

Dieses Dokument ist eine Zweitveröffentlichung (Postprint Version) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-751200

Julian Eberius, Christopher Werner, Maik Thiele, Katrin Braunschweig, Lars Dannecker,
Wolfgang Lehner

DeExcelerator: A Framework for Extracting Relational Data From
Partially Structured Documents

Erstveröffentlichung in / First published in:

CIKM'13: 22nd ACM International Conference on Information and Knowledge
Management. San Francisco, 27.10.–01.11.2013. ACM Digital Library, S. 2477 – 2480. ISBN 978-
1-4503-2263-8.

DOI: https://doi.org/10.1145/2505515.2508210

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-751200
https://doi.org/10.1145/2505515.2508210

DeExcelerator: A Framework for Extracting Relational Data
From Partially Structured Documents

Julian Eberius1 Christopher Werner1 Maik Thiele1 Katrin Braunschweig1

Lars Dannecker2 Wolfgang Lehner1

1Database Technology Group 2SAP AG
Technische Universität Dresden, Germany Dresden, Germany
firstname.lastname@tu-dresden.de lars.dannecker@sap.com

ABSTRACT
Of the structured data published on the web, for instance
as datasets on Open Data Platforms such as data.gov, but
also in the form of HTML tables on the general web, only
a small part is in a relational form. Instead the data is
intermingled with formatting, layout and textual metadata,
i.e., it is contained in partially structured documents. This
makes transformation into a true relational form necessary,
which is a precondition for most forms of data analysis and
data integration. Studying data.gov as an example source for
partially structured documents, we present a classification
of typical normalization problems. We then present the
DeExcelerator, which is a framework for extracting relations
from partially structured documents such as spreadsheets
and HTML tables.

Categories and Subject Descriptors
H.2 [Database Management]: Miscellaneous

Keywords
Spreadsheets, Normalization, Extracting Relational Tables

1. INTRODUCTION
There are several new sources for relational data on the

web. One interesting example are Open Data Platforms such
as data.gov or data.gov.uk, on which government agencies
publish datasets. Most of the files o n t hese O D platforms
are optimized for human consumption, such as spreadsheets,
HTML and PDF, as shown in [1]. To reuse the wealth of
structured data contained in these datasets in a different
context or to find r elations b etween d atasets, a h uman an-
alyst will often have to transform these datasets manually,
e.g., to load them into a statistics tool. Although there is
some support for performing this task semi-automatically
(see Section 5), there exists no fully automatic extraction of
relational data from such documents.

© 2013 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in Proceedings of the
22nd ACM international conference on Conference on information and knowledge
management (CIKM’13), Oct. 27–Nov. 1, 2013, San Francisco, CA, USA.
DOI: https://doi.org/10.1145/2505515.2508210.

In this paper, we aim at transforming partially structured
documents, e.g. spreadsheets or HTML pages, into first
normal form relations without any user interaction. To this
end, we will at first present a set of typical denormalizations
and irregularities that appear in spreadsheets and web tables
alike in Section 2. These features are usually introduced to
enhance readability, but constraint the reuse of these docu-
ments. We will then present the DeExcelerator, a framework
for normalizing a partially structured document into one or
more relational tables in Section 3, and give the results of a
preliminary user study in Section 4. Then, we will discuss re-
lated work as well as the demonstration scenario in Sections
5 and 6, respectively.

2. SPREADSHEET NORMALIZATION
By manually studying a corpus of real-world Open Data

published as Excel spreadsheets on the platform data.gov
(see Section 4), we identified a set of typical denormaliza-
tions that often appear in spreadsheets. Our goal was to
transform the corpus of documents from this platform into
a set of tables that can be handled by an off-the-shelf rela-
tional database management system. While we originally
studied spreadsheets to identify these characteristics, other
tables created for human consumption, e.g. web tables on
Wikipedia, show most of the identified characteristics, as
well. Note, that most of these denormalizations are not in-
troduced because of lack of database know-how, but because
spreadsheets are designed to be comprehended visually by a
human, not to be processed by a DBMS.
We found the following (non-exhaustive) list of challenges
for spreadsheet normalization. Examples for all challenges
are shown in Figure 1.

