
Dieses Dokument ist eine Zweitveröffentlichung (Postprint Version) /

This is a self-archiving document (accepted version):

Diese Version ist verfügbar / This version is available on:

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-751187

Thomas Kühn, Kay Bierzynski, Sebastian Richly, Uwe Aßmannn

RSQL - a query language for dynamic data types

Erstveröffentlichung in / First published in:

IDEAS '14: 18th International Database Engineering & Applications Symposium. Porto,
07.–09.07.2016. ACM Digital Library, S. 185–194. ISBN 978-1-4503-2627-8.

DOI: https://doi.org/10.1145/2628194.2628246

https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-751187
https://doi.org/10.1145/2628194.2628246

RSQL - A Query Language for Dynamic Data Types

Tobias Jäkel*, Thomas Kühn†, Hannes Voigt*, Wolfgang Lehner*
*Database Technology Group
†Software Technologie Group

Technische Universität Dresden
01062 Dresden, Germany

{tobias.jaekel, thomas.kuehn3, hannes.voigt, wolfgang.lehner}@tu-dresden.de

ABSTRACT
Database Management Systems (DBMS) are used by
software applications, to store, manipulate, and retrieve
large sets of data. However, the requirements of current
software systems pose various challenges to established
DBMS. First, most software systems organize their data by
means of objects rather than relations leading to increased
maintenance, redundancy, and transformation overhead
when persisting objects to relational databases. Second,
complex objects are separated into several objects resulting
in Object Schizophrenia and hard to persist Distributed
State. Last but not least, current software systems have
to cope with increased complexity and changes. These
challenges have lead to a general paradigm shift in the
development of software systems. Unfortunately, classical
DBMS will become intractable, if they are not adapted to
the new requirements imposed by these software systems.
As a result, we propose an extension of DBMS with roles to
represent complex objects within a relational database and
support the flexibility required by current software systems.
To achieve this goal, we introduces RSQL, an extension
to SQL with the concept of objects playing roles when
interacting with other objects. Additionally, we present a
formal model for the logical representation of roles in the
extended DBMS.

Categories and Subject Descriptors
H.2.3 [Database Management]: Languages

Keywords
Dynamic Data Type, Dynamic Tuple, Role Model, Role
Persistency, Conceptual Query Language

©2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM. This is the author’s version of the work. It is posted here for your
personal use. Not for redistribution. The definitive Version of Record was
published in IDEAS ’14 July 07 - 09 2014, Porto, Portugal.
DOI: http://dx.doi.org/10.1145/2628194.2628246.

1. MOTIVATION
Database Managment Systems (DBMS) are used by soft-

ware applications, to store, manipulate, and retrieve large
sets of data. However, the requirements of current software
systems pose various challenges to established DBMS. First,
as a result of the success of object oriented languages most
software systems organize their data by means of objects
rather than relations. This difference of representation is
well known as Impedance Mismatch. It leads to increased
maintenance, redundancy, and transformation overhead as
a result of the two divergent views on a conceptual unity
[17]. While this overhead is negligible for small and stable
applications, it becomes intractable for large and especially
dynamic applications. Additionally, objects in an object
oriented business application have the tendency to become
increasingly complex [29]. This is the case, because they par-
ticipate in various collaborations and serve various purposes.
For each collaboration and purpose the object is enriched
by new attributes and behavior. Consequently, one way of
dealing with such complex objects is to divide them into
smaller parts representing the various purposes [4]. How-
ever, this solution suffers from two specific problems: Object
Schizophrenia, because a single entity is split into several
smaller objects with their own identity [14] and Distributed
State, raising the question how to determine the state of a
clustered and possibly distributed object. Last but not least,
the development of current and future software systems has
at least two challenges: complexity and change [24].

The former, on the one hand, emphasizes the fact, that
software systems tend to become increasingly complex up to
a point beyond human comprehension. The latter, on the
other hand, highlights negative effects of changes to the re-
quirements, the specification, and implementation of a soft-
ware system. Such changes become an actual threat, if they
have to be applied to a critical system at runtime. For-
tunately, researchers provided several approaches to tackle
these problems. In summary the development of software
systems using a classical DBMS will become intractable, if
they are not adapted to these new requirements. Neverthe-
less, database design can benefit from various approaches
proposed in literature coping with these challenges, for ex-
ample the concept of roles. Please note, that this paper does
not address the issue of Role-based Access Control (RBAC)
within the user management of a DBMS. In contrast to
RBAC, we see roles as entities in the domain model of an
application.

Final edited form was published in "IDEAS '14: 18th International Database Engineering & Applications Symposium. Porto 2014", S. 185–194. ISBN: 978-1-4503-2627-8
https://doi.org/10.1145/2628194.2628246

1

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Our Contributions
We propose the extension of DBMS with roles which en-
ables the representation of object oriented domain models
with complex objects within a relational database. This ex-
tension should support the flexibility required by current
software systems. Thus, the representation of complex ob-
jects in relational databases will be tractable, transparent,
and independent of a specialized Object-Relational Mapper
(ORM). Additionally, because the DBMS is now aware of
the structure of complex objects, it enables the optimiza-
tion of storage and query operations. To achieve this goal
we introduce RSQL, an extension of SQL with roles, to-
gether with a formal model for the logical representation of
roles. Both, the query language and the formal model will
be part of the proposed DBMS extension.

Outline
Hence, this paper is structured as follows. Section 2 gives
a brief introduction to the role concept and its use in soft-
ware systems. Afterwards, we dive into the representation
of complex objects as Dynamic Data Types by providing a
formal definition in Section 3 and their implementation in
the DBMS in Section 4. Based on these definitions, Section
5 introduces the definition of RSQL. The paper is concluded
by a discussion of related work (Section 6), future research
directions, and a general conclusion (Section 7).

2. ROLES IN SOFTWARE SYSTEMS
As indicated before, current software systems are char-

acterized by increased complexity and changes on demand.
One possibility to cope with these recurring problems is to
use the role concept when modeling and running the system.

The basic rationale behind the role concept is the insight
of entities playing multiple roles during their life time. Roles
in general attribute capabilities, obligations, relationships,
and constraints to their individual player.

From the perspective of conceptual modeling, roles are on-
tologically classified as anti-rigid and founded [28]. The first
property indicates, that instances of an anti-rigid type can
dynamically start and cease to belong to this type without
loosing their identity [10]. The second property emphasizes,
that roles depend on the presence of other entities, i.e. their
player, other roles, an institution [28, 3]. In contrast to
roles, the entities able to play roles, denoted naturals, must
be rigid and thus carry an identity criterion [28]. Thus, in-
stances of a Natural Type belong to this type (rigidity) and
have a unique and immutable identity (identity criterion)
as long as they exist [10]. Most importantly, each natural
(instance) can start and later stop playing a certain role
(instance) gaining all the features of it without loosing its
identity. Despite the fact that every natural can play arbi-
trarily many roles, each role (instance) is played by exactly
one natural (instance) and those naturals whose types fulfill
a specific role type of a particular role [28]. In summary, the
role concept allows for multi dimensional separation of con-
cerns of complex domain models. As a direct consequence,
roles can help to cope with the complexity of the design of
current software systems and are additionally able to sep-
arate complex objects into a stable part (the natural) and
several dynamic parts (the roles), as suggested by Suther-
land in [29].

