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‘…and later, lying on the deck of his boat gazing at the immense, starry sky, the tiny mouse 

Amos, a little speck of a living thing in the vast living universe, felt thoroughly akin to it 

all. Overwhelmed by the beauty and mystery of everything, he rolled over and over and 

right off the deck of his boat and into the sea.’ 

- From ‘Amos & Boris’ by William Steig   
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An illustration of outer membrane protein interaction with periplasmic chaperones.  

- Designed by Dr. Andreas Hartmann.  
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Summary 

Beta-barrel outer membrane proteins (OMPs) present on the outer membrane of Gram-

negative bacteria are vital to cell survival. Their biogenesis is a challenging process which 

is tightly regulated by protein-chaperone interactions at various stages. Upon secretion 

from the inner membrane, OMPs are solubilized by periplasmic chaperones seventeen 

kilodalton protein (Skp) and survival factor A (SurA) and maintained in a folding 

competent state until they reach the outer membrane. As periplasm has an energy deficient 

environment, thermodynamics plays an important role in fine tuning these chaperone-OMP 

interactions. Thus, a complete understanding of such associations necessitates an 

investigation into both structural and thermodynamic aspects of the underlying 

intercommunication. Yet, they have been difficult to discern because of the conformational 

heterogeneity of the bound substrates, fast chain dynamics and the aggregation prone nature 

of OMPs. This demands for use of single molecule spectroscopy techniques, specifically, 

single molecule Förster resonance energy transfer (smFRET).  

In this thesis, upon leveraging the conformational and temporal resolution offered by 

smFRET, an exciting insight is obtained into the mechanistic and functional features of 

unfolded and Skp/SurA - bound states of two differently sized OMPs: OmpX (8 -strands) 

and outer membrane phospholipase A (OmpLA – 12 -strands). First, it was elucidated that 

the unfolded states of both the proteins exhibit slow interconversion within their sub-

populations. Remarkably, upon complexing with chaperones, irrespective of the chosen 

OMP, the bound substrates expanded with localised chain reconfiguration on a sub-

millisecond timescale. Yet, due to the different interaction mechanisms employed by Skp 

(encapsulation) and SurA (multivalent binding), their clients were found to be characterised 

by distinct conformational ensembles. Importantly, the extracted thermodynamic 

parameters of change in enthalpy and entropy exemplified the mechanistically dissimilar 

functionalities of the two chaperones. Furthermore, both Skp and SurA were found to be 

capable of disintegrating aggregated OMPs rather cooperatively, highlighting their 

multifaceted chaperone activity. This work is of significant fundamental value towards 

understanding the ubiquitous chaperone-protein interactions and opens up the possibility 

to design drugs targeting the chaperone-OMP complex itself, one step ahead of the OMP 

assembly on the outer membrane. 
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Chapter 1 Introduction 

Cellular machinery functions by establishing several prudent interactions between 

cytosolic, periplasmic and membrane proteins. A fracture in any of these labyrinthine 

pathways could result in misfolding and aggregation of proteins disrupting the entire 

cellular architecture (1, 2). For this purpose, cells employ ubiquitous biomolecules called 

as chaperones that maintain protein homeostasis and prevent cell destruction by interacting 

with nascent polypeptides. They act as active or passive catalysts during protein folding 

and can even rescue stress induced protein aggregates (3–6). For example, Trigger factors 

(TF) and Heat shock proteins like Hsp70s bind to newly synthesized polypeptides co-

translationally and protect them from aggregation resulting from close proximity of 

frustrated domains on these nascent chains (7–9). When required, they also guide them to 

subsequent chaperone systems like the cylindrical chaperonin complexes which provide 

compartments in which they can fold into a functional form (10, 11). Some chaperones like 

protein-export protein SecB in the cytoplasm (12, 13) and seventeen kilodalton protein 

(Skp) and survival factor A (SurA) in the periplasm of Gram negative bacteria (14) exhibit 

anti-folding activity and sequester their substrates in a folding competent state until they 

reach their target cellular compartments. 

Intriguingly, only a meagre collection of chaperones is available to assist plentiful nascent 

polypeptides through a complicated protein folding landscape in either an ATP-dependent 

or an ATP-independent manner (15). Therefore, a complete understanding of chaperone-

protein interactions requires that we not only study the structural aspects but also the 

biophysics underlying such intercommunication. For instance, a difference in recognition 

and binding mechanisms is often observed to correspond to two divergent interaction 

modes. While some chaperones interact with a client protein in a conformationally specific 

manner, some accommodate them in a structural ensemble by numerous transient non-

specific interactions thereby maintaining them in a folding competent state (16–18). In 

energetic terms, this translates into interaction energy landscapes dominated either by an 

entropic or an enthalpic change upon binding.  

One striking example of structurally and thermodynamically modulated protein-chaperone 

associations can be found in Gram-negative bacteria, mitochondria and chloroplasts which 
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possess a range of proteins called as outer membrane proteins (OMPs) on the outer 

membrane of the cell envelope. OMPs are amphipathic -barrel proteins which maintain 

the cell viability by functioning as porins, lipases, ion channels or receptors while others 

play an important role in pathogenesis (19, 20). Interestingly, their biogenesis involves a 

well-regulated network of protein-protein interactions. Upon translocation from the inner 

membrane, chaperones in the periplasm assist the freshly secreted OMPs in an ATP-

independent manner from the inner membrane to their destination, i.e. the outer membrane 

(14, 21–23). They protect the unfolded hydrophobic chains from misfolding and 

aggregation in the aqueous periplasm (24–27) and maintain them in a state capable of being 

handed over to the upstream folding machinery, thus playing a crucial role in OMP 

biogenesis. Skp, SurA, the serine protease DegP and FkpB binding protein A (FkpA) 

compose such a set of chiefly investigated chaperones found in the periplasm of Gram-

negative bacteria. Among these, SurA and/or Skp have been established as the major 

chaperones in the biogenesis process as their absence induces envelope stress response (27–

30). On approaching the outer membrane, the insertion and folding of OMPs is facilitated 

by the beta-barrel assembly machinery (BAM), a multi-protein complex (31, 32). Although 

a broad understanding of the OMP assembly pathway exists, the fundamental 

conformational and biophysical details governing the chaperone-OMP interactions remains 

unclear. Hence, a particular interest for this thesis has been to investigate the SurA - OMP 

and Skp - OMP interactions to the molecular detail. 

Separate previous studies have demonstrated that the chaperone bound OMPs are either 

elongated or globular depending on the chaperone or OMP under consideration (16, 33–

36). The fast conformational interconversion of the proteins observed in some of these 

investigations was then speculated to result in a low entropic change of binding thus fine 

tuning the thermodynamics of these interactions in the energy deficient periplasm (37). 

Despite these important insights and given the differential mechanism of their interaction 

with substrates, little is clear about the diversity in the conformational space and 

reconfiguration dynamics of the Skp and SurA bound OMP chain.  Additionally, the change 

of enthalpy and entropy governing the affinity of periplasmic chaperones towards their 

substrates remain undescribed. Therefore, in this thesis, a comprehensive examination of 

the unbound, Skp and SurA bound state of OMPs is executed from conformational, 

temporal and energetic perspective. In order to achieve an impression of OMP-chaperone 
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interaction in the cellular context, two differently sized OMPs have been probed: OmpX (8 

-strands) (38) and OmpLA (12 -strands) (39). Since OMPs are maintained in an unfolded 

form for extended periods of time, the denatured states of OMPs are also examined to 

obtain a broader perspective over the whole OMP biogenesis process. Finally, an 

interesting insight is gained into the action of these chaperones upon OmpX aggregates, as 

recent modelling studies have suggested a synergistic interaction amongst these chaperones 

especially under stress conditions (24, 40).  

Single molecule spectroscopy is a powerful technique to resolve the heterogeneity and 

dynamics of the diverse conformations adopted by the chaperone bound OMPs. It also 

avoids oligomerization of the aggregation prone OMPs due to picomolar concentrations of 

the probed samples. On that account, this work uses single molecule Förster Resonance 

Energy Transfer (smFRET) (41–44) and Fluorescence Correlation Spectroscopy (FCS) (45, 

46) to discern the intricate mechanistic details governing chaperone-OMP interactions. 

Fluorescence from freely diffusing double fluorophore labelled molecules was recorded on 

a custom-built confocal microscope setup to enable smFRET experiments with time-

correlated single photon counting (TCSPC) and fluorescence anisotropy measurements 

(47). Such a multiparameter fluorescence detection (MFD) allowed for a thorough 

investigation of both the conformational and thermodynamic information intrinsic to the 

chaperone-OMP associations.  

This study is an important step towards a better understanding of the chaperone-OMP 

interactions. In addition to its contribution to the growing fundamental interest in this field, 

it provides us with the scope to design drugs targeting the chaperone-OMP complex (48–

50), a strategy aided by the rather porous nature of the bacterial outer membrane.  



 
 

 

 



 
 

 

 

Chapter 2 Theoretical Background 

Interaction between proteins compose virtually every other step of the day-to-day business 

of cells, from folding of protein molecules themselves to the process of enzymatic catalysis, 

signalling and proteolysis (4, 6). Protein-chaperone interactions compose one such set of 

elusive protein-protein interactions. Although often unspecific, chaperones are selective 

and highly efficient in either actively or passively guiding their client proteins through the 

complex protein folding energy landscape to their native functional state (3, 4, 51).  Such 

a process appears to be even more challenging during OMP biogenesis in outer membranes 

of Gram-negative bacteria, mitochondria and chloroplasts. Here, the periplasmic 

chaperones hold on to their client proteins: the OMPs in a folding-competent state until the 

latter reach the outer membrane (14).  

This chapter begins with a theoretical background of protein-chaperone interactions and 

the forces governing them. Next, OMP biogenesis and the two important components of 

this work: OMPs and periplasmic chaperones: Skp and SurA are presented in greater detail. 

Section 2.2.4 provides an overview of the much-debated topic of chaperone-OMP 

interactions, along with raising the open questions this thesis aims to address. This work 

relies on the information obtained through smFRET and FCS experiments and the last sub-

section offers a brief account of these techniques and the setup used to perform them.   
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2.1 Protein - chaperone interactions 

Chaperones are proteins that assist other proteins in their folding process. They either 

provide a platform for polypeptides to fold into their tertiary structure or maintain them in 

a folding competent state until they reach the location where they can be folded into a 

functional form (5, 52). Naturally, their expression is upregulated during cellular stress in 

order to maintain the integrity of cellular proteome (1, 51). It is intriguing that most 

chaperones bind to their substrates promiscuously and yet are known to have different 

mechanisms of interaction depending on the client in consideration. Thus, the molecular 

details of how chaperones assist protein folding have been a remarkably debatable topic.  