• Table Search (TS): While spreadsheet software usu-
ally offers the possibility to save multiple different
sheets in one document with some form of logical sepa-
ration, users often just copy multiple tables into one
physical sheet for convenience.

• Metadata Extraction (ME): Metadata that is es-
sential to the interpretation of the table, e.g., informa-
tion regarding provenance or time of validity is usually
just copied into the cells of the spreadsheet (see Figure
1a). Some of this data might be highlighted visually,
e.g. a table title might be underlined, but other meta-
data might appear in the next cell, without any clear
separation.

Final edited form was published in "CIKM'13: 22nd ACM International Conference on Information and Knowledge Management. San Francisco 2013",
S. 2477–2480. ISBN: 978-1-4503-2263-8
https://doi.org/10.1145/2505515.2508210

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Meta%Data%Detec(on%
Separa&on)between))
Header)and)Values)

CARE)FOOD)PROGRAM)

State) Meals)Served)

or)District)) Total) Homes) Adult) Centers)

Alabama) 1062) 542) 509) 11)

Alaska) 866) 414) 448) 4)

District)

of)Columbia) 792) 357) 433) 2)

FT)2011)data)are)preliminary;)all)data)are)subject)to)revision.)

RP)=)Reduced)Price)

(a)

Detec(ng%Layout%%
Rows/Columns%

Detec&ng))
ATribut)Names)

Detec(ng%Dependent%
Rows/Columns%

CARE)FOOD)PROGRAM)

State) Meals)Served)

or)District)) Total) Homes) Adult) Centers)

Alabama) 1062) 542) 509) 11)

Alaska) 866) 414) 448) 4)

District)

of)Columbia) 792) 357) 433) 2)

FT)2011)data)are)preliminary;)all)data)are)subject)to)revision.)

RP)=)Reduced)Price)

(b)

Filling%in%
Implicit%Values) Recognizing%NULL%Values%

ATribut)A) ATribut)B) ATribut)C) ATribut)D)

A1) B1) C1) D1)

C2) D2)

B2) C3)

C4) D3)

B3) C5) D4)

(c)

Figure 1: Spreadsheet Normalization Challenges

• Layout Element Removal (LER): Many authors
add cells to improve legibility, even if this distorts
the column/row structure of the table. Data columns
might be separated by empty columns to create visual
padding, or rows might be inserted to simulate line
breaks in cells with long text content (see Figure 1b).

• Header Recognition (HR): While attribute names
will often be highlighted visually using bold face or col-
ors, spreadsheets offer no machine readable distinction
between data and schema information. Sometimes the
attribute name might be the first cell of a data column,
as in CSV files, but this simple heuristic will fail most
of the time with real-world spreadsheets (see Figure
1b).

• Type Recognition (TR): Spreadsheets often contain
type information on a cell-by-cell basis. If the previous
challenges have been solved successfully so that clean,
self-contained columns have been identified, one might
expect that this challenge becomes trivial. Still, many
spreadsheets will contain string annotations inline in-
validating type information the spreadsheet tool might
be able to provide, while tables extracted from the web
have no type information at all.

• Value Extrapolation (VE): Since spreadsheets of-
ten contain multidimensional data in one denormalized
table, many authors skip repeated values that occur
because of denormalization for visual clarity. In many
cases, simply filling neighboring empty cells with pre-
vious values might solve this problem. Still, in some
cases empty cells might also symbolize NULL-values
and not implied values (see Figure 1c).

• Dependent Row/Column Removal (DR): Adding
derived rows and columns such as Total cells and sum-
mation rows that are automatically updated is a main
selling point for spreadsheet software. When the data
is published including these derived columns it contains
redundant information (see Figure 1c).

Notice that even when all these defects have been removed,
the resulting table might still be only in first normal form.
Automatic decomposition of the resulting table is out of
scope for this demonstration paper.