While the concept of roles is well established in conceptual

Figure 1: Structure of the Role Object Patterns, ex-
tracted from [4]

modeling, e.g. in the Entity-Relationship Model (ER) [7], in
the Unified Modelling Language (UML) [25], only few pro-
gramming languages support the notion of roles directly, e.g.
powerJava [2] or Object Teams/Java [13]. However, because
of the ability of roles to change the behavior of their player,
many software systems have implemented the role concept
by means of object oriented languages. This has led to the
Role Object Pattern (ROP) identified by Bäumer et.al. in
[4]. The Pattern, shown in Figure 1, captures the role con-
cept representing the Natural Type as the ComponentCore

class, all the Role Types as subclass of ComponentRole class.
In this way, a Component can be varied at runtime by chang-
ing the roles it plays which in turn change the objects be-
havior. As a result, it is possible to change the behavior of
a running system by introducing roles to the object’s in the
system. This not only permits changing the behavior of the
system but also the structure and other system properties.

Unfortunately, the ROP has some major issues. First, it
may lead to Object Schizophrenia [14], because each instance
of ComponentRole is a normal object, carrying its own iden-
tity and is independent of its player. Second, the state of
the component is distributed among various objects, making
its persistence heavily dependent on the used ORM, leading
to opaque and configuration-dependent data representations
in the underlying DBMS [8, Chapter 1]. Finally, this rep-
resentation would lead to a performance overhead during
the retrieval in the DBMS and reconstruction within the
ORM. In sum, the combination of the ROP and default or
customized ORMs is infeasible [8], because neither default
nor customized ORMs allow the database to make informed
decisions for optimizations and clustering. Hence, the next
sections address the various problems and challenges men-
tioned previously by extending DBMS with the concept of
roles.

3. DYNAMIC DATA TYPES
Dynamic Data Types (DDT) are a novel data manage-

ment perspective on role-based data and representing the
foundation for enabling role-dynamics in database manage-
ment systems. To define Dynamic Data Types, we present a
formal model consisting of type level and instance level def-
initions. These definitions are based on the ontological dis-
tinction between Natural Types and Role Types presented
in [9].

Final edited form was published in "IDEAS '14: 18th International Database Engineering & Applications Symposium. Porto 2014", S. 185–194. ISBN: 978-1-4503-2627-8
https://doi.org/10.1145/2628194.2628246

2

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Person Customer CompanyEmployee Employer

Natural Type Role Type Fills-relation
Le

ge
n

d
Ex

am
p

le

Figure 2: Type Level Example

Person Customer CompanyEmployee Employer

Ex
am

p
le

DDT Person
DDT Company

D
D

T

Figure 3: Dynamic Data Type Example

3.1 Type Level
The type level definition is comparable to Friedrich

Steimann’s type definition for LODWICK in [28]. Dynamic
Data Types consist of Natural Types and Role Types in
general. An ontological distinction between both types can
be found in [9]. Roughly, Natural Types are rigid and non-
founded. That means an instance of a Natural Type, de-
noted as Natural, looses its identity by changing the type.
Naturals can exist independently of relationships to other
individuals in the systems. Role Types are the total oppo-
site to Natural Types, they are non-rigid and founded, which
also indicates they are based on relationships [28, 9].

Definition 1. Let NT be the set of all Natural Types and
RT the set of all Role Types. Schema s is then given by the
triple s = (NT,RT,fills), where fills ⊆ NT × RT denotes
which Natural Types fulfill which Role Types. Because Role
Types cannot exist on their own and to avoid isolated Role
Types, we constrain the fills-relation by:

∀rt ∈ RT ∃nt ∈ NT . (nt, rt) ∈ fills

Applying this constraint ensures the association of a Role
Type to at least one Natural Type by using the fills-relation.
Henceforth, we use the infix notation (nt fills rt) for the
fills-relation. Figure 2 illustrates an example of the pre-
sented definition including the constraint. The example con-
sists of two Natural Types (rectangle shape) Person and
Company. The Role Types (rectangle shape with round
edges and shaded gray) in this example are Employee, Cus-
tomer and Employer. To associate Natural Types and Role
Types the fills-relation is populated with (Person fills Em-
ployee), (Person fills Customer), (Company fills Customer)
and (Company fills Employer).

Definition 2. Let nt ∈ NT be a Natural Type; a Dynamic
Data Type (DDT) is then defined as ddt = (nt,RTnt), where
RTnt ⊆ RT and is defined as:

RTnt = {rt ∈ RT | (nt fills rt)}

Thus, a Dynamic Data Type is defined as a composition of
a Natural Type nt and all Role Types it fills. DDTs are con-
sidered as individual types consisting of the subtypes Nat-
ural Type and Role Type. Additionally, DDTs are formed
indirectly and automatically. In the center of each DDT
stands a Natural Type. All Role Types that extend a certain
DDT have to be connected regarding to the Natural Type of
this DDT in the fills-relation. Figure 3 expands the example
shown in Figure 2 with Dynamic Data Types. Two DDTs

Person

Customer Employee

Person Person Person

Customer Employee

Configuraton 1 Configuraton 2 Configuraton 3 Configuraton 4

Figure 4: Possible Configurations of DDT Person

are formed, DDT Person and DDT Company. DDT Person
covers the Natural Type Person and Role Types Employee
and Customer. The second Dynamic Data Type consists of
Company as Natural Type and Customer and Employer as
Role Types. As you can see, DDTs are not disjunct, rather
they can share Role Types, i.e. Role Types can be shared
among several DDTs.

However, the fills-relation indicates that a Natural Type
can play a certain Role Type. This can semantics enables
various settings of DDTs, depending on which Role Types
are taken into account. These settings are denoted as Con-
figuration. A Configuration specifies by which specific Role
Types a Dynamic Data Type is extended.

Definition 3. Let ddt = (nt,RTnt) be a Dynamic Data
Type; a Configuration of this DDT is then given by
c = (nt,RT c), where RT c ⊆ RTnt.

Figure 4 illustrates all possible Configurations of DDT
Person taken from the example in Figure 3. As you can see,
DDT Person can have four distinct Configurations:

c1 =(Person, ∅)
c2 =(Person, {Customer})
c3 =(Person, {Employee})
c4 =(Person, {Customer,Employee})

Since Configurations are defined on the type level, playing
multiple Roles of the same Role Type simultaneously does
not affect the Configuration.

3.2 Instance Level
On the instance level Natural Types are instanciated to

Naturals and Role Types to Roles, respectively.