2.1.1 Mechanisms of protein - chaperone interactions 

The following intriguing chaperone-protein interaction mechanisms (Figure 2-1) have been 

discovered during the past years: 

First interaction partners use hydrophobic and electrostatic forces: Chaperones like 

Trigger Factor (TF) of bacterial origin (53) and Ribosome-associated complex (RAC) (54) 

and nascent-chain-associated complex (NAC) (55) of eukaryotic origin are the first set of 

chaperones meeting a newly synthesized polypeptide (56, 57). They bind to the basic and 

aromatic acid rich segments of nascent chains with their hydrophobic cradle and prevent 

co-translational misfolding in the cytoplasm by delaying chain compaction (53). 

Functioning in an ATP-independent manner, TF forms multiple but transient interactions 

and prevents polypeptides from getting trapped in unproductive folding intermediates (58). 

Often for smaller proteins, burial of hydrophobic residues in the TF cradle results in the 

folding of proteins, preceded or followed by its release. However, larger proteins need 

subsequent interactions with other chaperones for assistance with folding (9). Interestingly, 

TF has a structure similar to SurA and is proposed to function in an analogous manner (52). 

Heterogeneous unfolded states are maintained by transient interactions: Hsp70-Hsp40 (in 

eukaryotes) or DnaK-DnaJ (in prokaryotes) are the next set of co-chaperones that a nascent 

polypeptide might encounter (59). Unlike TF, they function in an ATP-dependent manner 

and bind to hydrophobic patches composed of typically 5 to 7 residues exposed by nascent 

chains (8). To this end, the Hsp70 binding motifs have hydrophobic residues often flanked 
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by basic residues resulting in not just hydrophobic but also electrostatic interactions 

between the chaperone and the client proteins (60). Although, the bound substrates are 

found in heterogeneous unfolded conformations, the chaperone is also shown to bind both 

extended and later stage folding intermediates (61). They reshape the energy landscape by 

specifically disrupting formation of tertiary structures while local structure formation is 

still possible (62). Multiple monomers of these chaperones facilitate folding of proteins by 

expansion and step-wise release (63, 64). 

Nanocages provide a confined environment for protein folding: Chaperonins (GroEL in 

bacteria and chaperonin-containing T-complex (TRiC) in eukaryotes) are nanocages that 

are next in line when interacting with polypeptides (10, 65). The apical domain of GroEL 

has hydrophobic patches which leads to several simultaneous hydrophobic interactions 

(66). Once the client binds, ATP binding and hydrolysis results in sequential unbinding of 

hydrophobic patches of client protein. This results in release of the client protein into 

chamber of the chaperonin accompanied by closing of the chamber by GroES. The 

relatively slow ATP hydrolysis provides ample time for the client protein to undergo 

folding (67, 68). Different studies appear to show different modes of chaperonin-client 

interaction (69, 70). While some studies have shown that GroEL is involved only passively 

in protein folding of some clients by confining the substrates (71), others have shown a 

more active involvement (72). Yet another study suggests that the client protein binds and 

releases from the chaperone iteratively resulting in substrate unfolding. Such a mechanism 

appears to be especially useful for proteins trapped in misfolded states and for bigger 

proteins which cannot fit in the cage (73).  

Folding when bound to chaperones; recognition of frustrated regions: Some chaperones 

like Spy along with the ones mentioned previously can even mediate folding of client 

proteins while still bound to them (5). For this purpose, Spy makes the first contact with its 

client proteins by forming long range electrostatic interactions. Next, using its amphiphilic 

binding surface, it makes both electrostatic and hydrophobic interactions with its client 

proteins along its frustrated regions and protects it from aggregation. The client explores 

many conformational states in its bound state and undergoes chain compaction. Once the 

hydrophobic core is formed, the client’s release is triggered by weaker affinity between the 

two proteins (74, 75). It is important to note here that recognition of frustrated regions 

seems to be a characteristic of not just these but many other chaperone-protein interactions. 
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These regions act as unspecific and unstable recognition motifs which allow the substrates 

to adopt different conformations when still bound to the chaperone.  

 

Figure 2-1 - Protein - chaperone interactions in bacteria. a) Nascent polypeptides synthesized on ribosome 

are captured co-translationally by Trigger Factor (TF) which can then pass it on to the DnaK-DnaJ chaperone 

system. Subsequently, the polypeptide is relayed to GroEL-GroES chaperonin. Proteins can also achieve their 

folded native state facilitated directly by any of these chaperone machineries without requiring the next co-

chaperone. The dominating mechanism employed during each of these chaperone-protein interactions are 

reported as indicated in the figure (see text for details). b) Certain polypeptides are supposed to fold only after 

reaching their destination like the inner membrane (IM), the periplasm or the outer membrane (OM). Such 

polypeptides are mostly recognised by the SecA-SecB chaperones which exhibit strong anti-folding activity 

like the SurA/Skp chaperone in the periplasm. On the other hand, the Spy chaperone in the periplasm 

recognizes frustrated regions and helps fold the substrate by hydrophobic burial of residues. Figure adapted 

upon combining information from (2, 12, 15, 51). 

Antifolding activity of Chaperones: Besides the ability to fold nascent proteins, chaperones 

like SecB, Trigger Factor, SurA, Skp and many others also exhibit antifolding activity 

(Figure 2-1b). Such a mode of interaction seems to be strongly modulated by kinetics and 
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thermodynamics of chaperone-protein interaction (18). Maintaining the proteins in a 

folding competent state, SecB along with SecA is involved in transfer of secretory proteins 

to their next destination which is often the SecYEG translocon system present on the inner 

membrane of bacteria (12). Being the major focus of this work, the anti-folding action of 

periplasmic chaperones like SurA and Skp on newly secreted OMPs is discussed later 

(Section 2.2.4).  

Chaperones employ kinetic partitioning to steer nascent chains away from defective 

conformations or aggregation (3). Moreover, in addition to all these functionalities, 

chaperones like HSP70, DnaK, ClpB and Skp are even found to be disintegrating protein 

aggregates or amyloid fibrils (35, 76–78). At this point, it should be noted that these 

mechanistic perspectives are rather a set of observations than a consolidated story. While 

all are true to their experiments and the proteins involved, the reasons that underly the 

chosen mechanism for a particular chaperone-protein association remain unclear. As the 

next two subsections demonstrate, such a question can be well addressed by examining the 

kinetic and biophysical properties of this interaction.  

2.1.2 Binding affinities of protein-chaperone interactions 

Different modes of protein-chaperone interactions call for different binding kinetics 

between the two proteins. The binding affinities dictate not only the freedom of the bound 

substrate to fold into its functional form but also could be regulating the conformational 

heterogeneity of its unfolded states (17). As has been studied for the periplasmic Spy 

chaperone with Isothermal Titration Calorimetry (ITC) and FRET analysis, while a higher 

binding affinity (a tight binding) slows down the folding of its client protein SH3, a 

relatively weaker affinity promotes folding of the bound SH3 (79). On the other hand, an 

even weaker affinity is found to render chaperone incapable of regulating client protein 

folding or aggregation. In another example, using Surface Plasmon Resonance (SPR) and 

Bio-Layer Interferometry (BLI), a 100-fold lower binding affinity has been observed for 

SecB with Maltose Binding Protein (MBP) as compared to MBP precursor (preMBP) (18). 

In accordance with the previous observation for Spy and SH3, while MBP was able to fold 

when bound to SecB due to both higher intrinsic folding rate and weaker affinity, preMBP 

did not fold when bound to SecB (18). These examples demonstrate that a balance of 
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binding affinities is intrinsic to the functionalities of the chaperone and protein in 

consideration and emphasize the need for its study.  

Characterizing the binding affinities of a protein-protein interaction, in this case, the 

protein-chaperone interaction involves describing the equilibrium reaction of the two 

involved partners. Let us consider Cfree as the unbound chaperone and Pfree as its unbound 

client protein in the following equilibrium reaction scheme (Figure 2-2a): 

Cfree+ 𝑃free ↔ CP (1) 

 

Figure 2-2 - Binding affinities of protein-chaperone interactions. a) A reaction scheme to represent the 

chaperone-protein binding. b) A theoretical fit of hill equation (eq. (7)) where KD is the chaperone 

concentration when half the client protein is bound. 

This equilibrium reaction is then defined by the equilibrium constant Keq which can also be 

called as KA, the association constant for a protein-chaperone interaction scheme. Here,   

Keq= KA= 
[CP]

[C
free

][P
free

]
= 

1

KD

 (2) 

The square brackets represent the concentration of the particular species at equilibrium and 

KD is the dissociation constant and has the convenient unit of Molarity M. Since it is 

difficult to obtain the [Cfree] and [Pfree] values in a measurement solution, it is often easier 

to record the total chaperone [Ctotal] and protein [Ptotal] concentration values. This converts 

eq. (2) into: 

[CP] = 
[C

free
][P

free
]

KD

= 
([C

total
] - [CP])([P

total
] - [CP]) 

KD

 (3) 

The above equation can be expressed as a quadratic equation: 



Theoretical Background 

 

25 

 

[C
total

][P
total

] - ([C
total

] + [P
total

] + KD)[CP] + [CP]
2
 = 0 (4) 

with a solution as: 

[CP] =  

([C
total

]+[P
total

]+ KD) - √([C
total

] + [P
total

] + KD)
𝟐 - 4([C

total
][P

total
])

2
 

(5) 

Eq (5) can be used to calculate KD, however, a simplified version can also be used in the 

case where [Ctotal] is in excess and the concentration of chaperone lost in complex formation 

is negligible. In such a case,  

 KD = 
[C

total
][P

free
] 

[CP]
 (6) 

Now, if: 

KD >> [Ctotal] then most of the client protein is unbound, 

KD << [Ctotal] then most of the client protein is bound, 

And if KD = [Ctotal], then 50% of the protein is bound by the chaperone. This relation is very 

useful when calculating KD.  

In an experiment, the chaperone is titrated against a fixed concentration of the client 

protein, and the concentration of the protein-chaperone complex is measured. To calculate 

KD, the measurement data can be fitted using the Hill equation (80, 81): 

[CP] = 
1

(
KD

[Ctotal]
)

n

+1

 
(7) 

Here, n is the hill coefficient and indicates the cooperativity of the chaperone interaction. 

When n < 1, the chaperone interacts non-cooperatively, i.e. the bound chaperone inhibits 

binding of anymore chaperone molecules to the client protein. If n > 1, the chaperone 

interacts cooperatively and once one chaperone is bound, it assists binding of the next 

chaperone to the client protein. Finally, if n = 1, the bound chaperone has no effect on 

binding of any more chaperones to the client protein. Eq. (7) is an important relation and 

will be used later on in the thesis to derive the binding affinities of the chaperone-OMP 
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interaction. This equation can be plotted as a sigmoidal curve on a log scale as in Figure 

2-2b with KD indicated at 0.5 bound fraction. 

