angle independent shape in the primary beam (e.g., powder
in a capillary). Some geometries that do not rely on parafocusing, such as the Zeeman-Bolin,
Preston or Guinier geometries, are less commonly used in modern pXRD devices [53, 93].
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In general, a powder diffraction pattern allows to be indexed and a Laue group can be de-
termined. Due to the averaging of reciprocal space over the Friedel pairs in powder samples,
the absence of inversion symmetry cannot be observed. Furthermore, the phase problem can
rarely be solved based on pXRD data alone. Due to the smearing of reciprocal space, the in-
tensity of too less independent reflections is known to analyze the structure factor. However,
a pXRD pattern can be used for phase analysis by comparison with pXRD pattern of known
phases using corresponding databases. Furthermore, multiphase powders can be investigated
and phase fractions can be quantified. Based on the shape of the reflections, information on
the size and the strain of crystallites in the sample can be obtained [53, 93].

An initial assumption for the crystal symmetry and the unit cell parameters can be further
refined using the Le Bail method which additionally involves several instrumental parameters.
With this method, the whole diffraction pattern is fitted using a least square method. How-
ever, the reflection intensity is not obtained based on the structure factor of a crystal structure
model but rather scaled to fit the experiment. If an initial model for the crystal structure of a
compound is already known, a structural refinement is possible based on pXRD data using the
Rietveld method. Using this method, a pXRD pattern is simulated with accurate intensities
based on the initial structural model. The agreement between the simulated and the experi-
mental pXRD pattern is improved using a least square method by tuning the corresponding
structural parameters as well as several instrumental parameters [53, 83, 93].

In this work, pXRD was performed at room temperature on a STOE STADI laboratory
diffractometer in transmission geometry with Cu-Kα1 radiation from a curved Ge(111) sin-
gle crystal monochromator and detected by a MYTHEN 1K 12.5◦-linear position sensitive de-
tector manufactured by DECTRIS. For the investigation of preferred orientation in Ni2P2S6,
the transmission pXRD experiment was performed on a STOE STADI device with the same
detector and monochromator setup but with Co-Kα1 radiation, while the reflection measure-
ment was done on a PANanalytical X’Pert Pro PW3050/60 diffractometer with X’Celerator 1D
detector in Bragg-Brentano θ-θ geometry with Co-Kα radiation. Jana2006 [91] was used to
analyze the pXRD diffraction pattern by the Le Bail method and for structural refinements by
the Rietveld method.

2.3. Scanning Electron Microscopy and Energy Dispersive
X-ray Spectroscopy

The minimal resolution in microscopy is proportional to the wavelength λ of the radiation.
In order to resolve objects in the nm–µm regime, radiation with a wavelength shorter than
visible light has to be used. For this, an electron beam can be used instead of a beam of short
wavelength electromagnetic radiation (i.e. ultraviolet or X-rays). This has the advantage that
an electron beam can be well manipulated by magnetic fields owed to its charge nature, while
optical elements for short-wavelength/high-energy electromagnetic radiation pose a challenge
for modern science and are subject of ongoing research [94, 95].
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To produce such an electron beam, a cathode (i.e. a filament of, i.e., tungsten or LaB6)
is heated under vacuum until it emits electrons thermo-ionically. Applying additional high
electrostatic fields to the cathode increases the electron yield by Schottky emission. It is even
possible to induce electron emission purely by an extremely strong electrostatic field, i.e. cold
field emission. The free electrons are subsequently accelerated towards the anode with an
acceleration voltage Ub. As a matter wave, the wavelength of an electron beam is λ = h/p =
h/(me ve) according to de Broglie. With ve =

√︁
2Ub e/me and Ub = 10 kV, this yields λ ≈

10−11m, which is in the range of X-ray radiation and allows for a smaller spatial resolution
than visible light [95].

The electron beam is focused on a sample via electromagnetic lenses and apertures under
vacuum. Depending on the setup, either the transmitted electron beam is refocused and im-
aged via an image plate (transmission electron microscopy; TEM) or the sample is scanned
with the electron beam and for every spot the radiation products of the interaction between
primary electron beam and sample are detected (scanning electron microscopy; SEM). The
latter technique of SEM was employed in this work and is explained in more detail in the
following section [95].

2.3.1. Scanning Electron Microscopy

As mentioned before, in SEM a sample is scanned by the primary electron beam and the ra-
diation products of the interactions between sample and beam are detected. The interaction
between the primary electron beam and the sample causes an energy loss of the primary beam
via several different mechanisms, as shown in Fig. 2.7. Besides energy being converted into
heat, light (cathodoluminescence), X-ray radiation or by emitting Auger electrons, low-energy
secondary electrons (SE) are emitted or primary electrons are scattered back from the sample
(i.e. backscattered electrons; BSE) [95].

SE are low-energy electrons (< 50 eV), which are emitted due to inelastic scattering inter-
actions between the samples conduction or valence bands and the primary beam. Due to their
low energy, only SE that emerge close to the sample surface can escape the material before
getting absorbed. Consequently, detecting the SE at every spot on the sample during scanning
yields information about the texture of the surface, i.e. a topographic sample image. To detect
these SE, a scintillator in a Faraday cage is used (Everhart-Thornley detector), which is typi-
cally mounted slightly above and at one site of the sample [96]. The Faraday cage is charged
positively by a small voltage to attract the SE, while higher energy electrons are not signif-
icantly affected due to the small charge. The attracted SE in the vicinity of the detector are
subsequently attracted to the scintillator by a high positive voltage and converted into pho-
tons. The photons are focused to a lightguide and guided out of the vacuum chamber, where
an electrical signal is obtained via a photomultiplier. The position of the SE detector affects
the ’illumination’ of the corresponding image. If there is an obstacle (e.g. a step or a grain on
the surface of the sample) on the direct line between a spot on the sample and the detector,
SE will collide with the obstacle and be absorbed. Thus, such spots appear darker (i.e. less
electrons reach the detector) on the SEM(SE) image than spots without such an obstacle. In
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Fig. 2.7.: Schematic illustration of the interaction between the primary electron beam and a sample
in an electron microscope. Blue arrows correspond to matter (i.e. electron) signals from the sample
due to the interaction with the primary electron beam and black arrows correspond to electromagnetic
signals. Signals with an arrow pointing to the top can be probed in SEM, while signals with an arrow
pointing towards the bottom of the scheme can only be investigated in TEM.

this line, an SEM(SE) image appears to be taken from the direction of the primary beam but
illuminated from the detector [95].

BSE are high-energy primary electrons, which are reflected or backscattered from the sam-
ple due to elastic scattering with the atoms in the sample. Atoms with a high atomic number
cause an increased backscattering of electrons than atoms with a low atomic number. Con-
sequently, spots with a composition corresponding to a higher mean atomic number appear
brighter in an SEM(BSE) image than spots with a lower mean atomic number. Thus, the BSE
detector yields a chemical contrast. Due to their high energy, BSE can emerge deeper in the
sample than SE and still reach the sample surface without being absorbed and they are not
affected by the small charge of the Everhart-Thornley detector. Therefore, BSE are detected by
a separate detector positioned above the sample as a ring through which the primary beam is
guided. This detector is either made of a scintillator or a semiconductor to detect the electrons.
Following from the position of the BSE detector above the sample, SEM(BSE) images seem to
be illuminated from the direction of which the image is taken [95].

As the SEM image is not directly obtained from the primary beam, the resolution of this
technique is not directly dependent on the wavelength of the primary beam but rather on the
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interaction volume between primary beam and sample. This volume is influenced by the spot
size of the beam on the sample and the energy (i.e. wavelength) of the primary beam [95].

2.3.2. Energy Dispersive X-ray Spectroscopy

As mentioned before, the energy loss of the primary beam due to the interaction with the
sample causes, inter alia, the emission of X-ray radiation. This radiation contains two con-
tributions: bremsstrahlung and characteristic X-ray radiation. The bremsstrahlung is obtained
due to the deceleration of primary electrons in the sample and yields a continuous contribution
to the X-ray spectrum with a maximum energy corresponding to the energy of the primary
electron (i.e. a primary electron is abruptly stopped in the sample and all kinetic energy is
emitted as an X-ray photon) [95, 97].

Fig. 2.8.: Schematic illustration of the generation of characteristic X-ray radiation. The labeling of the
possible transitions is shown on the left. In the style of Ref. [97].

X-ray radiation of a characteristic energy is emitted if an outer shell electron in an atom
fills a vacant inner shell hole and releases the difference in energy. This process follows up
on the ejection of an inner shell electron due to the bombardment with high energy particles
(here: primary electrons) and is illustrated in Fig. 2.8. The energy of such transitions between
an electron in a certain outer shell and a certain inner shell is characteristic to each element
and, thus, each element has its characteristic X-ray spectrum [97].

In energy dispersive X-ray spectroscopy (EDX) this effect is used to determine the elements
and estimate the composition of a sample. Accordingly, irradiating a spot on the sample with
the primary electron beam and measuring the emitted X-ray spectrum yields the superim-
posed characteristic spectra of all elements present at a spot on the sample together with the
bremsstrahlung. After subtracting the contribution from the bremsstrahlung, the superimposed
X-ray spectra can be deconvoluted and, based on the intensity of the separate characteristic
spectra, an estimate for the relative atomic composition is obtained [95, 97].
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The reliability of this estimate depends on a homogeneous yield of X-ray photons generated
by the different elements. In the sample, the X-ray photons are emitted in all directions homo-
geneously, such that only a fraction of generated X-rays leave the sample at all. X-rays that do
not leave the sample can potentially cause the ejection of another core electron somewhere in
the sample and, consequently, the emission of characteristic X-ray radiation from outside the
measured spot. In general, the mean distance that an X-ray photon can travel in a material
before strongly interacting with it depends on the energy of the photon as well as the density
and composition of the material. Thus, the lower the energy the higher the fraction of X-rays
that are absorbed before leaving the sample. Consequently, the reliability for light elements
(corresponding to low energy characteristic transitions) is low and the measured X-ray spec-
trum has to be corrected due to absorption and related effects in the sample. Furthermore, a
flat sample surface is important for EDX measurements to ensure a homogeneous interaction
volume for the X-ray emission as well as consistent conditions for X-rays to leave the sample.
Further inaccuracies may arise from elements with similar characteristic transition energies
and the corresponding overlap of peaks in the X-ray spectrum affecting the deconvolution
process [97].

Nevertheless, EDX also exhibits several advantages over more precise methods to determine
the elemental composition, such as mass spectrometry. EDX is non-destructive and allows to
investigate the homogeneity of the elemental composition in a sample by several measure-
ments on different spots. Especially for samples with a flat surface, changes in the elemental
composition can be probed with a good reliability, although the absolute elemental ratios are
less reliable due to the aforementioned reasons. Combining EDX with SEM allows to detect
areas of different composition by BSE and to locally quantify their elemental composition,
while SE can be used to identify suitable flat surfaces. Furthermore, spatial resolved infor-
mation on the elemental distribution can be obtained by EDX line scans or mapping. For
these techniques, a line or an area on the sample are divided into pixel and for each pixel an
EDX spectrum is measured under the same conditions. Consequently, the spatial distribution
of the intensity at a characteristic energy of each element color-coded illustrates the spatial
distribution of all elements over the investigated line or area [95, 97].

In this work, a ZEISS EVOMA 10 scanning electronmicroscopewas used for electronmicro-
scopic images either with a SE detector for topographic contrast or a BSE detector for chemical
contrast. EDX was measured with the same device using an energy dispersive X-ray analyzer.
For an investigation on a layered single crystal, such a crystal was initially exfoliated to obtain
a flat and prestine surface and, subsequently, attached to a sample holder with sticky carbon
tape. For polycrystalline samples (as investigated in Sect. 4.3), grains of the polycrystalline
material were embedded in an epoxy resin mixed with fine Ni powder to ensure conductivity.
Such a resin puck was, subsequently, ground and polished until a flat surface containing sev-
eral polycrystalline grains was obtained. These samples were investigated in the SEM initially
at low magnification using the SE and BSE detectors to obtain an overview of the morphology
and phase composition. At several locations of interest, the study was resumed at higher mag-
nification. Furthermore, SEM images were captured at different magnifications in this phase.
After a general overview of the sample and its phase composition was obtained from SEM,
areas that fulfill the requirement of a flat surface area and are representative of the samples
phase composition were located and subjected to several EDX measurements. This procedure
was repeated on several areas on one sample. If this EDX investigation revealed inhomo-
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geneities of the chemical composition that were not expected from the corresponding BSE im-
ages, EDX mappings were conducted to reveal their origins (as, i.e., for (Cu0.75Ag0.25)CrP2S6
and (Cu0.50Ag0.50)CrP2S6 in Sect. 4.3).

2.4. Magnetometry

A superconducting quantum interference device (SQUID)magnetometerwas used for themea-
surements of the magnetic properties. The SQUID is a superconducting ring with two Joseph-
son junctions on opposite sites (dc-SQUID).Themagnetic flux through a superconducting ring
is quantized as a multiple of the magnetic flux quantum Φ0 = h/(2e). Changing the magnetic
field induces a loop current in the superconducting ring, which compensates the magnetic flux
through the ring to the closest nΦ0 [98]. Applying an external dc-current to the system in-
duces a voltage over the Josephson junctions, which is affected by the loop current in the ring.
Consequently, a periodic flux–voltage dependence is observed with the periodicity of exactly
one magnetic flux quantum. The same dependence can be observed for a superconducting ring
with only one Josephson junction and an applied ac-current in the range of several 10MHz
(rf-SQUID). To measure changes of the magnetic flux that are larger than Φ0, the voltage over
the SQUID is detected and kept constant by a feedback loop. Via an induction coil close to the
SQUID the change of the magnetic flux through the ring is compensated. Consequently, the
feedback current through the induction coil is proportional to the external magnetic flux [65,
98, 99].

This setup is used in SQUID magnetometry to measure the magnetic moment of a sample at
high sensitivity. For this, a sample is moved through a pickup coil, inducing a current. Follow-
ing from Faraday’s law of induction, only the magnetization component along the direction
of movement of the sample can be measured. The induced current flows through an induction
coil close to the SQUID changing the flux through the superconducting ring. Via the setup
described before, this change in flux is compensated and transformed in a measurable current.
The sample is moved through the pickup coil repeatedly and the output current is measured
as function of the sample position. Such a flux profile is fitted by the expected flux profile of
a point dipole to obtain the magnetic moment [65, 99].

The SQUID can be also used as amplifier in a vibrating sample magnetometer (VSM), in
which a sample is vibrated in a homogeneous magnetic field with a certain frequency. The
periodic oscillation of the sample causes a detectable change in the magnetic flux. In classical
VSM this signal is amplified andmeasured by a lock-in amplifier, while in SQUIDVSMa SQUID
is used, improving the sensitivity of the device. To relate the measured current from a VSM
to magnetic moments, the device is calibrated with a standard of known magnetic properties
(e.g. a Pd cube of defined dimensions) [65, 99].

For both devices described before, the pickup coil with the sample is inside a (supercon-
ducting) magnet such that the external magnetic dc- or ac-field is homogeneous and parallel
to the axis of sample movement. Furthermore, the temperature in the sample space can be
varied over a wide range (e.g. 1.8–400 K) to allow for field and temperature dependent mea-
surements. In a conventional SQUID magnetometer, for each value of temperature and field a
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2.5. Nuclear Magnetic Resonance Spectroscopy

full flux profile is measured, while in a SQUID VSM a magnetic moment can be deduced from
each oscillation of the sample, allowing for a faster measurement [99].

In this work, DC magnetization was measured as a function of temperature and magnetic
field using a SQUID VSM and a conventional SQUID magnetometer, both fromQuantum De-
sign. The conventional SQUID magnetometer was equipped with a 5.5 T magnet and could
be stabilized at a minimum temperature of 5 K for an elongated time. This device was only
used for the magnetic measurements on CuCrP2S6 (excluding the M(H) dependence at 1.8 K
and up to 7 T, which was measured at the SQUID VSM). For the magnetic measurements on
all other compounds, a SQUID VSM with a 7 T magnet and the capability of heating up to
400 K as well as stabilizing 1.8 K over elongated times was used. For the measurements with
the conventional SQUID magnetometer, samples were glued to a paper stripe with Duosan
such that the sample was in the desired orientation to the field in the SQUID. The paper stripe
with the sample was fixed inside a plastic straw and the setup was mounted to the SQUID
sample rod and introduced in the sample chamber. For the measurements with the SQUID
VSM, samples were glued with Duosan to a quartz sample holder in the desired orientation.
The quartz holder was mounted to the sample rod and introduced into the sample chamber.
In both cases, the background contribution from the sample holder setup was not explicitly
taken into account. However, for the measurements of ferromagnetic Cr2Ge2Te6 on the VSM,
a shape correction was performed due to the highmagnetic moments and the large sample size
which led to notable deviations from the behavior of a point dipole. This correction followed
a procedure described by the device manufacturer Quantum Design [100].

2.5. Nuclear Magnetic Resonance Spectroscopy

Nuclei exhibit a non-zero nuclear spin, if they contain either an odd number of protons or
neutrons or an odd number of both nucleons. As the magnetic dipole moment of a particle
is inversely proportional to its mass, the nuclear magnetic moment is orders of magnitude
smaller than the electron magnetic moment and, thus, was neglected in the considerations
about the magnetic properties before [101].

In an external magnetic fieldB, the energy levels of a spin split up due to the Zeeman effect.
This is the case for both electron spins and nuclear spins. The energy difference between
states due to the Zeeman splitting is ∆E = h̄γB with the reduced Plank constant h̄ and the
gyromagnetic ratio γ = gµ/h̄ with the gyromagnetic factor (Landé factor) g and the magnetic
moment µ of the particle. As the nuclear magnetic moment is orders of magnitude smaller
than the electron magnetic moment, also the energy differences in the Zeeman effect differ
notably. Applying∆E to a system of spins induces transitions between the split spin states in
the Zeeman effect. Consequently, a spectrum with distinct absorption lines can be obtained as
function of the applied energy. This is exploited in electron spin resonance (ESR) spectroscopy
probing the electronic system and in nuclear magnetic resonance (NMR) probing the spins of
certain nuclei [101].

In modern NMR a fourier transform process is used. The excitation energy is applied by
an oscillating magnetic field using a radio frequency pulse via a coil around a sample. Due to
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the bandwidth of the pulse, a whole range of energies are excited at once. The phase of the
radio frequency pulse causes the nuclear magnetic moments to precede in phase around the
external magnetic field B with the Lamor frequency f = γB/2π. Thus, an oscillating voltage
is induced in the coil around the sample. The induced voltage as function of time is called
the free induction decay and yields the NMR spectrum of the excited bandwidth via Fourier
transformation [101].

As γ is known for each nucleus,∆E and the Lamor frequency f can be calculated for a mag-
netic field B. However, the absorption line for a certain nucleus is found at slightly different
energies/frequencies than expected from the gyromagnetic ratio. This effect is called chemical
shift δ and is caused by a slight change of the magnetic field experienced by the nucleus due to
its local electronic environment via hyperfine fields. As different coordination environments
or bonding situations change the electronic environment and, thus, the chemical shift δ, struc-
tural information can be extracted from the spectrum. Furthermore, changes in the electron
spin system as well as in the electronic band structure can be probed by NMR [101]. Addition-
ally, the time dependent relaxation of the nuclear spin system to thermal equilibrium yields
information on changes in the local environment of the nuclei, e.g. as function of temperature.

In this work, NMR spectroscopy was measured on the 31P nuclei of Ni2P2S6 single crystals.
These experiments were conducted in a 7 T superconducting magnet using a home-built probe
with a single-axis goniometer for sample rotation and alignment. The sample temperature was
controlled using a flow cryostat from Janis (sample in helium gas) with a calibrated Lakeshore
Cernox temperature sensor. NMRmeasurementswere performedwith anApollo spectrometer
from Tecmag. For the spectral measurements shown in Sect. 3.1.4, a standard spin-echo pulse
sequence (π/2–π) was used. The delay time between the π/2 and π pulses was τ = 500µs for
the measurements in the normal state and τ = 50µs for the measurements in the magnetic
state.

2.6. Specific Heat Capacity

The specific heat capacity at constant pressure Cp is related to the free energy of a system F
as shown in Eq. 2.9.

Cp = T (∂S/∂T )p = −T (∂2F/∂T 2)p (2.9)

Thus, a second order phase transition according to Ehrenfest, such as a magnetic phase tran-
sition, causes a discontinuity in the evolution of the specific heat [72]. Consequently, the
specific heat can be used to investigate the nature and evolution of phase transitions. Further-
more, the evolution of the specific heat corresponds to the entropy change and, thus, contains
contributions of the phononic, electronic and spin systems for a solid system [102].

In this work, the specific heat was measured using a relaxation technique. Via a heat pulse
of an electrical heater, a defined amount of heat is induced in the sample, which is connected
to a thermal reservoir. Subsequently, the temperature decay is measured as function of time
with a thermometer. The temperature decay follows an exponential behavior corresponding
to Eq. 2.10 and with the specific heat capacity C can be obtained according to Eq. 2.11 [103].
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2.6. Specific Heat Capacity

∆T = ∆Tmax[1− exp(−t/τ)] (2.10)

C = Pτ/∆Tmax (2.11)

For the measurements of the specific heat capacity of Cr2Ge2Te6 as function of temperature
and magnetic field, a Physical Property Measurement System (PPMS) from Quantum Design
was used which in principle allows for measurements at temperatures down to 0.5 K and under
appliedmagnetic fields of up to 9 T. Formeasurements with themagnetic field out-of-plane of a
plate-like Cr2Ge2Te6 crystal (i.e. H ⊥ ab), the crystal was directly mounted to the specific heat
puck. However for measurements with H ∥ ab, the crystal was mounted to a copper block,
which was subsequently mounted on the specific heat puck to achieve the desired orientation
between the crystal and the magnetic field. The specific heat from the platform, the copper
block and grease used for mounting the sample were measured separately and subtracted from
the experimental data.
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TheM2P2S6 compounds (M being a main group metal or transition metal with a 2+ oxidation
state) are a subclass of the family of metal trichalcogenides crystallizing in the monoclinic
space groupC2/m (No. 12), as introduced in Sect. 1.1. The correspondingmonoclinic structure
was first discovered for the structural archetype Fe2P2S6 by Klingen et al. [104]. Following
on this report, Taylor et al. [105] as well as Brec et al. [106] found that most other M2P2S6
compounds are isostructural to Fe2P2S6.

The ICSD1 lists ten M2P2S6 compounds in the C2/m space group, as summarized in Ta-
ble 3.1. Hg2P2S6 (ICSD Code: 639130; [104]) differs from the other compounds as it exhibits
the triclinic space group P1 (No. 2) and a distorted Fe2P2S6 structure [108]. Additionally, sub-
stitution between two of the before mentioned isostructural compounds has been successfully
performed, as for example demonstrated for (Zn1−xFex)2P2S6 and (Zn1−xNix)2P2S6 [41].

Table 3.1.: Isostructural M2P2S6 com-
pounds in the monoclinic C2/m space
group according to the ICSD.

Compound ICSD Code Ref.

Main-group metal compounds
Mg2P2S6 642729 [109]
Sn2P2S6 648056 [110]

Transition metal compounds
V1.56P2S6 648076 [111]
Mn2P2S6 61391 [112]
Fe2P2S6 27307 [104]
Co2P2S6 61394 [112]
Ni2P2S6 259148 [43]
Zn2P2S6 79557 [113]
Pd2P2S6 647926 [110]
Cd2P2S6 79556 [113]

M2P2S6 compounds are, in general, insulators or
broad-band semiconductors [41, 60]. Magnetically,
the main group metal compounds as well as Zn2P2S6,
Cd2P2S6 andHg2P2S6 are expected to be diamagnets as
they are closed shell systems (S = 0). However, for the
transition element compounds Mn2P2S6 (S = 5/2),
Fe2P2S6 (S = 2), Co2P2S6 (S = 3/2) and Ni2P2S6
(S = 1) an antiferromagnetic ground state was found
in bulk samples [114]. Above their magnetic or-
dering temperature, all these compounds exhibit a
short range magnetic correlated regime typical for
low-dimensional magnets. The M2P2S6 compounds
with M = Mn, Fe, Co Ni exhibit different magnetic
anisotropy strengths making them model systems
to investigate the influence of magnetic anisotropy
on low-dimensional magnetism [43]. Mn2P2S6 is
isotropic [115], Fe2P2S6 is Ising-like (i.e. strongly
anisotropic) [116] and Co2P2S6 as well as Ni2P2S6 ex-
hibit an intermediate anisotropy strength [117, 118].
Substitution between these compounds may yield ex-

otic magnetic states resulting from the interplay of different magnetic anisotropies, as demon-
strated by a spin glass state in (Mn0.5Fe0.5)2P2S6 [119], .

1Inorganic Crystal Structure Database (http://icsd.fiz-karlsruhe.de) [107], accessed July 2020.

49

http://icsd.fiz-karlsruhe.de


3. M2P2S6

In the course of this work, a substitution series between the two transition metal com-
pounds Fe2P2S6 and Ni2P2S6 was produced. Both parent compounds as well as four interme-
diate compounds of the general composition (Fe1−xNix)2P2S6 were grown as single crystals
and investigated regarding their structure and magnetic behavior. Hereafter, Ni2P2S6 as well
as the substitution series (Fe1−xNix)2P2S6 are introduced comprehensively and the findings of
the experimental studies are presented.

It should be noted that the synthesis of the (Fe1−xNix)2P2S6 substitution series and the cor-
responding magnetic measurements were done in close cooperation with Yuliia Shemerliuk in
the course of her master thesis at the Institute for Solid State Research, Leibniz IFW Dresden
and are therefore reported as part of her master thesis [120]. However, the detailed structural
analysis and the extensive discussion of the evolution of the magnetic properties of these
compounds are unique to the work at hand. Following the results presented here, preliminary
experiments including synthesis and growth experiments with focus on the substitution de-
gree of 0.9 ≤ x ≤ 1 in (Fe1−xNix)2P2S6 were done by Tamara Holub at the Institute for Solid
State Research, Leibniz IFW Dresden and are consequently part of her master thesis [121].

3.1. Ni2P2S6

Ni2P2S6 is a member of the class ofM2P2S6 compounds and was first synthesized by Hahn and
Klingen in 1965 [122]. First macroscopic single crystals of Ni2P2S6 were reported by Taylor et
al. [105] in 1973 using the chemical vapor transport technique. The general structural motifs
are the same as for Fe2P2S6 described in Sect. 1.1. However, additionally site disorder between
M and the P2 dimer has been reported for Ni2P2S6 (as well as for Co2P2S6) by Ouvrard et
al. [112] based on scXRD. More recent reports by Lançon et al. [117] as well as Goossens et
al. [123] question if the site disorder in Ni2P2S6 is real or rather an artifact in the structural
solution process due to the presence of a large number of stacking faults. Such crystallographic
defects are commonly found in layered compoundswith vanishing interlayer interactions such
as Ni2P2S6 [124].

Ni2P2S6 is an insulator with an optical gap of approximately 1.8 eV [125] and antiferromag-
netic order sets in below TN ≈ 155K [43, 114, 126]. In the magnetically ordered state, Ni2P2S6
forms ferromagnetic chains along the a direction, which couple antiferromagnetically to ad-
jacent chains in the ab plane (stripe-like antiferromagnetic order). Such layers are coupled
ferromagnetically along the monoclinic c direction. The preferred orientation of the magnetic
Ni-moments is found mostly along the a direction with a weak contribution in c direction [43].
A perspective drawing of the crystal structure with the orientation of the magnetic moments
at 2 K according to Wildes et al. [43] is shown in Fig. 3.1. Please note, that the structure is
shown without Ni-P2 site disorder in agreement with Wildes et al. who reported that only the
moments on the Ni-majority sites gave a robust refinement while moments on the Ni-minority
sites did not refine reliably. Above TN, a broad maximum in the thermal evolution of the sus-
ceptibility is ascribed to low-dimensional short range magnetic correlations [66, 114]. Com-
pared to its sisterM2P2S6 compounds withM = Mn, Fe and Co, Ni2P2S6 exhibits the highest
ordering temperature as well as the broadest regime of low-dimensional magnetic correla-
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3.1. Ni2P2S6

Fig. 3.1.: Perspective drawing of the crystal structure of Ni2P2S6 and orientation of the magnetic
moments of Ni at 2 K according to Wildes et al. [43]. View along (a) the a direction (⊥ bc plane), (b)
the b direction (⊥ ac plane) and (c) the c∗ direction (⊥ ab plane). The red octahedra illustrate the P2S6
structural units. Bright and dark green arrows illustrate the moment orientations and are drawn in
different colors to improve the visibility of the stripe-like antiferromagnetic order.

tions. However, not only the relatively high ordering temperature but also the intermediate
anisotropy strengthmake Ni2P2S6 an interesting compound for investigations of magnetism in
low-dimensional compounds. Furthermore, the intermediate magnetic anisotropy combined
with a low-dimensional system is promising to yield access to exotic magnetic states, such
as the highly unusual short range correlated ground state that was demonstrated by Berezin-
skii [71] as well as Kosterlitz and Thouless [46] for the XY model in 2D [45], as introduced in
Sect. 1.2.5. While such a state may not be realized in Ni2P2S6 itself or, at least, was not found
until now, it may be a good starting candidate for tuning the magnetic anisotropy towards the
desired XY-anisotropy.

Nevertheless, before being able to fully understand and subsequently tune the physical prop-
erties of Ni2P2S6, the open structural questions, such as the presence or absence of Ni-P2 site
disorder as well as the role of stacking faults, have to be addressed.

Single crystals of Ni2P2S6 were grown by chemical vapor transport using iodine as transport
agent as presented in Sect. 3.1.1. These crystals were extensively characterized by SEM and
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EDX regarding their morphology and composition and scXRD and pXRD were used to inves-
tigate the crystal structure (see Sect. 3.1.2). This combination of characterization techniques
allowed to address the Ni-P2 site disorder and stacking faults in the Ni2P2S6 crystals grown in
this work as well as general challenges of pXRD on highly textured samples. In Sect. 3.1.3, the
bulk magnetic properties of Ni2P2S6 are discussed which were measured for magnetic fields
along three specific in-plane and one out-of-plane directions. The in-plane directions imply
an unexpected angular dependence of the magnetization, which is discussed in the context of
a potential 120◦ rotational twinning in Ni2P2S6. As a complementary local probe technique to
both the X-ray structural analysis as well as the bulk magnetization investigation, 31P NMR
spectroscopy was used to obtain further insight into the local structure as well as the local
magnetic behavior. As discussed in Sect. 3.1.4, NMR spectroscopy does not exhibit any indica-
tion for the Ni-P2 site disorder and agrees with the unexpected in-plane angular dependence
observed in the magnetic study explainable by twinning. In Sect. 3.1.5, the 120◦ rotational
twinning in Ni2P2S6 is derived from the crystal structure of a single layer in interplay with
the monoclinic stacking in form of a thought experiment. Consequently, the three possible
monoclinic stacking directions of the C2/m space group with respect to the adjacent layer
favor 120◦ rotational twinning.

Parts of the following section (characterization and results from 31P NMR spectroscopy) are
published in A. P. Dioguardi, S. Selter et al., Physical Review B 102, 064429 (2020) [127].

3.1.1. Crystal Growth

Single crystals of Ni2P2S6 were grown using the chemical vapor transport (CVT) technique
with iodine as the transport agent. The temperature profile of the growth was adopted from
Taylor et al. [105].

In a glove box under argon atmosphere, the elemental educts nickel (powder -100 mesh,
Sigma Aldrich, 99.99%), phosphorus (red, lumps, Alfa Aesar, 99.999%) and sulfur (pieces, Alfa
Aesar, 99.999%) were weighed out to yield a molar ratio of Ni : P : S = 2 : 2 : 6 and homogenized
in an agate mortar. 0.5 g of reaction mixture were loaded in a quartz ampule (6mm inner diam-
eter, 2mm wall thickness, which was previously baked out at 800 ◦C for at least 12 h) together
with a small quantity (approx. 5mol-% with respect to Ni) of the transport agent iodine (re-
sublimed crystals, Alfa Aesar, 99.9985%). The ampule was then transferred to a vacuum pump
and evacuated to a residual pressure of 10−8 bar. To suppress the unintended sublimation of
the transport agent during evacuation, the lower end of the ampule containing the reaction
mixture was cooled with liquid nitrogen. After reaching the desired internal pressure, the
valve to the vacuum pump was closed, the cooling was stopped and the ampule was sealed
under static pressure at a length of approximately 12 cm.

The ampule was placed horizontally in a two-zone tube furnace in such a way that the
elemental mixture was only at one side of the ampule which is called the charge side. The
furnace was heated homogeneously to 750 ◦C at 100 ◦C/h. The charge side was kept at this
temperature for 394.5 h while the other side of the ampule which is the sink side was initially
heated up to 800 ◦C at 100 ◦C/h, dwelled at this temperature for 24 h and then cooled back to
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Fig. 3.2.: (a) Schematic representation of the temperature profile as function of time for the single
crystal growth of Ni2P2S6 using CVT. The charge site temperature profile is shown in red and the
sink site profile in blue. (b) Photographic image of a plate-like crystal obtained from the CVT growth
experiment with iodine as transport agent. One orange square equals 1mm× 1mm for scale. The same
image as in (b) is shown in the master thesis of Shemerliuk [120].

750 ◦C at 1 ◦C/h. An inverse transport gradient is formed, i.e. transport from sink to charge, to
clean the sink side of particles which stuck to thewalls of the quartz ampule during filling. This
ensures improved nucleation conditions in the following step. Then the sink side was cooled
to 690 ◦C at 0.5 ◦C/h to slowly form the thermal transport gradient resulting in a controlled
nucleation. Then the ampule was dwelledwith a transport gradient of 750 ◦C (charge) to 690 ◦C
(sink) for 200 h. After this the charge side was cooled to the sink temperature in 1 h before
both sides were furnace cooled to room temperature. This temperature profile is graphically
illustrated in Fig. 3.2(a).

Shiny plate-like crystals of Ni2P2S6 of up to 4mm× 3mm× 200µm were obtained.
Fig. 3.2(b) shows an exemplary as-grown single crystal. The crystals exhibit a layered mor-
phology and a ductile nature. Furthermore, the crystals are easily exfoliated which is a typical
feature of these layered compounds. Further crystal growth experiments without the addition
of any halogen yielded no notable formation of crystals. This implies that Ni2P2S6 (and, in ex-
tension, most likely allM2P2S6) grows via a chemical vapor transport mechanism and not via
a physical transport mechanism following a phase formation in the solid state (i.e. sublimation
and recondensation).