Definition 4. Let N be the set of all Naturals, R be the set
of all Roles and plays ⊆ N×R defining which Naturals play
which Roles; an instance i of the schema s = (NT,RT,fills)
is then defined as i = (N,R, plays, type), where type : (N →
NT) ∪ (R → RT) is a polymorphic function assigning a
distinct Natural Type or Role Type to each Natural or Role,
respectively. As shorthand notation we define two index sets,
the first for Naturals and the second for Roles.

Nnt = {n ∈ N | type(n) = nt} for nt ∈ NT

Rrt = {r ∈ R | type(r) = rt} for rt ∈ RT

Additionally, the plays-relation is constrained by the follow-
ing two axioms:

∀r ∈ R ∃! n ∈ N . (n, r) ∈ plays

∀(n, r) ∈ plays . type(n) = nt ∧ type(r) = rt ∧ (nt fills rt)

The plays-relation is the instance level equivalent to the
fills-relation on the type level. For simplicity, we use the
infix notation n plays r for this relation. So far, Naturals
and Roles exist in the system and they may be related by

Final edited form was published in "IDEAS '14: 18th International Database Engineering & Applications Symposium. Porto 2014", S. 185–194. ISBN: 978-1-4503-2627-8
https://doi.org/10.1145/2628194.2628246

3

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

the plays-relation. Additionally, there are two role specific
constraints. First, Roles cannot exist without being related
to a Natural and a certain Role can be played by exactly one
Natural only. Second, not each Natural is allowed to play
Roles of each Role Type. Only Roles of Role Types that are
related to a certain Natural Type in the fills-relation can
be played. Thus, only relations between Roles and Natural
that were also defined on the type level are valid. Both
observations are covered by the two constraints defined in
Definition 4.

As next step, Dynamic Tuples are defined representing
the instance level equivalent of Dynamic Data Types. Each
Dynamic Tuple is related to exactly one Configuration of its
corresponding DDT. Since Dynamic Data Types describe a
set of Configurations, different Dynamic Tuples can be an
instance of the same DDT, but differ in their Configuration
which implies different schemas.

Definition 5. Let s = (NT,RT,fills) be a schema and
i = (N,R, plays, type) an instance of s. Furthermore,
ddt = (nt,RTnt) is a Dynamic Data Type and n ∈ Nnt a
Natural of this type. A Dynamic Tuple d is then defined
with respect to the set of Role Types RT d

n ⊆ RTnt currently
played by n:

RT d
n = {rt ∈ RT | n plays r ∧ type(r) = rt}

Without loss of generality, we assume that
RT d

n = {rt1, . . . , rtm} for this set of Role Types.
Case 1 RT d

n = ∅ : then d = (n)
Case 2 RT d

n 6= ∅ : then the Dynamic Tuple is defined as
d = (n, Rd

1, . . . , Rd
m) with

Rd
i = {r ∈ Rrti | n plays r}

for all i ∈ {1, . . . ,m} and rti ∈ RT d
n

Such a Dynamic Tuple d has exactly one Configuration
cd = (nt,RT d

n).

A Dynamic Tuple d is formed indirectly, likewise DDTs
are formed on the type level. It is built around a cer-
tain Natural n and a set of Role sets, where each Role
set holds Roles of a specific Role Type. Each Dynamic
Tuple is of a certain Configuration, namely the Configu-
ration cd that exactly describes the set of Role Types of all
Roles played by this particular Natural n. For instance, a
Person p plays the Roles e1 of Role Type Employee, then
d1 = (p, e1) is the corresponding Dynamic Tuple in Config-
uration cd1 = (Person, {Employee}). The Configuration of
a Dynamic Tuple will change, if it starts playing a Role of a
Role Type that has not been played or if it stops playing the
only Role of the corresponding Role Type. If a Role of an
already played Role Type is added, so that this Role Type
is played multiple times simultaneously, the Configuration
will remain the same, since Configurations are defined on
the type level.

3.3 Example
Firstly, we define the set of Natural Types and Role Types,

respectively and the fills-relation in accordance to Figure 2.

NT = {Person,Company}
RT = {Employee, Customer,Employer}

fills ={(Person,Employee), (Person,Customer),

(Company,Customer), (Company,Employer)}

With these sets we can build the schema s of our system with
s = (NT,RT,fills). Secondly, we can derive the Dynamic
Data Types for each Natural Type. For our example we
can build DDT Person and DDT Company. As the last
type level definition, all Configurations from every Dynamic
Data Type are derived. DDT Person has four Configurations
depicted in Figure 4 and introduced as Configurations c1, c2,
c3 and c4. Additionally, DDT Company also describes four
Configurations:

Cco1 =(Company, ∅)
Cco2 =(Company, {Employer})
Cco3 =(Company, {Customer})
Cco4 =(Company, {Employer, Customer})

On the instance level the set for Naturals and Roles as well
as the plays-relation with respect to Definition 4 are defined
firstly.

N = {Peter,Klaus,Google}
R = {E1, E2, C1, C2, C3, Emp1}

plays ={(Peter, E1), (Klaus,E2), (Klaus,C1),

(Klaus,C2), (Google, C3), (Google, Emp1)}

The type function provides the type for each Natural and
Role, respectively. According to Definition 4 this function
provides the following information:

type ={(Peter → Person), (Klaus→ Person),

(Google→ Company), (E1 → Employee),

(E2 → Employee), (C1 → Customer),

(C2 → Customer), (C3 → Customer),

(Emp1 → Employer)}

The specified schema instance encompasses the following
three Dynamic Tuples:

dPeter =(Peter, {E1}) in Configuration

cPeter = (Person, {Employee})
dKlaus =(Klaus, {E2}, {C1, C2}) in Configuration

cKlaus = (Person, {Employee, Customer})
dGoogle =(Google, {C3}, {Emp1}) in Configuration

cGoogle = (Company, {Customer,Employer})

4. SYSTEM OVERVIEW
To persist role-based data structures of object oriented

software systems in a DBMS without utilizing highly special-
ized ORM techniques, the DBMS itself has to be adapted.
For this purpose, we introduce Dynamic Tuples as persis-
tent relational representation of dynamic objects in software.
Hence, the main task of such a DBMS is to manage Dy-
namic Tuples and to provide efficient access to this data for
users. To query for Dynamic Tuples users must provide a
valid Configuration to the DBMS while the DBMS filters all
qualified Dynamic Tuples regarding to the provided Con-
figuration. Generally, users and applications interact with
DBMSs by utilizing certain query languages. We aim for
an implemented role-based data model and for this reason
we provide a query language tailored to the data model pre-
sented in Section 3, named RSQL. In Figure 5 an adapted
DBMS is illustrated in conjunction with RSQL’s language

Final edited form was published in "IDEAS '14: 18th International Database Engineering & Applications Symposium. Porto 2014", S. 185–194. ISBN: 978-1-4503-2627-8
https://doi.org/10.1145/2628194.2628246