2.1.3 Thermodynamics of protein - chaperone interactions 

A biophysical perspective of protein-chaperone interactions often involves studying its free 

energy landscape. This interaction free energy landscape is then described by two 

thermodynamic parameters: the enthalpic change (HA) and the entropic change (SA) of 

binding. Both of which are dictated by the mechanism underlying the chaperone - protein 

interactions such that HA is determined by the association force between the two proteins 

and SA majorly corresponds to the change in sampling of conformational space by the two 

proteins upon binding.  

Despite the binding mechanism employed, at a given temperature T, a favourable 

interaction between the two proteins results in a negative Gibbs free energy of interaction 

or association (GA) which is calculated as follows: 

GA = HA - T(SA) (8) 

While HA is the change in inter- and intra- molecular interaction energy (Hinter and 

Hintra, respectively), SA is the change in entropy between the bound and unbound state 

and is given by: 

SA = Scomplex - Sunbound (9) 

Thus, it is evident that for GA to be negative, either the HA has a large negative value or 

the entropy of the bound state (Scomplex) is greater than or equal to entropy of the unbound 

molecule (Sunbound) leading to a very small SA. It should be noted that there is always a 

small gain in entropy when the two molecules bind due to displacement of water molecules. 

From the examples mentioned in the previous two sections, it can be envisioned that the 

chaperones and client proteins could be forming either a single conformation (Figure 2-3a) 

upon association or sample a large configurational space leading to formation of a multi-

conformational complex (Figure 2-3b) (70). Thus, in the first case, the interaction between 

the two proteins is made feasible by high affinity (and thus high enthalpy change) due to 
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site-specific or multi-site binding resulting in Hinter >> Hintra upon association. On the 

other hand, the second case suggests that despite the transient nature of interactions (and 

thus low HA) between the bound molecules, the low entropic change due to similarly 

populous conformational space occupied by the bound and unbound proteins ensures that 

the interaction is favourable (17). 

 

Figure 2-3 - Thermodynamics underlying protein-chaperone interactions. a) Specific or Multiple binding 

sites on the chaperone and protein lead to a high affinity of binding (high |H|) and a unique complex 

conformation (high |S|), b) Transient binding results in relatively weaker affinity (low |H|) but higher 

freedom to sample multiple conformations in the bound state leading to a much lower |S|. Both the cases 

result in a negative G and thus a favourable interaction. Both a and b schemes are adapted from (17) c) van’t 

hoff plot can be used to calculate H (from the slope) and S (from the intercept) by conducting experiments 

so as to obtain KA at different temperatures (T). 

In an experiment, although it is difficult to measure the enthalpic and entropic change 

directly, they can be estimated using a convenient relation between GA and KA: 

GA = - RT lnKA (10) 

Here, R is the gas constant and is equal to 8.3145 J·K-1·mol-1.  

Now, combining eq. (8) and eq. (10), the following relation can be derived: 

lnKA = - 
HA

RT
 + 

SA 

R
 (11) 
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This is form of the van’t Hoff equation can also be expressed in a differential form: 

d

dT
lnKA = 

HA

RT2
  (12) 

Measurements can made at multiple temperatures in order to obtain a graph with lnKA on 

the y-axis and 1/T on the x-axis. Such a plot called as a van’t Hoff plot (Figure 2-3c) then 

relates to eq. (11) and can provide us with an estimation of HA and SA:  

HA = - R × slope (13) 

SA = R × intercept (14) 

Depending on the slope of the plot, we can also decipher if the association was endothermic 

with a positive HA and a negative slope or exothermic with a negative HA and a positive 

slope. Thus, it is an extremely useful plot not only to obtain HA and SA but also to 

compare two different mechanisms of chaperone – client protein interaction and it will be 

used later on to reflect upon the periplasmic chaperone – OMP interactions. 

2.2 Protein - chaperone interactions involved in outer membrane 

protein (OMP) biogenesis 

Most of the soluble cytoplasmic proteins and inner membrane proteins (IMPs) need 

chaperones to fold into their native states. On the other hand, OMPs need a different set of 

chaperones which can maintain them in a folding competent state not just in the cytoplasm 

but also in the periplasm. The folding and insertion of outer membrane proteins is thus a 

challenging process and a vital one for the viability of cells and organelles having an outer 

membrane.  

2.2.1 OMP biogenesis 

Gram negative bacteria like Escherichia coli (E. coli), mitochondria and chloroplasts 

possess a cell envelope which is composed of an outer membrane, an inner membrane and 

a periplasm enclosed by these two layers (82, 83). Unlike the symmetric phospholipid 

bilayer of the inner membrane, the outer membrane is asymmetric. Inner leaflet of the outer 
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membrane is composed of phospholipids and the outer leaflet is made up of 

Lipopolysaccharide (LPS). LPS is a glycolipid typically consisting of lipid A, a core 

oligosaccharide and an O-antigen, it decreases the fluidity of the outer membrane and 

makes it relatively impermeable (84). The periplasm between the two membranes is an 

approximately 17 nm long ATP deficient aqueous environment with a peptidoglycan layer 

that maintains the cell shape. It contains many soluble proteins and chaperones that are 

important for cells to function properly (85).  

Both the inner and outer membranes harbour proteins which maintain the viability of cells 

by functioning as receptors, translocons, small molecule transporters, porins, lipases and 

ion channels (20, 86). The nascent inner membrane polypeptides possess an anchor signal 

for the signal recognition particle (SRP) which facilitates co-translational folding and 

insertion by Sec-translocon situated on the inner membrane (87). On the other hand, the 

nascent outer membrane polypeptides are transported with the help of SecB to the Sec-

translocon which helps the proteins to cross the inner membrane (86). The OMPs then have 

to be protected from aggregation in the periplasm, a challenging feat achieved by the 

periplasmic chaperones like Skp and SurA which bind to the outer membrane polypeptides 

possibly while still being secreted from the Sec-translocon and maintain them in a folding 

competent state until they reach the outer membrane (21–23). Here, they are finally folded 

and inserted with the help of the multi-protein complex, -barrel assembly machinery 

(BAM). OMP biogenesis (Figure 2-4) is thus a well synchronized process modulated by 

protein–chaperone interactions at various stages.  

Although a basic understanding of OMP biogenesis is well established by now, the 

mechanistic and biophysical aspects ruling them are still debatable and to a great extent 

still uncovered. To understand these interactions better, it is important to first establish a 

ground knowledge about the individual components of the binding complex. The next two 

sections look at the two interacting candidates: OMPs and periplasmic chaperones in 

greater detail. 
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Figure 2-4 - Outer membrane protein (OMP) biogenesis. Secretion of nascent OMP polypeptides through 

the inner membrane is often facilitated by the chaperones SecA-SecB (orange) and SecYEG translocon 

(grey). In the periplasm, chaperones SurA (blue), Skp (yellow) and FkpA (purple) interact with the unfolded 

OMPs and maintain them in a folding competent state. DegP (green) is also found to be cleaving OMP 

aggregates under stress conditions. On reaching the outer membrane, BAM (red) facilitates folding and 

insertion of OMPs (dark grey) into the outer membrane. For simplicity, the peptidoglycan layer is not shown. 

Figure adapted from Plummer and Fleming review (23).  

2.2.2 Beta-barrel OMPs 

OMPs are amphipathic proteins located on the outer membrane and are the only membrane 

proteins that possess a -barrel structure (20). The girth of these structures is determined 

by the number of antiparallel -strands which can range from 8 to 26 -strands. They often 

have extra-membrane domains which connect the -strands and might provide additional 

functionalities. The cylindrical conformation with a hydrophilic interior and a lipid exposed 

hydrophobic exterior results in a thermodynamically stable native state. A recent study 

shows that the C-termini of OMPs have increased evolutionary traces as compared to their 
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N-termini. This suggests that the C-terminus acts as the folding nucleus or the template 

which guides folding of rest of the protein (88). Functionally, they can be involved in 

initiating pathogenesis, maintaining nutrient influx, driving locomotion or act as surface 

attachments, receptors and environmental sensors. They thus compose the first line of 

defence for Gram negative bacteria and are considered to be important drug targets (89). 

Certain examples of OMPs and of particular interest to this thesis are: OmpX and Outer 

membrane phospholipase A (OmpLA) (Figure 2-5). Below follows a short overview of 

their native characteristics and a few bigger OMPs (OmpF and BamA): 

OmpX is one of the smallest OMPs with just 8 -strands and 171 amino acids. Some of 

these -sheets protrude into the extra membrane domain (90). Although still unclear, based 

on its structure and evolutionary relation, it is proposed that OmpX promotes cell adhesion, 

invasion and also facilitates cellular defence against the complement system (38). OmpLA 

is a 12 -stranded (289 amino acids) serine hydrolase enzyme with a His142-Ser144-

Asn156 catalytic triad which requires calcium to be active in its dimer form (39). Its 

phospholipase A1 and A2, lysophospholipase A1 and A2, and mono- and diacylglyceride 

lipase activity is triggered by a compromise in the integrity of the outer membrane. As the 

outer membrane becomes more fluid due to leakage of phospholipids, OmpLA dimerizes 

upon binding of substrate and calcium on the active site and hydrolyses the phospholipids 

making the membrane permeable for secretion of bacteriocins (91–93).  

 

Figure 2-5 - OMPs. The small 8 -stranded OmpX (2m06.pdb, (90)) (grey) and 12 -stranded OmpLA 

(1qd6.pdb, (93)) (green) are the two model OMPs studied in this thesis. 
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OmpF is a 16 -stranded large OMP which forms a stable trimer and acts as a porin for 

diffusion of small hydrophilic molecules (94). The N-terminal extracellular domain 

displays eight surface antigen motifs and is proposed as a versatile vaccine candidate 

against certain strains of E. coli infection (95). BamA is another 16 -stranded OMP and 

one of the important components of BAM which is involved in enabling folding of other 

OMPs. It has two domains: the transmembrane -barrel and the soluble polypeptide 

transport-associated (POTRA) domain composed of five motifs (96). The -barrel domain 

is shown to exhibit lateral gating such that the first and the last -strands move in order to 

open the protein (97). This observation has led to different models being proposed for 

different mechanisms by which BamA could be facilitating folding of OMPs. While some 

suggest that it acts as a template, others suggest that it can create a pore through which the 

OMP can insert and fold into the outer membrane (98, 99).  