3.1.2. Characterization

Crystal Morphology and Compositional Analysis

Fig. 3.3 shows SEM images of an as-grown crystal with topographical contrast (using an SE
detector) and with chemical contrast (BSE detector). In the SEM(SE) image, a flat surface is
observed with some layers peeling of from the bulk of the crystal. Additionally, several crys-
talline edge facets forming angles of ≈ 120◦ illustrate the hexagonal crystal habitus (e.g. bot-
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Fig. 3.3.: SEM images of a crystal obtained from the aforementioned growth experiment with (a)
topographical contrast (SE detector) and (b) chemical contrast (BSE detector).

tom right). The SEM(BSE) image exhibits a homogeneous contrast of the crystal surface. Some
spots of different contrast can be clearly attributed to particles on the surface of the crystal
rather than intrinsic impurities by comparing SEM(BSE) and SEM(SE) images. Accordingly,
the crystal exhibits a homogeneous elemental distribution on the shown surface.

The mean elemental composition was quantified from EDX spectroscopy which was per-
formed on several spots on multiple crystals of the same crystal growth experiment. The
obtained mean elemental composition of Ni20.5(1)P20.3(1)S59.2(1) is in ideal agreement with the
expected composition of Ni20P20S60. The low standard deviations of the mean ratios are ex-
emplary for a homogeneous elemental distribution. Furthermore, no iodine was found incor-
porated in the crystals.

Structural Analysis

All reflections obtained from scXRD2 on a Ni2P2S6 single crystal are well indexed by a mono-
clinic unit cell with space group C2/m (No. 12) with the lattice parameters given in Table 3.2
in agreement with literature [106, 112]. Brec et al. initially reported Ni2P2S6 to be isostruc-
tural to Fe2P2S6 [106]. Using the corresponding structural model (hereafter named the ordered
model) as a model for the structural refinement of the scXRD data yields the refined atomic
positions, occupancies and thermal displacement parameters given in Table 3.3 (top) together
with the reliability factors shown at the bottom of Table 3.2. While the refined atomic posi-
tions are in agreement with the starting model and the thermal displacement parameters are
physically reasonable, the reliability values are unusually high and a notable residual electron
density is not assigned to any atoms. As shown in Fig. 3.4 (left), the residual electron density
is rather localized implying missing atomic sites in the model. Residual density is found in
the center of mass between the two P atoms of the P2 dimer in the common (001) plane of Ni

2scXRD experiments were carried out by Dr. Mihai-Ionut Sturza (IFW Dresden) and are shown with his kind
permission.
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Fig. 3.4.: Perspective drawings of the refined crystal structure of Ni2P2S6 based on scXRD using the
ordered model (left) and using the site-disordered model (right). (a) and (d) showing the view along
the a direction, (b) and (e) the view along the b direction and (c) and (f) the view along the c∗ direction
(prependicular to the ab planes). In (a) and (d), the different Ni and P sites are labeled. The color
filling of the atoms corresponds to the occupancy of the respective Wyckoff sites. All drawings show
the positive residual electron density after the structural refinements of the scXRD data. The green
isosurface corresponds to the lower cutoff value of 2 e/Å3. The color gradient (e.g. see the corners of
the unit cell in (a)) indicates the increasing resdiual electron density up to 14 e/Å3 in red.
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Table 3.2.: Summary and comparison of the crystallographic data and structural refinement for
Ni2P2S6 from scXRD at 293(2) K using the ordered structural model proposed for the Fe2P2S6 struc-
ture type and adopted for Ni2P2S6 [106] as well as the site-disordered model for Ni2P2S6 proposed by
Ouvrard et al. [112].

Structural Model Ordered Model Site-Disordered Model

Experiment & Data Collection
Temperature (K) 293(2)
Radiation Type & Wavelength (Å) Mo-Kα1 ; 0.71073
θmin (◦) 3.22
θmax (◦) 43.23

Completeness to θ (%) 100
(θ = 26.64◦)

Reflections Collected 19885
Independent Reflections 1438
Rint (%) 4.47

Index Ranges
−11 ≤ h ≤ 11
−19 ≤ k ≤ 19
−12 ≤ l ≤ 12

F (000) 361
Absorption Coefficient (mm−1) 7.075

Crystal Data
Crystal System Monoclinic
Space Group C2/m (No. 12)
a (Å) 5.8165(7)
b (Å) 10.0737(12)
c (Å) 6.6213(8)
β (◦) 107.110(6)
Volume (Å3) 370.79(8)
Empirical Formula Ni1.96P1.97S6.00 Ni2.00P1.96S6.00
Formula Weight (g mol−1) 368.6 370.2
Z 2 2
Density (calculated) (g cm−3) 3.301 3.315

Refinement
Method Full-matrix least squares on F 2

Data / Restraints / Parameters 1438 / 0 / 29 1438 / 0 / 39
Goodness-Of-Fit 2.92 1.28
Robs (%) 5.19 2.17
wRobs (%) 10.95 4.64
Rall (%) 6.10 2.97
wRall (%) 11.13 4.87
Largest Diff. Peak and Hole (e Å−3) 13.98 and -1.70 1.07 and -0.87
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Table 3.3.: Fractional atomic coordinates, occupancies, equivalent isotropic displacement parameters
Ueq and anisotropic displacement parameters Uij for Ni2P2S6 at 293(2) K using the ordered structural
model [106] (top) as well as the site-disordered model for Ni2P2S6 [112] (bottom). Estimated standard
deviations are given in parentheses. Please note that Uij(P1) =Uij(P2) had to be set during refinement
of the site-disordered model to obtain physically reasonable ADPs for P2.

Label Type Wyck x y z
Occ Ueq U11 U22 U33 U12 U13 U23

(%) (×10−3Å2)

Ordered Model

Ni1 Ni 4g 0 0.3331(1) 0 98(1) 8(1) 7(1) 7(1) 12(1) 0 3(1) 0
P1 P 4i 0.0578(1) 0 0.1702(1) 99(1) 8(1) 7(1) 6(1) 11(1) 0 3(1) 0
S1 S 4i 0.7419(1) 0 0.2434(1) 100(1) 8(1) 6(1) 7(1) 10(1) 0 4(1) 0
S2 S 8j 0.2518(1) 0.1700(1) 0.2436(1) 100 8(1) 7(1) 6(1) 10(1) -1(1) 2(1) -1(1)

Site-Disordered Model

Ni1 Ni 4g 0 0.3331(1) 0 96(1) 9(1) 8(1) 8(1) 13(1) 0 4(1) 0
P1 P 4i 0.0578(1) 0 0.1702(1) 91(1) 7(1) 6(1) 6(1) 9(1) 0 3(1) 0
S1 S 4i 0.7421(1) 0 0.2432(1) 100 9(1) 8(1) 9(1) 11(1) 0 4(1) 0
S2 S 8j 0.2517(1) 0.1699(1) 0.2433(1) 100 9(1) 8(1) 7(1) 12(1) -1(1) 3(1) -1(1)
Ni2 Ni 2a 0 0 0 8(1) 12(1) 11(2) 8(2) 16(2) 0 5(1) 0
P2 P 8j 0.0574(10) 0.3329(6) 0.1734(9) 3(1) 7(1) 6(1) 6(1) 9(1) 0 3(1) 0

atoms as well as above and below the Ni atoms in c∗ direction in the corresponding common
(001) planes of P atoms.

Ouvrard et al. proposed to treat the residual electron density by introducing a site disorder
of Ni between majority 4g (Ni1) and minority 2a sites (Ni2) and of P between majority 4i
(P1) and minority 8j sites (P2) [112]. Using this structural model (hereafter referred to as
site-disordered model) as starting point yields significantly improved reliability factors for the
refined structural model (see Table 3.2). The corresponding atomic positions, occupancies and
thermal displacement parameters are shown in Table 3.3 (bottom).

Comparing Fig. 3.4 left and right shows the additionally introduced minority sites of Ni2
and P2 in ideal agreement with the position of the resdiual electron density for the ordered
model. Based on the occupancies of the majority and minority sites, approximately 4% of Ni
atoms are found at a site where a P2 dimer would be expected and vice versa. Accordingly,
this structural model with disorder in the ab planes appears to be a sufficient to describe the
scXRD data well.

Fig. 3.5 shows two sections through reciprocal space with thermal diffuse scattering of
Ni2P2S6. As seen in Fig. 3.5(a), the hk0 layer exhibits well resolved reflections. In contrast,
the 0kl layer (Fig. 3.5(b)) shows a significant streaking of reflections in the l direction. As the
l direction in reciprocal space corresponds to the c∗ direction in real space, this broadening
implies a highly defective structure in the stacking direction. Stacking faults, known defects
in van der Waals layered compounds, are well suited to cause broadening of such form and
direction.

As discussed by Goossens et al. [123] and Lançon et al. [117], it is likely that the displaced
electron density resulting from stacking faults is misinterpreted in the structural solution and
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Fig. 3.5.: Cuts through reciprocal space from scXRD on a single crystal of Ni2P2S6 showing the (a)
hk0 and (b) 0kl planes.

falsely leads to a crystal structure model involving site disorder. Lançon et al. further support
this assumption by their refinement of the magnetic structure of Ni2P2S6 which they find
unimproved by including the aforementioned site disorder.

Fundamentally, the Ni-P2 site disorder may also be questioned regarding its influence on
the chemical bonding nature and charge distribution in Ni2P2S6. As introduced before (see
Sect. 3), the [P2S6]4− structural unit is considered to be internally covalently bound. Accord-
ingly, atoms in this complex anion are best understood to be charge neutral with the negative
charges being delocalized over the whole unit. The Ni2+-[P2S6]4− interaction, however, is con-
sidered as ionic. Subsequently, replacing a P2 unit in the lattice by a Ni atom, in the course of
a site disorder, formally leads to a local clustering of positive charges. Vice versa, a P2 dimer
on a majority site of Ni would be located in direct vicinity to three other [P2S6]4− anions.
While a site disorder may be entropically favored, such charge clustering can be expected to
be energetically undesired. Additionally the bonding nature of the sulfur atoms in the first
coordination shell around such a disorder site would change from one ionic and one covalent
bonding partner to either two ionic (Ni on P2 site) or two covalent (P2 on Ni site) bonding
partners. Such a change in the bonding nature should result in changes of bond angles and
subsequently in the position of these S atoms. However, corresponding shifts of electron den-
sity are not observed for Ni2P2S6 from scXRD.

Additional to scXRD, pXRD was measured on pulverized crystals of Ni2P2S6. The corre-
sponding pattern is shown in Fig. 3.6 in comparison to the calculated pattern for the site-
disordered structural model adjusted by the Rietveld method. The resulting structural param-
eters as well as the refined structural model from the Rietveld method are shown in Table 3.4
and Table 3.5, respectively.
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Fig. 3.6.: pXRD pattern from Cu-Kα1 radiation (λ = 1.54059Å) of pulverized Ni2P2S6 crystals (red
dots) in comparison to the calculated pXRD pattern for the refined crystal structure model of Ni2P2S6
including Ni-P2 site disorder obtained by the Rietveld method.

Comparing the structural parameters from Rietveld refinement (pXRD) to the values ob-
tained from structural refinement of the scXRD experiments shows a significantly increased
unit cell volume (scXRD: 370.80(1) Å3; pXRD: 372.40(1) Å3) as result of an increase of all lattice
parameters. Also with approximately 16% of the Ni atoms being located on the minority site
2a, the structure obtained from the model corresponding to the pXRD measurement exhibits
more disorder than the structure obtained from scXRD with 4%. However, these deviations
should be critically questioned as they go hand in hand with relatively high reliability factors,
implying a non-ideal agreement between experiment and model.

As shown by the difference curve (blue) in Fig. 3.6, the relative intensities of reflections is
not ideally reproduced by the model. This may be attributed to strong preferred orientation
effects. Van der Waals layered systems such as Ni2P2S6 are prone to exhibit this kind of sam-
ple effect in pXRD experiments. Grinding a macroscopic crystal of such kind to a powder
yields mainly plate-like powder particles resulting from the preferred breaking of the weak
stacking interactions. As these plate-like particles tend to lie flat on the sample holder, a non-
homogeneous distribution of crystallographic orientations of the powder is obtained. This
results in relative intensities of the crystallographic reflections that are significantly different
compared to e.g. a calculated pattern. Furthermore it may be mentioned that grinding ductile
compounds partly leads to a deformation of crystallites rather than breaking them into smaller
particles. This deformation induces strain into the crystal lattice which causes deviations of
the pXRD pattern from the expected pattern for an ideal powder.
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Table 3.4.: Summary and reliability factors of the Rietveld analysis of the pXRD pattern of Ni2P2S6.

Structural Analysis (Rietveld)

Experiment & Data Collection
Temperature (K) 293(2)
Radiation Type & Wavelength (Å) Cu-Kα1 ; 1.54059
θmin (◦) 10.00
θstep (◦) 0.03
θmax (◦) 120.64

Crystal Data
Crystal System monoclinic
Space Group C2/m (No. 12)
a (Å) 5.8227(1)
b (Å) 10.0846(2)
c (Å) 6.6354(1)
β (◦) 107.103(1)

Refinement
Goodness-Of-Fit 5.79
Rp (%) 7.57
wRp (%) 11.24
RF (%) 8.72

Table 3.5.: Fractional atomic coordinates, occupancies and isotropic displacement parameters Uiso of
Ni2P2S6 at 293 K with estimated standard deviations in parantheses after Rietveld refinement.

Label Type Wyck x y z
Occ Uiso

(%) (×10−3Å2)

Ni1 Ni 4g 0 0.3329(4) 0 84(1) 15(1)
P1 P 4i 0.0586(15) 0 0.1699(13) 84(1) 30(2)
S1 S 4i 0.7426(10) 0 0.2405(8) 100 18(1)
S2 S 8j 0.2515(7) 0.1696(4) 0.2415(5) 100 18(1)
Ni2 Ni 2a 0 0 0 32(1) 15(1)
P2 P 8j 0.0630(110) 0.3330(60) 0.1940(80) 8(1) 30(2)
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Fig. 3.7.: (a) Experimental pXRD pattern of Ni2P2S6 measured with Co-Kα radiation (λ = 1.79026Å)
in transmission (black) and reflection geometry (blue) in comparison to a calculated pXRD pattern (red)
based on the structural model of Ouvrard et al. [112]. Intensities are normalized to the main intensity
reflection of each pattern. (b) Comparison of the shape of the 001, 002, 130 and 131 reflections of the
pXRD pattern used for the Rietveld refinement in Fig. 3.6 (Cu-Kα1 ; λ = 1.54059Å).

As mentioned in Sect. 2.2.2, the effect of preferred orientation on a pXRD pattern can be
qualitatively demonstrated by performing diffraction experiments in different geometries (i.e.
reflection and transmission) on the same sample and comparing the resulting patterns, as
shown for Ni2P2S6 in Fig. 3.7(a). While the 2θ angle of the reflections are in agreement with
the calculated pattern based on the site-disordered structural model of Ouvrard et al. [112],
the relative intensities differ between both experiments and the calculation. For plate-like
crystallites, as expected for Ni2P2S6, reflections with a strong l component have lower rela-
tive intensities in transmission geometry than expected from a calculation assuming spherical
powder particles. Vice versa, in reflection geometry reflections with a strong l component ex-
hibit increased relative intensities. For the experiment in transmission geometry, the intensity
is found altered so much that the main intensity reflection is no longer the 001 reflection at
16.3◦ but the 130 reflection at 36.3◦. For ideally spherical particles, the relative intensity of
both experimental patterns are expected to match.

This sample effect is of course considered in the Rietveld refinement to a certain degree
using the method proposed by March [128] and extended by Dollase [129]. However, any ad-
ditional parameter during refinement (e.g., parameters describing the preferred orientation)
makes the overall model more complex and allows for additional correlations between param-
eters. Furthermore, such a strong preferred orientation as observed in Ni2P2S6 might be in the
limit of what the semi-empirical March-Dollase model is capable of describing accurately.

Besides the discrepancy between experimental and calculated intensities attributed to pre-
ferred orientation, a pronounced asymmetric shape of the 00l reflections can be observed (see
Fig. 3.7(b)). This asymmetry has to be considered separately from the overall reflection asym-
metry of the pattern, as the latter is considered in the Rietveld refinement by the correction
proposed by Bérar and Baldinozzi [130] which yields a good overall description of the asymme-
try for all but the 00l reflections. While the overall asymmetry is caused by the diffractometer
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setup, the additional asymmetry of the 00l reflections is likely attributed to effects obtained
from the sample itself.

Paterson [131] discusses shifts of the reflection positions and the asymmetric broadening of
certain reflections resulting from stacking faults for the case of a highly symmetric cubic crys-
tal system. For lower symmetric crystal systems (e.g., monoclinic for Ni2P2S6) the fundamental
effects of stacking faults on a pXRD pattern can be expected to be the same. Consequently, the
asymmetry of the 00l reflections may be well attributed to stacking faults. The broadening of
00l reflections observed in the scXRD experiment (see Fig. 3.5(b)) further supports this inter-
pretation. However, an accurate modeling of a pXRD pattern influenced by stacking faults is
challenging and not in the scope of a typical Rietveld refinement based on a lab-quality pXRD
pattern.

Accordingly, two sample effects - preferred orientation and stacking faults - mainly cause
the residual deviations between experiment and model and the relatively high reliability fac-
tors. In the presence of these sample effects, the absolute accuracy of the structural model
obtained from Rietveld refinement should not be overestimated. These sample effects are not
unique to Ni2P2S6 but pose a challenge for an accurate structural refinement of pXRD pattern
of manyM2P2S6 compounds, as, for example, discussed in Sect. 3.2.2 for the substitution series
of (Fe1−xNix)2P2S6.

In summary of the structural analysis of Ni2P2S6, the phase adopts a monoclinic structure
(space group C2/m) in agreement with the reported crystal structures of Ni2P2S6. A notable
contribution of stacking faults is observed in the scXRD and pXRD diffraction patterns. Re-
garding the atomic structure, the honeycomb structure proposed for Fe2P2S6 [55] alone is
not sufficient to describe the measured electron density distribution in scXRD. The addition
of a Ni-P2 site disorder to the aforementioned model significantly improves the agreement
between experiment and model. However, whether this site disorder really exists or if it is
an artifact obtained from stacking faults in the crystal, as discussed in literature [117, 123],
cannot be determined unambiguously from scXRD alone. In pXRD, stacking faults and pre-
ferred orientation of the crystallites in the sample make an accurate structural refinement
difficult. Apparently, the Ni-P2 site disorder is more prominent in the model obtained from
pXRD than in the scXRD structural model. Yet, above considerations regarding the relation
between stacking faults and site disorder for scXRD have to be also applied to the refinement
based on pXRD.

3.1.3. Magnetic Properties

The thermal evolution of the normalized magnetization MH−1(T ) of Ni2P2S6 measured at a
magnetic field of 10 kOe for fields applied consecutively parallel to four crystallographic direc-
tions is shown in Fig. 3.8(a). The corresponding field dependence of the magnetizationM(H)
measured at 1.8 K for the same four magnetic field directions is presented in Fig. 3.8(b). For
the in-plane directions, a crystal was oriented using X-ray Laue diffraction and subsequently
glued to the sample holder of the SQUID magnetometer such that the magnetic field is applied
parallel to [010] (i.e. b direction). After the measurements ofMH−1(T ) andM(H), the crystal
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was carefully detached from the holder, rotated in-plane by an angle of 30◦ (i.e. [120]), glued
again to the sample holder and measured. This procedure was then repeated with a 60◦ rota-
tion in the same direction ([100], i.e. a direction) before the crystal finally was prepared for
the measurement with the field along [103] (i.e. c∗ direction, perpendicular to the ab-plane).

In the temperature dependence (see Fig. 3.8(a)) above 156 ± 2K, the normalized magne-
tization is isotropic for all magnetic field directions, with a maximum of the magnetization
at Tmax ≈ 260K. This maximum is a distinctive feature observed in low-dimensional antifer-
romagnets which is attributed to a regime of low-dimensional short-range spin correlations
above the long-range magnetic ordering temperature. Above the maximum, the magnetiza-
tion decreases isotropically. However, the investigated temperature range above Tmax with an
upper limit of 400 K due to device limitations does not allow for a Curie-Weiss analysis with
sufficient statistics to ensure reliability.

At 156 ± 2K, the temperature dependence of MH−1 exhibits an inflection point for all
measured directions of the magnetic field. The inflection is accompanied by an abrupt change
of the slope. While for all magnetic field directions with respect to the crystal orientation the
slopes above the inflection match, they differ below resulting in anisotropic magnetization.
Out of the three perpendicular directions [100], [010] and [103],H ∥ [100] exhibits the lowest,
H ∥ [103] the highest andH ∥ [010] an intermediate magnetization at all temperatures below
156± 2K. Wildes et al. [43] show the same general dependence of the magnetic susceptibility
on the direction of the magnetic field with respect to the crystal orientation. For H ∥ [120],
the magnetization is slightly lower in the thermal evolution than for H ∥ a.

Although the absolute values of the magnetization differ below 156±2K, the general course
of the thermal evolution is the same for all magnetic field directions. The magnetization de-
creases under cooling before reaching a minimum. Towards lowest temperatures, again a
slight increase of the magnetization is observed, which can be likely attributed to Curie impu-
rities (Curie tail). The overall decrease of magnetization below the inflection point indicates
antiferromagnetic ordering with the inflection point corresponding TN. Antiferromagnetic or-
der as well as the specific TN are in agreement with other studies of the magnetic behavior of
Ni2P2S6 by magnetometry [43, 126] as well as neutron diffraction [43].

As shown in Fig. 3.8(b), the field dependence of the magnetization of Ni2P2S6 M(H) at
1.8 K and up to 70 kOe exhibits a linear evolution for H ∥ [103], while for H ∥ [100] a curved
M(H) behavior is observed. This curvature in the field dependent magnetization is most
likely attributed to a spin-flop transition, as introduced in Sect. 1.2.3. This indicates that [100]
is the magnetic easy axis of Ni2P2S6 (not considering H ∥ [120] for the moment). This is in
agreement with the magnetic structure model proposed for Ni2P2S6 by Wildes et al. based on
single crystal neutron diffraction [43].

However, a M(H) behavior similar to H ∥ [100] is observed for H ∥ [120], implying a
comparable magnetic hardness for this direction. This is in agreement with MH−1(T ), for
which the evolution for H ∥ [120] is similar to H ∥ [100] below the ordering temperature,
too. Yet, the observed field dependency for H ∥ [120] is in apparent contradiction to the
aforementioned model of the magnetic structure. From the model, a 180◦ rotational symmetry
with respect to the easy axis in the ab plane is expected. Inmore detail, amonotonic decrease of
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Fig. 3.8.: (a) Top: Normalized magnetization of Ni2P2S6 as function of temperature MH−1(T ) mea-
sured at a magnetic field of 10 kOe applied parallel to the crystallographic directions [100], [010], [120]
and [103] direction, respectively (left y-axis). Bottom: First derivative of MH−1(T ) for all four crys-
tallographic directions (right y-axis). The grey dashed line indicates the temperature of inflection in
MH−1(T ) corresponding to a maximum in ∂MH−1/∂T and the afm ordering temperature TN of
Ni2P2S6. The grey dotted line shows the temperature of the maximum inMH−1(T ) corresponding to
∂MH−1/∂T = 0. (b) Field dependence of the magnetizationM(H) at 1.8 K for magnetic fields applied
along the same crystallographic directions.
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Fig. 3.9.: Schematic illustration of the consequences of 120◦ rotational twinning in the ab plane on the
observed directions. Blue corresponds to the ’unrotated’ domains, red to the domains rotated by 120◦
and green those rotated by 240◦. The longer arrows indicate the magntically easy a directions of the
domains while the shorter, dashed arrows correspond to the magnetically harder b directions.

the magnetization is expected from 0◦ (H ∥ [010]) to 90◦ (H ∥ [100]), followed by a monotonic
increase from 90◦ to 180◦ (again H ∥ [010]), as result of the change of the magnetic hardness.
The M(H) behavior for H ∥ [120] rather suggests a 60◦ (i.e. six-fold) rotational symmetry of
the easy axis in the ab plane which is also suitable to describe a hard axis for H ∥ [010] at 90◦
rotated from [100].

A potential scenario that can explain the observation of a 6-fold rotation symmetry of the
magnetic easy axis in the ab plane while still relying on the magnetic structure proposed by
Wildes et al. [43] is the formation of 120◦ rotational twins along the c∗ direction of Ni2P2S6.
Accordingly, a crystal may contains several twin domains with 0◦, 120◦ and 240◦ rotated di-
rections in the ab plane but a common c∗ direction, as illustrated in Fig. 3.9. Considering this,
each of these domains intrinsically exhibits the expected two-fold symmetry regarding the
magnetic easy axis. However, due to the rotation around the c∗ direction, overall the sample
has an easy axis every 60◦. Yet, if the magnetic field is applied along the easy axis of one of
these domains, for the other two domains the field is applied 30◦ to the harder b direction.
Consequently, only a fraction of the whole sample experiences the field parallel to the local
easy axis and causes the corresponding behavior, while for the other twin domains additional
contributions from the harder magnetic directions are observed. These additional contribu-
tions may explain the broadness of the metamagnetic transition in the field dependence for
magnetic fields applied along an ’easy axis’ in Ni2P2S6.
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Fig. 3.10.: (a) Evolution of the 31P NMR spectrum as function of temperature above the magnetic
ordering temperature for a magnetic field of 70 kOe applied parallel and perpendicular to the ab planes.
(b) The peak splitting ∆f as function of the out-of-plane angle θ measured at 300 K and 70 kOe. The
line corresponds to the expected behavior according to Eq. 3.1.

3.1.4. 31P-NMR Spectroscopy

In addition to the study of the magnetization by SQUID magnetometry, solid state 31P-NMR
spectroscopy3 was performed on Ni2P2S6 single crystals in a field of 70 kOe. This local probe
technique allowed for further insights regarding the local structure and the magnetic interac-
tions in Ni2P2S6 taking advantage of the excellent properties of the 31P nuclei in the compound
(S = 1/2, high gyromagnetic ratio γn ≈ 17.235MHz/T and 100% abundance). Furthermore,
the 31P nuclei are sensitive to changes in the spin system via hyperfine coupling to the elec-
tron magnetic moments. The observation of appreciable transferred hyperfine coupling in
Ni2P2S6 [127] is in line with the covalent bonding picture of the [P2S6]4− anions, implying
noticeable orbital hybridization between P and S. Furthermore, this agrees with the Ni–S–Ni
super-exchange and Ni–S–S–Ni super-super-exchange coupling being dominant, which was
proposed to explain the large nearest-neighbor and third-nearest neighbor exchange couplings
J1 and J3 from inelastic neutron spectroscopy [117].

Here, the focus is on the local structure part of this investigation and on the angular behavior
of the NMR signal in the magnetically ordered state as this is found complementary to the
angular dependence of the magnetization discussed before (Sect. 3.1.3). Additionally, a K-χ
anomaly (where K is the NMR shift) was observed in Ni2P2S6 which is likely related to low-
dimensional magnetic correlations at temperatures around the maximum inMH−1(T ) [127].
However, a discussion of this specific part of the NMR study is beyond the scope of this work.

The thermal evolution of the 31P NMR spectra above the magnetic ordering temperature
TN = 156±2K is shown in Fig. 3.10(a) for magnetic fields applied parallel to the ab planes and
along the c∗ direction, respectively. At all temperatures, a spectrum with two narrow peaks is
observed for both field directions. As observed in the crystal structure, Ni2P2S6 exhibits two P

3Solid state 31P-NMR spectroscopy on Ni2P2S6 was measured and analyzed by Dr. Adam P. Dioguardi (IFW
Dresden) and the corresponding spectra are shown with his kind permission.
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atoms with a nuclear spin of S = 1/2 in close proximity to each other (d(P–P) = 2.1534Å). For
such an atomic arrangement of S = 1/2 nuclei, a ’Pake doublet’ is expected, which is a peak
splitting due to homonuclear dipolar coupling [132]. Investigating the out-of-plane angular
dependence of the peak splitting ∆f yields the dependence shown in Fig. 3.10(b). For a Pake
doublet a angular dependence of the splitting in accordance with Eq. 3.1 is expected, where µ0

is the vacuum permeability, h̄ the reduced Planck’s constant, γ the gyromagnetic ratio and r
the distance between the nuclear spins.

∆f(θ) = f1 − f2 =
3µ0h̄γ

2

8πr3
(1− 3cos2θ) (3.1)

As seen in Fig. 3.10(b), the experimental∆f as function of the out-of-plane angle θ is found
in good agreement with the calculated dependence following from Eq. 3.1. Consequently, the
split doublet in the NMR spectra above the magnetic ordering temperature is consistent with
homonuclear dipolar coupling rather than, e.g., from different chemical environments.

The absence of any further appreciable peaks in the NMR spectra implies that virtually all
P nuclei experience the same hyperfine field and accordingly share the same chemical envi-
ronment. Considering the Ni–P2 site disorder, which was extensively discussed in Sect. 3.1.2,
additional peaks in the 31P NMR spectra would be expected to be visible as a result of the
different local P environments and the respectively different hyperfine fields. Corresponding
signals are not observed in these spectra, indicating that site disorder does not play a signifi-
cant role in the structure of the Ni2P2S6 crystals grown in the course of this work. However,
it should be noted that a small amount of site disorder corresponding to broad, low intensity
signals in the NMR spectra cannot be completely ruled out.

Fig. 3.11(a) and (b) show the dependence of the NMR spectrum in the magnetically ordered
state at 150 K on the out-of-plane angle θ and the in-plane angle ϕ, respectively. The ’Pake
doublet’ that was well observed above TN can no longer be seen due to a significant broadening
of the peaks. Instead, six resonances can be identified in the angular-dependent spectra. The
spectral weights and evolution as function of the angles θ and ϕ of these signals allow them to
be assigned to three doublets. These doublets result from the appearance of an internal hyper-
fine field in the magnetic state that leads to in-plane symmetry breaking. To take into account
slight crystal misalignment with respect to the rotation and external magnetic field axes, the
spectra were simulated via numerical exact diagonalization of the nuclear spin Hamiltonian
including an internal hyperfine field interaction. The results of these simulations are shown
in Fig. 3.11(c)-(e) as blue, green and red lines.

For the out-of-plane rotation shown in Fig. 3.11(a) and (c), all resonances virtually overlap
at around 0◦ (H ∥ c∗). Furthermore, a maximum splitting is observed at approximately 90◦
(H ∥ ab), implying a 180◦ out-of-plane rotational symmetry. This behavior is in agreement
with the magnetic structure proposed by Wildes et al. [43].

The evolution the NMR spectrum as function of the in-plane angle ϕ is shown in Fig. 3.11(b)
and (d). While for one signal the doublet splitting becomes zero, the other two signal pairs
exhibit an intermediate splitting. This behavior is in agreement with the scenario of 120◦ rota-
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Fig. 3.11.: Evolution of the NMR spectrummeasured in the magnetic state at 150 K at 7 T as function of
(a) the out-of-plane rotation angle θ and (b) the in-plane rotation angle ϕ. Dependence of the position
of each resonance on (c) θ and (d) ϕ as extracted from multipeak fits to the spectra in (a) and (b),
respectively. (e) Same as (d) with offsets of −60◦, 0◦ and 60◦.

tional twinning discussed before in Sect. 3.1.3 to explain the magnetic behavior of Ni2P2S6 for
0◦, 30◦ and 90◦ in-plane rotation from the b direction. The three doublets exhibit a angular de-
pendence that follows the magnetic six-fold rotational symmetry bared on the aforementioned
rotational twinning as shown in Fig. 3.11(e). A continuous evolution of the in-plane angular
dependence can be obtained assuming one doublet (blue) is shifted by +60◦ and another dou-
blet (red) is shifted by−60◦. The relative spectral weights of the three pairs are Sred = 16±1%,
Sblue = 37 ± 1% and Sgreen = 47 ± 1% reflecting the twin fractions of the three domains in
the measured crystal.

3.1.5. Stacking (Dis-)Order in Ni2P2S6

Considering only one layer of Ni2P2S6 (or any other M2P2S6 compound in the monoclinic
C2/m space group) and for now ignoring the translation in c direction, the symmetry of this
layer can be expressed in the form of a wallpaper group. As shown in Fig. 3.12(a), the smallest
unit cell of such a layer is in the wallpaper group p3 (black). Another possible unit cell with
slightly larger area can be constructed in the wallpaper group pm. This unit cell corresponds
to the ab base plane of the monoclinic unit cell in C2/m. As pm is lower in symmetry, the lost
symmetry elements compared to the higher symmetric p3 (i.e. three-fold rotation) transfer the
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Fig. 3.12.: (a) Perspective drawing of a single layer of Ni2P2S6 illustrating the honeycomb structure
made from NiS6 octahedra. The black parallelogram as well as the red, green and magneta rectangles
correspond to the 2D unit cells for the different wallpaper groups as indicated in the drawing and
discussed in the text. P atoms are omitted for clarity. (b) Perspective drawing of the monoclinic 3D unit
cell of Ni2P2S6 with view parallel to the b direction. Assuming a Cartesian coordinate system, the black
arrow shows the component of the monoclinic c vector perpendicular to the ab plane called c∗ while
the red arrow illustrates the component of c in a direction which is referred to as monoclinic shift in
the text.

different settings of the lower symmetrical unit cell into each other. Correspondingly, three
possible settings for the pm unit cell are found in Fig. 3.12(a) rotated by 120◦ in regard to each
other (red, green, magenta).

Turning towards more than one layer, the three-fold rotation symmetry is broken by the
stacking and a monoclinic unit cell in C2/m is found. The monoclinic angle of the M2P2S6
unit cell results in an offset between atoms of each layer along the a direction additional to
the stacking in c∗ direction as illustrated in Fig. 3.12(b). However, each of the pm unit cells
results in another direction for this monoclinic shift resulting in three equivalent orientations
for a possible second layer. This is shown in Fig. 3.13. Considering all three orientations of the
second layer at the same time yields a hexagonal closed packed layer of atomic positions. Each
of these sites is occupied for two out of three orientations by Ni and for the residual orientation
by P2. This is shown in Fig. 3.13 for the center triangle of atomic positions of the second
layer by half-and-half colored spheres and black arrows indicating for which orientation a P2
dimer occupies the corresponding position. Another way of approaching the stacking over
multiple layers is that the direction of the offset between atoms of two layers defines the a and
b direction locally.

Adding a third layer on top opens up the question if this new layer follows the monoclinic
directions defined by the offset between layer 1 and layer 2 or not. More fundamentally, two
potential scenarios can be distinguished in accordance with this question, which are illustrated
in Fig. 3.14(a) and (b): for every new layer, i) the three possible orientations either correspond
to the same conformation energy (i.e. each new layer takes one of the three orientations
randomly) or ii) the orientation with the same monoclinic direction as for the layers below
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Fig. 3.13.: Schematic drawing of the three possible 120◦ rotated orientations in which a second layer
of Ni2P2S6 (red, green, magneta) may be added to a first layer (blue). The drawing only shows Ni atoms
as spheres, while P and S atoms are omitted for clarity. Assuming the origin of the coordinate system
is at the center Ni atom of the first layer in blue (gray circle), the a, a′ and a′′ directions are marked in
the same colors as the second layer orientations and correspond to the a directions of the pm unit cells
in Fig. 3.12(a) of the same color. Further details are described in the text.

is energetically favored. For scenario i), the monoclinic direction is expected to randomly
change between layers by 120◦ rotations, while for scenario ii) the monoclinic direction would
be preserved over multiple layers. However, crystallographic defects, such as stacking faults,
may affect the energy difference between the different orientations and, subsequently, cause a
change of the monoclinic direction. Thus, scenario ii) yields macroscopic domains of the same
monoclinic direction, which are related to adjacent domains in the stacking direction by the
twin condition of a 120◦ rotation.