4

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

RSQL-DDL
(NT, RT)

Dynamic Data Type
DDT = (nt, RTDDT)

Configuration
c = (nt, RTc)

Dynamic Tupel
d = (n, Rc

1, … , Rc
m)

RSQL-DQL
config-expression

Result RSQL-DML
(N, R)

DBMS

Figure 5: System Overview

components.
While querying, the user has to provide a Configuration to

describe the desired Dynamic Tuples. The data query lan-
guage part of RSQL provides the concept of configuration
expressions. Configuration expressions are a novel and pow-
erful tool to specify what the schema of a Dynamic Tuple
has to look like to be classified as a qualified tuple. These ex-
pressions are not obliged to describe only one Configuration,
rather they describe a set of Configrations. This set can be
used by the system to filter matching Dynamic Tuples. A
set of Configurations as a filter conditions may result in an
output that contains Dynamic Tuples of different Configu-
rations. Thus, Dynamic Tuples of different schemata, but
of the same type, can be in the same result. During the fil-
tering process the nested Role sets of Dynamic Tuples must
be handled relationally. Nested Role sets can be represented
in a non-first normal form (NF2). In [20] nest and unnest
operations has been defined to transform NF2 into relational
tables and in [27] a prototypical DBMS supporting NF2 re-
lations including a query language extension is explained.
By utilizing these approaches, Dynamic Tuples can be de-
fined in a nested fashion and processed in a relational way.
After the filtering process, all qualified Dynamic Tuples are
returned to the user.

Dynamic Tuples have to be inserted into the system be-
fore users can query for them. To manipulate the in-
stances, RSQL provides a tailored data manipulation lan-
guage. Users must be able to create, extend, and update Dy-
namic Tuples. This is done indirectly. Dynamic Tuples are
manipulated by adding the elements they consist of to the
system. Here, users can create, delete, and update Naturals
and Roles, respectively. A new Dynamic Tuple is created by
inserting a new Natural while an extension is performed by
creating a new Role. Extending a Dynamic Tuple results in
a Configuration change. If the corresponding Natural starts
playing a Role of a Role Type not included in its Configura-
tion the Dynamic Tuple is extended, as well. Otherwise, the
Configuration remains the same. In the same way, Contrac-
tion of a Dynamic Tuple leads to a Configuration change,
whenever the last Role of a certain Role Type is removed
from the Dynamic Tuple.

Each Dynamic Tuple is in a certain Configuration which is
derived from the corresponding Dynamic Data Type. The
elements of Dynamic Data Types are Natural Types and
Roles Types. The user indirectly creates Dynamic Data
Types by adding Natural Types and Roles to the system.
This general procedure is already known from creating and
extending Dynamic Tuples. RSQL provides a data definition
language, to create Dynamic Data Types. A new Dynamic
Data Type is created if a new Natural Type is created in the
system. This DDT is extended, if a new Role Type is added

〈select〉 ::= SELECT 〈projection-clause〉
FROM 〈from-clause〉 (WHERE 〈where-clause〉)?

〈from-clause〉 ::= 〈config-expression〉
(, 〈config-expression〉)*

〈config-expression〉 ::= (NATURALTYPE
(〈ntname〉 〈ntAbbreviation〉 | _)
(PLAYING 〈logical-derived-config-expression〉)?)

〈logical-derived-config-expression〉 ::=
〈derived-config-exrpession〉

| NOT 〈logical-derived-config-expression〉
| (〈logical-derived-config-expression〉 〈junctor〉
〈logical-derived-config-expression〉)

〈derived-config-exrpession〉 ::= (ROLETYPE 〈rtname〉
〈rtAbbreviation〉)

Figure 6: DQL Statements

to the system and connected to the Natural Type. In con-
trast, Dynamic Data Types are contracted if the connection
to a Role Type is removed or if the Role Type is deleted.

5. RSQL
Users and applications interact with a DBMS by utilizing

query languages as interface. By introducing new database
objects this interface has to be modified, too. RSQL is a
novel interface between DBMSs and users, that manages Dy-
namic Tuples and Dynamic Data Types to enable users to
query for data with role semantics. In addition, RSQL adds
role integrity conditions to the DBMS for consistency and
to prevent invalid states. Furthermore, it improves interop-
erability between several applications running the DBMS.
RSQL is an acronym for Role SQL, that implies (i) RSQL
is designed for role-based data structures, and (ii) is built
on SQL [19]. It can be seen as a conceptual query language.
The general syntax of RSQL is based on the SQL grammar.
RSQL’s syntax is defined using the Extended Backus-Naur
Form (EBNF) [18]. Note, all non-terminal symbols that are
not explained in detail are equal to their SQL equivalent.
Like SQL, RSQL consists of a data query language (DQL),
a data manipulation language (DML), and a data defini-
tion language (DDL). All components are explained in the
following subsections, starting by detailing the DQL.

5.1 Data Query Language
The DQL provides a powerful select statement to retrieve

Dynamic Tuples. Figure 6 shows the syntax of the select
statement. It starts with the keyword ‘SELECT’ followed
by the 〈projection-clause〉, which allows restricting the re-
trieved attribute set. The projection is followed by the
〈from-clause〉 and the optional 〈where-clause〉, which allows
filtering Dynamic Tuples by value. Please note that group-
ing and ordering of tuples is also possible but left out for
simplicity of the presentation.

To handle the complexity of Dynamic Data Types,
RSQL offers 〈config-expressions〉 as sophisticated type
descriptions. A 〈config-expression〉 describes a set of
Configurations and addresses all Dynamic Tuples that

Final edited form was published in "IDEAS '14: 18th International Database Engineering & Applications Symposium. Porto 2014", S. 185–194. ISBN: 978-1-4503-2627-8
https://doi.org/10.1145/2628194.2628246

5

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

are visible under one of these Configurations. It can be
seen as a type level filter condition. A Natural Type
is the center element of any 〈config-expression〉 and is
given after the keyword ‘NATURALTYPE’. After the keyword
‘PLAYING’ the 〈logical-derived-config-expression〉 indicates
which Roles can be played by the addressed Dynamic
Tuples. This logical expression allows connecting several
Role Types logically to a predicate match Configurations
have to fulfill. A 〈logical-derived-config-expression〉
may contain a single 〈derived-config-expression〉, a
negated 〈logical-derived-config-expression〉 or two
〈logical-derived-config-expressions〉 connected by a log-
ical 〈junctor〉, e.g., ‘AND’. The derived-config-expression
describes a Role Type by adding ‘ROLETYPE’ and a name
including an abbreviation.

A given 〈config-expression〉 ex is a function
ex(c)→ {>,⊥}, which partitions all possible Configu-
rations under the current schema into Configurations c with
ex(c) = > that match the expression and Configurations
c with ex(c) = ⊥ that do not match the expression. It
addresses all Dynamic Tuples d having a Configuration cd
with ex(cd) = >.