2.2.3 Periplasmic Chaperones 

Periplasm has an oxidising environment with a pH similar to the external environment. It 

hosts a large number of soluble proteins including chaperones like Skp, SurA, FkpA and 

DegP (Figure 2-6) (27, 100, 101). These chaperones function in an ATP independent 

manner and sequester the incoming outer membrane polypeptides from aggregating in the 

aqueous crowded medium. They then deliver the bound OMP in a folding competent state 

possibly through transient interactions with BAM-POTRA domains (23). A brief overview 

of their structures and characteristics is provided in this section: 

Skp is a seventeen kilodalton protein in its monomer form. Its crystal structure was 

elucidated as a trimer (1sg2.pdb, Figure 2-6a, (102)) with three double -helical arms 

attached to a β-barrel trimerization domain giving it a jelly fish like appearance. The 

external surface of their arms is positively charged while the internal surface contains 

hydrophobic patches. Skp is shown to have a holdase activity such that it accommodates 

small client proteins within its cavity through several weak non-covalent interactions 

leading to a nanomolar dissociation constant (103–105). For larger client proteins, it is 

demonstrated to expand its cavity and/or bind at a higher stoichiometry (104, 106). Other 

than binding to its client OMP, it is shown to interact with LPS and the plasma membrane 

as well (107). Although not much is understood about the functional utility of the Skp 
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monomer itself, it is interesting to note that Skp exists in an equilibrium between its trimeric 

and monomeric state at its periplasmic concentration of 3.9 μM (108). Additionally, a 

recent investigation has shown that Skp exists in a disordered monomer form under non-

stressed conditions with a shift of equilibrium towards trimerisation upon exposure to 

OMPs (109). 

 

Figure 2-6 - Periplasmic Chaperones. a) Trimeric Skp (1sg2.pdb, (102), each monomer is coloured 

differently; The missing residues in two monomers were filled in using the UCSF chimera software b) SurA 

(1m5y.pdb, (110)) showing the PPiase domains (P1-red and P2-yellow), N-terminal (blue) and the C-terminal 

(purple), c) FkpA (1q6h.pdb, 104): the two monomers are coloured differently and d) DegP24 (3cs0.pdb, 

(112): A homocomplex of 24 monomers, here one of the monomer is highlighted in yellow. Pictograms 

generally used to depict Skp and SurA in this thesis are shown at the Skp and SurA panels, respectively. 
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SurA is considered to be the dominant protein involved in chaperoning OMPs as its deletion 

has shown to induce OMP assembly defects and makes cells vulnerable to antibiotics and 

detergents (26, 113, 114). It has four domains: N-terminal, C-terminal and two peptidyl-

prolyl cis/trans isomerase (PPiase) domains (1m5y.pdb, (110), Figure 2-6b). The N- and C-

terminal domains are connected with an antiparallel β-sheet and are the key sites interacting 

with OMPs. Along with the parvulin-like PPiase 1 domain (P1), they form the core of the 

protein, while the PPiase 2 domain (P2) is connected flexibly to the rest of the protein (26, 

110, 115). The exact role of these two domains in OMP interaction is now becoming 

increasingly clear as an enhancer of the chaperone activity for certain OMPs (116). SurA 

is said to recognize peptide segments with an Ar–X–Ar motif, where Ar is an aromatic 

residue and X can be any residue (117, 118). Moreover, recent studies have used 

crosslinking mass spectroscopy to identify the residue binding sites of the two protein 

partners (34, 36). 

FkpA is a V shaped dimeric molecule also with both chaperone and PPiase activities. Its N-

terminal domain has three -helices forming an interface by the mutual exchange of two 

-strands between monomers and the C-terminal domain is located at its extremity (Figure 

2-6c) (111, 119). Although still under debate, both the domains have been implicated in 

chaperoning activity while the PPiase activity is attributed just to the C-terminal domain. 

Similar to Skp, DegP (Figure 2-6d) is also proposed to bind to its client proteins via a cavity 

formed by a homo-complex of up to 24 monomers (112). It is a serine endoprotease with a 

chaperone activity implicated in cleaving misfolded or aggregated uOMPs (120). In its 

monomer state (DegP3) it has a protease (P) domain which forms the internal chamber and 

two mobile PDZ domains. The dimer of the trimer (DegP6) is inactive as the active site of 

each monomer is perturbed by a regulatory loop from the parallel trimer. DegP12 (4 

trimer) and DegP24 (8 trimer) are the active oligomeric forms of the chaperone. Here, the 

adjacent PDZ domains of the monomers interact to keep the oligomer intact (112).  

2.2.4 The unbound and chaperone-bound OMP  

Now, we arrive at the most interesting aspect of OMP biogenesis for this thesis: the OMP-

chaperone interactions.  
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Since OMPs remain unfolded for extended periods of time throughout their biogenesis 

pathway, as a first step, it is of importance to study their denatured states. Such an 

investigation sheds light not only the unfolded chain dynamics, but also their interactions 

with chaperones and subsequent release to BAM. Although little is known about the 

interconversion timescales of unfolded sub-populations, recent studies have shown that 

OMPs adapt non-random secondary structures or long-range interactions in presence of 

detergents under denaturing conditions. For example, using NMR, urea denatured OmpX 

was found to have non-native hydrophobic clusters which result in local non-random 

structures (121, 122). Fascinatingly, smFRET in combination with ensemble techniques 

like Circular Dichroism (CD) spectroscopy and Tryptophan fluorescence spectroscopy was 

previously employed by the Schlierf group to show that the C-terminus of OmpLA exhibits 

slow sampling (>100 ms) of heterogeneous conformations in presence of a denaturant 

(123). On the one hand, such slow chain dynamics could drive the in vitro folding rates of 

OMPs to timescale of hours as has been observed previously (123–125). On the other hand, 

in a cellular context, they might facilitate chaperone interaction by increasing affinity 

between the two proteins due to reduced entropic penalty upon binding. Moreover, upon 

encountering BAM, such slow conformational changes might also help them retain the 

folding competent states upon release (126). Thus, it will be of great value to examine if 

the slow interconversion dynamics of unfolded OMP sub-populations happens to be a 

global characteristic independent of the OMP under consideration.  

Certainly, it will be of additional advantage to probe the chaperone free state of OMPs in 

absence of detergent and denaturant so as to better mimic in vivo conditions. However, 

despite being a requisite when comparing with chaperone bound states, the unbound states 

of OMPs and their interconversion dynamics still remain to be well-characterized. To this 

end, as a basic measure towards obtaining an overall perspective of OMP biogenesis, this 

thesis aims to investigate the denatured states of two differently sized OMPs: OmpX and 

OmpLA in greater detail along with their unbound conformations (Figure 2-7a).  

A fair amount of studies has also sought to understand chaperone-bound states of OMPs. 

However, many of them appear to contradict each other and much of it is still widely 

debated in this field of science. This raises many questions regarding the chaperone-OMP 

interaction, especially of particular interest to this thesis, with regards to SurA-OMP and 
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Skp-OMP complexes. Here, a brief account of the studies till date highlights the issues this 

thesis endeavours to resolve:  

Are the Skp and SurA bound OMP conformations different from each other? Are they 

dynamic in nature? One of the first inquiry into chaperone-OMP interactions involves the 

examination of the bound OMP conformations (Figure 2-7b). In this regard, the earliest 

studies using site-directed fluorescence spectroscopy and NMR spectroscopy in 

combination with biochemical experiments revealed that the entire transmembrane region 

of OmpA (tOmpA) is held within the cavity of chaperone Skp through both electrostatic 

and hydrophobic interactions in an unfolded conformation (25, 127). Conformations of 

tOmpA and OmpX were also probed in their Skp bound state using NMR spectroscopy by 

another group. They found the proteins to be entirely encapsulated within the Skp cavity 

with a spherical volume radius of ∼2.1 nm while undergoing sub-millisecond 

conformational dynamics (103). Such a fast reconfiguration of the bound substrate was 

suggested to be resulting from the numerous weak interactions between the two proteins. 

A certain smFRET study showed that Skp has substrate specific effects on the conformation 

of the client protein (35). For a bigger OMP protein like OmpC (16 -strands), while the 

middle segment of the protein appears to expand, the N and C-terminal of the protein 

becomes compact when bound to Skp. On the other hand, Skp appeared to expand OmpT 

(10 -strands) on binding, but compacted tOmpA (10 -strands) (35). However, the 

configurational space and the dynamics among the underlying bound OMP conformations 

were not descriptively explored in any of these studies.  

 

Incidentally, the same study also showed that SurA bound OmpC, OmpT and tOmpA 

adopted a rather expanded conformation in the chaperone bound complex. Additionally, 

small-angle neutron scattering (SANS) experiments have suggested that SurA expands the 

bound tOmpA in solution (36). On the other hand, some NMR studies (103, 128) 

demonstrate that the SurA bound state of tOmpA and OmpX exhibit fluid-globule like 

states as that observed for Skp bound OMPs. A bigger OMP, FhuA is also shown to exist 

in dynamic conformational ensemble when bound to both the chaperones using NMR 

although in a conformation similar to that of Skp bound FhuA (33). The SurA bound state 

of OMPs and its difference to Skp bound state is thus still highly contradictory and remains 

to be investigated. To this end, in this work, the Skp and SurA bound states of OmpX and 
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OmpLA will be systematically examined for both their conformations and their 

reconfiguration dynamics (Figure 2-7b). 

 

What are the binding affinities of these chaperone-OMP interactions? Hitherto, quite some 

studies indicate that the dissociation constant of Skp-OMP binding is in a nanomolar range 

while that for SurA-OMP binding is in the micromolar range (105, 116, 117, 129). The 

high affinity of Skp to its client proteins is attributed to its ability to make several transient 

weak interactions with the client uOMP protein (17, 103). It is speculated that in the case 

of SurA, the relatively low affinity is a result of region specific binding to the client OMP 

protein (117). Indeed, recent crosslinking experiments have demonstrated that the same 

sites of OmpX can interact with multiple sites of SurA and vice-versa (34, 36) suggesting 

presence of a transient binding. Likewise, the timescales of binding and unbinding have 

also garnered significant interest in the recent past, although resulting in contrasting 

observations. While some studies suggest lifetimes on a scale of milliseconds others have 

indicated that they can be as long as hours for both Skp-OMP and SurA-OMP complexes 

(16, 24, 40, 77, 116).  

The stoichiometry of chaperones in this interaction is also a much-debated topic. The 

trimerization of Skp itself is speculated to be a result of OMP binding due to the presence 

of a significant monomer population at periplasmic conditions (108, 109). Intriguingly, for 

bigger OMPs, more than one Skp trimer is found to be involved in the chaperoning function 

(106, 108). In any case, Skp is popularly considered to be functional only in its trimeric 

form such that it encapsulates its substrate within its cavity (103, 104). Although little is 

clear about the stoichiometry of SurA when binding to its client uOMP, a few recent studies 

suggest multivalency in this case too. MicroScale Thermophoresis (MST) binding curves 

obtained for binding of SurA to unfolded OmpT were shown to fit adequately with a hill 

coefficient >1 (116). Incidentally, many SurA binding sites are now found to be present on 

a single OMP (for example: OmpX and tOmpA) raising the possibility of a higher 

stoichiometry such that SurA holds on to the substrate in an extended manner like SecB 

but in a ‘beads-on-string’ fashion (18, 34, 36). In this thesis, the binding affinities and to 

an extent the transience of SurA-bound states and their stoichiometry will be investigated.  