Each of the scenarios above is capable to explain the six-fold in-plane rotational symmetry
observed in magnetization experiments and the angular evolution of the 31P NMR spectrum.
However, the twin fractions obtained from the spectral weights from NMR are more consis-
tent with scenario ii). For scenario i), fractions of roughly 33% for each orientation would
be expected as result from the random changes of orientations in a large number of layers.
The fractions being significantly different from 33% rather agrees with larger twin domains
resulting from scenario ii).

In the context of scenario ii), a close relation between 120◦ twinning and the Ni-P2 site
disorder that improves the agreement between crystal structure model and XRD experiments
in Sect. 3.1.2 can be recognized in Fig. 3.13. Consider the stacking of a certain crystal in the
bulk is defined by the monoclinic shift given by the green set of Ni atoms. However, between
the topmost layer and the layer below twinning occurs and the shift corresponding to the
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3.1. Ni2P2S6

Fig. 3.14.: Schematic drawing of multilayer Ni2P2S6 considering twinning resulting from (a) scenario
i) and (b) scenario ii). Please note that a) is in the scale of interatomic distances while the scale of b) is
orders of magnitude larger.

red layer is realized (instead of the shift that corresponds to green). As a result, instead of
having a P2 dimer on the position marked P2 (green), a Ni atom is found at these coordinates.
Vice versa, a P2 dimer (marked in red) is found where a Ni atom would be expected from the
bulk monoclinic direction. Accordingly it is imaginable that the Ni-P2 site disorder actually
describes the twin boundaries. Considering this, the roughly 4% of site disorder found for the
Ni2P2S6 crystal investigated by scXRD in this work (Sect. 3.1.2) imply a low amount of twin
boundaries with respect to the ordered fractions of the crystal in agreement with large twin
domains as expected to be obtained from scenario ii) discussed before.

To summarize this thought experiment, the intrinsic three-fold symmetry of a single layer is
broken by the monoclinic stacking of layers. This opens up three possible orientations to add
a new layer which are rotated by 120◦ with respect to each other. These different orientations
in combination with only weak interactions between adjacent layers give rise to the formation
of 120◦ rotational twin domains. Such a structural behavior is sufficient to explain the angular
dependence of the magnetization and the NMR spectrum in the ab plane of Ni2P2S6. It should
be noted, that this angular dependence of the magnetic lattice is not likely to be observable in
M2P2S6 with M = Mn, Fe. The reason for this is due to only M = Ni exhibiting anisotropic
in-plane behavior (a direction is magnetic easy axis) [43, 117], while forM = Mn and Fe the ab
plane is reported to be isotropic. ForM = Fe, ab is reported as intrinsically isotropic magnetic
hard plane [116, 117], and for M = Mn no appreciable magnetic anisotropy is observed [115,
117], as introduced in Sect. 3. Accordingly, Ni2P2S6 can be considered a model system for
investigating the structural disorder in the class ofM2P2S6 compounds, not only by means of
XRD but also by probing the angular dependence of the magnetic lattice. The twin fractions
extracted from NMR spectroscopy in Sect. 3.1.4 agree with twin domains of notable size rather
than fully random stacking. Furthermore, a close relation between the 120◦ twinning and the
Ni-P2 site disorder, which improves the agreement between crystal structure model and XRD
experiments in Sect. 3.1.2, suggests that the site disorder in the model may actually originate
from the borders of twin domains.
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3. M2P2S6

3.2. (Fe1-xNix)2P2S6

As mentioned in Sect. 3, substitution series between two magneticM2P2S6 parent compounds
may yield intermediate compounds with exotic magnetic states as result of the interplay of
different magnetic anisotropies. In this line, partly replacing Ni in Ni2P2S6 by another tran-
sition element may yield similarly interesting results as reported for (Mn,Fe)2P2S6 [119, 133].
For this purpose, Fe is the most promising element, as the corresponding parent compound,
Fe2P2S6, exhibits a distinctly different magnetic anisotropy (i.e. Ising-like [116]) from Ni2P2S6
(i.e. Heisenberg-like with single ion anisotropy contribution [117]).

In expectancy of a structural solid solution behavior and, thus, a gradual evolution of the
physical properties over the substituion series, also the magnetic anisotropy would be tune-
able by the degree of Fe/Ni substitution. As mentioned in Sect. 3.1, for a specific strength of
the magnetic anisotropy (i.e. XY-type), 2D magnetic systems are expected to stabilize a highly
unusual short range correlated ground state as proposed by Berezinskii [71] as well as Koster-
litz and Thouless [46]. While for Ni2P2S6 such a state could not be found, it may be stabilized
by tuning the magnetic anisotropy. Additional to the changes in the magnetic anisotropy,
also the magnetic easy axis changes from parallel to a for Ni2P2S6 [43] to parallel to c∗ for
Fe2P2S6 [116]. Furthermore, although both compounds exhibit a stripe-like antiferromagnetic
order in the layers, for Fe2P2S6 these layers are ordered antiferromagnetically in the c direc-
tion [116], as shown in Fig. 3.15, in difference to the ferromagnetic stacking in Ni2P2S6 [43],
as illustrated in Fig. 3.1. Also, the magnetic ordering temperature is reduced from TN ≈ 155K
for Ni2P2S6 [43, 114, 126] to TN ≈ 119K for Fe2P2S6 [116, 126].

It should be noted that Rao and Raychaudhuri [134] already synthesized polycrystalline
(Fe1−xNix)2P2S6 and reported an unusual evolution of the magnetic behavior. However, their
polycrystalline samples do not allow for a study on the evolution of the magnetic anisotropy.
To be able to directly investigate the evolution of the magnetic anisotropy over the substitu-
tion, single crystals of the intermediate compounds are required.

Single crystals of (Fe1−xNix)2P2S6 with x = 0, 0.3, 0.5, 0.7 & 0.9 were grown from presyn-
thesized polycrystalline precursors by CVT using iodine as transport agent as illustrated in
Sect. 3.2.1. Crystals of all compounds were comprehensively characterized by SEM and EDX
regarding their morphology and composition and scXRD and pXRD were used to investigate
the crystal structure (see Sect. 3.2.2). The solid solution nature of (Fe1−xNix)2P2S6 is validated
by the investigation of structural properties. In Sect. 3.2.3, the evolution of the bulk mag-
netic properties are discussed as function of the Fe/Ni substitution. Hereby, the following
magnetic aspects are discussed in more detail: the evolution of the magnetic anisotropy in
the ordered state, the evolution of the short range correlated regime above the ordering tem-
perature as well as the evolution of the magnetic anisotropy in the paramagnetic state. Fur-
thermore, (Fe1−xNix)2P2S6 is investigated for the existence of a potential spin glass state and
(Fe0.5Ni0.5)2P2S6 specifically is investigated for a magnetic glass state due to a corresponding
report in literature [135].
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3.2. (Fe1-xNix)2P2S6

Fig. 3.15.: Perspective drawing of the crystal structure of Fe2P2S6 and orientation of the magnetic
moments of Fe at 2 K according to Lancon et al. [116]. View along (a) the a direction (⊥ bc plane), (b)
the b direction (⊥ ac plane) and (c) the c∗ direction (⊥ ab plane). The red octahedra illustrate the P2S6
structural units. Bright and dark green arrows illustrate the moment orientations and are drawn in
different colors to improve the visibility of the stripe-like antiferromagnetic order.

The following section is the subject of a manuscript in preparation as S. Selter et al., ’Influ-
ence of Chemical Substitution on the Magnetic Anisotropy in Single Crystals of the 2D van
der Waals System (Fe1−xNix)2P2S6’ (2020).

3.2.1. Synthesis and Crystal Growth

Single crystals of (Fe1−xNix)2P2S6 were obtained by a two-step process, as also mentioned
in the master thesis of Shemerliuk [120]. First, stoichiometric polycrystalline powders were
obtained by solid state synthesis from the elements. In a second step, crystals were grown
from these polycrystalline precursors by the chemical vapor transport (CVT) technique. This
two-step process has proven necessary to obtain homogeneous single crystals with the desired
degree of substitution.
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3. M2P2S6

Fig. 3.16.: (a) Fe2P2S6 single crystal and (b) (Fe0.7Ni0.3)2P2S6 single crystal as obtained from the CVT
growth experiments. A orange square in the background is 1mm× 1mm for scale. These images are
also shown in the master thesis of Shemerliuk [120].

Synthesis of Polycrystalline Precursors

The elemental constituents iron (powder -70 mesh, Acros Organics, 99%), nickel (powder -
100 mesh, Sigma Aldrich, 99.99%), red phosphorus (lumps, Alfa Aesar, 99.999%) and sulfur
(pieces, Alfa Aesar, 99.999%) were weighed out in stoichiometric quantities with respect to
(Fe1−xNix)2P2S6 (x = 0, 0.3, 0.5, 0.7, 0.9). The elemental mixtures were homogenized in an
agate mortar and pressed to pellets (1 cm diameter) at approximately 25 kN using a hydraulic
press. Typically 2 g of pellets were loaded in a quartz ampoule (10mm inner diameter, 3mm
wall thickness) which was previously baked out at 800 ◦C for at least 12 h. All preparation
steps up to here were performed under argon atmosphere inside a glove box. The ampule was
then sealed under an internal pressure of approximately 0.3 bar Ar (at 20 ◦C). Finally, samples
were sintered in a tube furnace. Initially, the samples were heated to 300 ◦C at 50 ◦C/h and
dwelled for 24 h to ensure prereaction of the more volatile elements P and S with the transition
elements. Then the samples were heated to 600 ◦C at 100 ◦C/h and dwelled at this temperature
for 72 h. After this, the furnace was turned off and the samples were furnace-cooled to room
temperature. The formation of the desired monoclinic phase was confirmed by pXRD.

Crystal growth

Single crystals were grown by CVT with iodine as transport agent. The experimental proce-
dure as well as the temperature profile are the same as presented for the single crystal growth
of Ni2P2S6 in Sect. 3.1.1.

After the growth, plate-like crystals of (Fe1−xNix)2P2S6 of up to 5mm× 5mm× 200µm
were extracted from the ampule. As shown in Fig. 3.16, the crystals are shiny and exhibit a
layered morphology. Similar to Ni2P2S6, the (Fe1−xNix)2P2S6 crystals are ductile and can be
easily exfoliated.
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3.2. (Fe1-xNix)2P2S6

Fig. 3.17.: Electronmicroscopy images of a (Fe0.7Ni0.3)2P2S6 crystal in topographic mode (SE detector)
in (a) and in chemical contrast mode (BSE detector) in (b).

3.2.2. Characterization

Crystal Morphology and Compositional Analysis

From the SEM images using the topographic contrast mode (i.e. SE detector), crystals of all de-
grees of substitution exhibit the typical features of layered systems, such as steps and terraces,
as shown for example in Fig. 3.17(a) for (Fe0.7Ni0.3)2P2S6. Using the chemical contrast mode
(i.e. BSE detector), no changes in contrast are observed on the crystal surface. This lack of
contrast change indicates a homogeneous elemental composition on the respective area of the
crystal. An according SEM(BSE) image of (Fe0.7Ni0.3)2P2S6 is shown in Fig. 3.17(b). SEM(SE)
and SEM(BSE) images of Fe2P2S6 as well as the other intermediate (Fe1−xNix)2P2S6 compounds
are found as Fig. A.1–A.4 in the Appendix. SEM(SE) and SEM(BSE) for Ni2P2S6 are shown in
Fig. 3.3 of Sect. 3.2.2.

To quantify the elemental composition, EDX was measured on at least 10 different spots on
the surface of several crystals for each nominal degree of substitution xnom. As seen in Ta-
ble 3.6, the elemental compositions are close to the expected composition of theM2P2S6 phase
for all crystals. Furthermore, the respective compositions are found homogeneously on differ-
ent locations on the crystals as indicated by small standard deviations given in parentheses in
Table 3.6. Moreover, for all crystals the degree of Fe/Ni substitution is found in the range of
the nominal value considering a systematic uncertainty on this ratio of approximately 5%.

Structural Analysis

All scXRD4 patterns could be indexed in the monoclinic space group C2/m (No. 12) with the
lattice parameters given in Table 3.7 top. Regarding the structural refinements, including the
Ni-P2 site disorder in the structural model as proposed by Ouvrard et al. [112] improves the
4scXRD experiments were carried out by Dr. Mihai-Ionut Sturza (IFW Dresden) and are shown with his kind
permission.
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3. M2P2S6

Table 3.6.: Expected andmean experimental compositionmeasured by EDX aswell as the correspond-
ing experimental degree of substitution xexp for crystals with different nominal degrees of substitution
xnom. Standard deviations are given in parentheses.

xnom Expected Composition Composition from EDX xexp

0 Fe20P20S60 Fe20.7(3)P20.3(1)S59.0(3) 0
0.3 Fe14Ni6P20S60 Fe14.5(4)Ni5.9(1)P20.4(2)S59.3(3) 0.29
0.5 Fe10Ni10P20S60 Fe11.1(3)Ni9.6(3)P20.2(1)S59.1(6) 0.46
0.7 Fe6Ni14P20S60 Fe6.5(1)Ni14.0(2)P20.3(1)S59.2(2) 0.68
0.9 Fe2Ni18P20S60 Fe2.3(3)Ni18.7(8)P20.2(2)S58.7(8) 0.89
1 Ni20P20S60 Ni20.5(1)P20.3(1)S59.2(1) 1

agreement between model and experiment as already discussed in the context of the struc-
tural analysis of Ni2P2S6 in Sect. 3.1.2. However, the site disorder is most likely an artifact in
the structural refinement caused by stacking faults. For (Fe1−xNix)2P2S6 with x = 0, 0.7, 1,
significant broadening of reflections in the l direction of the 0kl section of reciprocal space is
observed as shown in Fig. 3.18. This effect in the scXRD pattern is indicative of high amounts
of (stacking) disorder perpendicular to the ab-planes.

However, a crystal structure model, which explicitly considers these stacking faults in the
model, is lacking by now. Therefore, the model with site disorder was used. Using this struc-
tural model allowed to obtain comparable structural parameters throughout the whole substi-
tution series as it yields the best possible agreement with experiment. This is in consonance
with the approach of Goossens et al. [123] and Lançon et al. [117] for Ni2P2S6. Yet, it should be
emphasized again, that the site disorder is most likely not real but rather an artifact attributed
to stacking faults.

For the parent compounds, Fe2P2S6 and Ni2P2S6, using the site disorder model proposed
by Ouvrard et al. [112] allowed for a refinement of all atomic coordinates, anisotropic dis-
placement parameters (ADPs) as well as the occupancy of all but the sulfur sites without any
restraints. For all intermediate compounds, the structural model had to be extended in order to
take the substitution of Fe by Ni into account. Starting from the structural model for Fe2P2S6,
two new positions were generated (Ni1 and Ni2) which are restrainted to have the same frac-
tional coordinates and the same ADPs as the Fe1 (4g) and Fe2 (2a) positions and are occupied
by Ni atoms. Additionally, the occupancy of Ni1 and Ni2 were restraint to the occupancy of
Fe1 and Fe2, respectively, to always yield the nominal Fe/Ni ratio (e.g. for (Fe0.3Ni0.7)2P2S6:
fNi1 = fFe1 · 7/3 and fNi2 = fFe2 · 7/3). Without further restraints, this model was sufficient to
describe all intermediate compounds. Only for (Fe0.7Ni0.3)2P2S6, additionally the occupancy
of the minority sites in the site disorder description, Fe2/Ni2 (2a) and P2 (8j), had to be fixed to
zero to obtain a physically reasonable structural model. As an example, the crystal structure of
(Fe0.3Ni0.7)2P2S6 corresponding to the refined scXRD model in Table 3.7 is shown in Fig. 3.19.

Using the model with site disorder, a disorder ratio rdisorder may be defined as in Eq. 3.2,
which corresponds to ratio of transition element atoms between the majority and minority
sites and takes into account the different site multiplicities.
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3.2. (Fe1-xNix)2P2S6

Fig. 3.18.: 0kl cuts through reciprocal space from scXRD on (Fe1−xNix)2P2S6 single crystal with (a)
x = 0, (b) x = 0.3, (c) x = 0.5,(d) x = 0.7 and (e) x = 0.9. (f) shows the 0kl cut for Ni2P2S6 from
Fig. 3.5(b) in Sect. 3.1.2 for comparison.

rdisorder =
fFe2 + fNi2

2(fFe1 + fNi1) + fFe2 + fNi2
(3.2)

In the line of the argumentation before, the disorder ratio rdisorder may be best understood
as a measure of stacking faults rather than a measure for site disorder. That at least a qual-
itative correlation between the site disorder ratio and the amount of stacking faults exists,
can be observed by comparing the scXRD patterns (i.e. Fig. 3.18(d) and (e)) and rdisorder of
(Fe0.3Ni0.7)2P2S6 and (Fe0.1Ni0.9)2P2S6. For (Fe0.3Ni0.7)2P2S6, strong streaking in l direction is
observed and rdisorder = 14%, while for (Fe0.1Ni0.9)2P2S6 virtually no streaking can be seen
and rdisorder = 2%. However, the evolution of rdisorder as function of the degree of substitution
x shows no clear trend. This may implies that the stacking fault density is heavily sample
dependent and less material dependent. In this line, measuring another crystal - even of the
same batch - is likely to yield a different value of rdisorder.

pXRD patterns for the complete substitution series are shown in Fig. 3.20 and could be in-
dexed in the same monoclinic space group C2/m (No. 12) as the scXRD pattern. As already
observed for the pXRD pattern of Ni2P2S6 (Fig. 3.6 and Fig. 3.7 in Sect. 3.1.2), strong preferred
orientation and stacking faults also influence the powder patterns of Fe2P2S6 and the interme-
diate (Fe1−xNix)2P2S6 compounds. While a reliable structural refinement using the Rietveld
method is challenging in the presence of these sample effects, a reasonable description for the
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3. M2P2S6

Fig. 3.19.: Perspective drawing of the crystal structure of (Fe0.3Ni0.7)2P2S6 according to the structural
parameters obtained from scXRD (see Table 3.7). (a) shows the bc plane (view along a), (b) shows the
ac plane (view along b) and (c) shows the ab plane (view along c∗). Each S6 octahedron either hosts a
transition metal atom or a P2 dumbbell in its center, as indicated by the yellow octahedron. Less than
half occupied atomic sites correspond to the minority transition element 2a and P 8j sites.

Table 3.7.: Summary of lattice parameters and volume obtained frommodelling the scXRD and pXRD
pattern. A selection of reliability values are shown as well. A more comprehensive table of the scXRD
analysis is found in the Appendix.

scXRD

xnom 0.0 0.3 0.5 0.7 0.9 1

Crystal System Monoclinic
Space Group C2/m (No. 12)
a (Å) 5.9345(10) 5.8544(2) 5.8602(2) 5.8671(2) 5.8481(3) 5.8165(7)
b (Å) 10.2942(17) 10.1487(2) 10.1497(4) 10.1658(3) 10.1219(3) 10.0737(12)
c (Å) 6.7092(11) 6.6563(2) 6.6518(2) 6.6663(2) 6.6534(3) 6.6213(8)
β (◦) 107.069(11) 107.139(4) 107.069(3) 107.086(3) 107.127(6) 107.110(6)
Volume (Å3) 391.82(11) 377.92(2) 378.22(2) 380.06(2) 376.38(3) 370.80(10)
rdisorder (%) 6 0 (fixed) 2 14 2 4
Goodness-Of-Fit 1.13 2.30 1.61 2.55 1.93 1.28
Robs (%) 1.70 2.32 3.50 2.67 2.93 2.17

pXRD (Le Bail)

Crystal System Monoclinic
Space Group C2/m (No. 12)
a (Å) 5.9349(1) 5.8919(7) 5.8501(1) 5.8513(2) 5.8071(8) 5.8224(2)
b (Å) 10.2812(2) 10.1809(12) 10.1308(2) 10.1337(3) 10.0569(15) 10.0831(3)
c (Å) 6.7180(2) 6.6779(9) 6.6567(2) 6.6571(3) 6.6105(10) 6.6332(2)
β (◦) 107.309(2) 107.244(3) 107.199(2) 107.204(2) 107.263(3) 107.096(2)
Volume (Å3) 391.35(2) 382.57(8) 376.87(2) 377.07(2) 368.67(9) 372.22(2)
Goodness-Of-Fit 1.69 2.04 2.31 1.97 1.97 2.77
Rp 1.78 1.84 2.31 2.73 2.97 3.30
wRp 2.63 2.74 3.65 4.41 4.43 5.39
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pattern profiles could be found and lattice parameters could be extracted using the Le Bail
method. Corresponding lattice parameter are shown in Table 3.7 (bottom).

The evolution of the lattice parameters a, b and c as well as the monoclinic angle β and the
unit cell volume V extracted from pXRD and scXRD experiments are shown in Fig. 3.21(a) and
(b), respectively. The lattice parameters become shorter and the volume smaller by increasing
x in (Fe1−xNix)2P2S6 as expected from the ionic radius of Fe2+ (0.78Å) in comparison to Ni2+
(0.69Å) [136]. Overall a linear trend is observed, in agreement with Vegard’s law [137]. The
monoclinic angle β virtually stays constant as function of the degree of substitution x. How-
ever, all these structural parameters exhibit small deviations from the general trend. It is likely
that the structural faults in the real structure of (Fe1−xNix)2P2S6 induce additional inaccuracy
in the determination of the lattice parameters, which results in the observed deviations.

To conclude the structural analysis, both scXRD and pXRD confirm the solid solution nature
of (Fe1−xNix)2P2S6. On the one hand, all scXRD pattern could be modeled using the same
structuralmodel only adjusting the Fe/Ni ratio. On the other hand, lattice parameters extracted
from both scXRD and pXRD pattern overall follow Vegard’s law.

3.2.3. Evolution of Magnetic Properties

The normalized magnetization as function of temperatureMH−1(T ) is shown in Fig. 3.22 for
crystals of (Fe1−xNix)2P2S6 of all acquired degrees of substitution with a field of H = 10 kOe
applied parallel to three crystallographic directions a, b and c∗, respectively. Please note that
MH−1(T ) for Ni2P2S6 in Fig. 3.22(f) corresponds to the samemeasurement as discussed before
in Sect. 3.1.3.

The generic behavior of MH−1(T ) is the same for all compositions and field directions.
From 400 K towards lower temperatures, first an increase in MH−1 is observed, followed
by a decrease. Subsequently, a maximum of MH−1 is obtained at a composition dependent
temperature Tmax. Below Tmax, an inflection point is found at a composition dependent tem-
perature Tinflection. Below Tinflection,MH−1 approaches a minimum and either saturates around
this minimum (for 0 ≤ x ≤ 0.7) or shows again a slight increase towards lowest temperatures
(T < 20K; for 0.9 ≤ x ≤ 1). Likely, this increase towards lowest temperatures is related to
Curie impurities.

As already mentioned for Ni2P2S6 in Sect. 3.1.3, this generic temperature dependence is
well known for low-dimensional antiferromagnets. As shown in Table 3.8, the inflection point
corresponds to the long-range antiferromagnetic ordering temperature TN in agreement with
complementary techniques (NMR spectroscopy [138] and neutron diffraction [43, 139, 140]).
The maximum around Tmax is typically attributed to short range magnetic correlations above
TN [65, 66].

For all compositions, TN is isotropic with respect to the direction ofH . For the parent com-
pounds Fe2P2S6 and Ni2P2S6, TN is in good agreement with literature [126] as TN(Fe2P2S6) =
119±2K and TN(Ni2P2S6) = 156±2K. Overall, a gradual increase of TN is observed increasing
the degree of Ni substitution in (Fe1−xNix)2P2S6, as seen in Fig. 3.22.
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3. M2P2S6

Fig. 3.20.: pXRD pattern from Cu-Kα1 radiation (λ = 1.54059Å) of pulverized crystals of
(Fe1−xNix)2P2S6 with (a) x = 0, (b) x = 0.3, (c) x = 0.5, (d) x = 0.7, (e) x = 0.9 and (f) x = 1
as red circles. For comparison, the black line shows the Le Bail fit of the pattern based on the mon-
oclinic space group C2/m. The obtained lattice parameters of the monoclinic unit cell as well as the
reliability factors of the fit are shown in Table 3.7 (bottom). The green arrow in (b) marks a secondary
phase reflection from FeP2. The decrease of intensity above approximately 100◦ is attributed to the
measurement setup.
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Fig. 3.21.: (a) Evolution of the lattice parameters (from top to bottom) b, c and a as function of the
degree of substitution in (Fe1−xNix)2P2S6. (b) Evolution of the unit cell volume (top, right y-axis) and
the monoclinic angle β (bottom, left y-axis). Red symbols correspond to values extracted from scXRD
experiments and blue symbols correspond to values extracted from Le Bail fits of the pXRD data. The
lines indicate the linear trend expected from the parent compounds Fe2P2S6 and Ni2P2S6. Errorbars
in y-direction are smaller than the symbols and are therefore omitted. Note the break of the y-axis
between 7.5 Å and 9.5 Å in (a).
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Fig. 3.22.: Normalized magnetization as function of temperature MH−1(T ) with a magnetic field of
10 kOe applied along three perpendicular crystallographic directions a, b and c∗ for (a) Fe2P2S6, (b)
(Fe0.7Ni0.3)2P2S6, (c) (Fe0.5Ni0.5)2P2S6, (d) (Fe0.3Ni0.7)2P2S6, (e) (Fe0.1Ni0.9)2P2S6 and (f) Ni2P2S6. The
MH−1 axes are scaled the same for best comparability. The inset in (f) shows a zoomed-in view on
the thermal evolution ofMH−1 of Ni2P2S6. The orange dotted lines indicate the Néel temperature TN
for each compound. The green dashed lines in (a), (b), (c), (d) and (f) denote the isotropic temperature
of the maximum in MH−1(T ) Tmax. For (e) (Fe0.1Ni0.9)2P2S6, Tmax is anisotropic and accordingly the
yellow line indicates Tmax for H ∥ a and H ∥ b while the cyan line marks Tmax for H ∥ c∗. The inset
in (e) shows the two anisotropic temperatures of maximum magnetization for (Fe0.1Ni0.9)2P2S6 in a
zoomed-in view.
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Table 3.8.: Comparison of the magnetic ordering temperature TN of Fe2P2S6 and Ni2P2S6 extracted
in this work with literature values based on several techniques. ND corresponds to neutron diffraction.

Fe2P2S6 Ni2P2S6 Technique Reference

119± 2K 156± 2K Magnetometry this work
111 K 151 K Magnetometry [134]
123 K 155 K Magnetometry [126]

155 K Magnetometry [43]

159 K ND [43]
120 K ND [139]
117 K ND [140]

116 K 155 K 31P-NMR [138]

Tmax is found isotropic with regard to the direction of the external magnetic field H for all
compounds except (Fe0.1Ni0.9)2P2S6. For the latter a rather sharp maximum centered at Tmax =
145 K is found for H ∥ c∗, while a distinctly broader maximum centered at Tmax = 165 K is
observed for bothH ∥ a andH ∥ b. The sharp maximum resembles the shape of the maximum
obtained for the Fe-rich compounds (0 ≤ x ≤ 0.7), while the broader maximum observed for
magnetic fields in-plane are similar in shape to the maximum of Ni2P2S6. Subsequently, the
evolution of Tmax for H ∥ a and H ∥ b can be considered to be gradual while for H ∥ c∗ a
drastic change is observed at x = 0.9.

Evolution of the Magnetic Anisotropy in the Antiferromagnetic State

In general, the evolution of the magnetization as function of the direction of the magnetic field
(with respect to crystallographic directions) is a direct measure for the magnetic anisotropy
of a system. For example for Ni2P2S6, the magnetic easy axis was identified in Sect. 3.1.3 from
the field dependent magnetization for fields applied along the three perpendicular crystallo-
graphic directions a, b and c∗, in agreement with literature [43]. For this, the fingerprint of
the metamagnetic spin-flop transition was found which occurs for fields applied along the
easy axis, as explained in Sect. 1.2.3. However the magnetic hardness of a direction for the
intermediate (Fe1−xNix)2P2S6 compounds must be identified by other means, since the finger-
print of the metamagnetic spin-flop transition is not found up to 70 kOe as shown in the field
dependent magnetizationM(H) in Fig. 3.23.

Applying a weak magnetic field (i.e. magnetic fields below the metamagnetic transition) to
a collinear antiferromagnet parallel to its magnetic easy axis, ideally results in zero magnetiza-
tion in field direction. However, applying the same field perpendicular to itsmagnetic easy axis
results in canting of spins towards the field direction and thus to a non-zero magnetization in
this direction [65]. Although in a real sample the magnetization forH ∥ easy axis might differ
from zero, it is still expected to be significantly smaller than for H ⊥ easy axis. Accordingly,
the magnetic easy axis in a collinear antiferromagnet corresponds to the direction for which
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3. M2P2S6

Fig. 3.23.: Field dependent magnetization M(H) at 1.8 K with magnetic fields applied along three
perpendicular crystallographic directions a, b and c∗ for (a) Fe2P2S6, (b) (Fe0.7Ni0.3)2P2S6, (c)
(Fe0.5Ni0.5)2P2S6, (d) (Fe0.3Ni0.7)2P2S6, (e) (Fe0.1Ni0.9)2P2S6 and (f) Ni2P2S6. The M axes are scaled
the same for best comparability.
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the smallest magnetization is obtained at a given magnetic field and temperature. This can be
applied to both the thermal evolution of the magnetization and the field dependent magne-
tization at temperatures in the ordered state and at magnetic fields below the metamagnetic
transition.

Regarding the substitution series of (Fe1−xNix)2P2S6 both the thermal evolution as well as
the field dependence of the magnetization yield the same magnetic anisotropy for each com-
pound. For 0 ≤ x ≤ 0.9 in (Fe1−xNix)2P2S6, the magnetic easy axis is parallel to c∗. For
magnetic fields along the other directions a and b, the magnetization is approximately equal
which implies a intrinsically isotropic magnetic hard plane. This behavior is in agreement with
Ising-type anisotropy. For Fe2P2S6, this type of anisotropy is also found by inelastic neutron
spectroscopy [116].

Only Ni2P2S6 distinctly deviates from this behavior with the lowest magnetization obtained
for H ∥ a, which subsequently is the easy axis. Also the magnetization for H ∥ b and H ∥ c∗

are anisotropic in regard to each other, with c∗ being the magnetically hardest axis. This
magnetization behavior clearly speaks against Ising-like anisotropy with an easy axis and
defined hard plane. Joy and Vasudevan [126] as well as Lançon et al. [117] found anHeisenberg
Hamiltonian with a single ion anisotropy contribution suitable to describe the magnetism in
Ni2P2S6. Likely, such a description of the anisotropic behavior is also suitable for the direction
dependence observed in this work. In line with Kim et al. [45], this XYZ-type anisotropy may
be approximated as XXZ-type at first instance.

Evolution of the Short Range Correlated Regime

As seen in Fig. 3.22, the shape of the maximum around Tmax changes as function of the degree
of substitution. E.g. for H ∥ c∗, the maximum is pronounced but rather rounded around Tmax
for Fe2P2S6. Increasing the degree of Ni substitution, the maximum gradually gets sharper up
to x = 0.9. Finally for Ni2P2S6, a broad rounded maximum is observed.

The shape of the maximum is dominated by the difference between its center (Tmax) and the
inflection point at lower temperatures at Tinflection = TN. The smaller the difference between TN
and Tmax are, the sharper the maximum becomes. As low-dimensional magnetic short range
correlations (SRC) set in below Tmax, the regime between TN and Tmax is dominated by these
correlations before three dimensionalmagnetic order is established belowTN. Accordingly, the
evolution of Tmax/TN can be considered a quantitative measure for the sharpness of the maxi-
mum and thus the broadness of the SRC regime over the substitution series. Subsequently, the
evolution of Tmax/TN as function of the degree of Ni substitution x in (Fe1−xNix)2P2S6 is shown
in Fig. 3.24 in good qualitative agreement with the values from Rao and Raychaudhuri [134]
from polycrystalline samples.

The evolution of the broadness of the SRC regime in (Fe1−xNix)2P2S6 resembles similarities
to the evolution of the magnetic anisotropy as discussed before. In particular, Ising anisotropy
and a sharp maximum with Tmax/TN ≤ 1.1 is found for 0 ≤ x ≤ 0.9 while XYZ anisotropy
and a distinctly broader maximum with Tmax/TN = 1.65 is obtained for Ni2P2S6. As shown
in Table 3.9, such a relation between the magnetic anisotropy and the broadness of the SRC
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3. M2P2S6

Fig. 3.24.: Evolution of the ratio of Tmax to TN (Tmax/TN) for an applied magnetic field of 10 kOe along
the three perpendicular crystallographic directions a, b and c∗ for (Fe1−xNix)2P2S6. Literature values
for polycrystalline samples [134] are shown as yellow circles.

regime is not only found for (Fe1−xNix)2P2S6 but also for other (low-dimensional) antiferro-
magnets. In general, strongly anisotropic antiferromagnets (i.e. Ising-like) exhibit only a small
SRC regime with Tmax/TN close to unity regardless of the dimensionality. A distinctly broader
SRC regime can be found for low-dimensional weakly anisotropic antiferromagnets (i.e. XYZ-
or Heisenberg-like).

However, the relation between themagnetic anisotropy and the broadness of the SRC regime
in low-dimensional systems is not well understood. While Tmax is a good estimate for the
coupling strength in 1D system with exclusively nearest neighbor magnetic exchange cou-
pling [66, 145], for more complex systems this approach fails. Accordingly, details such as the
origin for the slight decrease of Tmax/TN from 1.08 for Fe2P2S6 to 1.01 for (Fe0.3Ni0.7)2P2S6 as
well as the origin for the anisotropy of Tmax/TN for (Fe0.1Ni0.9)2P2S6 still remain elusive. How-
ever regarding the latter, it should be noted that similar anisotropies were already observed in
other antiferromagnets as shown in Table 3.9.

In conclusion, both the evolution of the anisotropic magnetic behavior as well as the evo-
lution of the SRC regime imply that the magnetic properties of (Fe1−xNix)2P2S6 do not evolve
gradually between the behaviors of the parent compounds Fe2P2S6 and Ni2P2S6. Rather, the
evolution of the magnetic properties for (Fe1−xNix)2P2S6 with 0 ≤ x ≤ 0.9 follows a certain
trend with the magnetic behavior of Ni2P2S6 being distinctly different.
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Table 3.9.:Comparison ofTmax/TN of Fe2P2S6 andNi2P2S6with different 2D and 3Dmagnetic systems
exhibiting a comparable magnetic anisotropy. H∥ indicates an applied magnetic field parallel to the
magnetic easy axis, while H⊥ indicates a magnetic field applied in the magnetic hard plane.