For instance, assume the following Dynamic Tuples stored
in the database:

dKlaus = (Klaus, {E2} , {C1, C2})

with cKlaus = (Person, {Employee, Customer})
dPeter = (Peter, {E2})

with cPeter = (Person, {Employee})

Given the expression (NATURALTYPE Person p PLAY-

ING ((ROLETYPE Employee e) XOR (ROLETYPE Customer

cu))), (Person, {Employee}) and (Person, {Customer})
are matching Configurations, while (Person, ∅) and
(Person, {Employee, Customer}) do not match. Accord-
ingly, the expression addresses the Dynamic Tuple dPeter

but not dKlaus.
Role Types can be shared among several Dynamic Data

Types, hence, RSQL provides a way to query Role Types in-
dependently of their Natural Types. In a 〈config-expression〉
a ‘_’ has to be specified instead of naming the correspond-
ing Natural Type. This ‘_’ will be interpreted as wild-
card for Natural Types. Consequently, only attributes of
the specified Role Types are avaliable for projection in the
〈<projection-clause>〉. The query processing in this case
becomes more complex, because the database system has to
determine all affected Dynamic Data Types and correspond-
ing Configurations firstly. Afterwards, Dynamic Tuples in
the corresponding Configuration will be created for each de-
termined Dynamic Data Type. For instance, two Natural
Types can fill the same Role Type, the database system will
check all Dynamic Tuples of the addressed Dynamic Data
Types for a Configuration match. This results in two sets of
qualified Dynamic Tuples, both having the same schema but
are of different types. Finally, the different Dynamic Tuples
will be united to return only a single result. Exmaple queries
are given in Section 5.4.

5.2 Data Manipulation Language
Dynamic Tuples are manipulated indirectly by adding

Naturals and Roles to the system. These instances in combi-
nation with the plays-relation form Dynamic Tuples. Thus,
data manipulation comprises inserting, updating, and delet-

〈insert-nt〉 ::= INSERT INTO NATURALTYPE 〈ntname〉
(〈attribute-name〉 (, 〈attribute-name〉)*)
VALUES (〈value-expression〉 (, 〈value-expression〉)*)

〈insert-rt〉 ::= INSERT ROLETYPE 〈rtname〉
(〈attribute-name〉 (, 〈attribute-name〉)*)
VALUES (〈value-expression〉 (, 〈value-expression〉)*)
INTO 〈config-expression〉 (WHERE 〈where-clause〉)?

〈update-nt〉 ::= UPDATE NATURALTYPE 〈ntname〉
SET 〈assignment-expression〉 (WHERE 〈where-clause〉)?

〈update-rt〉 ::= UPDATE ROLETYPE 〈rtname〉
IN 〈config-expression〉 SET 〈assignment-expression〉
(WHERE 〈where-clause〉)?

〈delete-nt〉 ::= DELETE NATURALTYPE
FROM (〈config-expression〉) (WHERE 〈where-clause〉)?

〈delete-rt〉 ::= DELETE ROLETYPE 〈rtname〉 〈rtAlias〉?
FROM (〈config-expression〉) (WHERE 〈where-clause〉)?

Figure 7: DML Statements

ing Naturals as well as Roles. To manipulate the system
instance, the statements listed in Figure 7 are available.

Inserting Naturals into the system results in a new Dy-
namic Tuple. To create a new Natural the 〈insert-nt〉
statement has to be executed. The statement starts with
‘INSERT INTO NATURALTYPE’ followed by a Natural Type
name and a list of attribute names. After the keyword
‘VALUES’ a list of 〈value-expressions〉 provides a value for
each of the listed attributes. Inserting a new Role into the
system results in an extension of a Dynamic Tuple and may
result in a Configuration change. A Configuration change
happens, if and only if a Role of a Role Type that is cur-
rently not being played is inserted. In this case the Dynamic
Tuple’s configuration cd is extended by a new Role Type.
The 〈insert-rt〉 statement starts with ‘INSERT ROLETYPE’ fol-
lowed by a Role Type name. Subsequently, a list of at-
tribute names and a list of value-expressions follows. Each
Role belongs to exactly one Natural. Accordingly, the
〈insert-rt〉 statement adds the Role to a single Dynamic
Tuple, which is specified after the keyword ‘INTO’ with a
〈config-expression〉 and an optional 〈where-clause〉. In case
the 〈config-expression〉 and the 〈where-clause〉 address mul-
tiple tuples the insert statement fails.

The update statements allow to update values of a cer-
tain type. Naturals are updated with the 〈update-nt〉 state-
ment. This statement starts with an ‘UPDATE NATURALTYPE’,
a Natural Type name, and the keyword ‘SET’. The fol-
lowing 〈assignment-clause〉 defines which attributes have
to be updated. Finally, the optional 〈where-clause〉 re-
stricts the set of Naturals that are affected by the update.
Roles can be updated with the 〈update-rt〉 statement. It
starts with ‘UPDATE ROLETYPE’ and the name of the Role
Type of the Role that should be updated. The following
〈config-expression〉 specifies the Configuration a Role has to
be part of to be affected by the update. This allows, for in-
stance, to update the salary of all employees that also have
the customer role. Finally, the 〈assignment-expression〉 and
the 〈where-clause〉 are similar to the 〈update-nt〉 statement.

Final edited form was published in "IDEAS '14: 18th International Database Engineering & Applications Symposium. Porto 2014", S. 185–194. ISBN: 978-1-4503-2627-8
https://doi.org/10.1145/2628194.2628246

6

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

〈create-nt〉 ::= CREATE NATURALTYPE 〈ntname〉
(〈attribute-definition〉 (, 〈attribute-definition〉)*)

〈create-rt〉 ::= CREATE ROLETYPE 〈rtname〉
(〈attribute-definition〉 (, 〈attribute-definition〉)*)
(PLAYED BY (〈ntname〉 (, 〈ntname〉)*))?

〈drop-nt〉 ::= DROP NATURALTYPE 〈ntname〉

〈drop-rt〉 ::= DROP ROLETYPE 〈rtname〉

Figure 8: DDL Statements

In contrast to insert statements, updates are set operations.
Delete statements reduce the number of instances in the

database. Deleting Naturals removes the corresponding Dy-
namic Tuples from the database, because all connect Roles
cannot exist without their Naturals. Naturals can be deleted
with a 〈delete-nt〉 statement. The statement is indicated
by the keywords ‘DELETE NATURALTYPE FROM’ and specifies a
〈config-expression〉 and an optional 〈where-clause〉. Naming
a Natural Type is unnecessary, because the Natural Type
will be specified in the 〈config-expression〉 anyway. Delet-
ing Roles diminishes Dynamic Tuples and may also result in
Configuration changes. A Configuration change happens if
and only if the last instance of a Role Type is deleted from
a Dynamic Tuple. To delete a role, the 〈delete-rt〉 state-
ment must be used. The statement starts with the keywords
‘DELETE ROLETYPE’ followed by a Role Type name and an op-
tional alias. A config-expression and a where-clause allow to
limit the set of Roles to be deleted similar to their use in the
〈update-rt〉 statement. Like update statements, delete state-
ments are set operations. Every qualified Role and Natural
will be deleted from the system. Examples for RSQL’s DML
statements are given in Section 5.4.