What are the energetic implications of conformational sampling by chaperone bound 

states? This question becomes particularly interesting for chaperone-OMP systems as in 
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the energy deficient environment of periplasm, thermodynamics could be playing an 

important role in modulating affinity between the two proteins. In the scenario of multiple 

bound substrate conformations, the thermodynamic concepts outlined in section 2.2.3, 

suggest that the free energy landscape of chaperone-OMP interaction might follow a rugged 

pathway. However, up till now, the energetic aspects of their associations remain 

undescribed (Figure 2-7c).  

Can Skp or SurA or both rescue aggregated OMPs? In vivo experiments have shown that 

while an absence of Skp or DegP has no effect on outer membrane composition, depletion 

of SurA results in decrease of OMP density (27). This study has led others to suggest that 

SurA is the major chaperone in facilitating OMP transfer to BamA while Skp and DegP 

become essential only during stress conditions. One smFRET study also observed a 

disaggregation property for chaperone Skp (35). Yet, it is still unclear if SurA or a 

synergistic action by both the chaperones can disintegrate aggregated OMPs. In this light, 

the ability of chaperones to rescue aggregated OmpX is also investigated (Figure 2-7d) by 

this work. 

Perceivably, an implicit argument to all the observations above is: Do all these chaperone-

OMP characteristics depend on the size of OMP under consideration? This literature 

survey impresses upon us that periplasmic chaperones might employ different interaction 

mechanisms depending on the difference in binding kinetics and their binding 

functionalities. Moreover, they encounter differently sized OMPs during OMP biogenesis 

which necessitates that client and chaperone specific pathways are drawn when presenting 

a detailed view of OMP biogenesis. Indeed, a recent study observes that SurA is selective 

in binding certain OMPs, such that while OmpX and tOmpA have SurA binding sites, such 

sites were absent in OmpLA (36). Furthermore, little is known about the recognition 

regions harboured by OMPs for the non-specifically interacting Skp. It is certainly possible 

that they too possess locally frustrated regions (induced by instability in local structure due 

to unfavourable contacts) like Im7 and SH3 which have been found to interact with Skp 

irrespective of sequence or domain specificity (130). It is for this purpose that two 

differently sized OMPs: OmpX and OmpLA have been examined to better understand the 

chaperone-OMP interaction. Consequently, by charting conformational changes in 

different segments of OmpLA, a molecular representation of its chaperone bound state 

along with an insight into its recognition motif is also acquired.  
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Figure 2-7 - Open questions addressed in this thesis. a) Is the slow unfolded chain dynamics observed for 

C-terminus segment of OmpLA also a feature of another OMP like OmpX? What are the conformational 

features of OMPs in aqueous solution? b) What do the chaperone bound conformations of OMPs look like 

and what is the timescale of configurational interchange among these states? Do they harbour a recognition 

motif for Skp? What is the stoichiometry of SurA when binding to OMPs? c) What are the thermodynamics 

governing chaperone-OMP interactions? (G - free energy of interaction, S - entropy change and H – 

enthalpy change) d) Can chaperones disintegrate aggregated OMPs? Multiple conformations adopted by 

different states of OMPs in each of the cases are depicted by three pictograms. 
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The survey above has focussed majorly on the substrate side of the chaperone-OMP 

interaction. Many questions arise when one starts to look at changes in chaperone 

conformations on binding to the client OMPs. Although out of scope for this thesis, recent 

research is revealing many complementary details on this aspect (34, 36, 104, 116). 

2.3 Single molecule Förster resonance energy transfer (smFRET) 

to study OMP-chaperone interactions 

FRET has emerged as a robust tool when probing the conformation and the conformational 

dynamics of proteins. Using this technique, intriguing studies have been made to 

understand both soluble and membrane protein folding (123, 131, 132). It is also being 

increasingly employed to investigate challenging protein-chaperone interactions and access 

the structural, temporal and biophysical features governing them (64, 133). FRET acts a 

spectroscopic ruler in the range of 2-10 nm such that the distance between two fluorescent 

dyes commonly referred to as donor and acceptor dyes corresponds to the non-radiative 

energy transfer between them (134). The energy transfer is a result of dipole-dipole 

interaction between the excited state of the donor and the ground state of the acceptor. The 

FRET efficiency E is related to the distance between fluorophores R as follows: 

𝐸 =  
1

1+ (
R
Ro

)
6 

(15) 

where, Ro is the characteristic inter-dye distance of a particular donor-acceptor fluorophore 

pair resulting in 50% E and is found to be typically 5-6 nm (Figure 2-8a). A prerequisite 

for such a dye pair is that the emission spectrum from the donor overlaps with the 

absorption spectrum of the acceptor. By chemically attaching the two fluorophores to two 

appropriate positions on the protein of interest, one can probe the structure and the 

dynamics underlying a conformational population (135). For example, in Figure 2-8b, a 

high FRET efficiency state corresponds to a closed conformation and a low FRET 

efficiency state corresponds to an open conformation of the protein under study.   
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Figure 2-8 - Förster Resonance Energy Transfer (FRET) theory. a) The FRET efficiency, E depends on 

the distance between the donor (green sphere) and acceptor fluorophore (red sphere) as defined by eq. (15). 

Ro is the distance between the two labelling positions when E is 50%. b) In an experiment one can monitor 

the conformation of the protein of interest by labelling it with such a pair of dyes. Then, the closed and open 

conformation of the protein could correspond to a high and a low FRET efficiency state, respectively.  

2.3.1 SmFRET based on confocal fluorescence spectroscopy 

In this thesis, FRET is used at the single molecule level to probe the chaperone bound, 

unbound and aggregated states of OMPs. FRET when employed on a single molecule level 

provides additional advantages: avoidance of ensemble averaging and of aggregation due 

to the very low concentration (pM) of the sample under investigation. FRET measurements 

can be performed in solution by detecting fluorescence photon bursts from the freely 

diffusing labelled molecules on a confocal fluorescence microscope and has emerged as a 

powerful technique to probe protein conformations under diverse environmental conditions 

(41–44). The confined volume (1 fL) resulting from a micrometre-sized pinhole ensures 

both a spatial and a temporal separation of the freely diffusing molecules (136). As the 

observation time is diffusion limited, the molecule is probed for a few milliseconds. 

Although, techniques like nanosecond fluorescence correlation spectroscopy (nsFCS) 

(132) and recurrence analysis of single particles (RASP) (137) can be implemented within 

the FRET measurements in order to reconstruct the timescales from a few ns to 100 ms.  

All the smFRET experiments in this work were performed on a confocal fluorescence 

microscope setup incorporated with multiparameter fluorescence detection (MFD) home-

built by Dr. Andreas Hartmann and Dr. Georg Krainer, a scheme of which is shown in 

Figure 2-9 adapted from (138). In practicality, the aforementioned FRET efficiency E is a 
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ratio of fluorescence emission of the donor and acceptor and is calculated from the recorded 

fluorescence emission by the sensitive avalanche photodiodes (APDs).  

 

Figure 2-9 - Schematic of the custom built multiparameter fluorescence detection (MFD) setup. A 

sample chamber containing the labelled protein in low picomolar concentrations is placed on the objective 

and is illuminated with two linearly polarized 530 nm and 640 nm picosecond pulsed laser devices. The APDs 

and TCSPC modules detect and count the single photons. F1 and F2 are the bandpass filters. Such a setup 

enables measurement of both anisotropy and the lifetime of the dyes simultaneously (Schema adapted from 

the PhD thesis of Dr. Andreas Hartmann (138)). 

Further, a combination of dichroic mirror and optical mirrors is used in order to disentangle 

signals originating only from double labelled molecules. E is then calculated as: 
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E = 
FGR- αFRR- βFGG

FGR- αFRR- βFGG+ γFGG

 (16) 

where FGG, FGR and FRR are the background subtracted fluorescence intensities in the donor 

and the acceptor channel after donor excitation and in the acceptor channel after acceptor 

excitation, respectively. ,  and  are the correction factors for direct excitation, spectral 

crosstalk and detection. The detection correction factor () is calculated from the detector 

detection efficiency (gA and gD) as:  

γ = 
g

A
ϕ

A

g
D

ϕ
D

 (17) 

where 𝜙A and 𝜙D are the quantum yields of the two fluorophores. A typical FRET 

efficiency histogram showing low and high FRET efficiencies obtained from two different 

position of dyes (far and close, respectively) is shown in Figure 2-10a.  

 

Figure 2-10 - Single molecule FRET (smFRET) data. a) Theoretical FRET Efficiency histograms (E) 

corresponding to a high FRET efficiency (blue) and a low FRET efficiency state (yellow), b) Stoichiometry 

(S) vs E plot showing acceptor only (red), donor only (green) and FRET populations (blue and yellow). 

A pulse interleaved excitation (PIE) mode (139, 140) which involves a very short excitation 

pulse from the lasers in a repetitive manner is implemented in this setup. Accordingly, an 

alternate excitation is performed for the donor and acceptor fluorophores by two pulse 

synchronised lasers. Such an approach enables us to account for acceptor only photons. To 

this end, a quantity called as stoichiometry (S) is obtained by dividing the fraction of 

photons originating from the green excitation with the total photons and is given by: 
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S = 
FGR- αFRR- βFGG+ γFGG

FGR- αFRR- βFGG+ γFGG+FRR

 (18) 

where FRR is the background corrected fluorescence intensity of the acceptor after acceptor 

emission, while the rest of the parameters are as defined in eq. (16). As seen in Figure 

2-10b, the molecules with either donor or acceptor fluorophore appear at 1 and 0 

stoichiometry, respectively. The double labelled molecules are seen around S of 0.5 and 

can be filtered out from the donor only or acceptor only labelled molecules.  

2.3.2 Time-correlated single photon counting (TCSPC) 

On using the PIE mode in combination with a Time-Correlated Single Photon Counting 

(TCSPC) module, it was also possible to record the fluorescence lifetime which provides 

information relating to sample heterogeneities and dynamics. It is obtained by collecting 

the delay time of emitted photons (microtime) over many cycles on synchronising the 

fluorescence emission with the preceding laser pulse (141, 142). The laser pulse is 

modulated to be picosecond long with a high photon density so to excite a fluorophore. The 

time of photon occurrence relative to the start of measurement (macrotime) is also recorded 

to get the time evolution of fluorescence lifetime (Figure 2-11a). E can also be expressed 

in terms of lifetime as: 

E = 1 - 
τD(A)

τD(0)

 (19) 

where D(A) and D(0) are the donor lifetimes in presence and absence of acceptor. 