3. THE DE-EXCELERATOR
The DeExcelerator is a framework for transforming par-

tially structured documents, i.e., documents that contain

some relational data, into a first normal form relation that
can be imported into a relational database. It implements a
pipeline of abstract extraction phases, each one cleaning or
removing one of the artifacts and denormalizatons described
in Section 2. The phases and their order correspond to the
challenges given in there.
Before the first phase there is an ingestion step, in which
input files are transformed into a generic representation. As
the minimal, common representation of our problem space
we chose a two dimensional array of strings, with optional
cell-level metadata attached. It is simple enough to be used
with HTML tables as input, which do not have much infor-
mation attached to them except the structure of row and
cell tags, but also allows to capture the metadata available
in spreadsheets. After the ingestion step there will be cells
containing metadata text, headers or data values at any
position in the matrix, as shown in Figure 1.
For each of the further phases, the DeExcelerator contains
concrete implementations of the abstract extraction opera-
tions, which are based on our study of real-world datasets, as
well as on table extraction techniques from the literature (see
Section 5). Extraction heuristics implemented in the DeEx-
celerator operate on the string matrix only, but may use the
cell-level metadata attached by the ingestion step, e.g., to use
color information defined on the original spreadsheet cells as
evidence for the header recognition. All implemented heuris-
tics will return a transformed matrix, e.g. a matrix where
cells containing textual metadata have been removed, as well
as a confidence value. It may also attach new metadata to
the cells of the matrix. The confidence value is used by the
DeExcelerator to decide on the extraction output in case of
conflicting results, e.g., two different sets of attribute names.
For space reasons, we can not give all the heuristics currently
implemented in the DeExcelerator. Notice however, that the
source code of the framework and its operators is available
(see Section 6). To give the reader a better understanding
of the style of our heuristics, we will provide some selected
examples.
Consider the problem of header-detection, in which we want
to find the separation between table header and data, e.g.,
the red line in Figure 1a. The DeExcelerator currently im-
plements the following list of heuristics, whose output is
combined to decide on a separator.

• Date: As soon a date cell appears, the header ends one
row above it.

• Background color: A change in background color (in a
spreadsheet) signals the start of the data portion.

Final edited form was published in "CIKM'13: 22nd ACM International Conference on Information and Knowledge Management. San Francisco 2013",
S. 2477–2480. ISBN: 978-1-4503-2263-8
https://doi.org/10.1145/2505515.2508210

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

0

10

20

30

40

50

60

70

80

90

100

5 4 3 2 1

Metadata Extraction

Table Search

Data Type Recognition

Header Recognition

Value Extrapolation

Split Merged Cells

NULL Value Recognition

Percent of answers

Rated Quality

Figure 2: Extraction Success from Complete Success (5) to
Unsuccessful (1), Table Difficulty from Hard (5) to Easy (1)

• Number sequence: The start of a numeric sequence in
one column signals the start of the data segment.

• Number: A number in a cell is also evidence for the
start of the data section, albeit a weaker one.

• Different string: A sequence of cells in a column with
the same value signals the start of the data block. Such
sequences are usually a product of denormalization, e.g.
they are keys in some hierarchical dimension.

• String length: The same logic can be applied to several
cells in one column with equal length. These are usually
constant length identifier codes.

Similar lists of heuristics exist for every other phase.

4. EVALUATION
We conducted a preliminary evaluation of the DeExcel-

erator using about 2,000 Excel files from data.gov, which
contained about 4,500 sheets. To evaluate the relevance of
our challenge classes, we counted how often each challenge
was encountered. For instance, the 4,500 sheets contained
about 5,000 tables, which indicates the necessity of the table
search step. The DeExcelerator could split header and data
segment, which is the most important step for creating a
relational table, in 78% of the cases. As another example, in
about 83% of the tables the header identified was not found
in the first row of the matrix, which indicates that header
recognition is a non-trivial problem.
For space reasons, we can not present the full evaluation in
this paper, but we want to highlight another aspect: We
conducted an user study, in which 10 database students
where asked to rate the success of the various extraction and
cleaning steps for 50 sheets from our evaluation set, where
every sheet was rated by two students. The students rated
the success of every phase on a scale from 1 to 5, as well as
the perceived difficulty of normalizing the original table on
the same scale. As Figure 2 shows, the test set contained a
good mixture of difficult and easy tables, with most tasks
being solved in a good manner for a fully automatic system.