5.3 Data Definition Language
Like Dynamic Tuples on the instance level, Dynamic Data

Types (DDT) are created indirectly out of their build blocks.
Dynamic Data Types are made of Natural Types and Role
Types in combination with the fills-relation. To define a Dy-
namic Data Type, the statements in Figure 8 are available.

Creating a new Natural Type leads to a new Dynamic
Data Type, since each DDT consists of exactly one Nat-
ural Type. A 〈create-nt〉 statement creates a new Nat-
ural Type. This statement starts with the keywords
‘CREATE NATURALTYPE’. A unique type name is followed by
several 〈attribute-definitions〉. Each 〈attribute-definition〉
consists of a unique name and a technical type. Creating
a new Role Type extends one or more existing Dynamic
Data Types by a new Role Type. Because Role Types
have to be connected with a Natural Type, the fills-relation
is populated during the creation process. The 〈create-rt〉
statement starts with ‘CREATE ROLETYPE’ and a unique Role
Type name. Afterwards, the attributes are specified by
〈attribute-definitions〉. To populate the fills-relation, Role
Types specify their connected Natural Types after the key-
words ‘PLAYED BY’. The 〈drop-nt〉 and 〈drop-rt〉 statements
drop Natural Types or Role Types from the system, respec-
tively. Natural Types are only to be dropped if they are

not connected to any Role Types to prevent unconnected
Role Types. Examples of this Data Definition Language are
presented in the upcoming section.

5.4 RSQL Example Statements
To give a better impression on the RSQL statements, we

present and explain some statements in detail. At first, the
type layer is created by adding a Natural Type and two
Role Types to the system as shown in Figure 9. The Nat-
ural Type Person has two attributes, a name of type Var-
Char(100) and an age of type Int. Next, a Role type Em-
ployee, consisting of an eID and salary both of type Int,
are added to the system. Additionally, the new Role Type
is connected to Person and thus, creates the DDT Person.
Customer is the second Role Type and consists of a cID
attribute only. This type is also linked to Person. The fi-
nal type level setup contains a single Dynamic Data Type
Person ddt = (Person, {Employee, Customer}).

Next, a Dynamic Tuple is added to the system as pre-
sented in Figure 10. The first statement creates a new Nat-
ural Peter with an age of 37 and thus, a new Dynamic Tuple
has been created. The following statements extend the cre-
ated Dynamic Tuple with three Roles. At first, an Employee
Role is added to a Person where the Person’s name is Pe-
ter. Here, a Configuration change is performed, because the
Role Type Employee is currently not being played. Second,
another Role of type Employee is added. This time, there
is no Configuration change, because the Dynamic Tuple Pe-
ter already plays a Role of type Employee. Finally, a new
Customer Role extends the Dynamic Tuple Peter, since it
is the only Dynamic Tuple in the system and the config-
expression returns this. The last insert results in a second
Configuration change.

Finally, three example queries are explained and listed in
Figure 11. Assuming only the statements explained before,
the first statement returns the name of all Naturals of type
Person that play the Role of type Employee at least once and
the salary is higher than 1000. The Dynamic Tuple Peter
matches this description and is returned. The second query
asks for Persons that are either an Employee or a Customer
and the only Dynamic Tuple in the system does not match
this description, because both the Employee and Customer
Role Type are played. The third example query returns all
Persons, that are not a Customer. Here, the Dynamic Tu-
ple Peter is not returned because the Role Type Customer is
played. Finally, the last example returns all Customer Roles,
no matter which Natural Type is playing this Role. Assum-
ing the database also stores a Role Customer that is played
by a Natural Google of the Natural Type Company, both,
the Dynamic Tuple Peter and the Dynamic Tuple Google
will be returned including the Customer’s attributes only.

6. RELATED WORK
Object-oriented software systems organize their data by

means of objects rather than relations, like relational
database management systems do. This results in the well
known impedance mismatch and object-oriented database
systems try to overcome this mismatch by storing ob-
jects as objects instead of relation. Unfortunately, object-
oriented databases cause other problems like poor perfor-
mance. RSQL has not been designed to solve the problem of
the impedance mismatch. It rather tackles the problems of
Object Schizophrenia [14] and Distributed State by provid-

Final edited form was published in "IDEAS '14: 18th International Database Engineering & Applications Symposium. Porto 2014", S. 185–194. ISBN: 978-1-4503-2627-8
https://doi.org/10.1145/2628194.2628246

7

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

CREATE NATURALTYPE Person (name VarChar (100) , age Int) ;
CREATE ROLETYPE Employee (eId Int , s a l a r y Int) PLAYED BY (Person) ;
CREATE ROLETYPE Customer (cId Int) PLAYED BY (Person) ;

Figure 9: Data Definition Language Examples

INSERT INTO NATURALTYPE Person (name , age) VALUES (” ‘ Peter ” ’ , 3 7) ;
INSERT ROLETYPE Employee (eID , s a l a r y) VALUES (1 , 2800) INTO (NATURALTYPE Person p)

WHERE p . name = ” ‘ Peter ” ’ ;
INSERT ROLETYPE Employee (eID , s a l a r y) VALUES (2 , 1300) INTO (NATURALTYPE Person p)

WHERE p . name = ” ‘ Peter ” ’ ;
INSERT ROLETYPE Customer (cID) VALUES (1) INTO (NATURALTYPE Person p PLAYING (RT Employee e)) ;

Figure 10: Data Manipulation Language Examples

SELECT p . name FROM (NATURALTYPE Person p PLAYING (ROLETYPE Employee e)) WHERE e . s a l a r y > 1000 ;
SELECT ∗ FROM (NATURALTYPE Person p PLAYING ((ROLETYPE Employee e) XOR (ROLETYPE Customer cu))) ;
SELECT p . age FROM (NATURALTYPE Person p PLAYING NOT (ROLETYPE Customer cu)) ;
SELECT ∗ FROM (NATURALTYPE PLAYING (ROLETYPE CUSTOMER)) ;

Figure 11: Example Queries

ing a consistent perspective of role-based data for both, ap-
plication and users. Additionally, object-oriented database
management systems cannot handle dynamic objects and do
not provide role semantics. For these reason, object-oriented
databases will not be considered in detail.