The above relation also serves as a powerful tool to distinguish static molecules from 

dynamically interconverting molecules (143, 144). Here, the molecules with a fixed inter-

dye distance converting on a diffusion limited timescale longer than a few milliseconds are 

called static, and molecules undergoing chain dynamics or conformational interconversion 

on a millisecond timescale are called dynamic. Furthermore, molecules can also exhibit 

fast-reconfiguration dynamics on a sub-millisecond timescale behaving like an unfolded 

polypeptide polymer resembling a Gaussian chain. In order to obtain information about the 

dynamics of a subpopulation, a two-dimensional (2D) plot is prepared between the intensity 

weighed relative lifetime of the donor (D(A)/D(0)) vs the species weighed E (Figure 2-11b). 
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In this figure, the black static line is obtained from the theoretical eq. (19). In the case of a 

rapidly interconverting molecule, the centre of the FRET population shifts away from the 

static FRET line and might behave like a Gaussian chain line (red dotted line in Figure 

2-11b). This powerful correlative analysis was frequently used this work to assess the 

dynamics of the unfolded, chaperone bound and unbound states of OMPs.   

 

Figure 2-11 - Time-Correlated Single Photon Counting (TCSPC). a) A schematic of TCSPC principle 

with PIE mode where microtime is the delay time of the photon to the preceding laser pulse and macrotime 

is the time stamp of the photon (Schema adapted from the PhD thesis of Dr. Andreas Hartmann (138)), b) 2D 

plots between relative lifetime of donor (D(A)/D(0)) in presence and absence of acceptor vs FRET Efficiency, 

E showing the static line (black line) and the Gaussian chain (red dotted) behaviour with pictograms of 

molecules showing the corresponding interconversion times between the subpopulations. 

2.3.3 Fluorescence Anisotropy 

It is important to check for photo physical artefacts and/or conformational artefacts of the 

fluorophore labelled molecules during FRET measurements. For this purpose, fluorescence 

anisotropy is obtained by illuminating the sample with a linear polarized laser. The 

intensities of light measured on the different axes of polarization provides insight into the 

rotational freedom of a particle (145, 146). While the emitted light will be more depolarized 

for a fast-rotating molecule, a slower molecule preserves the polarization of the light used 

for excitation. In our setup, the fluorescence emission is divided by a polarizing beam 

splitter into parallel and perpendicular components and is detected by two separate APDs 
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for both donor and acceptor channels. Insight into the rotational freedom of the dipoles can 

be obtained by the average rotational correlation time  given by the Perrin equation (147): 

r(τ) = 
r0

1+ 
τF

ρ

 
(20) 

where r() is the fluorescence anisotropy and F is the fluorescence lifetime. r0 is the 

fundamental anisotropy (approximately 0.4 for S0S1 excitation). When <<F, the ratio 

of perpendicular and parallel emission is approximately 1 and if >>F, the dipole 

orientation shows an excess of parallel emission indicating restricted motion. A freely 

diffusing fluorophore exhibits a ns while those tagged to a protein molecule might 

show a ns (139, 148). Higher values often indicate a hindrance in rotation and 

thus a possible interaction between the fluorophore and the local environment, e.g. the 

protein or the membrane/liposomes.  

2.3.4 Fluorescence Correlation Spectroscopy (FCS) 

During this work, in addition to FRET measurements, the afore-mentioned setup also 

enabled Fluorescence Correlation Spectroscopy (FCS) experiments. FCS (45, 46) provides 

factual information about the size and fraction of molecules under observation and thus 

proved to be useful to distinguish unbound, bound and aggregated fractions of OMPs in 

this work.  

Auto and cross-correlation functions (Gij) are obtained from fluorescence intensity 

fluctuations of the donor and acceptor: 

Gij(τ) =  
〈δFi(t).δFj(t+τ)〉

〈Fi(t)〉〈Fj(t)〉
 (21) 

Here, i and j denote the donor (D) and acceptor (A). Fi(t) and Fj(t) are the intensities where 

𝐹𝑖(𝑡) = 〈𝐹𝑖(𝑡)〉 + 𝛿𝐹𝑖(𝑡). 〈𝐹𝑖(𝑡)〉 is time averaged intensity and is 𝛿𝐹𝑖(𝑡) is the time 

dependent fluorescence fluctuation. The correlation amplitude Gij() is then the normalized 

overlap integral between Fi and Fj with Fj having a lag time of . A fast diffusing (and thus 

smaller) molecule shows a faster decay in the autocorrelation function as compared to a 

slow diffusing complex or aggregate (Figure 2-12).  
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Figure 2-12 - Fluorescence correlation spectroscopy (FCS). An example of autocorrelation curves for a 

labelled molecule in its free, chaperone bound and aggregated state. While the aggregated state shows the 

highest diffusion time as indicated by the increase in amplitude, the chaperone bound protein complex shows 

relatively lower diffusion time. The lowest diffusion time is observed for the chaperone free molecule as it is 

the least in size. The typical diffusion (0.1 to 10 ms) times is shown through blue shaded region.



 
 

 

 



 
 

 

 

Chapter 3 Optimisation of the labelling strategy for 

smFRET experiments 

Monitoring the conformational changes of OMPs with smFRET experiments requires the 

proteins to be labelled with a suitable donor and acceptor fluorophore pair. It is beneficial 

to optimise the labelling protocol as a higher number of double labelled molecules requires 

a much lower measurement time and helps in unambiguous detection of even smaller 

subpopulations. Moreover, with site-specific labelling, one can avoid the effect of 

surrounding amino acids and the local environment on a certain sensitive dye. Such a 

labelling can be achieved in various manners (135): sequential labelling of cysteine 

residues (149), incorporation of unnatural amino acids (150, 151) and utilisation of 

enzymatic tags like sortase (152) among others. However, it is not a necessity when FRET 

is used to determine just the distances between the two labelling positions. Evaluation of 

the labelling efficiency and the number of double labelled molecules provides an insight 

into the quality of the labelled sample. Both of these are in turn dependent on the labelling 

assay, the type and the concentration of dyes used, the site of labelling and the 

characteristics of the labelling buffer. This chapter surveys the labelling strategies used 

during this work and solicits an optimized protocol for fluorescently labelling OMPs to 

perform robust smFRET experiments.   
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3.1 Refolded conformation of outer membrane phospholipase A 

(OmpLA) is sensitive to dimethyl sulfoxide 

Site-directed mutagenesis was performed on the wild type OmpLA so as to point mutate 

the amino acids at positions 13 and 85 into cysteine (A13C and N85C, respectively). 

OmpLA13,85 was then overexpressed in E.coli, purified from inclusion bodies and refolded 

in 35 mM LDAO as described in the Appendix Section 8.3.1. Different labelling assays 

were then used to label it (at ~5 M concentration) with Atto532 (ATTO-TEC) as the donor 

dye and Atto647N (ATTO-TEC) as the acceptor dye by maleimide reaction. At an ideal 

buffer pH of 6.5 to 7.5, the maleimide group on the fluorophore reacts specifically with the 

sulfhydryl group of cysteine on OmpLA13,85 resulting in a labelled molecules with an 

irreversible thiol bond (153) (Figure 3-1a). Subsequently, the labelled protein molecules 

were separated from the free dyes via size exclusion chromatography (SEC, using Superdex 

75 10/300 GL column, GE Healthcare Life Sciences) (Appendix Section 8.3.2). The 

obtained chromatogram was used to calculate the labelling efficiency (also called as degree 

of labelling or dye-to-protein ratio) for the donor and the acceptor dye using the Lambert-

Beer law according to the following formula: 

 LE (%) = 
ε280Amax

[ A280-(CF280Amax)εdye ]
×100  (22) 

Here, LE is the labelling efficiency in percentage, 280 the extinction coefficient of the 

protein which is 82280 M-1cm-1 for OmpLA wt and dye is the extinction coefficient of the 

maleimide dye in consideration: 115000 M-1cm-1 and 150000 M-1cm-1 for Atto532 and 

Atto647N, respectively. CF280 is the correction factor of the dyes at 280 nm: 0.09 for 

Atto532 and 0.05 for Atto647N. A280 and Amax are the absorbance values of the protein 

containing fraction obtained at the chromatogram peaks for the protein and dyes, 

respectively. 

When performing smFRET experiments with the labelled protein sample, it of greater 

relevance to also calculate the number of double labelled molecules. The latter can be 

enumerated by using the stoichiometry (S) filter (see eq. (18), Section 2.3.1) upon the pre-

analysed smFRET measurement data. To this end, single molecule events were selected 

from the acquired photon stream by filtering for fluorescence bursts with a maximum inter-
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photon time of 50 s having at least 40 photons. After applying the correction factors 

(=0.054, =0.0275 and =0.9), the donor only labelled molecules were counted with 0.95 

< S and the acceptor only labelled molecules with S < 0.2. In order to obtain the double 

labelled molecules, an additional ALEX-2CDE filter of -1 < ALEX-2CDE < 10 was applied 

along with the S filter of 0.2 < S < 0.75. ALEX-2CDE is a brightness filter which is used 

in addition to the S filter to remove single labelled molecules (154) throughout this work. 

On normalizing the number of double labelled molecules with all the detected molecules, 

a percentage of double labelled OmpLA13,85 or double labelling efficiency (DLE) was 

calculated (Figure 3-1b and Table 3-1 on page. 50).  

 

Figure 3-1 - Labelling Assays. a) The maleimide reaction used for labelling the refolded OmpLA13,85 

(1qd6.pdb, (93)) in LDAO. The positions of labelling are shown with the cysteine containing thiol group 

required for reacting with the maleimide functionalised donor and acceptor dyes. b) The labelling efficiency 

(LE) for donor and acceptor dyes obtained from the size exclusion chromatograms and the number of double 

labelled molecules (DLE) from smFRET experiments are shown for different assays as indicated in the x-

axis. The reaction incubation time was 3-4 hours for all of them. It should be noted that the percentage is on 

the log scale for a better resolution of lower values. c) FRET histograms for measurements corresponding to 

different dye concentrations demonstrate that higher concentrations (40X and 200X) lead to misfolding of 
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refolded OmpLA13,85 as shown by the Gaussian fits for the misfolded mid to high FRET efficiency population 

(grey curve) and high FRET efficiency refolded population (black curve). 

As expected, higher concentration of dyes led to a higher labelling efficiency (Figure 3-1b 

and Table 3-1a). While an excess of 40X and 200X dye concentration mostly lead to LE of 

more than 50%, lower dye concentrations of 10X and 20X excess showed LE of less than 

50% for the individual dyes. Since it was discerned that Atto532 labelled with a relatively 

lower competency (28.4 % with 20X dye) as compared to Atto647N (40.7 % with 20X 

dye), a labelling assay was designed so as to introduce the dyes sequentially: first 20X or 

40X Atto532 and then 20X or 40X Atto647N after an incubation of 2 hours. As anticipated, 

the dye added first (Atto532) had an increased LE532 (42.4% and 62.2% for 20X and 40X, 

respectively) as compared to when the dyes were added together. However, because many 

of the sites were now blocked by Atto532, the LE647N decreased (29.9% for 20X and 11.4% 

for 40X, respectively) as compared to the previous assay (40.7% for 20X) revealing that 

both the sites had similar affinity to the dyes. Furthermore, the addition of salt (20 mM 

NaCl) had no significant incremental or detrimental effect on the LE of either of the dyes 

Figure 3-1b and Table 3-1a.  