5. RELATED WORK
There are two classes of related work: first, there is a

number of tools build to enable a user to extract and clean

relational data from source documents, for example Wran-
gler[4] and Google Refine[3]. Both systems offer tooling
to help a user working manually on a document cleaning
project. In contrast, DeExcelerator is a predefined pipeline
that can be applied to large heterogeneous documents collec-
tions automatically. The user can be involved by creating
new implementations of the extraction steps.
The second category of related work covers table recognition
algorithms. They exist for various types of input, e.g. web
tables, web lists, PDF files and even images, and use a large
variety of heuristic, learning-based and even many visual
techniques. An extensive overview of these approaches is
given in [6]. The DeExcelerator implements many previ-
ously published heuristics for table recognition, and defines
an abstract pipeline of extraction steps specifically tuned
for transforming spreadsheets and web tables into relational
tables. An especially active area of research is concerned
with extracting relational tables from large HTML corpora
and interpreting the meaning of their attributes, e.g., [5] and
[2] among many others. While these approaches focus more
on specifics of identifying relational tables in large corpora,
and semantic annotation, respectively, the DeExcelerator
focuses on syntactic artifacts that occur in tables meant for
human consumption. So the DeExcelerator could be seen as
a preprocessing step to these techniques.

6. DEMONSTRATION SCENARIO
In this interactive demonstration, users will be able to chal-

lenge the DeExcelerator with their own Excel Spreadsheets,
or use some of the packaged datasets from data.gov as input.
We created a Web interface which visualizes the steps of
the extraction pipeline and shows the input document as it
transforms step by step into a relational table. The interface
also displays the results of the heuristics implemented in
each step, and thus allows the user to understand what is
going on in each respective step. The DeExcelerator website1

features a screencast, a link to the actual GUI, as well as a
link to the source code.

7. REFERENCES
[1] K. Braunschweig, J. Eberius, M. Thiele, and W. Lehner.

The State of Open Data - Limits of Current Open Data
Platforms. In WWW’12 Web Science Track, 2012.

[2] M. J. Cafarella, A. Y. Halevy, Y. Zhang, D. Z. Wang,
and E. Wu. Uncovering the Relational Web. In WebDB,
2008.

[3] D. Huynh and S. Mazzocchi. Google refine.
[4] S. Kandel, A. Paepcke, J. Hellerstein, and J. Heer.

Wrangler: interactive visual specification of data
transformation scripts. In CHI’11., pages 3363–3372,
New York, NY, USA, 2011. ACM.

[5] J. Wang, H. Wang, Z. Wang, and K. Zhu.
Understanding Tables on the Web. In P. Atzeni,
D. Cheung, and S. Ram, editors, Conceptual Modeling,
volume 7532 of Lecture Notes in Computer Science,
pages 141–155. Springer Berlin Heidelberg, 2012.

[6] R. Zanibbi, D. Blostein, and R. Cordy. A survey of table
recognition: Models, observations, transformations, and
inferences. Int. J. Doc. Anal. Recognit., 7(1):1–16, Mar.
2004.

1http://wwwdb.inf.tu-dresden.de/edyra/DeExcelerator/

Final edited form was published in "CIKM'13: 22nd ACM International Conference on Information and Knowledge Management. San Francisco 2013",
S. 2477–2480. ISBN: 978-1-4503-2263-8
https://doi.org/10.1145/2505515.2508210

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	DeExcelerator_Vorsatz.pdf
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint Version) /
	This is a self-archiving document (accepted version):
	Julian Eberius, Christopher Werner, Maik Thiele, Katrin Braunschweig, Lars Dannecker, Wolfgang Lehner