The role concept has been proposed the first time in the
1970s in [1] as Role Data Model and as extension of the net-
work model. Their Role Data Model is based on the obser-
vations that real world objects interact via roles and this was
not covered by state of the art approaches. Roles have been
adopted in many research fields, especially conceptual mod-
eling [7, 26, 11] and programming languages [2, 13] to name
just a few. The first approach that brings roles into a DBMS
has been proposed in DOOR [31]. DOOR is an object-role
DBMS that introduces roles at runtime for the first time. It
is built on object classes and role classes where role classes
can be played by several object classes on the type level.
On the instance level objects and roles exist. Their system
definition is similar to the system we described in Section 3.
Differences exist on the instance level, where we defined a
plays-relation, which is not present in DOOR [30]. Further-
more, DOOR persistency is based on a file based associative
string database, where RSQLs aims to a relational DBMS.
Unfortunately, this project is not maintained anymore and
DOOR’s source code is not available.

RSQL can be seen as a conceptual query language where
queries are written designed by the conceptual design in-
stead of the implemented data structures. Applying this
approach, both the software and DBMSs get together, be-
cause complex types used in software systems can be man-
aged directely by the DBMS. Conceptual query languages

have been introduced in the 1990’s. In [15, 21] approaches
for entity relationship model oriented querying and extended
entity relationship model querying can be found. These
approaches and RSQL share the same querying paradigm,
but differ in their underlying conceptual modeling language.
Since entity relationship modeling builds on static types,
these approaches are only able to query static semantics
rather than dynamic types like RSQL does.

The Object Role Model by Halpin [12] is a fact-oriented
and attribute free conceptual modeling language. Based on
this modeling language, conceptual querying has been in-
troduced [5, 6]. A user queries from a conceptual perspec-
tive without any information about the physical database
schema, and thus, the distribution of object data over sev-
eral tables is hidden by the query. RSQL was designed to
implement a conceptual and especially a role-based perspec-
tive on the data. Users describe Configurations by using
config-expressions without any information about the phys-
ical schema, since RSQL does not define the physical stor-
age of the system. ConQuer [6] and RSQL share the same
querying paradigm, but they differ in their underlying role
definitions.

Information Networking Model (INM) uses roles in rela-
tionships to describe that objects play roles in a certain re-
lationship to other objects [22, 23]. Like RSQL and the
underlying formalism, it also supports dynamic and many-
faceted object types. Furthermore, complex relationships
between objects can be modeled. INM also provides a
query language, called Information Query Language (IQL)
[16]. The IQL utilizes tree expressions, like XPath, to hi-
erarchically describe the desired data. Furthermore, they

Final edited form was published in "IDEAS '14: 18th International Database Engineering & Applications Symposium. Porto 2014", S. 185–194. ISBN: 978-1-4503-2627-8
https://doi.org/10.1145/2628194.2628246

8

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

describe a DBMS that persists INM-based data in a key-
value-store (Berkeley DB). In contrast, RSQL aims at a
relational DBMS to take advantage of the richer role se-
mantics to (i) store role-based data more efficiently and (ii)
optimize queries. Key-value-stores cannot take advantage of
in-DBMS optimizations, because no information about the
stored data is known to the DBMS. Optimizations have to
be performed outside of the DBMS which causes overhead
in transferring and processing the data.

Numerous implementation techniques for complex types
onto tables have been proposed, but all share the same dis-
advantage in the event of role-based data structures have
to be stored. They do not provide support for roles and
dynamic types. The semantics of roles will be lost if role-
based data are stored using these approaches and has to
be restored by each application individually. As mentioned
in Section 4 nested relations can be utilized to physically
represent sets of Roles of the same Role Type. Addition-
ally, the nest and unnest operators enable data processing
in a relational fashion [20]. Nevertheless, nested tables are a
variation of static tables and do not provide role semantics,
since only the table and nested table semantics are known
to the DBMS. In contrast, RSQL provides a consistent per-
spective of role-based data structures to users, applications,
and the database system itself.

7. CONCLUSIONS
This paper provides a novel approach to extend DBMS

with roles to incorporate the requirements of current soft-
ware applications. Thus, as a result of the increased com-
plexity and tendency to change of software applications, we
have proposed an extended DBMS able to represent Roles
played by Naturals. This not only permits the representa-
tion of complex objects but also increases the flexibility of
the underlying schema. The latter ultimately enables evo-
lution of applications using our DBMS at runtime.

In detail, we have introduced a novel Dynamic Data Type
together with Dynamic Tuples to represent complex objects
at the type and at the instance level, respectively. In doing
so, our approach directly supports the storage, manipula-
tion, and retrieval of complex objects. Furthermore, because
our DBMS extension is based on the presented formal model,
we prevent the occurrence of Object Schizophrenia as well as
the issues associated with Distributed State. This is achieved
by enforcing the representation of a Natural and its Roles
as a Dynamic Tuple with a unique identity. Thus, when
querying a complex object only the states of the Naturals
and Roles selected by the Configurations contribute to the
state of the Dynamic Tuple limiting its size. On top of that,
it is possible to validate a given query against the database
schema and thus prevent operations with undefined behav-
ior, for instance by forbidding direct joins between Natural
and Role Types. Consequently, the proposed DBMS ex-
tension can enforce the semantics of the presented formal
model. As a result of the direct representation of complex
objects with Naturals and Roles, our approach reduces the
transformation overhead and increases the interoperability
of the data model and ultimately limits the dependence of
software applications on specialized ORM.

In sum, we made the following four major contributions to
DBMS. First, we provided a formal model for the logical rep-
resentation of roles in DBMS. Second, Dynamic Data Types
and Dynamic Tuples were introduced as a new approach to

represent complex, dynamic objects. Third, we have devised
an RSQL to store, manipulate, and retrieve these Dynamic
Data Objects. Fourth, a DBMS extension was proposed
which increases the interoperability of the schema as well
as enforces the semantics of the role concept. Altogether,
these contributions represent a step towards DBMS suitable
for future software applications.

However, there are many more steps to make in pursuit of
this goal. One major step is the development of an efficient
representation of the formal model within the logical level of
the DBMS together with specialized database operators for
combining Naturals and Roles to Dynamic Tuples. After-
wards, we can evaluate the actual performance overhead in
contrast to standard and specialized ORM. Another step is,
to further extend RSQL and the underlying formal model,
to capture both the relational nature [28] and contextual de-
pendence [13] of roles. Among others, these steps will lead
to a new kind of DBMS with increased knowledge of the
domain model of future software systems.

8. ACKNOWLEDGMENTS
This work is funded by the German Research Founda-

tion (DFG) within the Research Training Group ”Role-based
Software Infrastructures for continuous-context-sensitive
Systems” (GRK 1907). Special thanks go to Stefan Hinkel,
Johannes Fett, and Christian Kabelitz for their help in de-
veloping RSQL and to Ulrike Schöbel for improving this
paper.

9. REFERENCES
[1] C. W. Bachman and M. Daya. The Role Concept in

Data Models. In Proceedings of the third International
Conference on Very Large Data Bases, pages 464–476.
VLDB Endowment, 1977.

[2] M. Baldoni, G. Boella, and L. V. D. Torre. Roles as a
coordination construct: Introducing powerJava. In
Procs. of MTCoord ’05 workshop at
COORDINATION ’05, page 2006. Electronic, 2005.