In the next step, the true molecules of interest i.e. the double labelled molecules were 

evaluated from smFRET measurements along with an insight into the conformation of the 

labelled molecules by examining the FRET efficiency (E) histograms. While the dye 

concentrations of 20X and 40X showed a mere 10% DLE, higher dye concentrations indeed 

showed a higher DLE for OmpLA13,85 (29.1% for 200X dyes added together). From a 

structural perspective, the refolded OmpLA13,85 should show a narrow high FRET 

efficiency peak corresponding to a properly folded -barrel protein. Assuredly, the refolded 

OmpLA13,85 at 10X and 20X shows a narrow high FRET efficiency peak with an <E>=0.83 

marked by a black Gaussian curve fit in Figure 3-1c. However, misfolded OmpLA13,85 

becomes significantly apparent at dye concentrations of 40X and 200X with an additional 

mid to high FRET efficiency peak (grey curve) having <E>=0.58. Here <E> is the mean 

FRET efficiency value obtained for each of the Gaussian curve.  

At this point, it is interesting to note that dyes were dissolved in anhydrous dimethyl 

sulfoxide (DMSO). Hence, it is possible that higher dye concentrations and bigger dye 

volumes i.e. higher DMSO concentration (>0.4 mM) from the dissolved stock led to 

misfolding of the refolded OmpLA13,85. In the past, action of DMSO on a protein state is 
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found to be dependent on the protein in consideration (155–157), and yet not enough is 

known about its effect on OMPs. The study here indicates that exceeding a certain DMSO 

concentration might be harmful for their native structure. Moreover, higher concentration 

of dyes could also be affecting the refolded conformation of OmpLA (158). Taking into 

account the limitation of the dissolving ability of dyes and the effects of dyes themselves, 

lower dye volumes are more appropriate for maintaining the integrity of the refolded 

protein. Although, this could lead to a lower labelling quality, an obstacle which can be 

overcome by changing the buffer conditions as shown in the last section of this chapter. 

3.2 Labelling efficiencies are site-specific 

smFRET is sensitive in the range of 2-10 nm (159–161) which requires that the probed 

protein is labelled with the fluorophores at appropriate positions so as to fulfil the distance 

specification. For this purpose, it is important to choose appropriate labelling sites on the 

protein of interest. In the case of a folded state, the theoretical donor-acceptor distance 

between the chosen positions of dyes can be simply determined by inspecting it in a 

visualization software like VMD (162) (if structure is available). Further, on considering 

the unfolded polypeptide as a Gaussian chain, it is also possible to determine the distance 

between dyes (r) in the unfolded state of protein as reported by Hoffmann et. al. (163): 

<r2> = 2lpnl (23) 

Here, lp is the persistence length which is 1.1 nm for a worm-like chain model, n is the 

number of amino acids and l is the distance between two consecutive -carbon atoms (0.38 

nm). Thus, while for smaller OMPs like OmpX with 148 amino acids, the whole protein 

conformation could be probed by labelling at the first and last position (1-2 nm for the 

folded state and 10-11 nm for the unfolded state), a bigger OMP like OmpLA (269 amino 

acids) required labelling at various sites. For this purpose, apart from positions A13C and 

N85C, 4 more labelling sites (K64C, D125C, D187C and H234C) were carefully chosen 

according to the recommendations in Appendix Section 8.3.1 (Figure 3-2a). Point 

mutations were done pairwise on each of these sites in order to introduce a cysteine residue 

and perform donor and acceptor labelling through maleimide reaction on the refolded 

OmpLA variants (Appendix Section 8.3.1 and 8.3.2) resulting in: OmpLA13,85, 
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OmpLA13,125, OmpLA64,187, OmpLA125,234 and OmpLA13,234. The first two probed the first 

subsection of the protein, OmpLA64,187 the middle and OmpLA125,234 the last.  

While the refolded state distances were between 1.3-2.6 nm for these variants, unfolded 

distance was estimated to be 10 nm. With OmpLA13,234, the aim was to probe the global 

protein conformation at least in its folded form as the distance in the unfolded state might 

be more than 10 nm. It should be taken into account that these distances are calculated 

without considering the linker distances of the dye and the deviation of unfolded 

polypeptide from a Gaussian chain. However, the estimations verify that these variants can 

be probed by smFRET to get a complete picture of OmpLA conformation in its denatured, 

unbound and chaperone-bound state.  

 

Figure 3-2 - Labelling efficiencies of different outer membrane phospholipase A (OmpLA) variants. a) 

Labelling positions (13, 64, 85, 125, 187, 234) are shown on a pictorial representation of the secondary 

structure map of OmpLA, b) The labelling efficiency (LE) for donor and acceptor dyes obtained from the 

SEC and the percent of double labelled molecules (DLE) from smFRET experiments are shown for the five 

OmpLA variants: OmpLA13,85, OmpLA13,125, OmpLA64,187, OmpLA125,234 and OmpLA13,234 and c) FRET 

histograms showing high FRET efficiency peaks of the labelled refolded OmpLA variants as indicated. The 
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single molecules bursts were analysed as in the previous section. The labelling positions in their native state 

is indicated in the protein structure (1qd6.pdb, (93)). 

On keeping the protocol for labelling (both the dyes were added together at 20X 

concentration) and concentrations of protein (5-10 M) consistent, the LE was calculated 

for each of these mutants. The analysis filters for FRET experiments were also kept the 

same as in previous section. Evidently, both LE and DLE appear to be dependent on the 

site of labelling. As seen in Figure 3-2b and Table 3-1b, while OmpLA13,85 shows the least 

percentage of DL molecules (2%), other positions appear to be better favoured especially 

64, 187 and 234 (>9%). Keeping this in mind, the redundant first subsection variant 

OmpLA13,85 is not used further for this work. Possibly due to a better exposure of the 

extracellular sites, OmpLA64,187 has the highest LE on both the positions (51.3% and 

40.2%) along with a much higher DLE (28%). All OmpLA variants are well refolded in 

LDAO micelles as observed by SDS-PAGE (Section 8.3.2, Figure 8.3-1) and as shown in 

Figure 3-2c with a corresponding high FRET efficiency state observed for all of them. 

 

3.3 Denaturing conditions significantly improve labelling  

Apart from choosing appropriate labelling sites, it is also important to choose suitable dyes 

for labelling (164). Apart from having a relevant R0 (distance corresponding to 50 % E) 

and spectral overlap for a given pair, they should also have high quantum yield and photo 

stability. Moreover, when studying hydrophobic proteins refolded in detergents or 

liposomes, their interaction with the membranes and hydrophobic regions of the protein 

needs to be considered so as to avoid photophysical and conformational artefacts (164). For 

instance, it was found by Hughes and Rawle et. al. (164) that while Atto532 (maleimide) 

had a much higher Membrane Interaction Factor (MIF) of 13±1, Abberior Star 635P (azide) 

had a rather low MIF of 0.21±0.02. Thus, Abberior Star 635P appears to be a better 

candidate for labelling hydrophobic OMPs. As explained in Section 2.3.3, during smFRET 

experiments, characterizing the fluorescence anisotropy is helpful to check for restricted 

motion of the dyes resulting from its interaction with the local environment. To this end, 

the rotational correlation time is calculated (according to eq. (20)) for two different acceptor 

dyes (Atto647N (ATTO-TEC) and Abberior Star 635P (Abberior) as shown in Figure 3-3a. 

Atto647N appears to show a higher rotational correlation time (=5.665 ns) as compared 
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to Abberior Star 635P (4.529 ns) for the refolded OmpLA13,125. Thus, even if  is not 

desirably perfect for either of the dyes, it is indeed better for Abberior Star 635P. But, the 

FRET histograms themselves show no big difference in the high FRET populations for both 

the cases with an <E>=0.76 for the Atto647N labelled OmpLA13,125 and <E>=0.79 for the 

Abberior Star labelled OmpLA13,125. Following this finding, in many cases, the OMPs were 

labelled with Abberior Star 635P as the acceptor dye and Atto532 as the donor dye (1ns 

– not shown). It should be noted that the rotational freedom of dyes depends on other factors 

as well like the conformation of the protein, aggregation, temperature, buffer conditions 

and binding partners. Thus, in this work, the rotational time of the dyes were checked 

wherever possible to ensure an absence of such artefacts in our FRET experiments.  

 

 

Figure 3-3 - Effects of dyes and labelling under denaturing conditions. a) The rotational correlation times 

() as indicated were obtained from a plot between the anisotropy of the acceptor fluorophore (rRR) and A 

(ns), the acceptor lifetime. While  is 5.665 ns for Atto647N, it is rather low for Abberior Star 635P (Ab Star 

635P) at 4.529 ns. Open overlapping as in the right panel, the FRET histogram for the labelled OmpLA with 

either Atto647N (green bars) or Abberior Star 635P (black bar outline) shows no significant difference, b) 

Labelling efficiencies for the donor and acceptor dye along with the percentage of double labelled molecules 

is shown for each variant. The labelling efficiencies seems to be rather independent of chosen position in 

presence of denaturants and c) FRET histograms of all the labelled variants in the denaturing labelling buffer 

with positions on a pictogram of the unfolded state on the right edge. As expected, a low FRET efficiency 
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peak is observed for all the variants indicating their unfolded state. The single molecules bursts were selected 

as in the previous section. Correction factors of =0.0881, = 0.0247 and =0.505 were also used along with 

gGG = 0.85152 and gRR= 0.82186.  

Having now taken into account the site and dye specific effects on both the proteins and 

the labelling, the last step was to optimize the buffer conditions so as to increase the 

labelling efficiencies. Since the investigation of chaperone-bound and unbound OMPs 

requires that the OMPs are denatured and the detergent LDAO is absent when preparing 

the chaperone-OMP complex, OMPs can be labelled in a denaturing buffer (e.g. 6 M 

GdmCl) and used directly to measure in absence or in presence of the chaperones. Thus, 

the OmpLA variants were labelled in a buffer (20 mM Tris-HCl, 150 mM NaCl, pH 7.2) 

containing 6 M GdmCl with 20X excess of dyes at room temperature with an incubation 

period of 3 hours, followed by purification with SEC in the same denaturing buffer. Figure 

3-3b demonstrates that labelling efficiencies increase in the unfolded state of OmpLA, 

possibly due to an improved exposure of the cysteine on the labelling sites. Extinction 

coefficient of dye = 120000 and correction factor CF280 = 0.21 was used for calculating the 

labelling efficiency of Abberior STAR 635P dye. Individual dye LE of >50% were 

observed for all the dyes, and up to 29.9% DLE was obtained for OmpLA125,234 (Figure 

3-3b and Table 3-1c). Compared to DLE in absence of denaturant (Table 3-1c), this 

approach appears to be beneficial for at least some variants (OmpLA125,234 and 

OmpLA13,234), and is rather independent of the labelling position chosen. However, 

negligible improvements for other variants indicates that the labelling assay might still need 

to be improved either by increasing the dye concentration or by using a better purifying 

approach like Reverse Phase-High Pressure Liquid Chromatography (RP-HPLC). 