Compound Magn. Anisotropy Dim. Tmax/TN Reference

Fe2P2S6 Ising 2D 1.08 this work
K2CoF4 Ising 2D 1.21 (H⊥) Ref. [141]

1.48 (H∥)
MnF2 Ising 3D 1.03 (H⊥) Ref. [142]

1.05 (H∥)

Ni2P2S6 XYZ 2D 1.65 this work
MnTiO3 Heisenberg 2D 1.56 Ref. [143]
K2NiF4 Heisenberg 2D 2.27 Ref. [144]

Evolution of the Magnetic Anisotropy in the Paramagnetic State

For Fe2P2S6, anisotropic magnetization is not only observed in the antiferromagnetically or-
dered state but also in the paramagnetic state (see Fig. 3.22(a)). This is in contrast to Ni2P2S6
which exhibits isotropic magnetization above TN (see Fig. 3.22(f)).

As discussed by Joy and Vasudevan [126], a trigonal distortion of the TS6 octahedra may
lead to an additional splitting of the electron orbital levels in the crystal field scheme depending
on the spin configuration of T . Subsequently, an orbital doublet ground state is expected to
form for T = Fe, while a singlet ground state is found for T = Ni. A singlet ground state
results in an isotropic g-factor and a magnetic easy axis in the ab-plane, in agreement with
the magnetization behavior of Ni2P2S6. However, the doublet ground state in Fe2P2S6 gives a
magnetic easy axis perpendicular to the ab-plane and may allow the anisotropic values of g.
A potential g-factor anisotropy is suitable to explain the anisotropic magnetization above TN
in Fe2P2S6.

Anisotropic magnetization in the paramagnetic state is observed for (Fe1−xNix)2P2S6 with
0 ≤ x ≤ 0.9 as shown in Fig. 3.22(a)–(e). However, increasing the degree of nickel substitution
x in (Fe1−xNix)2P2S6 results in a monotonic reduction of the anisotropy in the paramagnetic
state as shown for the normalized magnetization at 400 K in Fig. 3.25 as an example. Increasing
the Ni content in (Fe1−xNix)2P2S6 replaces Fe-moments with a locally anisotropic g-factor
by Ni-moments which locally have an isotropic g-factor. In this line, the observed trend of
the anisotropy in the paramagnetic state with the Fe content in (Fe1−xNix)2P2S6 agrees well
with the aforementioned g-factor anisotropy caused by the crystal field splitting of the Fe
coordination sphere. Furthermore, the linear decreasing magnetic moment by increasing x
in Fig. 3.25 can mainly be attributed to a linear decrease of the effective spin from S = 2 for
Fe2P2S6 to S = 1 for Ni2P2S6 as function of substitution.
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3. M2P2S6

Fig. 3.25.: Evolution of MH−1 at 400 K and an external magnetic field of 10 kOe applied along three
different crystallographic directions in (Fe1−xNix)2P2S6.

Investigation for Spin Glass and Magnetic Glass in (Fe0.5Ni0.5)2P2S6

Asmentioned in Sect. 3.2, mixed transition metalM2P2S6 compounds may yield exotic ground
states such as spin glass states as e.g. found in (MnFe)P2S6 [119]. Typically, a spin glass state
can be detected by a splitting of zero-field cooled (zfc) and field cooled (fc) measurements of
the thermal evolution of the magnetization or by displacements in the field dependent mag-
netization.

Based on the measurements in this work, the first criterion cannot be evaluated as all ther-
mal magnetization measurements were exclusively performed field cooled. However, the field
dependent magnetization measurements, as shown in Fig. 3.23, do not exhibit any anomaly
corresponding to a spin glass state for any compound of the substitution series at 1.8 K. In
agreement with this, Rao and Raychaudhuri [134] investigated the zfc/fc magnetic behavior
as well as the field dependence, however only for a polycrystalline (Fe0.5Ni0.5)2P2S6 sample,
finding no indication for a spin glass state down to 10 K.

Goossens et al. [135] reported a magnetic glass state in polycrystalline (Fe0.5Ni0.5)2P2S6.
A magnetic glass is a state of randomly oriented (larger) clusters of magnetic moments in
contrast to a spin glass state where individual moments or small clusters are frozen with ran-
dom orientations. The former state is magnetically not identified by the typical characteris-
tics of a spin glass but most prominently by a hysteresis between field cooled warming and
field cooled cooling measurements [135, 146]. Such a hysteresis was found for polycrystalline
(Fe0.5Ni0.5)2P2S6 [135].

To investigate if this behavior is specific to the material or dependent on the sample, the
thermal evolution of MH−1 was measured zfc heating, fc heating and fc cooling on a single
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Fig. 3.26.: Normalized magnetization of (Fe0.5Ni0.5)2P2S6 as function of temperatureMH−1(T )mea-
sured during cooling, heating after zfc and heating after fc with an external magnetic field of 10 kOe
applied (a) parallel and (b) perpendicular to the magnetic easy axis c∗.

crystal of (Fe0.5Ni0.5)2P2S6 with fields applied parallel and perpendicular to the magnetic easy
axis c∗, as shown in Fig. 3.26. The same external field of 10 kOe as in the work of Goossens et
al. [135] was applied. For both directions of the magnetic field, all curves (zfc heating, fc
heating and fc cooling) match and no splitting is observed down to 1.8 K. Consequently, the
(Fe0.5Ni0.5)2P2S6 single crystals investigated in this work do not exhibit magnetic glass behav-
ior and the behavior observed in the work of Goossens et al. [135] is most likely not intrinsic.

Accordingly, no indication for a spin glass state or a magnetic glass state could be found
for (Fe1−xNix)2P2S6 with 0 ≤ x ≤ 1 based on the measurements on single crystals in this
work. Nevertheless, measurements of the frequency dependence of the ac-susceptibility may
be worthwhile in the future to further investigate the existence of such short range correlated
states in single crystals of (Fe1−xNix)2P2S6 at lowest temperatures.
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3.3. Summary and Outlook

Two members of the M2P2S6 class of materials, Fe2P2S6 and Ni2P2S6, as well as four inter-
mediate mixed transition element compounds of the general formula (Fe1−xNix)2P2S6 (with
x = 0.3, 0.5, 0.7 & 0.9) have been successfully grown as single crystals by CVT with iodine
as transport agent. For the mixed transition element compounds it has proven to be crucial
to use polycrystalline stoichiometric precursors as starting mixture for the crystal growth to
obtain homogeneous single crystals with the desired degree of substitution. Composition and
phase purity are confirmed by EDX spectroscopy and pXRD.

For Ni2P2S6 a monoclinic unit cell in the space group C2/m is found by scXRD and pXRD.
Furthermore, the X-ray patterns exhibit broadening of certain reflections indicative of strong
disorder in the stacking direction c∗. Regarding the atomic structure, a model containing a
Ni-P2 site disorder results in significantly better agreement with the scXRD experiment than
a model without this structural disorder as reported by Ouvrard et al. [112]. However, 31P
NMR spectroscopy finds no indication for such as site disorder in Ni2P2S6. Consequently,
site disorder does not play a significant role in the structure of the Ni2P2S6 crystals grown in
the course of this work. It is more likely that the displaced electron density resulting from
stacking faults is misinterpreted in the structural solution of scXRD and falsely leads to a
crystal structure model involving site disorder, as already speculated in literature [117, 123].

The magnetic behavior of Ni2P2S6, as probed by magnetometry and 31P NMR spectroscopy,
is found in agreement with literature [43, 126] for magnetic fields along the three perpendicu-
lar directions a, b and c∗. However, the magnetic behavior for magnetic fields along additional
directions in the ab plane implies an in-plane angular dependence that is in apparent contra-
diction to the magnetic structure reported by Wildes et al [43]. Instead of a two-fold rotation
symmetry of the easy axis expected from the magnetic structure, a six-fold rotation symmetry
is found. Yet assuming 120◦ rotational twinning along the stacking direction c∗ in the Ni2P2S6
crystals, the observed angular dependence is brought in line with the magnetic structure.

The monoclinic stacking in the C2/m structure breaks the three-fold symmetry of the lay-
ers (wallpaper group p3), which results in three potential directions for the monoclinic axis.
Following from this in combination with only weak interactions between adjacent layers, 120◦
rotational twinning is likely observed in the monoclinic M2P2S6 compounds. For this inves-
tigation of the real structure of these compounds, Ni2P2S6 is a model system as the magnetic
structure with an easy axis in-plane allows to investigate the structural in-plane behavior by
means of magnetic properties additional to X-ray diffraction techniques.

For Fe2P2S6 as well as for the intermediate mixed transition element compounds of the
substitution series (Fe1−xNix)2P2S6, scXRD and pXRD are well indexed by a unit cell in the
monoclinic space group C2/m. Single crystal XRD patterns for all these compounds are well
described by the structural model with Ni-P2 site disorder proposed by Ouvrard et al. [112].
Although this site disorder is most likely not real but rather an artifact obtained from stacking
faults (as discussed extensively for Ni2P2S6), using this model allowed to obtain comparable
structural parameters throughout the whole substitution series as it yields the best possible
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agreementwith experiment - in lack of a crystal structuremodel forM2P2S6 that takes stacking
faults explicitly into account.

Lattice parameters and cell volumes extracted from scXRD and pXRD patterns exhibit an
overall linear evolution in agreement with Vegard’s law [137]. Slight deviations of the struc-
tural parameters from linearity are likely observed due to inaccuracies in their determination
caused by stacking faults. As one structural model is sufficient to model the scXRD patterns
throughout the whole substitution series and Vegard’s law is followed, (Fe1−xNix)2P2S6 is a
solid solution.

Fe2P2S6, Ni2P2S6 and the intermediate (Fe1−xNix)2P2S6 compounds all exhibit a long-range
antiferromagnetic ground state as well as a regime of SRC above the ordering temperature
which is typical for low-dimensional antiferromagnets. Nevertheless, several aspects of the
magnetic behavior differ between both parent compounds. Fe2P2S6 is an Ising-like antiferro-
magnet with the magnetic easy axis parallel to c∗ and i exhibits only a narrow regime of SRC
above TN = 119±2K. However, Ni2P2S6 is a XYZ-like antiferromagnet with themagnetic easy
axis along the a direction and a broad SRC regime above TN = 156±2K. For both compounds,
these magnetic properties are in agreement with literature [43, 116, 117, 126]. Surprisingly for
all intermediate compounds of (Fe1−xNix)2P2S6 with 0.3 ≤ x ≤ 0.9, the magnetic behavior re-
sembles the behavior of Fe2P2S6. While the Néel temperature evolves gradually, the magnetic
behavior of the intermediate compounds is best described as Ising-like with the magnetic easy
axis along the c∗ direction. Also, the SRC regime above the ordering temperature remains
narrow as expressed by the ratio Tmax/TN. Based on the behavior of (Fe1−xNix)2P2S6 as well
as other compounds from literature, the broadness of the SRC regime seems to be dominantly
affected by the strength of the magnetic anisotropy in low-dimensional systems. In this line of
argumentation, the magnetic anisotropy in (Fe1−xNix)2P2S6 stays comparable for 0 ≤ x ≤ 0.9
and then abruptly changes between x = 0.9 and x = 1. Nevertheless, the origin of this
behavior remains elusive and calls for further investigations.

Furthermore, the magnetization is anisotropic in the paramagnetic regime for the whole
substitution series except of Ni2P2S6. As discussed by Joy and Vasudevan for Fe2P2S6 [126],
an anisotropic Landé g-factor emerges from the crystal field splitting of Fe in its distorted
octahedral coordination sphere. This is suitable to explain the normal state anisotropy in
Fe2P2S6. The evolution of the anisotropy in the paramagnetic state as function of the Fe/Ni
substitution can be understood in the context of replacing Fe with an anisotropic g-factor by
Ni with an isotropic g-factor. Moreover, no indications for a spin glass state or a magnetic
glass state are found for any compound of (Fe1−xNix)2P2S6 based on the single crystals inves-
tigated in this work. This is in contrast to a report on a magnetic glass state in polycrystalline
(Fe0.5Ni0.5)2P2S6 [135].

In conclusion, the real structure of the M2P2S6 compounds likely is better understood by
involving 120◦ twinning rather than M -P2 site disorder. (Fe1−xNix)2P2S6 was identified as
solid solution with a rather unusual evolution of the magnetic behavior, which is most likely
attributed to the magnetic anisotropy. This work demonstrates that the magnetic anisotropy
in (Fe1−xNix)2P2S6 does not significantly change in the range of 0 ≤ x ≤ 0.9 but then is found
heavily altered for x = 1. In this line, (Fe1−xNix)2P2S6 may only allow for a narrow window
between x = 0.9 and x = 1 to tune the magnetic anisotropy to stabilize exotic ground states
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in this low-dimensional magnet. The origin of this non-continuous change in the magnetic
anisotropy as well as the potential (narrow) regime for tuning the magnetic anisotropy in
(Fe1−xNix)2P2S6 call for further investigation of this system.
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The material class ofM2P2S6 compounds exhibits a certain flexibility in the oxidation state of
M [41]. This is well observed in vanadium containing compound, which does not form the
stoichiometric phase but rather the off-stochiometric phase V1.56P2S6. As reported by Ouvrard
et al. [111], in this compound vanadium occurs in an mixed valence state and the phase may
be better expressed as (V2+

0.68 V
3+
0.88□0.44)P2S6 (□ indicates vacantM sites).

This flexibility in the oxidation state led to the idea of replacing M2+ by M1+
0.5M

′3+
0.5 in

M2P2S6 to synthesize new compounds in this material class. Subsequently, the compounds
shown in Table 4.1 could be obtained via solid state synthesis by Colombet et al. [57, 58, 147,
148]. Similar to the structure of M2+

2 P2S6 discussed before, all these compounds form hon-
eycomb layers of edge sharing MS6 antiprisms (i.e. distorted octahedra) with a P2 dumbbell
in the void of the honeycomb. Furthermore, the stacking of these layers is comparable to
M2+

2 P2S6 and of van der Waals nature [41].

The main difference between M2+
2 P2S6 and M1+M ′3+P2S6 is that, for the latter, the two

different metals of different oxidation state arrange in an orderly manner on the vortices of
the honeycomb layer. As illustrated in Fig. 4.1, either an alternating, triangular arrangement
(e.g. CuCrP2S6 in the space group C2/c (No.15)) or an arrangement in stripes (e.g. AgCrP2S6
in the space group P2/a (No. 13)) is formed on the honeycomb lattice [41]. As introduced
in Sect. 1.1, the different sublattice arrangements depend mainly on the relative ionic sizes
of the two M ions in regard to each other and lead to the different space groups. This is in
stark contrast to e.g. the homocharge substitution series of (Fe2+1−xNi2+x )2P2S6 (see Sect. 3.2), in
which Fe and Ni were randomly distributed on the honeycomb lattice.

Specifically for CuCrP2S6, a deviation from the planar honeycomb lattice ofM inM2P2S6 is
reported. According to Colombet et al. [58], a fraction of Cu atoms are displaced along the c∗
direction in their S6 octahedra while the Cr atoms and the remaining Cu atoms are located in
the center of their S6 octahedra. This yields two different coordination environments for Cu:

Table 4.1.: Quarternary phosphorus sulfides of the general formula M1+M ′3+P2S6. The triangular
and stripe-like sublattice arrangements are illustrated in Fig. 4.1.

Compound Space Group Sublattice Ordering Reference

CuCrP2S6 C2/c (No. 15) triangular [58]
AgInP2S6 P31c (No. 163) triangular [147]
AgCrP2S6 P2/a (No. 13) stripes [148]
AgVP2S6 P2/a (No. 13) stripes [57]
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Fig. 4.1.: Perspective drawing (view ∥ c∗) of a layer of (a) CuCrP2S6 as example for the triangular
ordering of M1+ and M ′3+ and (b) AgCrP2S6 with the ordering of M1+ and M ′3+ as zig-zag chains
on the honeycomb network. S omitted for clarity. The black connections illustrate the honeycomb
network, while the colored connections further emphasize the sublattices of M1+ and M ′3+.

octahedrally coordinated Cu for the position in the center and a coordination environment
which is close to trigonal planar for the displaced Cu atoms. For the latter, the Cu–S bond
lengths were similar to those typically observed in CuS4 tetrahedra [58].

IfM ′3+ is not a closed shell cation (such as Cr3+ or V3+), thenM1+M ′3+P2S6 may exhibits
magnetic orderwith an unusualmagnetic structure due to the triangular or stripe-like arrange-
ment of the magnetic ions on the honeycomb lattice. The triangular magnetic arrangement
in the layer is supposed to yield a 2D magnetic character similar to the M2P2S6 compounds.
However, the stripe-like arrangement can be expected to result in 1D magnetic behavior, as
the magnetic stripes of M ′3+ are well isolated from each other by stripes of non-magnetic
M1+ cations.

Furthermore, specifically Cr3+ can be used as magnetic ion, which is known to exhibit a
90◦ Cr–X–Cr super-exchange coupling (X is a chalcogenide) of ferromagnetic nature [149,
150]. Consequently, it is not surprising that several quasi-2D ferromagnetic systems (e.g.
Cr2Ge2Te6 [29] (also discussed in Sect. 5.1), Cr2Si2Te6 [151], CrI3 [152], CrBr3 [152]) contain
Cr3+ as magnetic ion. In this line, the layered M1+Cr3+P2S6 compounds are promising can-
didates to exhibit ferromagnetic order, potentially down to the monolayer. Thus, the focus in
this work is on the chromium containing compounds CuCrP2S6 and AgCrP2S6. The former is
reported to yield a triangular arrangement of Cu and Cr [58], while the latter exhibits zig-zag
chains of Ag and Cr according to literature [148].
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In the context of the potential for long range magnetic order down to the monolayer limit,
the magnetic anisotropy plays a crucial role, as introduced in Sect. 1.2.5. To reliably inves-
tigate the magnetic anisotropy of a system, single crystals are of first choice. However for
the aforementioned compounds of CuCrP2S6 and AgCrP2S6, only solid state synthesis con-
ditions are reported [58, 148]. Although Kleemann et al. [153] reported the investigation of
CuCrP2S6 crystals grown by the Bridgeman technique and Mutka et al. [154] mentioned that
the AgCrP2S6 crystals used in their work had been grown by chemical vapor transport (CVT),
both did not specify nor cite any details on the crystal growth. Thus in this work, the single
crystal growth of CuCrP2S6 and AgCrP2S6 by CVTwas attempted and optimized starting from
the growth conditions used for the M2P2S6 compounds. Based on the similarities between
M2P2S6 and M1+CrP2S6 with respect to the bonding behavior and the crystal structure, the
same crystal growth technique and conditions were promising as a starting point. Neverthe-
less, optimizing the conditions for the CVT growth of quarternary compounds is ambitious
due to the large amount of species that possible contribute to the vapor phase and the transport
mechanism.

Considering the severe effect that the size of the non-magnetic M1+ ion has on the mag-
netic order in MCrP2S6, it is of interest to investigate how a gradual substitution of a M1+

with a similar size as Cr3+ by another M1+ ion with a notably different size affects the mag-
netic order. Such a substitution is expected to induce chemical pressure on the compound by
deforming the local M1+S6 environments, which indirectly affects the bonding behavior and
distorts the octahedral coordination environment of the adjacent Cr3+S6 units. As seen based
on the example of CuCrP2S6 and AgCrP2S6, this yields two completely different arrangements
of the two sublattices in case of the complete substitution of Cu by Ag. With smaller degrees
of substitution, however, one may expect changes in the exchange coupling mechanism, as
the Cr–S–Cr super-exchange pathways are affected by the chemical pressure, while the tri-
angular or stripe-like sublattice arrangements remains. This may offer a way of tuning the
magnetic properties of these quarternary compounds without inducing chemical disorder in
the magnetic Cr sublattice.

However as CuCrP2S6 and AgCrP2S6 crystallize in different space groups, a structural phase
transition has to be present in the quasi-binary phase diagram of (Cu1−xAgx)CrP2S6. Such a
phase transition goes along with a regime of immiscibility and, thus, (Cu1−xAgx)CrP2S6 can-
not exhibit solid solution behavior over the full range of substitution. Thus, this quasi-binary
phase diagram has to be examined to locate regimes of miscibility and immiscibility and, con-
sequently, identify regimes which are suitable to follow the aforementioned magnetic behav-
ior under substitution. For an initial investigation of the (Cu1−xAgx)CrP2S6 phase diagram, a
polycrystalline sample series with the nominal compositions of (Cu1−xAgx)CrP2S6 with x =
0, 0.25, 0.50, 0.75 & 1 was synthesized and investigated regarding its structural evolution.

Hereafter, the results of the single crystal growth experiments of CuCrP2S6 and AgCrP2S6
via CVT with iodine as transport agent are reported in Sect. 4.1 and Sect. 4.2, respectively.
Additionally, the results of the compositional, structural and magnetic investigation based
on these crystals are presented. In Sect. 4.3, the synthesis and structural evolution of the
polycrystalline sample series of (Cu1−xAgx)CrP2S6 with x = 0, 0.25, 0.50, 0.75 & 1 is presented.
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4.1. CuCrP2S6

Details and results of the single crystal growth experiments of CuCrP2S6 via chemical vapor
transport (CVT) with iodine as transport agent are presented hereafter in Sect. 4.1.1. Sin-
gle crystals that were obtained from these growth experiments were comprehensively inves-
tigated regarding their morphology and composition by SEM and EDX and regarding their
crystal structure by pXRD as shown in Sect. 4.1.2. The pXRD pattern is sufficiently modeled
by structures in two different space groups. Consequently, the different possible structures
are discussed in the context of literature and physical properties. In Sect. 4.1.3, the magnetic
properties of CuCrP2S6 are presented and discussed. Single crystals of CuCrP2S6 enabled mea-
surements with magnetic fields applied parallel and perpendicular to the ab planes which al-
lows insight in the magnetic anisotropy of this compound. Ferromagnetic interactions are
dominant in the planes of CuCrP2S6, while adjacent planes couple antiferromagnetically at
sufficiently low temperatures.

4.1.1. Crystal Growth

Single crystals of CuCrP2S6 were grown using the CVT technique with iodine as transport
agent which was not reported until now. As mentioned in Sect. 4, the preparation and growth
procedure as well as the temperature profile are adapted from the crystal growth of Ni2P2S6
as described in Sect. 3.1.1.

Under argon atmosphere in a glove box, the elemental educts copper (powder -100+325
mesh, Alfa Aesar, 99.9%), chromium (powder -100+325 mesh, Alfa Aeasar, 99.99%), red phos-
phorus (lumps, Alfa Aesar, 99.999%) and sulfur (pieces, Alfa Aesar, 99.999%) were weighed out
to yield a molar ratio of Cu : Cr : P : S = 1 : 1 : 2 : 6 and homogenized in an agate mortar. 0.5 g of
reaction mixture were loaded in a quartz ampule (6mm inner diameter, 2mm wall thickness,
previously baked out at 800 ◦C for at least 12 h) together with approx. 50mg of the transport
agent iodine (resublimed crystals, Alfa Aesar, 99.9985%). The ampule was then transferred to
a vacuum pump and evacuated to a residual pressure of 10−8 bar. To suppress the unintended
sublimation of the transport agent during evacuation, the lower end of the ampule containing
the material was cooled with liquid nitrogen. After reaching the desired internal pressure, the
valve to the vacuum pump was closed, the cooling was stopped and the ampule was sealed
under static pressure at a length of approximately 12 cm.

Following the same procedure for the heat treatment as described in Sect. 3.1.1 for Ni2P2S6
with the temperature profile shown in Fig. 4.2, shiny plate-like crystals of CuCrP2S6 in the
size of up to 3mm× 3mm× 200µmwere obtained. Fig. 4.3(a) shows such an as-grown single
crystal. The crystals exhibit a layered morphology and are easy to exfoliate. Such a freshly
exfoliated crystal with a highly reflective surface is shown in Fig. 4.3(b).
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Fig. 4.2.: Schematic representation of the temperature profile for the single crystal growth of CuCrP2S6
using CVT. The charge site temperature profile is shown in red and the sink site profile in blue.

Fig. 4.3.: Single crystals of CuCrP2S6 obtained from the chemical vapor transport growth with iodine
as transport agent - (a) as-grown and (b) freshly exfoliated. One orange square in the background
corresponds to 1× 1mm2 for scale.

4.1.2. Characterization

Crystal Morphology and Compositional Analysis

The crystal morphology was further investigated by SEM. Using the SE detector (i.e. topo-
graphic contrast), the CuCrP2S6 crystals exhibit flat surfaces and well developed edge facets,
as, e.g., illustrated in Fig. 4.4(a). The edge facets indicate a hexagonal crystal habitus. In the
lower central part of Fig. 4.4(a), the surface of the crystal was scratched and several layers peel
off, demonstrating the layered nature of the crystal with only weak van derWaals interactions
between layers. Using the chemical contrast mode (BSE detector) as shown in Fig. 4.4(b), the
crystal surface overall shows a homogeneous contrast. Comparing the SEM(SE) and SEM(BSE)
images, the few spots of different contrast can be clearly attributed to particles on the crys-
tal surface and not to intrinsic impurities in the crystal. Subsequently, the crystals have a
homogeneous composition.
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4. M1+CrP2S6

Fig. 4.4.: SEM images of a CuCrP2S6 crystal using (a) the topographic contrast mode (i.e. SE-detector)
and (b) the chemical contrast mode (i.e. BSE-detector).

In more detail, the elemental composition was investigated by EDX on 30 spots on sev-
eral crystals of the same crystal growth experiment. The mean elemental composition is
Cu10.5(3)Cr10.4(2)P20.3(1)S58.8(4), in agreement with the expected composition of theM1+CrP2S6
phase of Cu10Cr10P20S60. The low standard deviations further indicate the high homogeneity
of the elemental composition over several crystals. Moreover, no significant amount of iodine
was found in any crystal.

Structural Analysis

The crystal structure of CuCrP2S6 was investigated by pXRD at 293(2)K and the correspond-
ing pattern is shown in Fig. 4.5. According to the structural solution of CuCrP2S6 based on
scXRD by Colombet et al. [58], Cu and Cr alternately occupy the corners of the honeycomb
lattice in CuCrP2S6. This arrangement on the honeycomb lattice breaks the mirror symmetry
of theC2/m space group. However by doubling the c parameter, a glide plane is found instead
of a mirrorplane for CuCrP2S6 and thus this structure fulfills the symmetry of the C2/c space
group (No. 15). Yet, the symmetry breaking is caused by having two 3d elements order on the
honeycomb lattice which most likely affects the structure factor only barely. Therefore, it is
challenging to distinguish the ordered C2/c structure as illustrated in Fig. 4.6(b) from a C2/m
structure with random distribution of Cu and Cr on the honeycomb as shown in Fig. 4.6(a)
based on pXRD. The latter type of structure is discussed in the context of (Fe1−xNix)2P2S6 in
Sect. 3.2.2. As shown in Fig. 4.5, both structural models yield a calculated pXRD pattern that is
in good agreement with the measured pattern of CuCrP2S6 and very similar reliability factors
as shown in Table 4.2. The refined structural models are shown in Table 4.3 (top and mid).

The model in C2/c in Fig. 4.6(b) assumes that Cu atoms and Cr atoms occupy two different
4eWyckoff sites and therefore lie in a plane parallel to ab in similarity to the C2/m structure.
However, Colombet et al. [58] also reported that the Cu atoms are displaced along the c∗

direction in their S6 octahedra as mentioned before in Sect. 4.
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Table 4.2.: Summary and reliability factors of the Rietveld analysis of the pXRD pattern of CuCrP2S6
using different structural models.

Structural Model Random C2/m Idealized C2/c Disordered C2/c

Experiment & Data Collection
Temperature (K) 293(2)
Radiation Type & Wavelength (Å) Cu-Kα1 ; 1.54059
θmin (◦) 10.00
θstep (◦) 0.03
θmax (◦) 119.62

Crystal Data
Crystal System Monoclinic
Space Group C2/m C2/c C2/c
a (Å) 5.9128(3) 5.9117(3) 5.9133(3)
b (Å) 10.2386(8) 10.2392(6) 10.2362(5)
c (Å) 6.6965(7) 13.3934(12) 13.3907(11)
β (◦) 107.265(8) 107.289(7) 107.285(5)

Refinement
Goodness-Of-Fit 2.82 2.45 2.14
Rp (%) 4.81 4.13 3.82
wRp (%) 7.11 6.15 5.39
RF (%) 14.04 12.28 11.45

Table 4.3.: Fractional atomic coordinates, occupancies and isotropic displacement parameters Uiso
of the three structural models for CuCrP2S6 after Rietveld refinement. Estimated standard deviations
given in parantheses.

Label Type Wyck x y z
Occ Uiso

(%) (×10−3Å2)

Random C2/m

Cu1 Cu 4g 0 0.3319(9) 0 50 84(2)
Cr1 Cr 4g 0 0.3319(9) 0 50 84(2)
P1 P 4i 0.0484(17) 0 0.1501(15) 100 5(1)
S1 S 4i 0.7544(15) 0 0.2455(19) 100 20(2)
S2 S 8j 0.2626(10) 0.1720(5) 0.2412(11) 100 19(1)

Idealized C2/c

Cu1 Cu 4e 0 0.0025(9) 0.25 100 39(2)
Cr1 Cr 4e 0 0.3360(12 0.25 100 93(4)
P1 P 8f 0.0616(15) 0.3366(9) 0.8386(7) 100 3(1)
S1 S 8f 0.2527(15) 0.1679(9) 0.3705(7) 100 15(2)
S2 S 8f 0.2662(16) 0.1575(9) 0.8749(8) 100 18(2)
S3 S 8f 0.7405(17) 0.0019(10) 0.3713(9) 100 30(2)

Disordered C2/c

Cu1 Cu 8f 0.0512(14) 0.0017(13 0.3267(7) 50 9(2)
Cr1 Cr 4e 0 0.3314(9) 0.25 100 18(2)
P1 P 8f 0.0500(20) 0.3353(12) 0.8216(9) 100 61(3)
S1 S 8f 0.2530(18) 0.1736(12) 0.3711(8) 100 27(2)
S2 S 8f 0.2666(17) 0.1769(10) 0.8749(8) 100 18(2)
S3 S 8f 0.7378(12) 0.9962(12) 0.3739(8) 100 15(2)
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Fig. 4.5.: pXRD pattern fromCu-Kα1 radiation (1.54059 Å) of pulverized CuCrP2S6 crystals (red circles)
in comparison to calculated pattern based on different structural models (dashed lines). Black: C2/m
structure with random distribution of Cu and Cr on the honeycomb lattice. Blue: Idealized C2/c struc-
ture with Cu and Cr occupying two different 4e sites. Green: C2/c structure with Cu occupying one
8f site. The marks below the pattern indicate the Bragg positions and the solid line on the bottom
corresponds to the difference between experiment and model. The inset shows a zoomed-in view on
the small reflection at 27.9◦ (002 for C2/m and 004 for C2/c) for which the three models yield visibly
different intensities.

This disorder is taken into account by shifting Cu on two partially occupied 8f Wyckoff
sites in the structural model, Cu1 being refined close to the center of the S6 octahedron and
Cu2 closer to the face of the octahedron perpendicular to c∗. Due to the partial occupation
and the statistical distribution only one of both positions is considered to be occupied for each
CuS6 unit.

Using the structural model proposed by Colombet et al. with two 8f Wyckoff sites of Cu
to model the experimental pXRD pattern yields either a negative isotropic displacement pa-
rameter for Cu1 or for both Cu sites (after restricting their isotropic displacement parameters
to be equal). However using only one 8f site for the disordered Cu, the refinement of the
structural model succeeds with non-restricted, physically reasonable parameters as shown in
Table 4.2 (bottom). The Cu 8f site is found close to the Cu2 site of the model of Colombet et al.
with trigonal planar coordination environment as shown in Fig. 4.6(c). As shown in Fig. 4.5,
a good agreement between the calculated pattern based on this model and the experiment is
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Fig. 4.6.: Perspective drawing of the crystal structure of CuCrP2S6 with view parallel a (top) and
parallel c∗ (bottom) for different structural models. (a) C2/m structure with random distribution of Cu
and Cr on the honeycomb lattice. (b) Idealized C2/c structure with Cu and Cr occupying two different
4e sites. (c) C2/c structure with Cu occupying one 8f site. For the bottom drawings S and chemical
bonds are omitted and the honeycomb network is emphasized in grey.

achieved. Furthermore, this model yields the best reliability factors out of the three structural
models discussed for CuCrP2S6 as shown in Table 4.2.

Maisonneuve et al. [155] reported a structural phase transition below 200K in CuCrP2S6.
According to this work, the triangular arrangement of CrS6 and CuS6 units on the honeycomb
lattice with a P2 dumbbell in the resulting voids is still valid at low temperatures. Also, Cu is
found not in the center but either closer to the top or the bottom of the S6 octahedra as dis-
cussed for the disordered C2/c structure shown in Fig. 4.6(c). However, the main difference
between the disordered C2/c structure and the low temperature structure is that at low tem-
peratures Cu is no longer randomly occupying the position closer to the top or the bottom of
the S6 octahedra as in Fig. 4.6(c) but order alternating along the (110) direction (i.e. top posi-
tion for Cu on the unit cell edge and bottom position for the center Cu in a layer in Fig. 4.6(c),
or vice versa). Due to this ordering, the unit cell symmetry is described by the space group
P1c1 at low temperatures. The similarities between the low temperature structure reported
by Maisonneuve et al. and the C2/c model in Fig. 4.6(c) are further supporting that the C2/c
model is depicting the crystal structure at room temperature best.

To summarize, it is challenging to distinguish between the crystal structure in C2/c with
ordered CrS6 and CuS6 units, as proposed by Colombet et al. [58], and a structure in C2/m
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with random distribution of CrS6 and CuS6 on the honeycomb lattice by pXRD alone. Adding
the disordered Cu sites to the C2/c crystal structure model further improves the reliability
factors of the refinement slightly, but overall all three models yield reasonable agreement be-
tween model and experiment. However considering the existence of the low temperature
structure proposed by Maisonneuve et al. [155], the C2/c structures are likely to depict re-
ality better than the C2/m structure for CuCrP2S6 at room temperature. Furthermore, the
magnetic behavior (as discussed hereafter in Sect. 4.1.3) strongly suggests the oxidation states
Cu1+Cr3+P2S6. As mentioned in Sect. 1.1, these different oxidation states are expected to yield
theC2/c structurewith a triangular sublattice ordering allowing for an ideal charge separation
of the two ions with different oxidation states instead of a local charge clustering as expected
for the random distribution in the C2/m structure.