[3] M. Baldoni, G. Boella, and L. van der Torre.
powerJava: Ontologically Founded Roles in Object
Oriented Programming Languages. In Proceedings of
the 2006 ACM Symposium on Applied Computing,
SAC ’06, pages 1414–1418, New York, NY, USA, 2006.
ACM.

[4] D. Bäumer, D. Riehle, W. Siberski, and M. Wulf. The
Role Object Pattern. Technical report, Washington
University Dept. of Computer Science, 1997.

[5] A. Bloesch and T. Halpin. Conquer: A conceptual
query language. In Proceedings of the International
Conference on Conceptual Modeling – ER ’96, volume
1157 of Lecture Notes in Computer Science, pages
121–133. Springer Berlin Heidelberg, 1996.

[6] A. C. Bloesch and T. A. Halpin. Conceptual Queries
using ConQuer-II. In Proceedings of the International
Conference on Conceptual Modeling – ER’97, pages
113–126. Springer, 1997.

[7] P. P.-S. Chen. The Entity-Relationship Model –
Toward a Unified View of Data. ACM Transactions on
Database Systems (TODS), 1(1):9–36, Mar. 1976.

[8] S. Götz, S. Richly, and U. Aßmann. Role-based
object-relational co-evolution. In Proceedings of 8th

Final edited form was published in "IDEAS '14: 18th International Database Engineering & Applications Symposium. Porto 2014", S. 185–194. ISBN: 978-1-4503-2627-8
https://doi.org/10.1145/2628194.2628246

9

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

Workshop on Reflection, AOP and Meta-Data for
Software Evolution (RAM-SE 2011), 2011.

[9] N. Guarino. Concepts, Attributes and Arbitrary
Relations: Some Linguistic and Ontological Criteria
for Structuring Knowledge Bases. Data & Knowledge
Engineering, 8(3):249 – 261, 1992.

[10] G. Guizzardi and G. Wagner. Conceptual Simulation
Modeling with onto-UML. In Proceedings of the
Winter Simulation Conference, WSC ’12, pages
5:1–5:15. Winter Simulation Conference, 2012.

[11] T. Halpin. ORM/NIAM Object-Role Modeling. In
Handbook on Architectures of Information Systems,
International Handbooks on Information Systems,
pages 81–101. Springer Berlin Heidelberg, 1998.

[12] T. A. Halpin. ORM 2. In On the Move to Meaningful
Internet Systems 2005: OTM 2005 Workshops,
volume 3762 of Lecture Notes in Computer Science,
pages 676–687. Springer, 2005.

[13] S. Herrmann. A Precise Model for Contextual Roles:
The Programming Language ObjectTeams/Java.
Applied Ontology, 2(2):181–207, 2007.

[14] S. Herrmann. Demystifying Object Schizophrenia. In
Proceedings of the 4th Workshop on MechAnisms for
SPEcialization, Generalization and inHerItance,
MASPEGHI ’10, pages 2:1–2:5, New York, NY, USA,
2010. ACM.

[15] U. Hohenstein and G. Engels. SQL/EER — Syntax
and Semantics of an Entity-relationship-based Query
Language. Information Systems, 17(3):209–242, May
1992.

[16] J. Hu, Q. Fu, and M. Liu. Query Processing in INM
Database System. In L. Chen, C. Tang, J. Yang, and
Y. Gao, editors, Web-Age Information Management,
volume 6184 of Lecture Notes in Computer Science,
pages 525–536. Springer Berlin Heidelberg, 2010.

[17] C. Ireland, D. Bowers, M. Newton, and K. Waugh. A
Classification of Object-relational Impedance
Mismatch. In Advances in Databases, Knowledge, and
Data Applications, 2009. DBKDA’09, pages 36–43.
IEEE, 2009.

[18] ISO/IEC. ISO/IEC 14977:1996(E), 1996.

[19] ISO/IEC. ISO/IEC 9075-2:2011 (Information
technology – Database languages – SQL), 2011.

[20] G. Jaeschke and H.-J. Schek. Remarks on the Algebra
of Non First Normal Form Relations. In PODS’82,
Proceedings of the ACM Symposium on Principles of
Database Systems, March 29-31, 1982, Los Angeles,
California, pages 124–138. ACM, 1982.

[21] M. Lawley and R. Topor. A Query Language for EER
Schemas. In Proceedings of the 5th Australian
Database Conference. Global Publication Service,
1994.

[22] M. Liu and J. Hu. Information Networking Model. In
International Conference on Conceptual Modeling –
ER 2009, volume 5829 of Lecture Notes in Computer
Science, pages 131–144. Springer Berlin Heidelberg,
2009.

[23] M. Liu and J. Hu. Modeling Complex Relationships.
In Database and Expert Systems Applications, volume
5690 of Lecture Notes in Computer Science, pages
719–726. Springer Berlin Heidelberg, 2009.

[24] S. Murer, C. Worms, and F. J. Furrer. Managed
Evolution. Informatik-Spektrum, 31(6):537–547, 2008.

[25] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified
Modeling Language Reference Manual (Paperback).
The Addison-Wesley object technology series.
ADDISON WESLEY Publishing Company
Incorporated, 2010.

[26] J. Rumbaugh, R. Jacobson, and G. Booch. The
Unified Modelling Language Reference Manual.
Addison-Wesley, 1st edition, Jan. 1999.

[27] H.-J. Schek and P. Pistor. Data Structures for an
Integrated Data Base Management and Information
Retrieval System. In Proceedings of the 8th
International Conference on Very Large Data Bases,
pages 197–207, San Francisco, CA, USA, 1982.
Morgan Kaufmann Publishers Inc.

[28] F. Steimann. On the Representation of Roles in
Object-oriented and Conceptual Modelling. Data &
Knowledge Engineering, 35(1):83 – 106, 1999.

[29] J. Sutherland. Business Objects in Corporate
Information Systems. ACM Computing Surveys
(CSUR), 27(2):274–276, 1995.

[30] R. Wong, H. Chau, and F. Lochovsky. A Data Model
and Semantics of Objects with Dynamic Roles. In
Data Engineering, 1997. Proceedings. 13th
International Conference on, pages 402–411, Apr 1997.

[31] R. Wong, H. Chau, and F. Lochovsky. Dynamic
Knowledge Representation in DOOR. In Proceedings
of Knowledge and Data Engineering Exchange
Workshop, 1997, pages 89–96, Nov 1997.

Final edited form was published in "IDEAS '14: 18th International Database Engineering & Applications Symposium. Porto 2014", S. 185–194. ISBN: 978-1-4503-2627-8
https://doi.org/10.1145/2628194.2628246

10

Provided by Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden

	RSQL_Vorsatz.pdf
	Dieses Dokument ist eine Zweitveröffentlichung (Postprint Version) /
	This is a self-archiving document (accepted version):
	Thomas Kühn, Kay Bierzynski, Sebastian Richly, Uwe Aßmannn