4.1.3. Magnetic Properties

The normalized magnetization of CuCrP2S6 as function of temperatureMH−1(T ) is shown in
Fig. 4.7(a) for a magnetic field of 1 kOe applied parallel and perpendicular to the ab planes (i.e.
parallel to a random direction in the ab plane and parallel to c∗). Additionally, on the bottom of
Fig. 4.7(a) the first derivative ofMH−1(T ) is shown. From 300K towards lower temperatures,
the normalized magnetization monotonically increases. Amaximum inMH−1(T ) is observed
at ∼ 31K followed by a decrease towards lower temperatures. Close below the maximum in
MH−1(T ) at 30±2K, an inflection point is observed corresponding to a maximum in the first
derivative. The normalized magnetization becomes strongly anisotropic below the maximum.
However, a slightly anisotropic behavior can be observed already below 50±5K.The downturn
below themaximum at approximately 31K indicates a transition into an antiferromagnetically
ordered state at low temperatureswith the transition temperatureTN = 30±2K corresponding
to the anomaly (i.e. maximum) in the first derivative. This is in agreement with literature [58,
153].

The inverse of the normalized magnetization of CuCrP2S6 as function of temperature is
shown in Fig. 4.7(b). At high temperatures a linear evolution is observed in agreement with
the Curie-Weiss law. Accordingly, a Curie-Weiss analysis of the temperature regime 100–300 K
yieldsΘCW = 35±1K and µeff = 3.78±0.05µB per CuCrP2S6 forH ∥ ab andΘCW = 33±1K
and µeff = 3.89 ± 0.05µB per CuCrP2S6 for H ⊥ ab. For the latter direction of the exter-
nal field, this is in good agreement with the values reported by Kleemann et al. [153] (who
reported on the magnetic behavior of CuCrP2S6 only for this direction of the magnetic field
with respect to the crystal orientation). The positive values of ΘCW indicate dominantly fer-
romagnetic interactions in CuCrP2S6. However considering the antiferromagnetic ground-
state, a positive ΘCW is unexpected. Regarding µeff, both values are close to the magnetic
moment expected for Cr3+ assuming the free electron g-factor and the absence of spin orbit
coupling (i.e. spin only moment) µso(Cr3+) = 3.88µB. This implies that the oxidation states
are Cu1+Cr3+[P2S6]4− (since Cu1+ is closed shell with zero magnetic moment) rather than
Cu2+Cr2+[P2S6]4−. For the latter, a magnetic moment of around µ ≈ 6.63µB per CuCrP2S6
would be expected (µso(Cr2+) = 4.90µB and µso(Cu2+) = 1.73µB).
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Fig. 4.7.: (a) Normalized magnetization as function of temperatureMH−1(T ) (left y-axis) and its first
derivative (right y-axis) of CuCrP2S6 for a magnetic field of 1 kOe applied parallel and perpendicular
to the crystallographic ab plane. The black dotted line marks the inflection point inMH−1(T ) (i.e. the
maximum in the first derivative) which corresponds to TN. (b) Inverse of the normalized magnetization
as function of temperature (MH−1)−1(T ). The black dashed lines correspond to linear regressions of
the paramagnetic regime in the range of 100–300K.
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Fig. 4.8.: (a) Magnetization as function of magnetic field M(H) of CuCrP2S6 at 5 K with a magnetic
field up to 55 kOe applied parallel (red) and perpendicular (violet) to the ab plane. The green curve
shows M(H) for H ⊥ ab after demagnetizing field correction as explained in the text. The inset
shows a zoomed-in view on the low field regime up to 10 kOe. (b) M(H) of CuCrP2S6 at 1.8 K with
a magnetic field up to 70 kOe applied parallel to the ab plane (black). The grey dotted line marks the
spin-only saturation moment for Cr3+ assuming S = 3/2 and g = 2.
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The field dependent evolution of the magnetization M(H) of CuCrP2S6 at 5 K and up to
55 kOe is shown in Fig. 4.8(a) for fields applied parallel and perpendicular to the ab plane.
The in-plane direction of the magnetic field is the same as for the thermal evolution discussed
before. The influence of a demagnetizing field due to an anisotropic shape of the sample (i.e.
thin plate-like crystal) was estimated following the corresponding procedure introduced in
Sect. 1.2.4 using the demagnetizing factors for an infinite thin platelet (Nx = Ny = 0 and
Nz = 1). For H ⊥ ab, the field dependence of the magnetization is linear in agreement with
Kleemann et al. [153] and the demagnetizing field correction causes a slight increase of the
slope. For H ∥ ab, the magnetization is not affected by this correction and a curved M(H)
behavior is observed at low fields centered around approximately 4 kOe. Above∼ 10 kOe, the
field dependence for H ∥ ab becomes linear, however with a higher slope than for H ⊥ ab
(with and without demagnetizing field correction). The curvature at low fields is attributed
to a spin-flop transition. On one hand, this indicates that the ground state of CuCrP2S6 is
antiferromagnetic and on the other hand shows that CuCrP2S6 is either a magnetic easy plane
system or that it has a magnetic easy axis in the ab plane, as for example observed for Ni2P2S6
in Sect. 3.1.3. Themagnetic anisotropy is likely attributed to magnetocrystalline anisotropy, as
the magnetization remains notably anisotropic even after the effect of shape anisotropy was
considered.

Additionally,M(H) at 1.8 K and up to 70 kOe parallel to the ab plane is shown in Fig. 4.8(b)
indicatingmagnetic saturation aboveHsat ≈ 65 kOewith a saturationmagnetization ofMsat ≈
3µB per CuCrP2S6. This saturation magnetization is in agreement with S = 3/2 and the free
electron g-factor. As Cr3+ in an octahedral crystal field is S = 3/2, this further supports
the before mentioned oxidation states of Cu1+Cr3+[P2S6]4−. The saturation field is relatively
low for a system with antiferromagnetic ground state. For example, Ni2P2S6 in Sect. 3.1.3 and
(Fe1−xNix)2P2S6 in Sect. 3.2.3 exhibit a magnetization which is at least an order of magnitude
below the expected saturation magnetization at 70 kOe. This implies that the spin system in
CuCrP2S6 is easily polarized by an external magnetic field which may hints at the presence of
ferromagnetic interactions in CuCrP2S6, in agreement with the positive values of ΘCW.

This magnetization behavior of CuCrP2S6 is in good agreement with Colombet et al. [58].
They discussed this specific evolution of the magnetic properties in the context of dominantly
ferromagnetic interactions in the layers, while adjacent layers interact antiferromagnetically.
Such a magnetic order is already well established for several layered compounds with Cr3+ as
magnetic ion (i.e. MCrX2 with M = Li, Na, K, Cu, Ag and X = S, Se [156–159] as well as
CrCl3 [160, 161]) and yields the same characteristic behavior in the evolution of themagnetiza-
tion as function of field and temperature as observed for CuCrP2S6. Thus, it may be speculated
that also CuCrP2S6 exhibits such a magnetic order, although more detailed investigations of
the magnetic behavior of CuCrP2S6 are necessary to confirm this assumption.
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4.2. AgCrP2S6

The single crystal growth experiments for AgCrP2S6 via chemical vapor transport (CVT) using
iodine as transport agent are introduced in Sect. 4.2.1. As shown in Sect. 4.2.2, these crystals
were carefully analyzed regarding their morphology, composition and the formation of sec-
ondary phases by SEM and EDX as well as regarding their crystal structure by pXRD. Many
crystals exhibit a surface impurity in form of bubbles of a iodine-rich phase. Based on this
finding, opportunities to optimize the growth procedure are proposed and discussed. The
magnetic properties of AgCrP2S6 are shown and discussed in Sect. 4.2.3. A broad maximum
in the thermal evolution of the normalized magnetization at around 260 K indicates the pres-
ence of low dimensional magnetic correlations in agreement with literature. However, the
anisotropic magnetic behavior indicates a more complex magnetic behavior than only nearest
neighbor Heisenberg exchange as assumed in literature.

4.2.1. Crystal Growth

Single crystals of the quaternary compound AgCrP2S6 were grown by CVT using iodine as
transport agent, in similarity to the successful single crystal growth of CuCrP2S6 (as discussed
before in Sect. 4.1.1). Until now, Colombet et al. [148] reported only on the crystal growth of
AgCrP2S6 via solid state synthesis. Despite Mutka et al. [154] mentioned that the crystals used
in their work had been grown by CVT, neither they specify nor cite any growth conditions.
Thus, this is the first report on the CVT growth of AgCrP2S6.

Using the same procedure as described for the CVT growth of CuCrP2S6 in Sect. 4.1.1
with Ag (powder, APS 4–7 micron, Alfa Aesar, 99.9%) instead of Cu as well as the same
temperature profile, a low amount of shiny plate-like crystals of AgCrP2S6 of the size of
2mm× 2mm× 100µmwere grown on the sink site of the ampule (as shown in Fig. 4.9), while
most of the material has resolidified in the charge site. Furthermore, some crystals showed the
formation of spheres or bubbles on the surface. These bubbles have formed preferably along
step edges and could be readily removed by exfoliating the crystal. This implies that the for-
mation of these bubbles has occurred after the surface of the underlying crystal has formed,
i.e. the growth of the larger crystals has already stopped.

To improve the crystal size and increase the yield of the growth experiment, the temperature
regime of the crystal growth phase was changed from 750–700 ◦C to 800–700 ◦C, 850–750 ◦C
and 900–800 ◦C expecting an increase in the growth speed. Temperatures at the sink site
for the inverse gradient phase were adjusted to be always 50 ◦C higher than the charge site
temperature. However for all these growth regimes, only a few small crystals of AgCrP2S6
were obtained, which mostly had secondary phase bubbles on the surface. Consequently, the
parameters for the crystal growth of AgCrP2S6 via CVT are in need of further optimization in
the future.
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Fig. 4.9.: Single crystals of AgCrP2S6 as obtained from the CVT growth experiment. The red arrow
in (b) marks an area with several bubbles on the surface of the crystal. One orange square in the
background corresponds to 1× 1mm2 for scale.

4.2.2. Characterization

Crystal Morphology and Compositional Analysis

Crystals obtained from all temperature profiles were investigated by SEM regarding their mor-
phology and chemical homogeneity. Using the topographic contrast mode (SE detector), the
surface of the actual crystals was generally flat, typically with some steps or terraces indicat-
ing the layered morphology of the crystal. If present, the bubbles are clearly sitting on top of
the crystal surface, as shown in the Fig. 4.10(b) and (c). The bigger bubbles in Fig. 4.10(b) are
located along lines which most likely correspond to a step on the surface of the underlying
crystal. As areas of high surface energy, steps on the surface of a crystal are prone to act
as additional nucleation centers e.g. for secondary phases. As shown in the zoomed-in view
in Fig. 4.10(c), the bubbles either have a rough surface themselves or a lot of small particles
deposited on their surface.

The chemical contrast on the crystal surface is homogeneous, as observed in the images
with chemical contrast (BSE detector) in Fig. 4.10(d)–(f). For the crystal in Fig. 4.10(a) and (d)
without bubbles on the surface, the few spots of different contrast in the SEM(BSE) image can
be clearly attributed to particles on the surface in agreement with the SEM(SE) image. This
demonstrates that the crystals do not exhibit intergrowth of different phases. For the crystal
with bubbles on the surface in Fig. 4.10(e), the bubbles on top of the crystal surface exhibit a
much brighter contrast than the crystal in the BSE image, signaling that the bubbles have a
chemical composition which is distinctly different from the underlying crystal. The bubbles
themselves exhibit a homogeneous contrast as shown in Fig. 4.10(f), demonstrating that they
all have the same chemical composition. Additionally, the SEM(BSE) image shows some spots
of darker contrast than the underlying crystal which are also located on top of the crystal
surface as observed in comparison with the SEM(SE) image. These dark spots are a second
secondary phase.

The chemical composition of the crystal as well as of the two secondary phases was fur-
ther investigated by EDX spectroscopy. The crystal composition was measured on 25 spots
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Fig. 4.10.: SEM images of a AgCrP2S6 crystals using the topographic contrast mode (i.e. SE-detector)
in (a)–(c) and the chemical contrast mode (i.e. BSE-detector) in (d)–(f). In (a)/(d), a crystal with clean
surface is shown while the crystal in (b)/(e) exhibits several bubbles on its surface. The yellow rectangle
in (b)/(e) corresponds to the area shown in (c)/(f) which offers a zoomed-in view on the bubbles on the
surface of this crystal.

on different crystals grown in different temperature regimes and a mean composition of
Ag10.3(2)Cr10.6(2)P20.3(2)S58.8(1) was obtained from all these measurements. This composition
is in ideal agreement with the expected composition of Ag10Cr10P20S60. The small standard
deviations demonstrate that the composition of the AgCrP2S6 is not affected by the changes
in the temperature range of the growth profile. Several measurements on crystals with sec-
ondary phase bubbles on the surface demonstrated that also these crystals have the desired
composition. The composition of the bubbles is approximately Ag35P13S38I14 containing no
appreciable amounts of chromium. Possibly, this composition corresponds to a phase closely
related to Ag3PS4 [162] (i.e. Ag37P13S50) with S being partly substituted by I. The composi-
tion of the dark secondary phase observed in Fig. 4.10(e) is P28S72 in ideal agreement with the
expected composition of the phase P2S5 (i.e. P29S71) [163].

It is most likely that these secondary phases have formed after the crystal growth phase
during cooling down the furnace due to their location exclusively on the surface of some
crystals. The presence of appreciable amounts of iodine in the phase of the bubbles supports
this consideration. As iodine is supposed to act as transport agent for the transition elements
in the CVT growth of AgCrP2S6, no noticeable crystal growth of the target phase would be
expected if iodine would immediately form a stable compound with Ag, P and S. As at least
some small crystals of AgCrP2S6 are grown, this indicates that iodine initially participated in
the crystal growth as transport agent and the condensation of the iodine containing phase
happened in a later phase of the growth process. If the secondary phases indeed form after
the crystals have grown, their formation on the surface of the crystals can be reduced or even
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avoided by a final inversion of the temperature gradient. By keeping the sink site temperature
the same as during the crystal growth phase and cooling the charge site below the sink site
temperature (e.g. 100 ◦C cooler than the sink site) and then cooling both sites with this gradient
remaining constant, the condensation of the vapor phasewould take place on the cooler charge
site. As the secondary phases form on the charge site, the surface of the crystals on the sink
site should remain pristine.

Furthermore, if the above scenario depicts reality, then the secondary phases are closely
related to the composition of the gaseous phase in the ampule at the end of the crystal growth
phase. Accordingly, the gaseous phase would have contained Ag, P, S and I, lacking chromium.
However, as the elementswereweighed in in stoichiometric amountswith respect toAgCrP2S6
and neither the target phase nor any secondary phase were rich in chromium, this indicates
that an increased amount of chromium is left in the charge site. Hence, the composition of
the secondary phases may indicates that the formation of the volatile AgxIy vapor transport
species is significantly favored over the formation of the CruIv species. In this line of argu-
mentation, the formation of the chromium containing vapor transport species would be the
rate-limiting step of the crystal growth of AgCrP2S6. Consequently, it could be worthwhile to
optimize the growth parameters ensuring that the formation of both transition element halide
species is energetically equally possible. This may significantly improve the crystal growth
speed and, subsequently, the size of crystals that can be grown in a reasonable amount of
time.

Structural Analysis

pXRD was measured on pulverized crystals of AgCrP2S6 which were exfoliated before grind-
ing to avoid secondary phase contributions to the pattern. As shown in Fig. 4.11(a), using
this procedure a phase pure pattern of AgCrP2S6 was obtained. As reported by Colombet et
al. [148], Ag and Cr form zig-zag chains on the honeycomb lattice along the crystallographic a
direction in AgCrP2S6. As explained in Sect. 1.1, this ordering on the honeycomb lattice breaks
the mirror symmetry of the C2/m space group, which is typically found for theM2P2S6 com-
pounds. Consequently, the stripe-like ordered AgCrP2S6 exhibits a stucture in the space group
P2/a (No. 13).

Due to the loss of centering (C base centered to primitive P ), the reflection conditions differ
noticeably betweenC2/m andP2/awhichmakes distinguishing different potential structural
models more straightforward than for CuCrP2S6, which is also C centered and discussed in
Sect. 4.1.2. In this line, the pXRD pattern of AgCrP2S6 exhibits several reflections in the range
of 20◦ < 2θ < 25◦ as well as between 30◦ < 2θ < 35◦. Assuming a monoclinic unit cell,
several of these reflections correspond to Laue indices which are systematically absent for C
centering (i.e. violate the reflection condition for C centering of hkl: h + k = 2n). Examples
are the reflections at 2θ = 22.94◦ corresponding to 120 and at 2θ = 31.92◦ corresponding to
211, as shown in Fig. 4.11(b). Consequently, the pXRD pattern is well indexed in the space
group P2/a, while C2/m is not sufficient to explain all observed reflections.
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Table 4.4.: Summary and reliability factors of the Rietveld analysis of the pXRD pattern of AgCrP2S6.

Experiment & Data Collection
Temperature (K) 293(2)
Radiation Type & Wavelength (Å) Cu-Kα1 ; 1.54059
θmin (◦) 10.00
θstep (◦) 0.03
θmax (◦) 120.13

Crystal Data
Crystal System Monoclinic
Space Group P2/a
a (Å) 5.8832(1)
b (Å) 10.6214(2)
c (Å) 6.7450(3)
β (◦) 106.043(2)

Refinement
Goodness-Of-Fit 2.13
Rp (%) 2.08
wRp (%) 3.11
RF (%) 5.45

Table 4.5.: Fractional atomic coordinates, occupancies and isotropic displacement parameters Uiso of
AgCrP2S6 at 293 K after Rietveld refinement with estimated standard deviations in parantheses.

Label Type Wyck x y z
Occ Uiso

(%) (×10−3Å2)

Ag1 Ag 2e 0.75 0.4364(2) 0 100 34(1)
Cr1 Cr 2e 0.25 0.9229(4) 0 100 20(2)
P1 P 4g 0.2979(6) 0.2466(4) 0.1659(6) 100 2(1)
S1 S 4g 0.9792(7) 0.2309(5) 0.2336(8) 100 18(2)
S2 S 4g 0.9880(5) 0.9233(4) 0.2165(8) 100 7(1)
S3 S 4g 0.4777(7) 0.3947(4) 0.2802(7) 100 34(1)
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4.2. AgCrP2S6

Fig. 4.11.: (a) pXRD pattern from Cu-Kα1 radiation (1.54059 Å) of pulverized AgCrP2S6 crystals (red
circles) in comparison to the calculated pattern based on the refined structural model (black line). The
black marks below the pattern indicate the Bragg positions of the unit cell of AgCrP2S6 in the space
group P2/a and the blue line on the bottom corresponds to the difference between experiment and
model. (b) Zoomed-in view on the low angle regime of the experimental pattern in (a) with arrows
indicating the reflections that violate the reflection conditions for C centering.

Based on the structural model proposed by Colombet et al. [148], a refinedmodel is obtained
which yields a calculated pattern in good agreement with the experimental pXRD pattern, il-
lustrated in Fig. 4.11(a), and reasonable reliability factors, as shown in Table 4.4. The parame-
ters of the optimized structural model are given in Table 4.5 and a perspective representation
of the model is shown in Fig. 4.12. While for CuCrP2S6 the difference in the size of the tran-
sition elements is relatively small (ionic radii for octahedral coordination: r(Cu1+) = 0.77Å
and r(Cr3+) = 0.62Å [136]), for AgCrP2S6 this difference becomes more severe (ionic radii for
octahedral coordination: r(Ag1+) = 1.15Å and r(Cr3+) = 0.62Å [136]). Consequently, the
Ag–S bonds are notably longer than the Cr–S bonds which causes a distortion of the structure.
In detail, the CrS6 coordination environments remain antiprismatic with parallel faces perpen-
dicular to c∗, close to octahedral (as shown in Fig. 4.12(a)). However for the AgS6 as well as the
P2S6 coordination environments, the faces perpendicular to c∗ distort and are found no longer
parallel to each other. As shown in the perspective representation of the crystal structure with
view along c∗, Cr is found in the center of its sulfur coordination shell, while both Ag as well
as P2 appear to be off-centered in their coordination environments shifted away from the Cr
chains along the a direction. This distortion is in agreement with the structure reported by
Colombet et al. [148].

4.2.3. Magnetic Properties

The magnetic behavior of AgCrP2S6 was studied on a single crystal which was exfoliated be-
fore the magnetic measurements. Although exfoliation yielded phase pure material for pXRD,
the influence of secondary phases on the magnetism should be considered. As both secondary
phases observed by SEM and EDX (Ag35P13S38I14 and P28S72, most likely corresponding to
Ag3PS4 and P2S5) are diamagnetic closed shell systems, no magnetic anomalies are expected
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4. M1+CrP2S6

Fig. 4.12.: Perspective drawing of the refined structural model of AgCrP2S6 after Rietveld refinement
with (a) view parallel to the a direction, (b) parallel to the b direction and (c) parallel to the c∗ direction.
The red antiprisms illustrated the distrorted P2S6 structural units. Ag–Ag and Cr–Cr connections are
shown with lines of the corresponding color to emphasize the zigzag chains along the a direction.

due to these phases. However, their presence influences the absolute magnetic moment by a
diamagnetic contribution.

The thermal evolution of the normalized magnetizationMH−1(T ) of AgCrP2S6 is shown in
Fig. 4.13 for a magnetic field of 1 kOe applied parallel and perpendicular to the crystallographic
ab plane. The generic evolution of the normalizedmagnetization is the same for both directions
of the magnetic field. At high temperatures a broad maximum centered at Tmax ≈ 250K and at
low temperatures a steep increase of themagnetization are observed. No notable characteristic
anomalies for a magnetic phase transition are found. This generic thermal evolution is in good
agreement withMutka et al. [154] and Payen et al. [165]. According to these reports, the broad
maximum around Tmax ≈ 250K is attributed to magnetic fluctuations due to the 1D nature of
the magnetic structure of AgCrP2S6 (i.e. isolated chains of Cr3+), similar to the maximum
observed in the thermal evolution of the magnetization of Ni2P2S6 in Sect. 3.1.3. In fact, Smith
and Friedberg [166] demonstrated for 1D systems in general that such a maximum is only
observed for dominantly antiferromagnetic interactions. The low temperature increase of the
magnetization is discussed in the context of a significant contribution of Curie impurities (i.e.
non-interacting paramagnetic impurity moments) [165].

In the initial report on the magnetic behavior of AgCrP2S6 by Colombet et al. [148], an
anomaly indicative of the onset of antiferromagnetic order was observed at 7 K in the tem-
perature dependence of the magnetization. However, this anomaly was neither found in the
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4.2. AgCrP2S6

Fig. 4.13.: Thermal evolution of the normalized magnetization of AgCrP2S6 measured for a magnetic
field of 1 kOe applied parallel and perpendicular to the crystallographic ab plane. The inset shows a
zoomed-in view on the temperature regime of the onset of the increase of magnetization towards lowest
temperatures with a grey dashed line corresponding to the long-range magnetic ordering temperature
at 20 K as reported by Payen et al. [164].

follow-up reports by Mutka et al. [154] and Payen et al. [165] nor is any anomaly present at
this temperature in MH−1(T ) in this work. Furthermore contradicting the initial finding of
Colombet et al., Payen et al. [164] reported the onset of long-range antiferromagnetic order in
AgCrP2S6 already at 20 K, based on neutron diffraction. However, a corresponding anomaly is
not unambiguously observed in the thermal evolution of the magnetization, as illustrated in
the inset of Fig. 4.13 and in agreement with literature [154, 165]. It is conceivable that the low
temperature increase in MH−1(T ) superimposes a potential antiferromagnetic downturn in
the same temperature range.

The field dependent evolution of the magnetizationM(H) of AgCrP2S6 at 1.8 K and with a
magnetic field of up to 70 kOe is shown in Fig. 4.14. For both H ∥ ab and H ⊥ ab, the mag-
netization exhibits a saturating field dependence at low fields up to approximately 20–30 kOe
and a linear evolution in the saturated regime at higher fields. Such an evolution can be un-
derstood considering two contributions — a linear contribution corresponding to the slope at
high fields and a contribution described by a Brillouin function corresponding to the saturat-
ing component. Considering these two contributions, Mutka et al. [167] were able to model
the field dependent magnetization of AgCrP2S6 at 3 K sufficiently. They attributed the linear
component to an isotropic antiferromagnetic contribution and the saturating component to
the field dependence of the Curie impurities, which are considered to cause the increase of
the magnetization inMH−1(T ) in this temperature regime. However, they did not report the
parameters for the Brillouin function in their model. In fact, it is also possible to find an ex-
cellent agreement between the field dependent magnetization in this work and such a model.
However, this requires a total angular momentum of J ≈ 230 for H ∥ ab and J ≈ 170 for
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4. M1+CrP2S6

Fig. 4.14.: Field dependence of the magnetization M(H) of AgCrP2S6 at 1.8 K for magnetic fields up
to 70 kOe parallel and perpendicular to the ab plane.

H ⊥ ab (assuming g = 2), which are not physically reasonable values of J . Assuming J = 3/2
as expected for Cr3+, which is the only magnetic ion in the compound, the field dependence
cannot be expressed by a Brillouin function and a linear term.

Additionally, the direction dependence of the linear component is not in agreement with the
interpretation ofMutka et al. [167]. As observed in Fig. 4.14 evenwithout the need ofmodeling,
the linear component corresponding to the slope at high fields is anisotropic. Consequently,
it cannot be attributed to the field dependence of an isotropic antiferromagnet. In this line,
the saturating component of the field dependent magnetization is anisotropic as well, as it
is much more pronounced for H ⊥ ab than for H ∥ ab. Yet, assuming this component is
caused by Curie impurities, it is expected to be isotropic, as impurity contributions typically
do not exhibit any intrinsic anisotropy. The anisotropy of the saturating component in the
field dependence is also shown by Mutka et al. but is not specifically addressed in their work.

In fact, also the evolution of anisotropy observed in the temperature dependent magneti-
zation contradicts the assumption that AgCrP2S6 is an isotropic Heisenberg antiferromagnet
with isotropic Curie impurities at low temperatures. ForMH−1(T ), anisotropy sets in below
Tmax ≈ 250K, with MH−1 for H ⊥ ab being smaller than MH−1 for H ∥ ab. Slightly below
20K, the anisotropy changes sign with MH−1 for H ⊥ ab becoming larger than MH−1 for
H ∥ ab towards lower temperatures.

It should bementioned that neither the anisotropic evolution ofMH−1(T ) nor ofM(H) can
be purely attributed to shape anisotropy. For the field dependent magnetization, a demagne-
tizing field correction due to shape anisotropy for a thin platelet sample would only affect the
measurement with H ⊥ ab by increasing its slope (as explained in Sect. 1.2.4). Consequently,
the anisotropy would be even more pronounced after such a correction. This implies that
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4.2. AgCrP2S6

AgCrP2S6 exhibits a notable intrinsic magnetocrystalline anisotropy, in disagreement with
the isotropic Heisenberg antiferromagnetic character proposed in literature.

The aforementioned discrepancies between the experimentalmagnetic behavior of AgCrP2S6,
especially regarding its magnetic anisotropy, and the expected behavior based on the corre-
sponding literature call for furthermagnetic investigations of this compound and its anisotropy
in the future. Considering these discrepancies, it is possible that another scenario is more
suitable to describe the magnetism in AgCrP2S6. For example, a canted antiferromagnetically
ordered state below 20K with a slight ferromagnetic netmagnetization could explain both the
increase of magnetization towards low temperatures in MH−1(T ) as well as the saturating
component in the field dependence. Additionally, such a state would be in agreement with
dominant antiferromagnetic interactions, as implied by the broad maximum in MH−1(T ),
and could cause the anisotropic magnetic behavior. As the increase of magnetization towards
low temperatures and the saturating component in the field dependence are intrinsic features
of this model, it would be evident why they have been observed for every investigated sample
of AgCrP2S6 (in this work and in literature). Assuming that these features are due to extrin-
sic paramagnetic impurity contributions, it remains elusive why they are always observed
with the same characteristics in different samples. However, this alternative scenario is only
a hypothesis for the magnetic order in AgCrP2S6 and is in need of further experimental inves-
tigation in the future.
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4.3. Polycrystalline (Cu1-xAgx)CrP2S6

Hereafter, the solid state synthesis for polycrystalline samples of (Cu1−xAgx)CrP2S6 with x =
0, 0.25, 0.5, 0.75 & 1 is introduced in Sect. 4.3.1. The corresponding samples were analyzed
regarding the phases that have been formed during synthesis, which is shown and discussed
in Sect. 4.3.2. SEM, EDX and pXRD were used complementing each other to identify and
characterize themain and secondary phases for each nominal composition. Based on the phase
evaluation, the phase evolution in the nominal composition regime of (Cu1−xAgx)CrP2S6 was
extracted.

4.3.1. Synthesis

Polycrystalline samples with a nominal composition of (Cu1−xAgx)CrP2S6 with x = 0, 0.25,
0.5, 0.75 & 1 were prepared by solid state synthesis.

In a glove box under argon atmosphere, a total amount of 3 g of the elemental con-
stituents Ag, Cu, Cr, P and S was weighed in in stoichiometric quantities with respect to
(Cu1−xAgx)CrP2S6 (S was used with an excess of 5 mol-%). The mixture was homogenized in
an agate mortar and subsequently pressed to pellets of 1 cm diameter at approximately 30 kN
using a hydraulic press. After the total mass of the pellets after pressing was determined, the
pellets were loaded in a quartz ampule (10mm inner diameter, 3mmwall thickness; previously
baked out at 800 ◦C for at least 12 h). The ampule was transferred out of the glove box to a
pump where the it was sealed under a partial argon pressure of approx. 300mbar (at 20 ◦C).
The ampule containing the pellets was placed inside a horizontal tube furnace. Initially, the
furnace was slowly heated to 150 ◦C with 20 ◦C/h and dwelled at this temperature for 24 h to
ensure prereaction of the volatile elements P and S with the transition elements and to reduce
changes in the chemical composition of the pellets due to evaporation. Subsequently, the fur-
nace was heated to 450 ◦C with 20 ◦C/h and dwelled for 72 h at this temperature. Then the
furnace was shut off and the pellets were furnace cooled to room temperature. After the heat
treatment, the ampule was opened inside of a glove box. For all degrees of substitution, small
amounts of yellow material had been condensed on the inner walls of the ampule. Weighing
the pellets after the heat treatment typically indicated a mass loss of the order of 50–100mg.
The pellets were then pulverized in an agate mortar and the phase formation was investigated
by pXRD using pattern matching.

As samples for all degrees of substitution contained multiple crystallographic phases after
the first heat treatment, the procedure described before was repeated with amodified tempera-
ture profile for the heat treatment. The loss of mass was covered by adding the mass difference
in sulfur to the powdered material. This mixture was then homogenized and pressed to pellets
which were weighed and then sealed in an ampule as described before. The ampule was placed
in a tube furnace and heated to 200 ◦C with 50 ◦C/h, dwelled for 6 h and then heated to 600 ◦C
with 50 ◦C/h, dwelled for 72 h before the furnace was turned off and the pellets were furnace
cooled to room temperature. The pellets were then removed from the ampule and the mass
loss was determined before the phase composition was analyzed by pXRD. This procedure
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Table 4.6.: Comparison between the nominal composition and the experimental mean sample com-
position from EDX of the polycrystalline (Cu1−xAgx)CrP2S6 samples.

xnom Nominal Composition Mean Sample Composition from EDX

0 Cu10Cr10P20S60 Cu10.6(4)Cr11.4(3)P19.6(5)S58.4(2)
0.25 (Cu7.5Ag2.5)Cr10P20S60 Cu8.0(7)Ag2.6(2)Cr12.5(1.8)P18.7(1.4)S58.3(3)
0.50 (Cu5.0Ag5.0)Cr10P20S60 Cu5.5(4)Ag5.0(3)Cr11.2(3)P19.8(2)S58.6(1)
0.75 (Cu2.5Ag7.5)Cr10P20S60 Cu3.0(1)Ag7.0(1)Cr11.1(1)P20.1(1)S58.8(1)
1 Ag10Cr10P20S60 Ag10.0(1)Cr11.6(2)P19.5(2)S58.9(1)

was repeated four times until no more major changes to the pXRD pattern could be observed.
Subsequently, these polycrystalline samples were studied in detail regarding their elemental
and crystallographic phase composition.

4.3.2. Phase Analysis

The evolution of crystallographic phases in these polycrystalline samples was investigated
combining SEM, EDX and pXRD analysis. Samples of the polycrystallin material for SEM and
EDX were prepared as explained in Sect. 2.3.2. Using the chemical contrast mode in SEM (i.e.
BSE detector), areas of different compositions in the polycrystalline grains could be detected.
By EDX, the elemental composition of these areas was detected. Additionally, pXRD was
measured on a sample of each nominal degree of substitution. Using these techniques compli-
mentary allows to reliably detect different crystallographic phases in one sample, which poses
a challenge relying only on pXRD alone due to the high number and overlap of reflections of
different phases or relying only on SEM and EDX due to allotropes and different phases with
virtually the same composition.

Compositional Phase Analysis by SEM and EDX

For all samples of this substitution series, the mean sample composition was obtained from
several EDX measurements over large areas (nearly whole polycrystalline grains) on multiple
grains for each degree of substitution. As shown in Table 4.6, these mean sample composi-
tions are in agreement with the expected nominal composition, in the limits of reliability of
EDX. This implies that no sample suffered from a notable shift in stoichiometry due to the
evaporation of volatile components.

However, all samples (except of nominal AgCrP2S6) do not just contain a single phase but
multiple phases, as revealed by a more detailed SEM(BSE) and EDX investigation and as illus-
trated by different elemental contrasts in the BSE images of the nominal samples CuCrP2S6
and (Cu0.25Ag0.75)CrP2S6 in Fig. 4.15. For (Cu0.75Ag0.25)CrP2S6 and (Cu0.50Ag0.50)CrP2S6, the
secondary phases do not yield a notable different BSE contrast to the main phase, such that the
BSE image is not sufficient to clearly show all phases. Yet for these samples, EDX mappings,
as shown in Fig. 4.16 and 4.17, were used to identify and visualize the different phases.
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Fig. 4.15.: Representative SEM images using the SE detector for topographical contrast (left) and the
BSE detector for chemical contrast (right) for the samples with a nominal composition of CuCrP2S6 in
(a) and (b), a nominal composition of (Cu0.25Ag0.75)CrP2S6 in (c) and (d) and a nominal composition of
AgCrP2S6 in (e) and (f). Please note that the small particles (bright contrast in BSE) observed in the top
left and bottom right corner of (a) and (b) as well as on the left side of (e) and (f) are Ni particles which
were embedded in the resin as described before.
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Table 4.7.: Summary of the compositional phase analysis for the polycrystalline samples of the
(Cu1−xAgx)CrP2S6 substitution series with possible known phases corresponding to the composition
of the different phases in the samples.

Composition from EDX Possible Phase

Nominal CuCrP2S6
Main Phase Cu10.2(2)Cr11.0(8)P20.3(2)S58.5(4) (Cu,Ag)CrP2S6
Secondary Phases Cu37.8(7)Cr0.5(1)P12.6(2)S49.1(5) Cu3PS4

Cu0.9(4)Cr39.6(4)P1.4(4)S58.1(3) Cr2S3

Nominal (Cu0.75Ag0.25)CrP2S6
Main Phase Cu7.43(2)Ag3.3(1)Cr10.4(3)P19.9(3)S59.0(1) (Cu,Ag)CrP2S6
Secondary Phases Cu32.2(1.5)Ag0.2(2)Cr2.3(1.3)P14.1(7)S51.4(6) Cu3PS4

Cu2.7(2)Ag0.7(4)Cr33.0(2.4)P5.0(2.3)S58.7(4) Cr2S3

Nominal (Cu0.50Ag0.50)CrP2S6
Main Phases Cu2.0(1)Ag9.5(1)Cr10.5(1)P20.6(1)S57.5(2) (Cu,Ag)CrP2S6

Cu8.8(4)Ag1.9(5)Cr10.6(1)P20.7(1)S58.1(1) (Cu,Ag)CrP2S6
Secondary Phases Cu29.8(2.5)Ag0.9(5)Cr4.0(1.0)P14.5(1.1)S50.9(1.4) Cu3PS4

Cu0.6(2)Ag0.5(3)Cr38.3(1.9)P2.0(9)S58.6(5) Cr2S3

Nominal (Cu0.25Ag0.75)CrP2S6
Main Phase Cu2.8(5)Ag7.4(4)Cr10.7(4)P20.2(1)S58.9(1) (Cu,Ag)CrP2S6
Secondary Phase Cu0.7(4)Ag1.5(1.1)Cr16.6(9)P17.4(4)S63.8(1.2) CrPS4

Nominal AgCrP2S6
Main Phase Ag10.4(5)Cr10.9(6)P19.5(4)S59.2(4) (Cu,Ag)CrP2S6

The results of the phase analysis by SEM and EDX are summarized in Table 4.7 and discussed
hereafter. Based on EDX, the composition of themain phase of each sample of (Cu1−xAgx)CrP2S6
agrees well with the expected composition for (Cu,Ag)CrP2S6. A special scenario is observed
for nominal (Cu0.50Ag0.50)CrP2S6, as this is the only sample containing two main phases, both
corresponding to the general composition of (Cu,Ag)CrP2S6. However, one of these phases
exhibits a lower degree of Ag vs. Cu substitution and the other one a higher degree than ex-
pected from the nominal composition. As shown in Fig. 4.17, these two phases exist adjacent
to each other with well defined phase boundaries. Additional to the main phase, all samples
(except of AgCrP2S6) exhibit small amounts of at least one secondary phase. Regarding their
composition, these secondary phases agree well with the expected compositions for the phases
Cu3PS4 [168], CrPS4 [169] and Cr2S3 [170].
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Fig. 4.16.: SEM images of the sample with a nominal composition of (Cu0.75Ag0.25)CrP2S6 using the
SE detector for topographical contrast in (a) and the BSE detector for chemical contrast in (b) showing
the area of the EDX mapping. (c) shows the same BSE image as in (b) but overlaid by the element maps
(d)-(i), each showing a spatial resolved image of the distribution of an element via the intensity at a
corresponding characteristic X-ray energy as denoted in the images.
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Fig. 4.17.: SEM images of the sample with a nominal composition of (Cu0.50Ag0.50)CrP2S6 using the
SE detector for topographical contrast in (a) and the BSE detector for chemical contrast in (b) showing
the area of the EDX mapping. (c) shows the same BSE image as in (b) but overlaid by the element maps
(d)-(i), each showing a spatial resolved image of the distribution of an element via the intensity at a
corresponding characteristic X-ray energy as denoted in the images.
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Structural Phase Analysis by pXRD

The pXRD patterns of all (Cu1−xAgx)CrP2S6 samples were evaluated based on the phases that
were identified in the compositional analysis. For the sample with the nominal composition of
CuCrP2S6, all observed reflection could be ascribed to CuCrP2S6 [58] and the secondary phases
Cu3PS4 [168] and Cr2S3 [170]. For the sample on the other end of the substitution regime, nom-
inal AgCrP2S6, the main reflections correspond to AgCrP2S6 [148]. Additionally, some small
reflections could be ascribed to the secondary phase Cr2S3, which could not be observed in
this sample in the SEM and EDX investigation. For the sample of the nominal composition
(Cu0.25Ag0.75)CrP2S6, the main reflections are attributed to AgCrP2S6, while some secondary
reflections correspond to CrPS4 [169]. For these samples the aforementioned phases were suf-
ficient to describe all notable reflections. This allowed for a multiphase Rietveld refinement,
which yielded simulated pXRD patterns that are in good agreement with the experimental
patterns, as shown in Fig. 4.18 and indicated by the reliability factors in Table 4.8. For these
refinements, the atomic models for the main and secondary phases were taken from literature
and were not further optimized to minimize the amount of free parameters of the refinement.
Such refinements allowed to obtain the lattice parameter of the main phase as well as an esti-
mate for the phase fractions, as shown in Table 4.8.

The pXRD patterns of the samples with the nominal composition (Cu0.75Ag0.25)CrP2S6 and
the nominal composition (Cu0.50Ag0.50)CrP2S6 are shown in Fig. 4.19. The pattern of the for-
mer sample does neither exhibit the reflections expected for CuCrP2S6 nor for AgCrP2S6, as
illustrated in Fig. 4.20(a). Most prominently for CuCrP2S6, the 002 reflection at 2θ ≈ 13.8◦

and the 130 reflection at 2θ ≈ 30.6◦ are not observed. For AgCrP2S6, the 001 reflection at
2θ ≈ 13.6◦ as well as the 131 reflection at 2θ ≈ 34.6◦ are missing. While some small reflec-
tions can be attributed to the secondary phases Cu3PS4 and Cr2S3, the phase corresponding
to the main intensity reflections remains unknown. Due to the presence of secondary phase
reflections, a further investigation of the space group and crystal structure of the unknown
main phase is not reliably possible, as several secondary phase reflections overlap with the
reflections of the main phase. Nevertheless, this pXRD pattern implies that the phase with the
experimental composition of Cu7.43(2)Ag3.3(1)Cr10.4(3)P19.9(3)S59.0(1) (from EDX) crystallizes in
a different crystal structure than both parent compounds of this substitution series, CuCrP2S6
and AgCrP2S6.

The sample with the nominal composition (Cu0.50Ag0.50)CrP2S6 exhibits several high inten-
sity reflections that are well explained by the P2/a phase of AgCrP2S6, as shown in Fig. 4.19.
Some low intensity reflection can be attributed to the secondary phases Cu3PS4 and Cr2S3.
However, this leaves several high intensity reflections not attributed to any phase. Compar-
ing the pXRD pattern of nominal (Cu0.50Ag0.50)CrP2S6 to nominal (Cu0.75Ag0.25)CrP2S6, as
shown in Fig. 4.20(b), demonstrates that these unaccounted reflections are the same as the
reflections of the unknown main phase in nominal (Cu0.75Ag0.25)CrP2S6. It is most likely, that
the reflections corresponding to the P2/a phase are caused by the Ag-rich main phase with
the experimental composition of Cu2.0(1)Ag9.5(1)Cr10.5(1)P20.6(1)S57.5(2) (from EDX), while the
reflections corresponding to the unknown phase are caused again by a Cu-rich phase (EDX
composition: Cu8.8(4)Ag1.9(5)Cr10.6(1)P20.7(1)S58.1(1)), in agreement with the observations for
nominal (Cu0.75Ag0.25)CrP2S6.
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Fig. 4.18.: pXRD pattern from Cu-Kα1 radiation (1.54059 Å) from the samples with a nominal com-
position of (a) CuCrP2S6 and (b) (Cu0.25Ag0.75)CrP2S6 and (c) AgCrP2S6 (red circles) compared to the
calculated pattern from a multiphase Rietveld refinement (black line).
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Table 4.8.: Summary of the multiphase Rietveld analysis of the pXRD patterns for the samples with a
nominal composition of CuCrP2S6 (x = 0), (Cu0.25Ag0.75)CrP2S6 (x = 0.75) and AgCrP2S6 (x = 1).

(Cu1−xAgx)CrP2S6 x = 0 x = 0.75 x = 1

Experiment and Data Collection
Temperature (K) 293(2)
Radiation Type & Wavelength (Å) Cu-Kα1 ; 1.54059
θmin (◦) 10.00
θstep (◦) 0.03
θmax (◦) 120.64

Crystal Data (Main Phase)
Crystal System Monoclinic
Space Group C2/c P2/a P2/a
a (Å) 5.9231(3) 5.8926(2) 5.8869(2)
b (Å) 10.2571(5) 10.5748(3) 10.6283(3)
c (Å) 13.4219(7) 6.7703(3) 6.7518(2)
β (◦) 107.280(3) 106.165(2) 106.044(2)
RF(Main Phase) (%) 14.21 6.07 4.95

Phase Fractions
Main Phase (mass-%) 92 97 97
Cu3PS4 (mass-%) 4
Cr2S3 (mass-%) 4 3
CrPS4 (mass-%) 3

Refinement
Goodness-Of-Fit 2.99 3.62 2.92
Rp (%) 3.64 4.48 3.79
wRp (%) 5.18 7.09 5.68
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4.3. Polycrystalline (Cu1-xAgx)CrP2S6

Fig. 4.19.: pXRD pattern from Cu-Kα1 radiation (1.54059 Å) of the samples with nominal composi-
tion of (Cu0.75Ag0.25)CrP2S6 (black) and (Cu0.50Ag0.50)CrP2S6 (red). The intensity is normalized to the
reflection of highest intensity of each pattern. On the bottom, the theoretical patterns for the parent
phases CuCrP2S6 and AgCrP2S6 and the secondary phases detected by the EDX analysis are shown for
comparison.

Conclusion on the Phase Analysis

Following from the phase analysis of the polycrystalline samples in the quasi-binary
(Cu1−xAgx)CrP2S6 phase diagram, twomiscibility gaps have to exist in this regime of the phase
diagram, as schematically illustrated in Fig. 4.21. CuCrP2S6 and (Cu0.75Ag0.25)CrP2S6 crystal-
lize in different structures, which implies the existence of a phase transition and, thus, a mis-
cibility gap between these phases. Furthermore, the structure of the other parent compound
AgCrP2S6 also differs from the structure of the intermediate phase, (Cu0.75Ag0.25)CrP2S6, im-
plying another miscibility gap between these phases. This secondmiscibility gap is pinpointed
around a nominal composition of (Cu0.50Ag0.50)CrP2S6, as the corresponding sample simulta-
neously contains two different (Cu1−xAgx)CrP2S6 phases of different degrees of Ag vs. Cu
substitution. Finally, (Cu0.25Ag0.75)CrP2S6 exhibits the same crystal structure as AgCrP2S6, in-
dicating that a solid solution regime of the corresponding P2/a structure exists between these
phases.

Beyond that it is observed that all samples exhibit a small fraction of secondary phases. The
identified secondary phases are rich in transition elements and deficient in at least one of the
more volatile elements P and S relative to the corresponding main phase of (Cu1−xAgx)CrP2S6.
It is likely, that the formation of the secondary phases is related to the loss of these volatile
components during heat treatment. The corresponding shift in composition is likely small,
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Fig. 4.20.: (a) Zoomed-in view of two regimes (2θ = 12–17◦ and 2θ = 29–39◦) of the pXRD pattern of
nominal (Cu0.75Ag0.25)CrP2S6 compared to the expected reflection positions for the C2/m and P2/a
phases of CuCrP2S6 and AgCrP2S6. The grey dashed and dotted lines correspond to the positions of
the missing reflections mentioned in the text. (b) Comparison of the same two angular regimes of
nominal (Cu0.50Ag0.50)CrP2S6 and nominal (Cu0.75Ag0.25)CrP2S6 after background subtraction using
the method proposed by Sonneveld and Visser [171]. Both patterns are normalized to the intensity of
the common reflection at 2θ = 29.4◦.

as for all samples the mean sample composition was the same as the starting composition in
the margin of reliability of the EDX technique. Apparently, smallest changes of composition
are, however, sufficient to yield the formation of secondary phases. Although an excess of
sulfur was used in the starting material (5mol-%) and in between heat treatments the mass
loss of the pellets was covered by addition of sulfur, the formation of secondary phases could
not be completely prevented. As all secondary phases are poor in phosphorus, it may be
worthwhile to add an excess of phosphorus in the solid state synthesis of these samples in
future experiments, additional to the excess of sulfur.

Fig. 4.21.: Schematic illustration of the structural evolution in the composition range of
(Cu1−xAgx)CrP2S6 with 0 ≤ x ≤ 1.
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4.4. Summary and Outlook

In summary, single crystals of two quarternary compounds of the general formulaM1+M ′3+P2S6,
CuCrP2S6 and AgCrP2S6, were grown by the chemical vapor transport (CVT) technique using
iodine as transport agent. This is the first report on the successful single crystal growth of
these phases by CVT. While the corresponding growth conditions yielded pristine CuCrP2S6
crystals, the presence of a secondary phase on the AgCrP2S6 crystals indicates that the condi-
tions for this phase can be further optimized. However as the impurity phase has only been
grown on the surface of the crystals, phase pure crystalline samples of AgCrP2S6 could be
obtained by exfoliation.

For both phases, the crystal structures (i.e. C2/c structure for CuCrP2S6 and P2/a structure
for AgCrP2S6) were found in overall agreement with literature [58, 148]. Yet for CuCrP2S6, the
distinction between the reported C2/c structure and a C2/m structure without the ordering
of Cu and Cr on the honeycomb is challenging based on pXRD alone. However in the context
of the structural features of the low temperature crystal structure [155] and themagnetic prop-
erties, the C2/c structure most likely corresponds to the actual structure of CuCrP2S6 at room
temperature. Furthermore for CuCrP2S6, a displacement of a fraction of the Cu atoms along
the c∗ direction away from the center towards the top and bottom faces of the surrounding S6
octahedra is reported [58]. Including this displacement in the corresponding structural model
for the Rietveld refinement yields an improved agreement between model and experiment.
Further investigations of the structure of CuCrP2S6 especially focusing on the Cu displace-
ment may be worthwhile. Firstly, the formation of Cu2S6 units (structurally analogous to the
P2S6 dumbbells) in this compound was discussed before in literature [172] but their existence
could not be unambiguously demonstrated [155]. Furthermore, for the low temperature struc-
ture of CuCrP2S6 the displaced Cu atoms order (i.e. alternating top and bottom position in a
layer along (110)) [155]. Consequently, it is conceivable that this order may not be completely
lost for the room temperature structure but remains as a structural modulation, i.e. a gradual
shift of the Cu position over multiple unit cells. Such a long range ordering of Cu in CuCrP2S6
could be of interest for the related physical properties, as the Cu displacement causes a lo-
cal displacement of the electrical dipole moment as demonstrated for the low temperature
structure [173].

The thermal evolution of the normalizedmagnetizationMH−1(T ) of CuCrP2S6 indicates an
antiferromagnetic ground state. However, positive values ofΘCW indicate dominant ferromag-
netic interactions for H ∥ ab as well as for H ⊥ ab. For H ∥ ab, M(H) at low temperatures
(1.8 K and 5K) and low fields exhibits a curvature typical for spin-flop transition, as expected
for the magnetically easy direction/plane in an antiferromagnetic state. Concluding from the
remaining anisotropy in the field dependentmagnetization after considering the effect of shape
anisotropy, the magnetic anisotropy in CuCrP2S6 contains a notable contribution of magne-
tocrystalline anisotropy. At an external field of approximately 65 kOe, magnetic saturation
sets in for H ∥ ab. The low saturation field compared to other antiferromagnets implies that
the spin system is easily polarized, in agreement with notable ferromagnetic contributions as
implied by ΘCW. Both the magnetic saturation moment Msat = 3µB per CuCrP2S6 and the
effective moment (µeff ≈ 3.78µB per CuCrP2S6 for H ∥ ab; µeff ≈ 3.89µB per CuCrP2S6 for
H ⊥ ab) obtained from the Curie-Weiss analysis demonstrate that the magnetic ion in the sys-

127



4. M1+CrP2S6

tem is S = 3/2 as expected for Cr3+, which agrees with the oxidation states of Cu1+Cr3+P2S6.
The overall magnetic behavior of CuCrP2S6 is in ideal agreement with the behavior observed
by Colombet et al. on a polycrystalline sample [58]. Colombet discussed this behavior in
terms of dominantly ferromagnetic interactions in the structural layers while adjacent layers
order antiferromagnetically, as already well established for similar layered Cr3+ compounds,
which exhibit virtually the same characteristic features in the evolution of the magnetic prop-
erties [156–161]. Further investigations of the magnetic properties in the future may validate
such a magnetic structure in CuCrP2S6. In the context of such a magnetic structure, it may be
worthwhile in future to investigate the magnetic properties of CuCrP2S6 while thinning down
the sample towards few layers or even the monolayer. As the antiferromagnetic contribution
is related to interactions between layers, it may be weakened by reducing the amount of layers
in the sample. Potentially on the monolayer, the material may acts as a ferromagnet down to
lowest temperatures as no interlayer antiferromagnetic interactions are possible. In this con-
text, the presence of magnetocrystalline anisotropy in CuCrP2S6 is promising to stabilize long
range magnetic order even on the monolayer.

The thermal evolution of the normalized magnetization of AgCrP2S6 exhibits the charac-
teristic features reported in literature [148, 154, 165]. A broad maximum is observed in the
thermal evolution of the normalized magnetization MH−1(T ) centered at around 250K. Ac-
cording to literature [148, 154, 166], this maximum is attributed to low dimensional short
range correlations (as already observed for Ni2P2S6 in Sect. 3.1.3) and indicates dominantly
antiferromagnetic interactions. Below approximately 25–30K an increase of the normalized
magnetization is observed, which was discussed in terms of non-interacting paramagnetic
Curie impurities in literature [148, 165]. Below 20K long-range antiferromagnetic order sets
in according to neutron diffraction experiments [164] but no corresponding anomaly is ob-
served. The field dependence of the magnetization of AgCrP2S6 at 1.8 K exhibits a non-linear
evolution up to approximately 20–30 kOe and a linear evolution above these fields. Mutka et
al. attributed this behavior to a linear component caused by an isotropic antiferromagnet and
a saturating component due to paramagnetic Curie impurities, following the evolution de-
scribed by the Brillouin function. Yet, neither can the experimental field dependence in this
work be described by a Brillouin function with physically reasonable parameters nor does the
anisotropy of the field dependence agree with the assumption of an isotropic antiferromagnet.
In the same line of argumentation, the anisotropic evolution of the temperature dependence
does also not agree well with isotropic Curie impurities causing the increase of magnetization
towards low temperatures. Consequently, further investigations of the magnetic behavior of
AgCrP2S6 are necessary in the future to show if the low temperature magnetic features are
indeed heavily influenced by contributions of Curie impurities or if they have another poten-
tially intrinsic origin. An intrinsic origin for the low temperature upturn might also explain
the absent anomaly at the onset of antiferromagnetic ordering.

To investigate the quasi-binary (Cu1−xAgx)CrP2S6 section of the corresponding phase dia-
gram for regions of miscibility and immiscibility, polycrystalline samples of the nominal com-
position of (Cu1−xAgx)CrP2S6 with x = 0, 0.25, 0.50, 0.75 & 1 were synthesized by solid state
synthesis. The phases in these polycrystalline samples were thoroughly analyzed by SEM and
EDX regarding their composition and phase relation as well as by pXRD regarding their crys-
tal structure. Based on this analysis, it is likely that two regions of immiscibility are present in
the quasi-binary (Cu1−xAgx)CrP2S6 phase diagram. The first miscibility gap is located between
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CuCrP2S6 in the C2/c structure and (Cu0.75Ag0.25)CrP2S6 in an unknown structure. The sec-
ond miscibility gap is found between the aforementioned phase of (Cu0.75Ag0.25)CrP2S6 and
(Cu0.25Ag0.75)CrP2S6 in the P2/a structure reported for AgCrP2S6. In agreement with this,
the sample with the nominal composition of (Cu0.5Ag0.5)CrP2S6 is found in the miscibility
gap, containing simultaneously two (Cu1−xAgx)CrP2S6 phases with different degrees of Cu
vs. Ag substitution. A regime of miscibility potentially exists between (Cu0.25Ag0.75)CrP2S6
and AgCrP2S6 as both compounds exhibit the same P2/a crystal structure. Consequently, this
regime may be of interest in the future to indirectly tune the magnetic properties of AgCrP2S6
by substitution of Cu vs. Ag on the non-magnetic sublattice. Furthermore, the synthesis and
potentially crystal growth of phase pure (Cu0.75Ag0.25)CrP2S6 followed by the determination of
the crystal structure by scXRD and pXRD is worthwhile to further verify the aforementioned
scenario of two miscibility gaps.
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5. M2(Ge,Si)2Te6

The M2(Ge,Si)2Te6 compounds form a subclass in the family of van der Waals layered
metal trichalcogenides and crystallize in a trigonal structure with a space group of either
P3 (No. 147) [54, 174] or R3 (No. 148) [37, 51, 175]. As mentioned in Sect. 1.1, the higher
symmetry compared to the monoclinicM2P2S6 compounds is related to a more rigid stacking
order, while the structure of the layers stays virtually the same. The AA stacking of the P3
structure and the ABC stacking of the R3 structure are illustrated in Fig. 5.1.

Table 5.1.: Compounds of theM2(Ge,Si)2Te6
subclass with corresponding space groups
(SG) according to the ICSD.

Compound SG ICSD Code Ref.

Main-group metal compounds
Al2Si2Te6 P3 75001 [54]
In2Si2Te6 P3 66356 [174]
In2Ge2Te6 R3 195343 [51]

Transition metal compounds
Cr2Si2Te6 R3 62379 [175]
Cr2Ge2Te6 R3 79268 [37]

Table 5.1 shows the members of this subclass
that are experimentally validated and listed in the
ICSD1. Additionally, Sandre et al. report a trigonal
unit cell for Sc2Si2Te6 [54], which is not found in
the ICSD.

In2Si2Te6 [176], In2Ge2Te6 [177], Cr2Ge2Te6 [37]
and Cr2Si2Te6 [151] are reported to be electrical
insulators. For the closed shell main-group metal
compounds and Sc2Si2Te6, diamagnetism is ex-
pected. However for the chromium compounds,
Cr3+ is S = 3/2 and a ferromagnetic ground state
is stabilized.

In the course of this work, two of these
compounds, the main-group metal compound
In2Ge2Te6 and the transition metal compound

Cr2Ge2Te6 were grown as single crystals and their structure as well as their magnetic be-
havior were investigated. Hereafter, each system and the corresponding investigations are
shortly introduced and the results of the experimental studies are presented.

5.1. Cr2Ge2Te6

In 1995, Carteaux et al. reported the first synthesis of polycrystalline Cr2Ge2Te6 as well as its
structural and bulk magnetic characterization [37]. The honeycomb layered crystal structure
could be solved in the space group R3 and ferromagnetic order was found below TC = 61K
with a magnetic easy axis perpendicular to the structural layers (as illustrated in Fig. 5.2).

1Inorganic Crystal Structure Database (http://icsd.fiz-karlsruhe.de) [107], accessed June 2020.
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5. M2(Ge,Si)2Te6

Fig. 5.1.: Perspective drawing of the structure of (a) Al2Si2Te6 in P3 and (b) Cr2Ge2Te6 in R3 with
view along the a direction. Note that (a) shows four unit cells of the P3 structure while (b) shows only
one unit cell in the R3 structure, corresponding to the same number of layers. The differences in the
stacking order are best observed based on the shift of the (Ge,Si)2Te6 unit between layers.

Additionally the insulating ground state could be probed by the thermal evolution of the re-
sistivity and an activation energy of 0.2 eV was extracted. The first successful growth of bulk
crystals is reported by Ji et al. [178] in 2013 using a self flux growth attempt with excessive Ge
and Te.

However, it was the discovery of intrinsic ferromagnetism in bilayers of Cr2Ge2Te6, as re-
ported by Gong et al. in 2017 [29], that moved this compound into the focus of research. As
explained in the context of the Mermin-Wagner theorem in Sect. 1.2.5, magnetic anisotropy
plays a crucial role in the stabilization of long range magnetic order in 2D systems. Conse-
quently, understanding the magnetic anisotropy in Cr2Ge2Te6 is essential for the functionality
of future applications as well as for the search of new 2D ferromagnets. In this line, a common
feature of all known 2D ferromagnetic compounds is a peculiar decrease of the magnetization
towards lower temperatures with an onset just below the Curie-temperature for external fields
applied along the magnetic hard plane.

To investigate the magnetic anisotropy as well as the peculiar behavior in the magneti-
zation of Cr2Ge2Te6, single crystals were grown as discussed in Sect. 5.1.1 and extensively
characterized by SEM, EDX spectroscopy and pXRD (see Sect. 5.1.2). The magnetic ground-
state was characterized by SQUIDmagnetometry and specific heat measurements as presented
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5.1. Cr2Ge2Te6

Fig. 5.2.: Perspective drawing of the crystal structure of Cr2Ge2Te6. View along (a) the a direction,
(b) the b∗ direction (⊥ ac plane) and (c) the c direction. The cyan octahedra show the Ge2Te6 structural
units. Cr–Te bonding is omitted. Additionally, bright green arrows illustrate the preferred orientation
of the magnetic moments in the ferromagnetic state, according to Carteaux et al. [37].

in Sect. 5.1.3 allowing for the extraction of the magnetocrystalline anisotropy constant KU at
1.8 K. Additionally, the evolution of the temperature dependent magnetization with the exter-
nal field was studied with a special focus on the low field regime as discussed in Sect. 5.1.3.
From this, magnetic field-temperature phase diagrams were obtained for fields along and per-
pendicular to the magnetic easy axis. These phase diagrams are shown and compared to each
other in Sect. 5.1.3. Based on these magnetic phase diagrams, the thermal evolution of the
magnetic anisotropy could be retraced (Sect. 5.1.3). This investigation demonstrates that the
peculiar magnetization behavior as function of temperature in Cr2Ge2Te6 is caused by contin-
uous rotation of the magnetization direction as function of external field as well as the inter-
play between magnetocrystalline anisotropy and temperature, as discussed in Sect. 5.1.3. Ad-
ditionally, the critical behavior of Cr2Ge2Te6 around the ferromagnetic–paramagnetic phase
transition is investigated in detail and the corresponding critical exponents are extracted (see
Sect. 5.1.4). These exponents imply that the magnetization of Cr2Ge2Te6 is best described in
terms of the 2D Ising model with non-negligible interlayer coupling.

Parts of the following section have already been published in J. Zeisner,.., S. Selter et al.,
Physical Review B 99, 165109 (2019) [179] (crystal growth and characterization) as well as
in S. Selter et al., Physical Review B 101, 014440 (2020) [180] (magnetic phase diagrams and
thermal evolution of KU,eff). Furthermore using crystals grown in the course of this work,
an investigation of the influence of pressure on the magnetic anisotropy in Cr2Ge2Te6 was
accepted as T. Sakurai,…, S. Selter et al. ’Pressure control of the magnetic anisotropy of the
quasi-2D van der Waals ferromagnet Cr2Ge2Te6’ in Physical Review B.
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Fig. 5.3.: (a) Schematic representration of the temperature profile used for the self flux growth of
Cr2Ge2Te6. (b) As-grown plate-like Cr2Ge2Te6 crystals obtained from the Ge-Te rich melt. One green
square equals 1mm× 1mm for scale.

5.1.1. Crystal Growth

Cr2Ge2Te6 single crystals were grown by the flux growth technique using a Ge-Te rich self
flux. A similar approach is reported by Zhang et al. [181].

A mixture of chromium (granules, MaTeck, 99.99%), germanium (chips, Sigma Aldrich,
99.999%), and tellurium (lumps, Alfa Aesar, 99.999%)withmolar ratios of Cr : Ge : Te = 10 : 13 : 77
were taken in an alumina crucible which was then sealed in a quartz ampule under a partial
atmosphere of Ar (approx. 300mbar). The quartz ampule was placed upright in a box fur-
nace (Nabertherm) and the temperature profile shown in Fig. 5.3(a) was applied. Finally, at
450 ◦C excessive melt was centrifuged and shiny, plate-like crystals of Cr2Ge2Te6 of up to
6mm× 5mm× 0.2mm (e.g. in Fig. 5.3(b)) were obtained. The crystals were easy to exfoliate,
e.g. by scotch tape, as expected from the van der Waals layered crystal structure of Cr2Ge2Te6.

5.1.2. Characterization

Crystal Morphology and Compositional Analysis

The compositional analysis was carried out on as-grown Cr2Ge2Te6 crystals by SEM and EDX
as explained in Sect. 2.3. Representative SEM(SE) images (i.e. topographical contrast) and
SEM(BSE) images (i.e. chemical contrast) of an as-grown crystal are shown in Fig. 5.4(a) and
(b). The SEM(SE) image shows a flat surface and edge facets of ≈ 120◦ (left side of the image)
indicative of a trigonal or hexagonal crystal system. In the SEM(BSE) image, the crystal surface
exhibits a homogeneous contrast besides some local dark spots. Comparing SEM(BSE) and
SEM(SE) images, these dark spots can be clearly attributed to particles on the surface of the
crystal and not intrinsic impurities. No further inhomogeneities were resolved.
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Fig. 5.4.: (a) SEM(SE) (i.e. topographical contrast mode) and (b) SEM(BSE) (chemical contrast mode)
images of a Cr2Ge2Te6 crystal obtained from the aforementioned growth experiment.

Fig. 5.5.: pXRD pattern from Cu-Kα1 radiation (1.54059 Å) of pulverized crystals (red dots), calculated
pattern of the R3 structure of Cr2Ge2Te6 (black line), difference between measured and calculated
intensity (blue line) and expected Bragg positions (black dots).
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Table 5.2.: Summary and reliability factors of the Rietveld analysis of the pXRD pattern of Cr2Ge2Te6.

Experiment & Data Collection
Temperature (K) 293(2)
Radiation Type & Wavelength (Å) Cu-Kα1 ; 1.54059
θmin (◦) 10.00
θstep (◦) 0.01
θmax (◦) 101.99

Crystal Data
Crystal System Trigonal
Space Group R3 (No. 148)
a = b (Å) 6.828(3)
c (Å) 20.572(12)

Refinement
Goodness-Of-Fit 1.24
Rp (%) 4.76
wRp (%) 6.15
RF (%) 9.02

Table 5.3.: Fractional atomic coordinates, occupancies and isotropic displacement parameters Uiso of
Cr2Ge2Te6 at 293 K with estimated standard deviations in parantheses after Rietveld refinement.

Label Type Wyck x y z
Occ Uiso

(%) (×10−3Å2)

Cr1 Cr 6c 0 0 0.3330(30) 100 41(9)
Ge1 Ge 6c 0 0 0.0588(13) 100 16(6)
Te1 Te 18f 0.6684(11) 0.9691(6) 0.2480(10) 100 29(2)
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To quantify the elemental composition of the crystals, EDX spectroscopy was performed
on several spots on multiple crystals. The corresponding mean elemental composition of
Cr21.5(2)Ge19.6(7)Te58.9(6) agrees well with the expected composition of Cr20Ge20Te60. The low
standard deviations of the mean ratios are exemplary for a homogeneous elemental distribu-
tion. No indications of secondary phases could be found neither from the SEM images nor
from EDX spectroscopy.

Structural Analysis

The single phase nature of these crystals is confirmed by the corresponding pXRD pattern, as
shown in Fig. 5.5). All reflections can be assigned to the R3 phase of Cr2Ge2Te6 as reported
in literature [37] and illustrated before in Fig. 5.2.

To extract further details of the crystal structure, a Rietveld refinement was performed. In
the course of this refinement, the experimental pattern could be well described by the crystal
structure model proposed by Carteaux et al. [37]. General information on the refined model
as well as corresponding reliability factors are presented in Table 5.2 while details on the
atomic model after the refinement are given in Table 5.3. In general, the results from Rietveld
analysis are in ideal agreement with literature data on powders and single crystals [37, 182].
Consequently, both crystal structure and elemental composition confirm the successful phase
pure formation of crystals of the desired Cr2Ge2Te6 phase.

5.1.3. Magnetic Properties

The thermal evolution of the normalized magnetization MH−1(T ) of Cr2Ge2Te6 was mea-
sured at a magnetic field of 1 kOe applied parallel and perpendicular to the crystallographic
ab plane and is shown in Fig. 5.6(a). From high to low temperatures, the normalized magne-
tization starts to notably increase below 100K for H ⊥ ab. Towards lower temperatures, the
slope increases and becomes maximum at 66 K as observed in the first derivative ofMH−1(T )
(Fig. 5.6(a) bottom) corresponding to an inflection point inMH−1(T ). At around 55K the nor-
malized magnetization saturates. This behavior is typical for a paramagnetic–ferromagnetic
transition. The inflection point inMH−1(T ) corresponds to the ferromagnetic ordering tem-
perature TC = 66 ± 1K (Curie temperature). For H ∥ ab, the thermal evolution of the nor-
malized magnetization matches the evolution for H ⊥ ab down to 64 K. At this temperature,
the onset of a downturn is observed for H ∥ ab and the thermal evolution ofMH−1 becomes
anisotropic towards lower temperatures. As the onset of the downturn is of further interest,
the corresponding temperature is labeled T *, which is characterized as ∂MH−1/∂T = 0.

A similar anisotropic behavior is also seen for Cr2Si2Te6 [151], CrI3 [152] and CrBr3 [152],
which are also 2D honeycomb ferromagnets and show a close relation to Cr2Ge2Te6 regarding
their structure. The similarities regarding structure, magnetic ion and magnetic ordering hint
towards a main role of these properties for the origin of the observed anisotropy.
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Fig. 5.6.: (a) Top: Normalized magnetization of Cr2Ge2Te6 as function of temperature MH−1(T )
measured at a magnetic field of 1 kOe applied parallel and perpendicular to the crystallographic ab
plane (left y-axis). Bottom: First derivative ofMH−1(T ) for both directions of the magnetic field (right
y-axis). The grey dashed line indicates the temperature of inflection in MH−1(T ) corresponding to
a minimum in ∂MH−1/∂T and the ferromagnetic ordering temperature TC of Cr2Ge2Te6. The green
dotted line shows the temperature of the onset of the downturn T * corresponding to ∂MH−1/∂T = 0.
(b) Inverse of the normalized magnetization as function of temperature (MH−1)−1(T ). The black
dashed and dotted lines correspond to linear fits of the temperature regime 200–300K.

The inverse of the normalized magnetization of Cr2Ge2Te6 as function of temperature
(MH−1)−1(T ) is shown in Fig. 5.6(b). The linear evolution in the paramagnetic state at
high temperatures allows for a Curie-Weiss analysis. From this analysis in the temperature
regime of 200–300 K, effective magnetic moments of µeff = 3.95± 0.05µB/Cr for H ∥ ab and
µeff = 4.01 ± 0.05µB/Cr for H ⊥ ab are obtained. These values are in ideal agreement with
the expected spin-only values of µso(Cr3+) = 3.92µB for H ∥ ab and µso(Cr3+) = 3.95µB for
H ⊥ ab using S = 3/2 and the experimental Landé factors reported by Zeisner et al. [179].
Furthermore, the Curie-Weiss analysis yields a Curie-Weiss temperature of ΘCW = 98 ± 1K
for both directions, which is in good agreement with literature [183, 184].

The positive Curie temperature indicates a dominant ferromagnetic coupling. In three-
dimensional ferromagnets ΘCW is generally close to TC. The difference between ΘCW and
TC that is found for Cr2Ge2Te6 is most likely an indication for the suppression of the magnetic
order due to the two-dimensional nature of the compound and thus also of the magnetic in-
teractions. This is in line with current results obtained from ferromagnetic resonance (FMR)
and electron spin resonance (ESR) [179], which demonstrated the intrinsic two-dimensional
nature of the magnetic interaction in Cr2Ge2Te6.

Fig. 5.7 shows the isothermal magnetization of Cr2Ge2Te6 at 1.8 K for H ∥ ab and H ⊥
ab. The hysteresis of the magnetization as function of field is negligible, corresponding to a
soft ferromagnet. From the high-field region, a saturation magnetization of Ms ≈ 3µB/Cr
is obtained for both orientations. As S = 3/2 (Cr3+), this corresponds to a Landé factor
of g ≈ 2, which is in good agreement with the aforementioned experimental g-factors with
weak anisotropy [179]. The saturation field is found as the x-component of the intercept of
two linear fits, one being a fit to the saturated regime at high fields and one being a fit of the
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Fig. 5.7.: Field dependence of the magnetization M(H) of Cr2Ge2Te6 at 1.8 K for magnetic fields
parallel and perpendicular to the crystallographic ab plane. Full symbols: no correction; open symbols:
after demagnetizing field correction.

unsaturated linear regime at low fields. Consequently, the saturation field is anisotropic and
changes from Hsat = 4.8 kOe for H ∥ ab to Hsat = 2.3 kOe for H ⊥ ab.

This anisotropic behavior in M(H) is related to two different contributions: the intrinsic
magnetic anisotropy of the material (magnetocrystalline anistropy) and the shape anisotropy
of the measured sample. As Cr2Ge2Te6 grows as thin platelet crystals, the shape anisotropy
must be explicitly taken into account. To evaluate the demagnetizing factors the sample’s
dimensions were measured along its edges from which an equivalent cuboid was constructed.
The demagnetizing factors of Nx =Ny = 0.06 and Nz = 0.88 were then calculated based on the
equivalent-ellipsoid method [70, 185].

As seen in Fig. 5.7, this correction strongly reduces the saturation field to 0.1 kOe for the
orientation H ⊥ ab, while only a negligible shift to 4.7 kOe is obtained for H ∥ ab. The
remaining anisotropy is purely originating from the magnetocrystalline anisotropy, showing
that the magnetocrystalline easy axis is perpendicular to the crystallographic ab planes (or in
turn parallel to the c direction). This easy axis/hard plane magnetic behavior indicates Ising-
type anisotropy.

Asmentioned before in Sect. 1.2.4, the free energy density of a ferromagnet can be expressed
by Eq. 5.1.

F = −µ0 ·Ms ·H · cos(ϕ) +KU · sin2(ϕ− θ) (5.1)
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The first term is the Zeeman contribution with the vacuum permeability µ0 and the second
term corresponds to the contribution of the magnetocrystalline anisotropy with the magne-
tocrystalline anisotropy constantKU. θ is the angle between the direction of the external field
and the magnetocrystalline easy axis and ϕ is the angle between the direction of the external
field and the direction of themagnetization vector. The contribution from the shape anisotropy
was explicitly neglected since the field dependent magnetization was already corrected for the
effect of shape anisotropy. For an energetically favoured magnetization direction, a minimum
of the energy density must be found. Accordingly, Eq. 5.2 and Eq. 5.3 must be fulfilled.

∂F

∂ϕ
= µ0 ·Ms ·H · sin(ϕ) +KU · sin(2ϕ− 2θ) = 0 (5.2)

∂2F

∂ϕ2
= µ0 ·Ms ·H · cos(ϕ) + 2 ·KU · cos(2ϕ− 2θ) > 0 (5.3)

The lowest magnetic field to stabilize the saturated magnetic state (ϕ = 0) is found at the
saturation field Hsat. Consequently, the second derivative (Eq. 5.3) becomes equal to zero
at Hsat. If the external field is additionally applied perpendicular to the magnetic easy axis
(θ = π/2), Eq. 5.3 simplifies to Eq. 5.4.

2KU

Ms
= µ0Hsat (5.4)

This equation allows for an estimation of the magnetocrystalline anisotropy constant KU
from the saturation regime in the field dependence of the magnetization. For the field depen-
dence presented in Fig. 5.7 at 1.8 K,KU = 47±1 kJ/m3 is obtained, which is in good agreement
with KU obtained previously by FMR on Cr2Ge2Te6 [179].

In general, it can be expected that the anisotropic anomaly observed in temperature de-
pendent magnetization also manifests in the field dependence for H ∥ ab (via a change of
slope). Such a behavior was not resolved in our data at 1.8 K.This can be explained by the field
dependence of T *, which is investigated in detail in Sect. 5.1.3.

Additionally to the magnetic measurements, the zero field thermal evolution of the normal-
ized specific heat Cp/T (T )

2 is shown in Fig. 5.8. The temperature of 65 K of the center of the
Λ-shape peak, which corresponding to a second order phase transition regarding the shape,
is in good agreement with TC obtained from MH−1(H).

However, the Λ-shape peak is rather small with an estimated integral of approximately
∆S ≈ 2 J/mol/K compared to the expected value of the magnetic entropy change at a ferro-
magnetic ordering of a system with two S = 3/2 magnetic ions per unit cell, the latter being
Smag = 2R ln(4) = 23.05 J/mol/K. This reduced size of the peak at the magnetic transition

2All measurements of the specific heat Cp as function of temperature and field as well as the evaluation of the
data were performed by Dr. Gaël Bastien at IFW Dresden. All corresponding results are shown with his kind
permission.
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Fig. 5.8.:Thermal evolution of the zero field specific heat divided by the temperature. The dashed line
indicates the center of the Λ-shape anomaly which corresponds to TC.

is a common feature in quasi 2D magnets, which was already observed e.g. in the chromium
trihalides CrX3 with X=Cl [160], Br [186], I [38] and in copper based quasi 2D molecular mag-
nets such as copper pyrazine perchlorate Cu(Pz)2(ClO4)2 [187]. The missing entropy is most
likely from magnetic fluctuations giving an important contribution to the specific heat even
far above the magnetic ordering in agreement with the relatively high value of ΘCW and liter-
ature [179].

Influence of the Magnetic Field on TC and T *

To obtain the magnetic field dependence of TC and T *, the thermal evolution of the magneti-
zation and specific heat were measured at several fields.

For the easy axis direction (i.e. H ⊥ ab; Fig. 5.9) the usual field dependence of ferromagnetic
materials is observed. As observed in the thermal evolution of the magnetization in Fig. 5.9(a),
the ferromagnetic–paramagnetic transition temperature TC (as characterized by the inflection
point in M(T )) as well as the onset of the upturn monotonically shift towards higher tem-
peratures increasing the magnetic field. Cp/T (T ) shows a corresponding shift and additional
a notable broadening of the peak, as observed in Fig. 5.9(b). This broadening of the initially
Λ-shape anomaly inCp/T (T ) indicates a change of the nature of the corresponding transition
from second order to a crossover.

ForH ∥ ab, the evolution of the ferromagnetic ordering temperature TC inM(T ) is virtually
the same as for H ⊥ ab, as shown in Fig. 5.10(a). However up to a magnetic field of 4.5 kOe,
additionally a downturn towards lower temperatures with an onset at T * can be observed
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Fig. 5.9.: Thermal evolution of (a) the magnetization M and (b) the normalized specific heat Cp/T
of Cr2Ge2Te6 under different magnetic fields applied ⊥ ab (i.e. along the magnetic easy axis). The
inflection points inM(T ) (corresponding to TC) in (a) are marked with yellow dots and the red dots in
(b) correspond to the maximum of the peak in Cp/T (T ).

below TC inM(T ). For the lowest measured magnetic field of 0.1 kOe, T * is found just below
the Curie temperature. By increasing themagnetic field, T * shifts towards lower temperatures.
Furthermore, themaximum inM(T ) around T * gets gradually broader and the downturn itself
gets less pronounced increasing the magnetic field. Above 4.5 kOe, no downturn is observed
down to 1.8 K and M(H) is found isotropic.

In comparison toM(T ), the specific heat only shows one clear phase transition forH ∥ ab,
together with a change of the shift of the Λ-shaped peak position around 1.7 kOe, as observed
in Fig. 5.10(b). By increasing the external field from zero up to 1.3 kOe the position of the max-
imum shifts towards lower temperatures. By increasing the external field further, the position
of the maximum starts to shift towards higher temperatures until an isotropic behavior is ob-
served for fields of 5 kOe and higher. Furthermore, virtually the same progressive broadening
of the maximum of Cp/T as for H ⊥ ab is observed indicating an evolution of the nature of
the transition from a second order phase transition to a crossover.

Considering the strength of the downturn observed in the temperature dependent magneti-
zation forH ∥ ab, a notable entropy change is expected to go along with its onset. Therefore a
corresponding anomaly in Cp/T (T ) is expected. In the field range of 0 kOe and 1.3 kOe, only
one distinct peak is found inCp/T (T ). However, in this field range T * and TC are close to each
other (less than 3K difference) and the Λ-shaped signal in the specific heat has a significant
broadness. Therefore, it is not possible to state if only one anomaly is observed or if the signal
contains actually two anomalies in this field range. However, as the signal in specific heat
shifts towards lower temperatures, a dominant influence of the transition at T * in this field
regime can be expected.

While the crossover resulting from the ferromagnetic–paramagnetic transition shifts to-
wards higher temperatures as seen forH ⊥ ab for bothM and Cp, forH ∥ ab at low fields T *
shifts towards lower temperatures and is accompanied by a corresponding shift in Cp/T (T ).
However for fields in the range of 1.7 kOe to 5 kOe, the specific heat measurements exhibit no
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Fig. 5.10.:Thermal evolution of (a) the magnetizationM and (b) the normalized specific heat Cp/T of
Cr2Ge2Te6 under different magnetic fields applied ∥ ab (i.e. perpendicular to the magnetic easy axis).
The inflection points in M(T ) (corresponding to TC) in (a) are marked with yellow dots, while yellow
stars in (a) indicate the maxima observed in M(T ) corresponding to T *. Red dots in (b) illustrate the
evolution of the maximum of the peak in Cp/T (T ).

clear anomaly corresponding to T * and the peak follows the changes in TC. This indicates that
T * is a transition between two states with comparable magnetic entropy. At fields above 5 kOe
the specific heat behavior is isotropic for fields parallel and perpendicular to ab, in agreement
with M(T ).

Low-Field Magnetic Phase Diagrams

The low-field magnetic phase diagrams of Cr2Ge2Te6 for H ∥ ab and H ⊥ ab were con-
structed from the aforementioned M(T ) measurements, allowing for a detailed investigation
of the magnetic regimes in this compound. For H ⊥ ab (i.e. along the magnetic easy axis;
Fig. 5.11(b)), two phases are observed, i.e., a disordered paramagnetic phase (Phase I) at high
temperatures and a ferromagnetic ordered state withM ∥ H (Phase II) at lower temperatures.
The transition temperatures from specific heat (peak position) and frommagnetization (inflec-
tion point) are in good agreement within the range of the measurement uncertainties. In zero
field the magnetization direction is supposed to be along the easy axis in the ferromagnetic
state. Applying external fields parallel to the magnetic easy axis stabilizes this state for ex-
ample against thermally activated magnetic fluctuations. Therefore, the observed behavior of
Phase II as function of field and temperature is well expected.

However, for H ∥ ab an additional Phase III is observed, as shown in Fig. 5.11(a). While for
H ⊥ ab the iso-magnetization lines are parallel to the T-axis until they deviate towards higher
fields very close to TC , for H ∥ ab, these lines first show a trend towards lower fields before
they finally deviate towards high fields at elevated temperatures. These kinks are the finger-
prints of themaximum seen in the temperature dependentmagnetization and arewell followed
by T *. This allows to not just define T *(H) but also H*(T) in this low temperature/low field
regime. Whereas T *(H) corresponds to the signature of Phase III in temperature dependent
magnetization, H*(T) corresponds to the same signature in field dependent magnetization. Us-
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Fig. 5.11.: Low-field magnetic phase diagram of Cr2Ge2Te6 for (a) H ∥ ab and (b) H ⊥ ab, where
Phase I is the paramagnetic state; Phase II is the ferromagnetic state with M ∥ H ; Phase III only for
H ∥ ab is the ferromagnetic state with M∠H due to the interplay between KU,eff, H and T . For both
phase diagrams iso-magnetization lines at 0.1µB, 0.5µB, 1µB and 2µB are shown in white. The legend
and the color scale at the bottom are applicable to both phase diagrams. Note that the magnetization
shown in the phase diagrams is only the magnetization component parallel to H.
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Fig. 5.12.: (a) Isothermal magnetization for H ∥ ab in a range from 2K to 60 K in 2 K steps extracted
from the corresponding magnetic phase diagram. The inset shows a zoomed-in view of the low field
regime. (b) Thermal evolution of the effective magnetic anisotropy constant KU,eff (black points) and
the expected scaling of KU,eff according to the power law behaviour described in Eq. 5.5 using the
exponents 1, 2.6, 3 and 10 (dashed lines).

ing the magnetic phase diagram for H ∥ ab to estimate H*(1.8 K) explains why no anomaly
could be resolved in the corresponding isothermal magnetization in Fig. 5.7, as mentioned be-
fore. H*(1.8 K) is estimated to be in the range of 4.5–4.7 kOe which is close to the saturation
magnetization at this temperature. Consequently the slope of the M(H) curve significantly
changes in this field range and a separate anomaly corresponding to the signature of Phase III
is not resolved.

Besides the low temperature/low field regime (Phase III) which is separated from the rest of
the phase diagram by T *, both phase diagrams resemble each other. This is best illustrated by
the course of the iso-magnetization lines outside of Phase III. Consequently, the magnetization
in Phase I and II is considered as isotropic and consequently the direction of the magnetization
is parallel to the field for T * < T < TC as seen for H ⊥ ab (Phase II).

Thermal Evolution of the Effective Magnetocrystalline Anisotropy

To be able to describe this peculiar magnetization behavior, a temperature dependent magnetic
anisotropy has to be taken into account. The magnetocrystalline anisotropy is caused by the
underlying crystallographic lattice which is connected to the electronic spins via the spin-orbit
coupling. As such, the magnetocrystalline anisotropy constantKU is considered as a material
constant which itself is independent of temperature and field.

However, many ferromagnets (e.g. Fe, Co and Ni) exhibit a temperature dependence of the
magnetocrystalline anisotropy constant on the macroscopic level. This observation can be
understood based on the theory of Zener [188] which describes the effect of temperature fluc-
tuations on the anisotropy of the magnetization. According to his work, temperature leads to
independent random fluctuations of local magnetization directions. In turn, this leads to an
effective reduction of both macroscopic magnetization and anisotropy in the system. How-
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ever, on a local scale the magnetization and magnetic anisotropy are temperature indepen-
dent. To differentiate between the local temperature independent and the global temperature
dependent magnetic anisotropy,KU,eff is introduced as an effective anisotropy constant which
includes the effect of thermal fluctuations on a macroscopic scale and its interplay with the
temperature independent KU.

To extract experimental values ofKU,eff at different temperatures, isothermal magnetization
curves were reconstructed from the magnetic phase diagram for H ∥ ab in the range of 2 K
to 60 K, as shown in Fig. 5.12(a). Based on the aforementioned procedure of estimating the
magnetocrystalline anisotropy constantKU from the field dependent evolution of the magne-
tization using Eq. 5.4, the thermal evolution of KU,eff shown in Fig. 5.12(b) was obtained.

As both the macroscopic magnetization and anisotropy are affected by thermal fluctuations,
a proportionality between their evolution as function of temperature can be expected. Accord-
ing to the theory by Callen and Callen [189], this proportionality can be expressed by a power
law behavior as shown in Eq. 5.5.

KU,eff(T )

KU
=

[︃
MS(T )

Ms

]︃ l(l+1)
2

. (5.5)

Hereinafter, the approximations KU ≈ KU,eff(2K) and Ms ≈ Ms(2K) are used. In the case
of uniaxial anisotropy l = 2 and an exponent of 3 are expected, while for cubic anisotropy
l = 4 and an exponent of 10 are found.

Fig. 5.12 shows the expected evolution ofKU,eff(T ) given by the power law dependence of the
saturation magnetization in Eq. 5.5 for exponents 1, 2.6, 3 and 10. The observed temperature
dependence of KU,eff at low temperatures shows a good agreement with the Callen-Callen
power law with an exponent of 3, which is expected for purely uniaxial anisotropy. However,
at higher temperatures the exponent deviates from 3 towards 2.6. For the exponents 1 and 10
the power law behavior does not followKU,eff(T ) and therefore direct scaling of the saturation
magnetization with KU,eff as well as cubic anisotropy can be ruled out.

The observed deviation of the exponent from a value of 3 may be attributed to higher order
anisotropy contributions. Such contributions need to be considered even in some elemental
ferromagnets like nickel [190] or Fe thin-films [191, 192]. One may speculate that materials
with more complex crystal structures like Cr2Ge2Te6 are more prone to exhibit higher order
anisotropic contributions. Another contribution that can influence the temperature depen-
dence of the magnetocrystalline anisotropy is the surface anisotropy. This was demonstrated
for example in NiFe2O4 nanomagnets [192]. However considering the surface-to-volume ratio,
this effect should play only a secondary role in Cr2Ge2Te6 bulk crystals compared to nanopar-
ticles. Nevertheless, due to the thin platelet shape of the crystals the surface anisotropy can
be expected to be slightly more dominant than in typical 3D crystals.

The agreement between the experimentally determined exponent with a value of 3 confirms
that the magnetic anisotropy in Cr2Ge2Te6 is uniaxial. Given the non-cubic crystal structure
and the good agreement of simulations and experimental values of the angular dependence of
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Fig. 5.13.: Evolution of the angular dependence of the free energy density F (ϕ) influenced by (a)
varying external magnetic fields at a constant temperature of 2 K and (b) varying temperatures at a
constant magnetic field of 1 kOe. For both (a) and (b), θ = 90◦ meaningH ∥ ab. The black points mark
the minimum of F (ϕ) for each field and temperature. The black dashed lines are guide for the eyes.

the resonance field in FMR using an uniaxial model in our previous work [179], this behavior
is in accordance with previous work. Therefore, also the observed reduction of the magnetic
anisotropy as function of temperature seems to be reliable.

It should be noted that Khan et al. also reported a temperature dependentKU,eff for Cr2Ge2Te6
which, however, scales with an exponent 4.71 [193]. They proposed that this deviation from
the expected exponent of 3 is due to the role of spin-orbit coupling from Te atoms, which is
not observed in our study. Furthermore, our analysis is very similar to N. Richter et al. on
CrI3 [152], who also do not see a significant role of spin-orbit coupling on the temperature
dependent KU,eff values in their compound.

Influence of External Fields and Temperature on the Magnetization Direction

Using Eq. 5.1 it is now possible to calculate the dependence of the free energy density F on
the angle ϕ between the direction of H and M for Cr2Ge2Te6 for any given field and in the
temperature range for whichKU,eff(T ) was determined. For example, this is demonstrated for
several external fields up to 4.5 kOe at 2 K in Fig. 5.13(a) and for several temperatures up to
60 K for an external field of 1 kOe in Fig. 5.13(b) (H ∥ ab in both scenarios).

As mentioned before, the energetically favoured angle ϕ corresponds to a minimum of the
free energy density F . Accordingly, Fig. 5.13(a) shows the typical field dependence of the
magnetization direction, with M ∥ easy axis at zero field (θ = ∠(H, easy axis) = 90◦ and
ϕ = ∠(M,H) = 90◦) and M ∥ H at sufficiently strong external fields (θ = 90◦ and ϕ =
0◦). However due to the thermal evolution ofKU,eff, the magnetization direction also changes
as function of temperature under constant fields, as seen in Fig. 5.13(b). By increasing the
temperature and in turn decreasing KU,eff, M rotates towards the direction of the external
field. As SQUID magnetometry is only sensitive to the magnetization component parallel to
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Fig. 5.14.: Comparison between the calculated ab-component of the magnetization vector normalized
for the applied field (red dots) and the measured MH−1(T ) behavior (black line) for an external field
of 1 kOe applied parallel to the ab-plane.

Table 5.4.: Comparison between KU for different (quasi-)2D honeycomb ferromagnets. Please note
that for CrBr3 and CrI3 KU was extracted from isothermal magnetization data at T = 5K while for
Cr2Ge2Te6 data at T = 1.8K was used.

Compound KU [kJ/m3] Reference

CrBr3 86 (±6) N. Richter et al. [152]
CrI3 301 (±50) N. Richter et al. [152]

Cr2Ge2Te6 47 (±1) this work

the applied field, this change of the magnetization direction yields an increase of the measured
magnetization in the ferromagnetic state of Cr2Ge2Te6 increasing the temperature.

Based on the thermal evolution of ϕ and the known magnitude of the magnetization vector
(Ms), the thermal evolution of the magnetization component parallel to the external field is
calculated for H ∥ ab = 1 kOe up to 60 K and compared to the respective measurement (see
Fig. 5.14). Overall, a good agreement between the experimental and the calculated M(T )
behavior is obtained. This demonstrates that the downturn in the thermal evolution of the
magnetization for H ∥ ab is caused by a continuous rotation of the magnetization vector as
a result of an interplay between the magnetocrystalline anisotropy, temperature and external
magnetic field.

A similar scenario was already proposed to explain a similar downturn of the transverse
magnetization upon cooling below the Curie temperature in other ferromagnets: the struc-
turally related quasi two-dimensional ferromagnets CrX3 (X = Br, I) [152] and the heavy
Fermion ferromagnet URhGe [194]. For CrX3 (X = Br, I) a similar analysis of KU,eff(T ) was
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performed [152]. While the magnetocrystalline anisotropy constants of the chromium halides
are larger than the one found for Cr2Ge2Te6 (shown in Table 5.4), their temperature depen-
dence is also well described by exponents according to an uniaxial anisotropy. In the case of
URhGe, the tilting of the magnetic moment in between the field direction and the easy mag-
netization axis was directly observed by neutron diffraction [195] and NMR [196]. For URhGe
a Ginzburg Landau description of the anisotropic ferromagnet proposed by V. Mineev [197]
reproduced the downturn of the magnetization and could possibly also be a promising model
for a simple description of the low-field magnetic properties of Cr2Ge2Te6. Another material
that exhibits a similar anomaly in the temperature dependent magnetization is PbMnBO4 as
reported by A. Pankrats et al. [198], where a similar interplay between the temperature depen-
dence of themagnetic anisotropy and the before mentioned anomaly based on the temperature
dependence of the anisotropy fields was concluded.

5.1.4. Analysis of the Critical Behavior

Thenature of themagnetic interaction is anothermagnetic property closely related to themag-
netic anisotropy, which is as well of crucial interest for the fundamental understanding and
for future applications of low dimensional (ferro-)magnetism. One possibility to investigate
this property in a system based on magnetic measurements is via the critical exponents, which
describe the magnetic behavior in the vicinity of a magnetic phase transition (as introduced
in Sect. 1.2.6).

Lin et al. [184], Liu and Petrovic [183] and Liu et al. [199] all reported slightly different val-
ues for the critical exponents of Cr2Ge2Te6, indicating a magnetic nature in the range of the
2D Ising model to the tricritical mean field model. Due to those differences in literature, it is
of interest which exponents are obtained from the crystals investigated in this work. This ad-
ditional study allows for a comprehensive picture of the magnetic anisotropy and the nature
of the magnetic interactions based on the same crystals to ensure the best possible compa-
rability. Furthermore, the critical exponents may give further insight in the dimensionality
of the magnetic interactions in Cr2Ge2Te6. In the context of different dimensionalities in the
magnetic interactions of the two structurally closely related compounds Cr2Si2Te6 (2D Ising;
[200]) and CrI3 (3D Ising; [201]), this may be of importance to understand the magnetism in
Cr2Ge2Te6.

The investigation of the critical behavior and extraction of critical exponents is generally
based on the thermal evolution of the field dependent magnetization in the vicinity of the
critical temperature TC. Arrott found that plots of M2 against H/M yield a set of parallel
lines in the high field regime with the line corresponding to the measurement at TC passing
through the origin (Arrott plot) [202]. The other lines either intersect the positive part of the
M2 axis yieldingMs(T ) or theH/M axis yielding χ−1

0 (T ). However, this is only the case for
systems following the mean field model with the critical exponents β = 0.5 and γ = 1.

In this line to investigate the nature of the magnetic phase transition in Cr2Ge2Te6, a set of
isotherms in the temperature range of 55–75K (1 K steps for 55–60K and 72–75K; 0.5 K steps
for 60–72 K) was extracted from the magnetic phase diagram with H ∥ ab (see Fig. 5.15(a)).
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Fig. 5.15.: (a) Isothermal magnetization of Cr2Ge2Te6 in the vicinity of the critical temperature (for
detailed temperatures see corresponding section) extracted from the magnetic phase diagram for H ∥
ab. (b) Arrott plot of the isothermal magnetization of Cr2Ge2Te6 shown in (a).

The Arrott plot of these isotherms does not show the expected linearity but still a significant
curvature, as shown in Fig. 5.15(b), indicating that the critical behavior of Cr2Ge2Te6 cannot
be sufficiently described in terms of the mean field model.

Banerjee proposed that the order of a magnetic transition can be estimated from the sign
of the slope of the curves in an Arrott plot [203]. Negative slopes correspond to a first order
while positive slopes correspond to a second order transition. Accordingly, themagnetic phase
transition of Cr2Ge2Te6 can be characterized as a second order phase transition in agreement
with the results from specific heat measurements discussed before and literature [183].

Although Arrott plots are specific to the mean field model with its corresponding critical
exponents, the fundamental concept can be generalized for any set of critical exponents in
modified Arrott plots. The Arrott-Noaks equation of state (see Eq. 5.6) describes this gener-
alized approach [204]. Accordingly, plotting a set of isotherms of any system in the vicinity
of TC as M1/β vs. (H/M)1/γ (with β and γ being suitable critical exponents for the system)
yields a set of parallel lines with the aforementioned properties of the Arrott plot.

(H/M)1/γ = aε+ bM1/β (5.6)

Considering the strong easy axis magnetic anisotropy that is observed in the magnetic stud-
ies of Cr2Ge2Te6 in Sect. 5.1.3 as well as in literature [37, 179, 181] together with quasi-2D
layered crystal structure, the 2D-Ising model with β = 0.125 and γ = 1.75 could be ex-
pected to be suitable to describe the critical behaviour of Cr2Ge2Te6well. However as shown
in Fig. 5.16(a), using these values for β and γ does not yield lines in the correspondingmodified
Arrott plot indicating that the 2D-Ising model is not a sufficient model for the critical behavior
of Cr2Ge2Te6.

Nevertheless, these values can be used as starting values for an iterative, self-consistent
method for the determination of critical exponents based onmodifiedArrott plots [205]. Linear
extrapolations of the high field regime yieldMs(T ) from the intercepts with (the positive part
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Fig. 5.16.: Modified Arrott plots with (a) β = 0.125 and γ = 1.75 (corresponding to the 2D Ising
model) as well as (b) β = 0.222 and γ = 1.00 for the isotherms of Cr2Ge2Te6. The black dashed line in
(b) corresponds to the expected isotherm at TC.

Fig. 5.17.: (a) Evolution of Ms (left axis, red squares) and χ−1
0 (right axis, blue circles) as function of

temperature extracted from themodified Arrott plot with β = 0.222 and γ = 1.00 shown in Fig. 5.16(b).
The black lines are fits ofMs and χ−1

0 according to Eq. 1.35 and Eq. 1.36, respectively. (b) Kouvel-Fisher
plot: Thermal dependence ofMs(T )(∂Ms(T )/∂T )

−1 (left axis, red squares) and χ−1
0 (∂χ−1

0 (T )/∂T )−1

(right axis, blue circles). The black lines are linear fits in accordance with Eq. 5.7 and Eq. 5.8.

of) theM1/β axis and χ−1
0 (T ) from the intercepts with (H/M)1/γ axis. Based on Eq. 1.35 and

Eq. 1.36, new values for β and γ as well as for TC can be obtained from Ms(T ) and χ−1
0 (T ),

respectively. A new modified Arrott plot is constructed based on the new values of β and γ,
which again is used to extract Ms(T ) and χ−1

0 (T ). This procedure is repeated until constant
values of β and γ are obtained.

Following this method, the final modified Arrott plot (see Fig. 5.16(b)) is obtained for β =
0.222 and γ = 1.00. From this plot the final Ms(T ) and χ−1

0 (T ), shown in Fig. 5.17(a), are
extracted. Fitting Eq. 1.35 and Eq. 1.36 to these thermal dependencies yields β = 0.222(3) and
TC = 66.78(3)K as well as γ = 1.00(5) and TC = 66.78(20)K, respectively.

Another method to determine critical exponents of a magnetic transition is described by
Kouvel and Fisher [206]. According to them,Ms(T )(∂Ms(T )/∂T )

−1 andχ−1
0 (∂χ−1

0 (T )/∂T )−1

evolve linearly in temperature with slopes of 1/β and 1/γ as described by Eq. 5.7 and Eq. 5.8.
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Fig. 5.18.: (a) Isothermal magnetization of Cr2Ge2Te6 at 67 K (red squares) and corresponding fit of
the high field region according to Eq. 1.37 (black line). The inset shows the high field region with fit on
a log-log scale. (b) Scaling plot of the renormalized magnetization m against renormalized field h. All
isotherms measured below TC are shown in green, while all isotherms measured above TC are shown
in red.

Ms(T )

∂Ms(T )/∂T
=

T − TC

β
(5.7)

χ−1
0 (T )

∂χ−1
0 (T )/∂T

=
T − TC

γ
(5.8)

Subsequently, Fig. 5.17(b) showsMs(T )(∂Ms(T )/∂T )
−1 and χ−1

0 (∂χ−1
0 (T )/∂T )−1 as func-

tion of temperature for Cr2Ge2Te6. Overall, a linear evolution is observed for both measures.
Corresponding fits yield β = 0.218(4) and TC = 66.7(6)K as well as γ = 0.96(3) and
TC = 66.9(8)K in excellent agreement with the critical exponents and TC extracted from
the modified Arrott plot.

The critical exponent δ is obtained from the magnetic isotherm at TC as seen in Eq. 1.37. To
obtain a highly reliable value of δ, a separate measurement of the isotherm exactly at TC with a
high data density in the high fields region is desired. However, in lack of such a measurement,
the isotherm at 67 K is used to estimate a value of δ in a first approximation, as shown in
Fig. 5.18(a). Accordingly, δ = 5.6(4) is deduced from the experimental data.

Another way of obtaining a value for the exponent δ is given by the Widom scaling relation
(given in Eq. 5.9), which relates the critical exponents β, γ and δ [207]. Consequently using the
values of β and γ obtained from the modified Arrott and the Kouvel-Fisher plots, δ = 5.50(23)
and δ = 5.40(16) can be calculated, respectively. These values of δ compare well to δ obtained
from M(H) at 67 K.

δ = 1 +
γ

β
(5.9)
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5.1. Cr2Ge2Te6

Fig. 5.19.: (a) Renormalized magnetization m and field h plotted as m2 against h/m as proposed by
Kaul [208]. All isotherms measured below TC are shown in green, while all isotherms measured above
TC are shown in red. (b) Universal scaling of all isotherms in agreement with the reformulated scaling
equation of state (Eq. 5.10 for β = 0.222 and δ = 5.50).

The reliability of the obtained exponents is verified using Eq. 1.39. As mentioned before,
suitable values of β, γ and δ are supposed to yield two distinct universal behaviors for the
renormalized magnetic equation of state, one below and one above the critical temperature.
This is seen in Fig. 5.18(b) showing the renormalized magnetization m = M |ε|−β as function
of the renormalized field h = H|ε|−(γ+β) for β = 0.222 and γ = 1.00. Two distinct trends can
be observed, one followed by all isotherms measured at temperatures below TC (green) and
another one followed by all isotherms measured above TC (red).

A more rigorous method to validate the reliability of these critical exponents is by plotting
m2 against h/m [208]. Again all isotherms measured below (and all measured above) TC are
expected to fall onto one universal curve, which is the case for these exponents as seen in
Fig. 5.19(a).

H

M δ
= k(

ε

M1/β
) (5.10)

The scaling equation of state can be also rewritten as given in Eq. 5.10 with one universal
scaling function k(x) [208]. In accordance with Eq. 5.10, plotting MH−1/δ against εH−1/βδ

yields one universal curve followed by all isotherms, as shown in Fig. 5.19(b). Consequently,
the obtained critical exponents are to be considered reliable and self-consistent.

Table 5.5 summarizes the critical exponents extracted via several methods and compares
them to theoretical expected critical exponents for various models as well as to critical expo-
nents for Cr2Ge2Te6 from literature. Overall, the values extracted in this work compare well
with the critical exponents obtained from the tricritical mean field model. This finding is in
agreement with Lin et al. [184] reporting similar exponents.

A generic feature of all compounds that are magnetically well described by the tricritical
mean field model is a tricritical point that separates a regime with a first order from a regime
with a second order (ferro-)magnetic phase transition [72]. For example, in the helimagnet
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Table 5.5.: Critical exponents of Cr2Ge2Te6 extracted via several methods (top) compared to different
theoretical models (mid) as well as critical exponents for Cr2Ge2Te6 from literature (bottom). calc = cal-
culated values using the Widom scaling relation (Eq. 5.9).

Compound/Model Reference Technique TC (K) β γ δ

Cr2Ge2Te6 This work
Mod. Arrott 66.78(12) 0.222(3) 1.00(5) 5.50(23)calc
Kouvel-Fisher 66.8(7) 0.218(4) 0.96(3) 5.40(16)calc

Critical isotherm 5.6(4)

Tricritical mean field [203]

Theory

0.25 1 5
2D Ising [209] 0.125 1.75 15
Mean field [202, 208] 0.5 1 3

3D Heisenberg [202, 208] 0.365 1.386 4.8
3D XY [202, 208] 0.345 1.316 4.81
3D Ising [202, 208] 0.325 1.24 4.82

Cr2Ge2Te6

[184]
Mod. Arrott 67.93(5) 0.242(6) 0.985(3) 5.070(6)calc
Kouvel-Fisher 67.90(6) 0.240(6) 1.000(5) 5.167(6)calc

Critical isotherm 5.032(5)

[183]
Mod. Arrott 62.65(6) 0.196(3) 1.32(5) 7.73(15)calc
Kouvel-Fisher 62.70(7) 0.200(3) 1.28(3) 7.40(5)calc

Critical isotherm 7.96(1)
[199] Magn. entropy change 66.4(3) 0.177(9) 1.746(8) 10.869(5)calc

MnSi [210] or in some manganites [211–213], all exhibiting critical exponents in agreement
with the tricritical model, such behaviour is observed. This is in stark difference to Cr2Ge2Te6
for which such a peculiar magnetic behaviour is neither observed in the magnetic phase dia-
gram (see Fig. 5.11) nor reported in literature.

Consequently, another interpretation of the experimentally obtained critical exponents of
Cr2Ge2Te6 appears to be more likely. The investigation of the magnetocrystalline anisotropy
(see Sect. 5.1.3) yields a strong easy axis anisotropy in Cr2Ge2Te6, in general agreement with
the Ising model. For the isostructural compound Cr2Si2Te6, which as well exhibits Ising-
type anisotropic magnetization [214], critical exponents well in agreement with the 2D Ising
model are reported [200]. Comparing the structural details of these compounds shows that
the van der Waals gap between layers shrinks from 3.42Å for Cr2Si2Te6 [215] to 3.36Å for
Cr2Ge2Te6 (based on the structural parameters introduced in Sect. 5.1.2 Table 5.2 and Table 5.3)
and the height of a layer increases from 3.47Å for the former to 3.50Å for the latter. While the
increase in the height of the layer goes in hand with the increase of the atomic radius from Si
(0.26Å) to Ge (0.39Å) [136], the shrinkage of the van der Waals gap may be rather understood
as a result of stronger interactions between layers and subsequently a more 3D structure.

In line of this argumentation and in agreement with the Ising anisotropy, the critical expo-
nents of Cr2Ge2Te6 may be understood as in between the 2D Ising and 3D Ising model with a
non-negligible interlayer interaction. The critical exponents reported by Liu and Petrovic [183]
as well as Liu et al. [199] are as well found in between the theoretical values obtained from
the 2D Ising and 3D Ising model and, in this respect, are in agreement with the exponents
extracted here.
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5.2. In2Ge2Te6

The synthesis and characterization of In2Ge2Te6 was first reported in the PhD thesis of S. Seidl-
mayer in 2009 [51]. By a solid state reaction of a stoichiometric mixture of In : Ge : Te = 1 : 1 : 3
at 450 ◦C, a grey powder could be obtained. From this powder, small black crystals could
be extracted which were sufficient for a scXRD study and subsequent solution of the crystal
structure. In2Ge2Te6 was reported as isostructural to Cr2Ge2Te6 with a trigonal unit cell in
the space group R3. A (direct) bandgap of 1.6 eV was determined optically. In 2017, Lefèvre et
al. reported on the low thermal conductivity in In2Ge2Te6 [177]. For this study, small crystals
from solid state synthesis were used for scXRD and polycrystalline In2Ge2Te6 was used for
the thermoelectric and transport experiments.

Until now, there are no reports on the growth of macroscopic In2Ge2Te6 crystals. Fur-
thermore, the magnetic properties as well as the specific heat capacity of In2Ge2Te6 were
not investigated yet. Although diamagnetism is expected from the lack of unpaired electrons
in In2Ge2Te6 experimental confirmation together with the diamagnetic susceptibility is not
available in literature. If diamagnetic behaviour is confirmed for In2Ge2Te6, the corresponding
specific heat is supposed to be only given by the phononic contribution. As both In2Ge2Te6
and Cr2Ge2Te6 exhibit a significant electronic band gap, the electronic contribution to the spe-
cific heat vanishes. Subsequently, it can be expected that the magnetic entropy change∆Smag
of Cr2Ge2Te6 can be estimated using the specific heat of the isostructural In2Ge2Te6 as an
experimental estimate of the phononic contribution to the specific heat of Cr2Ge2Te6.

For the single crystal growth of In2Ge2Te6by the flux growth technique, the growth proce-
dure was adopted from the single crystal growth of Cr2Ge2Te6 (as discussed in Sect. 5.1.1) and
temperatures were derived from the liquidus projection of the germanium-indium-tellerium
ternary phase diagram. This is discussed and the corresponding growth experiment is pre-
sented in Sect. 5.2.1. The crystals obtained from this growth experiment are characterized
in Sect. 5.2.2. In Sect. 5.2.3 the magnetic properties of In2Ge2Te6 are presented. Finally in
Sect. 5.2.4, the thermal evolution of the specific heat is shown and compared to the expected
evolution for only phononic contributions to the specific heat obtained from the Debye model.

5.2.1. Crystal Growth

The liquidus projection of the germanium–indium–tellerium ternary phase diagram3, as re-
ported by Zargarova and Akperov [217], does not show In2Ge2Te6 as a congruently melting
phase. If the target phase exists, it must be assumed that it melts incongruently. Accordingly,
a self flux growth is a viable single crystal growth technique, in similarity to the growth of
Cr2Ge2Te6 in Sect. 5.1.1.

3Accessed via ASM Alloy Phase Diagram Database (http://www.asminternational.org), Unique ID No.
990319 [216].
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Fig. 5.20.: Liquidus projection of the Ge–In–Te ternary phase diagram as reported by Zargarova and
Akperov [217] and accessed via the ASM Alloy Phase Diagram Database. The red square corresponds
to the composition of the target phase while the yellow square corresponds to the starting composition
for the self flux growth experiment.

Based on the curvature of the liquidus surface in the vicinity of In : Ge : Te = 20 at% : 20 at% : 60 at%,
the optimal direction for a self flux growth attempt is in the direction of the ternary eutectic
point at approximately In : Ge : Te = 5 at% : 15 at% : 80 at%. Consequently, a starting composi-
tion of In : Ge : Te = 10 at% :13 at% : 77 at% was chosen.

A total charge of 3 g containing the respective amounts of indium (shots, MaTeck, 99.9999%),
germanium (chips, Sigma Aldrich, 99.999%), and tellurium (lumps, Alfa Aesar, 99.999%) was
loaded in an alumina crucible inside a quartz ampule which was then sealed under a partial
atmosphere of Ar (approx. 300mbar). The quartz ampule was placed upright in a box furnace
(Nabertherm) and heated to 900 ◦C for 24 h followed by cooling with a rate of 1 ◦C/h to 450 ◦C.
At this temperature excessive melt was centrifuged. This temperature profile is derived from
the temperatures in the liquidus projection of the germanium–indium–tellurium ternary phase
diagram. Shiny, well faceted crystals of up to 7mm× 5mm× 1mm (e.g. in Fig. 5.21(a) and
(b)) were obtained using these growth parameters.
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Fig. 5.21.: As grown plate-like In2Ge2Te6 crystals obtained from the GeTe rich melt. One orange
square in the background is 1mm× 1mm for scale.

Fig. 5.22.: (a) SEM(SE) image with topographical contrast and (b) SEM(BSE) image with chemical
contrast of a In2Ge2Te6 crystal obtained from the growth experiment discussed before.

5.2.2. Characterization

Crystal Morphology and Compositional Analysis

As seen in the SEM image with topographical contrast (SE) in Fig. 5.22(a), several steps and
terraces on the crystal surface hint at a layered nature of the crystallographic structure. The
facet edges of the crystallographic plane shown in Fig. 5.22(a) and (b) exhibit several 120◦
corners indicative for the ab plane of a trigonal or hexagonal crystal structure in similarity to
Cr2Ge2Te6 (see Fig. 5.4 for comparison).

However in difference to the latter, these crystals do not only exhibit facets in a certain
plane but in all directions. This suggests a more isotropic crystal growth in comparison to
Cr2Ge2Te6. The SEM image with chemical contrast (BSE) shows a homogeneous contrast of
the crystal surface besides some local dark spots. These dark spots in the SEM(BSE) image can
be clearly attributed to the spherical particles on top of the crystal surface seen in the corre-
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Fig. 5.23.: pXRD pattern from Cu-Kα1 radiation (1.54059 Å) of pulverized crystals (red dots), calcu-
lated pattern of theR3 structure of In2Ge2Te6 (black line), difference between measured and calculated
intensity (blue line) and expected Bragg positions (black dots).

sponding SEM(SE) image. The otherwise uniform contrast of the SEM(BSE) image indicates a
homogeneous elemental distribution in the crystal.

The mean elemental composition of In20.0(1)Ge19.7(2)Te60.3(1) obtained from EDX spectra
measured at several spots on multiple crystals is in excellent agreement with the expected
composition of In20Ge20Te60. Low standard deviations of the mean elemental composition
indicates a homogeneous elemental distribution in agreement with the SEM(BSE) image. In
absence of any indication of a secondary phase both from the SEM images as well as from the
EDX spectroscopy, the obtained crystals are phase pure.

Structural Analysis

To confirm the phase purity and characterize the crystal structure experimentally, pXRD was
measured on pulverized In2Ge2Te6 crystals. The corresponding pattern is shown in Fig. 5.23.
All observed reflection can be assigned to the trigonal R3 phase as proposed for In2Ge2Te6 in
literature [51, 177].

Using the Rietveld method, this pXRD pattern can be well modeled by the crystal structure
model proposed by Seidlmayer [51]. The resulting optimized structural parameters are shown
in Table 5.6 together with the corresponding reliability factors. Furthermore, Table 5.7 shows
the optimized atomic model from the Rietveld refinement. Overall, the optimized atomic
model is in good agreement with literature [51, 177] and demonstrates that In2Ge2Te6 is in
fact isostructural to Cr2Ge2Te6.
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Table 5.6.: Summary and reliability factors of the Rietveld analysis of the pXRD pattern of In2Ge2Te6.

Experiment & Data Collection
Temperature (K) 293(2)
Radiation Type & Wavelength (Å) Cu-Kα1 ; 1.54059
θmin (◦) 10.00
θstep (◦) 0.03
θmax (◦) 120.64

Crystal Data
Crystal System Trigonal
Space Group R3 (No. 148)
a = b (Å) 7.1085(4)
c (Å) 21.280(2)

Refinement
Goodness-Of-Fit 2.84
Rp (%) 6.96
wRp (%) 9.58
RF (%) 10.6

Table 5.7.: Fractional atomic coordinates, occupancies and isotropic displacement parameters Uiso of
In2Ge2Te6 at 293 K with estimated standard deviations in parantheses after Rietveld refinement.

Label Type Wyck x y z
Occ Uiso

(%) (×10−3Å2)

In1 In 6c 0 0 0.3291(11) 100 109(4)
Ge1 Ge 6c 0 0 0.0456(10) 100 109(4)
Te1 Te 18f 0.6589(8) 0.0030(20) 0.2494(3) 100 38(1)
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Fig. 5.24.: (a) Normalized magnetization MH−1 of In2Ge2Te6 as function of temperature at a mag-
netic field of 1 kOe. The dashed line at low temperatures corresponds to a Curie-Weiss fit of the low
temperature behaviour. (b) Field dependent magnetization of In2Ge2Te6 at 1.8 K and 300 K. The solid
and dashed line correspond to fits to the experimental data as described in the legend. For both (a) and
(b) the external field was applied parallel to the crystallographic ab plane.

5.2.3. Magnetic Properties

As shown in Fig. 5.24(a), the negative normalized magnetization over the whole temperature
range of the correspondingMH−1(T )measurements at 1 kOe applied parallel to the ab planes
indicates diamagnetism for In2Ge2Te6. As In2Ge2Te6 contains In3+ (S = 0), this is magnetic
behavior is well expected in contrast to Cr2Ge2Te6 with Cr3+ (S = 3/2). However, the thermal
evolution ofMH−1 is not temperature independent, as expected for a diamagnet. Below 80K,
the normalized magnetization increases towards lower temperatures with a significant change
in slope at around 45K. The behaviour below 45K can be well described by the Curie-Weiss
law with a Curie-Weiss temperature ΘCW = −0.19(3)K, an effective magnetic moment µeff =
0.061(4)µB and a temperature independent contribution χ0 = −3.575(3) · 10−4 emumol−1 as
shown by the dashed line in Fig. 5.24(a). Based on the small values of ΘCW and µeff, the low
temperature upturn can be most likely attributed to Curie impurities, crystallographic defects
or impurities that lead to nearly non-interacting paramagnetic moments. The second anomaly
at slightly higher temperatures indicates the presence of a second magnetic impurity phase
in the measured sample besides the aforementioned Curie impurities. Aside from these weak
impurity contributions, overall the diamagnetic behavior of In2Ge2Te6 is well observed.

In addition, the field dependence of the magnetization of In2Ge2Te6 at 1.8 K as well as at
300 K are shown in Fig. 5.24(b). At both temperatures, the negative slopes clearly indicate
dominantly diamagnetic contributions. While the linear trend at 300 K corresponds ideally
to the behaviour expected for a diamagnet, the field dependence at 1.8 K indicates the contri-
bution of another magnetic phase. Assuming the secondary magnetic phase can be treated
as paramagnetic, the Brillouin function BJ(y) can be used to describe this contribution in
addition to the linear relation between external field and magnetization of a diamagnet. A
corresponding fit to the experimental data with a Landé factor of g = 2.002 (free electron)
yields excellent agreement with the experiment for J = 3/2 andMs = 3.21(3) emumol−1 for
the Brillouin contribution and χdia = −3.244(6) · 10−4 emumol−1 as the diamagnetic molar
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susceptibility. This value of χdia is in good agreement with χdia = −3.306(3) ·10−4 emumol−1

obtained from a linear regression of the field dependence at 300 K.

Consequently, the diamagnetic groundstate of In2Ge2Te6 is confirmed by both the thermal
as well as the field dependent evolution of the magnetism and a molar susceptibility of ap-
proximately χdia ≈ −3.3 · 10−4 emumol−1 (corresponding volume susceptibility in SI units:
χV ≈ 2.2 · 10−5) is obtained from the latter.

5.2.4. Specific Heat

The specific heat of a solid is in general given by three contributions: The phononic con-
tribution, the contribution of the spin system and the contribution of the electronic system.
Here, the the phononic contribution to the specific heat may be estimated by the Debye model
(Eq. 5.11).

CDebye
V (T ) = 9R

(︃
T

ΘD

)︃3 ∫︂ ΘD/T

0

x4ex

(ex − 1)2
dx (5.11)

Although, the Debye model yields the isochoric specific heat CV and the measurement was
performed isobar (Cp), the agreement between model and experiment is usually good for solid
materials without any change of the state of matter. Assuming all further contributions to the
specific heat are zero for the insulating diamagnetic In2Ge2Te6, the Debye model is expected
to be sufficient to model the experimental specific heat of In2Ge2Te6 with a specific Debye
temperature ΘD in good agreement.

The specific heat as function of temperature Cp(T ) of In2Ge2Te64 without an applied mag-
netic field is shown in Fig. 5.25 together with the modeled specific heat from the Debye model
using different values of ΘD. Overall, the specific heat of In2Ge2Te6 is found featureless im-
plying the absence of any phase transitions in the measured temperature range. However, for
no value of ΘD the model is able to sufficiently describe the experimental thermal evolution
of Cp over the whole temperature range. While ΘD = 160K describes the experimental data
sufficiently well below 5K (see inset of Fig. 5.25), at higher temperatures the experimental Cp
is significantly lower than suggested by the Debye model. For ΘD = 270K the high tem-
perature regime of the experiment above 175 K is well described by the Debye model but at
lower temperatures the experimental specific heat is significantly higher than suggested by
the model. Also intermediate values of ΘD (for instance 200 K and 230K in Fig. 5.25) do not
yield a better agreement between experiment and model.

This disagreement between theDebyemodel and the experimental specific heat of In2Ge2Te6
may implies that further contributions to the specific heat additional to the phononic contribu-
tion are at play for the latter. However considering the reported band gap of 1.6 eV and the ob-
served diamagnetic behaviour in agreement with the lack of unpaired electrons in In2Ge2Te6,
4All measurements of the specific heat Cp as well as the evaluation of the data were performed by Dr. Gaël
Bastien at IFW Dresden. All corresponding results are shown with his kind permission.
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Fig. 5.25.: Zero field specific heat of In2Ge2Te6 as function of temperature together with the thermal
evolution of the specific heat obtained from the Debye model for different values of ΘD. The inset
shows a zoomed-in view on the low temperature regime up to 7 K.

the origin of any additional contributions to the specific heat of In2Ge2Te6 remain elusive.
Although the magnetization of In2Ge2Te6 as function of temperature and external field shows
weak impurity contributions (see Fig. 5.24), these contributions are most likely not sufficient
to yield such strong deviations of the specific heat of In2Ge2Te6 from the Debye model. Sub-
sequently, further studies are needed to understand the thermal evolution of the specific heat
of In2Ge2Te6 and its deviations from this model.
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5.3. Summary and Outlook

Two members of the M2(Ge,Si)2Te6 compounds, Cr2Ge2Te6 and In2Ge2Te6, have been suc-
cessfully grown as single crystals from a GeTe rich melt (i.e. self flux) by the flux growth
technique. The structural analysis based on pXRD demonstrates that both compounds crys-
tallize isostructurally in a trigonal R3 structure, in agreement with literature [37, 51].

Magnetization measurements as function of temperature and magnetic field reveal over-
all diamagnetic behavior for In2Ge2Te6 with a temperature independent diamagnetic suscep-
tibility of χdia ≈ −3.3 · 10−4 emumol−1 (corresponding volume susceptibility in SI units:
χV ≈ 2.2 · 10−5). However, additional weak magnetic anomalies at low temperatures are
observed, which are most likely attributed to a low amount of magnetic impurities in the cor-
responding crystal.

Furthermore, a featureless thermal evolution of the specific heat between 2K and 220 K
indicates the absence of any phase transition in this temperature range. This is in agreement
with a diamagnetic ground state and the interpretation of the additional anomalies in the
magnetic measurements as impurity contribution. However, deviations from the Debye model
are observedwhichmay indicate the presence of more than only phononic contributions to the
specific heat. The origin of these additional contributions remain elusive and call for further
investigations.

In comparison, the magnetic behavior of Cr2Ge2Te6 is more complex. Cr2Ge2Te6 exhibits a
ferromagnetic groundstate with a Curie temperature TC = 65K according to the thermal evo-
lution of the magnetization and of the specific heat. An effective moment µeff ≈ 4µB/Cr and an
isotropic saturationmomentMs = 3µB/Cr were found, both being in good agreement with the
values expected for Cr3+. The difference between ΘCW = 95K and TC as well as the shape of
the temperature dependent specific heat indicate low-dimensional magnetic correlations well
above the magnetic ordering temperature. The easy-axis nature of the magnetic properties
perpendicular to the structural layers in the ab-plane is confirmed in agreement with Ising-
type anisotropy. Furthermore, a magnetocrystalline anisotropy constant KU = 47 ± 1 kJ/m3

is obtained at 1.8 K.

The field and temperature dependence of the magnetization were studied in detail for fields
parallel and perpendicular to the hard magnetic plane ab up to fields of 30 kOe. Corresponding
magnetic phase diagrams were constructed. The field and temperature dependence for fields
along the easy axis ∥ c show the typical behavior of a ferromagnet. However, for fields applied
in the hard plane ab below a temperature T ∗ < TC a downturn towards lower temperatures is
found in magnetization curves below the saturation field Hsat,ab ≈ 5 kOe.

To understand the origin of this downturn in the temperature dependent magnetization, the
temperature dependence of the effective magnetocrystalline anisotropy KU,eff was extracted
based on the magnetic H,T phase diagram. A good agreement with the expected evolution
for uniaxial anisotropy is found according to the power law scaling proposed by Callen and
Callen [189]. The peculiar downturn in the magnetization of Cr2Ge2Te6 could subsequently
be modeled by assuming this temperature dependent anisotropy contribution interacting with
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the external applied field and its direction using the energy density equation for ferromagnets.
Accordingly, this downturn in the thermal evolution of the magnetization for fields applied
in the magnetic hard plane is caused by a temperature dependent magnetization component
perpendicular to the applied magnetic field along the magnetic easy axis resulting from the
temperature dependence of KU,eff.

A similar anisotropic anomaly was observed for CrX3 (with X =Br, I) and also discussed in
terms of interplay betweenKU,eff and temperature [152]. All these compounds share the same
magnetic ion and easy axis ∥ c ferromagnetic ordering together with a similar 2D honeycomb
lattice. Thus, the magnetocrystalline anisotropies in these systems are similar, although the
magnetocrystalline anisotropy constantKU shows significant differences in its absolute value
for the mentioned compounds. This hints towards a universality of this interplay in quasi two-
dimensional ferromagnetic materials. Furthermore, the observed anomaly in the temperature
dependence of the magnetization can be considered as a fingerprint of this interplay.

Furthermore, the magnetic H,T phase diagrams allowed for the extraction of the critical
exponents describing the second order ferromagnetic phase transition in Cr2Ge2Te6. Several
methods (modified Arrot, Kouvel-Fisher and critical isotherm) yield the critical exponents β ≈
0.20, γ ≈ 0.98 and δ ≈ 5.5 in agreement with each other. Furthermore, the reliability of these
exponents was verified against the magnetic equation of state as proposed in literature [208].
These obtained values for the critical exponents of the magnetic phase transition in Cr2Ge2Te6
are found in reasonable agreement with literature [183, 184, 199]. Although this set of critical
exponents agrees best with the exponents obtained for the tricritical mean field model, the
lack of any other indication of tricritical point in Cr2Ge2Te6 leads to another interpretation of
these exponents. In line with the Ising-type anisotropy of Cr2Ge2Te6, the critical exponents
may be best understood as in between the exponents obtained from the 2D Ising model and
the 3D Ising model with a non-negligible interlayer interaction. For comparison, the sister
compound Cr2Si2Te6 [200] exhibits critical exponents in good agreement with the 2D Ising
model while the exponents of CrX3 (X = Br [218], I [201]) agree with the 3D Ising model.

In conclusion, Cr2Ge2Te6 is well characterized as a low dimensional ferromagnet which,
however, exhibits non negligible magnetic interlayer interactions. Together with the Curie
temperature being the highest out of the before mentioned compounds, this makes Cr2Ge2Te6
a highly promising low-dimensional magnet to gain further insight into low-dimensional fer-
romagnetism in general and for the use in ferromagnetic heterostructures.
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6. Conclusion

In this work, the synthesis and crystal growth of different compounds of the class of metal
trichalcogenides was investigated and optimized. The chemical vapor transport technique was
used to successfully grow crystals of the metal phosphorus sulfides Fe2P2S6, Ni2P2S6 and the
intermediate compounds (Fe1−xNix)2P2S6. Furthermore, crystals of quartenary phosphorus
sulfides of the general formula M1+M ′3+P2S6, i.e. CuCrP2S6 and AgCrP2S6, were obtained
using this technique. The metal germanium tellurides Cr2Ge2Te6 and In2Ge2Te6 were grown
via the flux growth technique from a GeTe-rich melt (i.e. self-flux).

The elemental composition as well as the layered structure of these compounds, as probed
by EDX spectroscopy and X-ray diffraction, are overall in agreement with literature. The
structural analysis, especially for Ni2P2S6, yields further insight into the structural interactions
between adjacent layers in the phosphorus sulfides. In detail, the structure is well ordered in
the layers but the stacking between layers is prone to defects (i.e. stacking faults) due to the
weakness of the interlayer interactions. These stacking faults are a consequence of the intrinsic
2D character of the structure of the metal trichalcogenides, even in bulk crystals. For Ni2P2S6,
such stacking faults are most likely defined by 120◦ twinning.

The series of (Fe1−xNix)2P2S6 illustrates the possibility for substitution between isostruc-
tural compounds in a subclass of the metal trichalcogenides. Furthermore, the influence of
chemical substitution on the magnetic behavior is shown by this example. The ordering of the
M1+ andM ′3+ sublattices in the quarternary metal trichalcogenides allows to further modify
the magnetic structure away from the usual hexagonal honeycomb arrangement of magnetic
moments towards triangular or even stripe-like magnetic lattices. CuCrP2S6 and AgCrP2S6
serve as an example for this more exotic approach of influencing the magnetic interactions
and the magnetic structure in metal trichalcogenides. In this context, the phase analysis of the
intermediate regime between CuCrP2S6 and AgCrP2S6 indicates a miscibility regime, which
may allow for a partial substitution of Ag against Cu in AgCrP2S6. While this would not di-
rectly affect the magnetic Cr sublattice, such a substitution is expected to locally induce strain
in the structural lattice and, thus, indirectly influence the magnetic interactions.

TheCr-containing compounds, Cr2Si2Te6 and Cr2Ge2Te6, are the only known ferromagnetic
metal trichalcogenides. The magnetic investigation of Cr2Ge2Te6 demonstrates the intrinsic
2D character of the ferromagnetic interactions. Furthermore, an anisotropic downturn in the
thermal evolution of the magnetization is identified as a fingerprint for this specific interplay
between ferromagnetism andmagnetic anisotropy. The isostructural and insulating In2Ge2Te6
exhibits diamagnetism as expected for a closed shell system.
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6. Conclusion

Based on the findings in this work, further investigations may be conducted in the future
to better understand the structural features and the magnetic behavior of the metal trichalco-
genides in general. For the specific compounds investigated in this work, proposals for further
investigations as well as open scientific questions are discussed in the separate ’Summary and
Outlook’ sections of the experimental chapters.

Overall, this work discusses parameters for reproducible synthesis and crystal growth ex-
periments as well as illustrates the variety of magnetic ordering phenomena and magnetic
structures that can be realized in the class of metal trichalcogenides. Furthermore, different
strategies of tuning the magnetic properties in this class of materials by chemical means are
presented. Owed to the flexibility of the magnetic properties in addition to the van der Waals
layered 2D crystal structure, the family of the metal trichalcogenides is promising to yield sev-
eral compounds which will find application in novel 2D devices and heterostructures in the
future.
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A. Appendix

A.1. Scanning Electron Microscopic Images

A.1.1. (Fe1-xNix)2P2S6

Fig. A.1.: Electron microscopy images of a Fe2P2S6 crystal in topographic mode (SE detector) in (a)
and in chemical contrast mode (BSE detector) in (b).

Fig. A.2.: Electron microscopy images of a (Fe0.5Ni0.5)2P2S6 crystal in topographic mode (SE detector)
in (a) and in chemical contrast mode (BSE detector) in (b).
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A. Appendix

Fig. A.3.: Electron microscopy images of a (Fe0.3Ni0.7)2P2S6 crystal in topographic mode (SE detector)
in (a) and in chemical contrast mode (BSE detector) in (b).

Fig. A.4.: Electron microscopy images of a (Fe0.1Ni0.9)2P2S6 crystal in topographic mode (SE detector)
in (a) and in chemical contrast mode (BSE detector) in (b).
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A.2. scXRD

A.2. scXRD

A.2.1. (Fe1-xNix)2P2S6

Table A.1.: Summary of crystallographic data and structural refinement for (Fe1−xNix)2P2S6 with
x = 0, 0.3, 0.5, 0.7, 0.9, 1 from scXRD at 293(2) K.
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A. Appendix

Table A.2.: Fractional atomic coordinates, occupancies and equivalent isotropic displacement param-
eters Ueq of (Fe1−xNix)2P2S6 at 293(2) K with estimated standard deviations in parentheses.

Label Type Wyck x y z
Occ Ueq

(%) (×10−3Å2)

Fe2P2S6
Fe1 Fe 4g 0 0.3326(1) 0 94(1) 14(1)
P1 P 4i 0.0565(1) 0 0.1696(1) 89(1) 7(1)
S1 S 4i 0.7503(1) 0 0.2471(1) 100 10(1)
S2 S 8j 0.2482(1) 0.1659(1) 2483(1) 100 11(1)
Fe2 Fe 2a 0 0 0 11(1) 20(1)
P2 P 8j 0.0594(10) 0.3328(6) 0.1719(10) 5(1) 16(2)

(Fe0.7Ni0.3)2P2S6
Fe1 Fe 4g 0 0.3328(1) 0 73(1) 16(1)
Ni1 Ni 4g 0 0.3328(1) 0 31(1) 16(1)
P1 P 4i 0.0575(1) 0 0.1699(4) 99(1) 13(1)
S1 S 4i 0.7446(1) 0 0.2445 100 15(1)
S2 S 8j 0.2507 0.1686(1) 0.2451(1) 100 15(1)
Fe2 Fe 2a - - - - -
Ni2 Ni 2a - - - - -
P2 P 8j - - - - -

(Fe0.5Ni0.5)2P2S6
Fe1 Fe 4g 0 0.3328(1) 0 49(1) 14(1)
Ni1 Ni 4g 0 0.3328(1) 0 49(1) 14(1)
P1 P 4i 0.0571(1) 0 0.1698(1) 97(1) 10(1)
S1 S 4i 0.7463(1) 0 0.2452(1) 100 13(1)
S2 S 8j 0.2499(1) 0.1677(1) 0.2461(1) 100 13(1)
Fe2 Fe 2a 0 0 0 2(1) 14(1)
Ni2 Ni 2a 0 0 0 2(1) 14(1)
P2 P 8j 0.0590(40) 0.3350(30) 0.1730(40) 1 10(1)

(Fe0.3Ni0.7)2P2S6
Fe1 Fe 4g 0 0.3330(1) 0 26(1) 11(1)
Ni1 Ni 4g 0 0.3330(1) 0 60(1) 11(1)
P1 P 4i 0.0572(1) 0 0.1697(1) 75(1) 8(1)
S1 S 4i 0.7460(1) 0 0.2447(1) 100 11(1)
S2 S 8j 0.2498(1) 0.1678(1) 0.2453(1) 100 11(1)
Fe2 Fe 2a 0 0 0 8(1) 19(1)
Ni2 Ni 2a 0 0 0 19(1) 19(1)
P2 P 8j 0.0567(4) 0.3335(2) 0.1713(4) 12(1) 11(1)

(Fe0.1Ni0.9)2P2S6
Fe1 Fe 4g 0 0.3329(1) 0 10(1) 12(1)
Ni1 Ni 4g 0 0.3329(1) 0 87(1) 12(1)
P1 P 4i 0.0577(1) 0 0.1702(1) 96(1) 9(1)
S1 S 4i 0.7428(1) 0 0.2436(1) 100 12(1)
S2 S 8j 0.2514(1) 0.1696(1) 0.2440(1) 100 12(1)
Fe2 Fe 2a 0 0 0 0(1) 20(4)
Ni2 Ni 2a 0 0 0 4(1) 20(4)
P2 P 8j 0.0570(70) 0.3320(30) 0.1690(50) 2(1) 40(13)

Ni2P2S6
Ni1 Ni 4g 0 0.3331(1) 0 96(1) 9(1)
P1 P 4i 0.0578(1) 0 0.1702(1) 91(1) 7(1)
S1 S 4i 0.7421(1) 0 0.2432(1) 100 9(1)
S2 S 8j 0.2517(1) 0.1698(1) 0.2433(1) 100 9(1)
Ni2 Ni 2a 0 0 0 8(1) 9(1)
P2 P 8j 0.0574(10) 0.3329(6) 0.1734(9) 3(1) 7(1)
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A.2. scXRD

Table A.3.: Anisotropic displacement parameters Uij for (Fe1−xNix)2P2S6 at 293(2) K with estimated
standard deviations in parentheses.

Label Type U11 U22 U33 U12 U13 U23

(×10−3Å2)

Fe2P2S6
Fe1 Fe 12(1) 12(1) 17(1) 0 5(1) 0
P1 P 6(1) 6(1) 10(1) 0 4(1) 0
S1 S 9(1) 10(1) 13(1) 0 5(1) 0
S2 S 10(1) 9(1) 14(1) -2(1) 4(1) -1(1)
Fe2 Fe 20(2) 20(2) 22(2) 0 6(1) 0
P2 P 11(3) 15(3) 19(3) 1(2) 1(2) -1(2)

(Fe0.7Ni0.3)2P2S6
Fe1 Fe 15(1) 15(1) 20(7) 0 6(1) 0
Ni1 Ni 15(1) 15(1) 20(7) 0 6(1) 0
P1 P 12(1) 12(1) 15(1) 0 5(1) 0
S1 S 14(1) 15(1) 18(1) 0 7(1) 0
S2 S 14(1) 14(1) 18(1) -2(1) 4(1) -2(1)
Fe2 Fe - - - - - -
Ni2 Ni - - - - - -
P2 P - - - - - -

(Fe0.5Ni0.5)2P2S6
Fe1 Fe 10(1) 14(1) 18(1) 0 5(1) 0
Ni1 Ni 10(1) 14(1) 18(1) 0 5(1) 0
P1 P 7(1) 10(1) 14(1) 0 4(1) 0
S1 S 9(1) 14(1) 16(1) 0 6(1) 0
S2 S 9(1) 13(1) 16(1) -2(1) 3(1) -2(1)
Fe2 Fe 10(1) 14(1) 18(1) 0 5(1) 0
Ni2 Ni 10(1) 14(1) 18(1) 0 5(1) 0
P2 P 7(1) 10(1) 14(1) 0 4(1) 0

(Fe0.3Ni0.7)2P2S6
Fe1 Fe 9(1) 10(1) 16(1) 0 5(1) 0
Ni1 Ni 9(1) 10(1) 16(1) 0 5(1) 0
P1 P 6(1) 7(1) 12(1) 0 4(1) 0
S1 S 9(1) 11(1) 15(1) 0 6(1) 0
S2 S 10(1) 10(1) 15(1) -1(1) 4(1) -1(1)
Fe2 Fe 18(1) 13(1) 24(1) 0 7(1) 0
Ni2 Ni 18(1) 13(1) 24(1) 0 7(1) 0
P2 P 11(1) 7(1) 15(2) 0(1) 4(1) 0(1)

(Fe0.1Ni0.9)2P2S6
Fe1 Fe 11(1) 7(1) 18(1) 0 6(1) 0
Ni1 Ni 11(1) 7(1) 18(1) 0 6(1) 0
P1 P 9(1) 5(1) 14(1) 0 4(1) 0
S1 S 11(1) 9(1) 17(1) 0 6(1) 0
S2 S 12(1) 7(1) 17(1) -1(1) 4(1) -1(1)
Fe2 Fe 10(5) 35(7) 14(6) 0 1(4) 0
Ni2 Ni 10(5) 35(7) 14(6) 0 1(4) 0
P2 P 50(20) 25(14) 40(20) 9(11) 16(17) 1(10)

Ni2P2S6
Ni1 Ni 8(1) 8(1) 13(1) 0 4(1) 0
P1 P 6(1) 6(1) 9(1) 0 3(1) 0
S1 S 8(1) 9(1) 11(1) 0 4(1) 0
S2 S 8(1) 7(1) 12(1) -1(1) 3(1) -1(1)
Ni2 Ni 11(1) 9(1) 16(1) 0 5(1) 0
P2 P 6(1) 6(1) 9(1) 0 3(1) 0
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