 

Further, as expected the FRET histograms (filtered with 0.2 < S < 0.75 and 0 < ALEX-

2CDE < 10) show a broad low FRET efficiency peak for all variants corresponding to the 

expected unfolded states for these proteins (Figure 3-3c). Following this finding, OmpLA 

variants were labelled in their denatured states and used directly to complex with 

chaperones to perform chaperone-bound and unbound FRET experiments.  
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3.4 Summary 

This chapter focussed on establishing a labelling protocol with suitable labelling sites on 

OmpLA and appropriate dyes, an important venture as the quality of labelling narrates the 

proficiency of our FRET experiments. Equipped with the stoichiometry filter, the sample 

heterogeneity was quantified to reflect upon the double labelling efficiencies. Although, 

higher dye volumes (and thus high concentrations of dye and DMSO) incremented the 

labelling efficiencies, they also perturbed the refolded state of OmpLA13,85 and were found 

to be unsuitable. Further, the LE were found to be site-specific for refolded OmpLA with 

the OmpLA64,187 variant showing the highest labelling due a greater solvent exposure of 

these residues. Next, on examining the rotational freedom of dyes, Abberior Star 635P was 

found to be a better candidate as an acceptor dye compared to Atto647N (depends on the 

buffer conditions as well). Lastly, an increase in labelling efficiencies occurred when 

labelling was performed under denaturing conditions for at least some variants reducing 

the effect of chosen positions for labelling.  

 

a) Labelling Assays for OmpLA13,85 LE532 (%) LE647 (%) DL (%) 

1 10X dyes put together 19.6 44.2 2.3 

2 20X dyes put together 28.4 40.7 1.5 

3 20X 1st Atto532 then Atto647N put sequentially 42.4 29.9 2 

4 40X 1st Atto532 then Atto647N put sequentially 62.2 11.4 7.2 

5 200X dyes put together 59.1 53.1 29.1 

6 20X put together with 20 mM NaCl 21.7 43.4 1.6 

7 200X put together with 20 mM NaCl 63.5 58.7 32.9 
     

b) Site Specificity of Labelling (with 20X dyes) LE532 (%) LE647 (%) DL (%) 

1 OmpLA13,85 42.4 29.9 2 

2 OmpLA13,125 44.2 31.3 9.8 

3 OmpLA64,187 51.3 40.2 28 

4 OmpLA125,234 8.3 24.3 18 

5 OmpLA13,234 60.7 21.4 9.4 

     

c) Labelling under denaturing conditions (with 20X dyes) LE532 (%) LE635 (%) DL (%) 

1 OmpLA13,125 56.9 107.4 9.3 
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2 OmpLA64,187 86.1 58.8 19.9 

3 OmpLA125,234 73 67.6 29.9 

4 OmpLA13,234 76.6 66.8 16.7 

 

Table 3-1 - Labelling Efficiencies. LE532 is the Labelling Efficiency for the donor Atto532 dye in %, LE647 

is the Labelling Efficiency for the acceptor Atto647N dye in %, LE635 is the Labelling Efficiency (LE) for the 

acceptor Abberior STAR 635P dye in % and DL is the percentage of double labelled molecules. The 

calculations of LE are done according to eq. (22). DL (%) is obtained on using the S filter on the FRET 

experiment data as explained in Section 2.3.1. a) LE for the particular labelling assays as stated in each 

column, b) LE for different OmpLA variants indicating site specificity of labelling and c) LE for different 

OmpLA variants under denaturing conditions.  

 

Outlook: In general, the labelling strategies mentioned in this chapter yielded competent 

smFRET measurement data for further analysis. However, in future, improvements in 

labelling can be made by using RP-HPLC which has the ability to separate proteins based 

on their hydrophobicity (135). With this purification technique, even the single labelled 

proteins can be distinguished from the double labelled proteins on examining the ratio of 

peptide bond absorption (measured at 220 nm or 235 nm) to dye absorption, thus effectively 

increasing the double labelled population of the protein during smFRET experiments.



 
 

 

 



 
 

 

 

Chapter 4 Denatured OMP ensembles undergo slow 

structural interconversion 

Unfolded states of proteins provide a fundamental insight into the first few stages of a 

newly synthesized polypeptide (165–167). Ranging from fast nanosecond interconversion 

because of a random-coil like behaviour to longer millisecond chain dynamics often due to 

presence of residual structures, subpopulations of the denatured polypeptide also convey 

significant information about their cellular biogenesis process (47, 168–171). An 

understanding of which is especially important for OMPs which have to be maintained in 

an unfolded state for long time periods in the aqueous cytoplasm and the periplasm until 

they reach the outer membrane (21, 23, 126, 172). Using various ensemble techniques, a 

few studies have previously investigated different OMPs to obtain information about their 

structures and folding kinetics under denaturing conditions (121–123, 173–176). Many of 

them have found that the unfolded states of these differently sized OMPs featured non-

random coil like behaviour. However, ensemble techniques generally lack the ability to 

resolve heterogeneities during the folding process and uncover interconversion time within 

the ill-defined unfolded states. In contrast, single molecule techniques provide access to 

different timescales of unfolded chain dynamics so as to resolve the sub-population 

diversity (169, 177–179). Here, smFRET in combination with kinetic analysis and 

recurrence analysis of single particles (RASP) (137) is used to explore the structural and 

biophysical aspects of OMP denaturation in presence of LDAO. By elucidating the 

unfolded states of two differently sized OMPs: OmpX and OmpLA, this chapter 

characterizes the underlying timescales among distinct conformational species along the 

OMP folding pathway in absence of chaperones. Such an investigation can help us to 

envision their interaction with chaperones and their folding mechanisms in lipid 

membranes.  
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4.1 Denaturing a smaller OMP: 8 -stranded OmpX  

Using ensemble techniques, some efforts have been made towards understanding the 

denatured states of the 8 -stranded OmpX. Presence of non-random coil like features with 

stable hydrophobic clusters and transient secondary structures have been reported in urea 

denatured OmpX through NMR spectroscopy experiments (121, 122) and molecular 

dynamics simulations (173). Further, folding rates of OmpX into PC 10:0 liposomes have 

been detected on the order of 0.01 s-1 by various techniques including SDS PAGE, 

Tryptophan Fluorescence and NMR Spectroscopy (124) where the folding itself was 

suggested to be a two state process. Another study showed that an increase in temperature 

could accelerate the folding of OmpX possibly due to disruption in the lipid packing and 

noted a maximum folding rate at 70 °C into LDAO (within first few minutes) while it was 

0.62 min-1 at 40 °C (180). Yet, a better resolution of the folding pathway with an 

information about the timescales of interconversion between the heterogeneous unfolded 

sub-species is still unclear making it necessary to study both the unfolding and the unfolded 

states of this protein through FRET on a single molecule level.  

4.1.1 OmpX folds with slow kinetic rates in vitro 

To probe OmpX folding and unfolding kinetics with smFRET experiments, a double 

cysteine mutant (OmpX1,149) was designed through site directed mutagenesis at positions 1 

(A1C) and 149 (149C) by Mai Quynh Ma from the Schlierf group. OmpX1,149 was 

expressed in inclusion bodies, purified, refolded into 35 mM LDAO and labelled with 20 

X Atto532 (ATTO-TEC) and Abberior Star 635P (abberior) (Appendix Section 8.3.1). The 

double labelled OmpX1,149 sample was subsequently diluted to 20-40 pM concentration in 

a buffer containing 20 mM Tris, 2 mM EDTA and 10 mM LDAO at pH 8 with varying 

concentration of the denaturant Guanidinium chloride (GdmCl).  The smFRET experiments 

were then performed to investigate the folding kinetics in close collaboration with Dr. 

Andreas Hartmann. Using the home-built setup (Section. 2.3.1), fluorescence bursts were 

collected from single freely diffusing molecules to extract the FRET efficiencies 

corresponding to different conformational states of the probed molecule. For burst analysis, 

a maximum inter-photon time of 40 s with minimum 50 photons after background 

correction and a Lee filter window size of 4 was used. The ALEX-2CDE and stoichiometry 
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filters were also applied to remove the quenched and single labelled molecules (ALEX-

2CDE < 7 and 0.2 < S < 0.75). 

 

Figure 4-1 - Unfolding OmpX1,149. a) smFRET measurement with refolded OmpX1,149 (2m06.pdb, (90)) in 

10 mM LDAO shows a FRET population corresponding to high FRET efficiency as expected for a folded -

barrel protein. b) Equilibrium measurements of OmpX1,149 at incremental GdmCl concentrations (4 M, 4.5 

M, 4.75 M, 5 M, 5.25 M, 5.5 M, 6 M) as indicated in each histogram panel demonstrate decrease in the folded 

population with increasing denaturant concentrations. The three states during unfolding: Unfolded(I), 

Unfolded(II) and Folded are indicated in the first panel of the sub-figure. The red dashed line shows the 

Gaussian fit with three underlying states. c) The probability of those three states are shown with the folded 

fraction (orange line with orange error bars) clearly decreasing with increasing GdmCl concentrations while 

the fraction of unfolded(I) (green line with green error bars) and unfolded(II) (purple line with purple error 

bars) states increases. The probabilities were obtained by performing PDA considering three static states. d) 

The unfolding smFRET experiment performed at 5.5 M GdmCl shows that the folded fraction gets 
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depopulated with passage of time. Each cumulative histogram is acquired at a subsequent time interval of 2 

hours as indicated in the legend. The equilibrium measurement at 5.5 M GdmCl concentration is shown by a 

dashed line. e) The folded fraction p(folded) is plotted against time (h) as obtained from the global cumulative 

PDA with the kinetic rate of folding kf* and kinetic rate of unfolding ku* being (0.13  0.1) h-1 and (0.37  

0.3) h-1, respectively. Here, a reaction scheme of U* F is followed as explained in the main text. f) Global 

cumulative PDA was used on unfolding experiments performed for all the GdmCl concentration 

measurements (as before) and the kinetic rates (kfolding* shown in black and kunfolding* shown in red) were 

obtained at each of them to reflect upon the kinetic rates in an aqueous solution by extrapolation. The kinetic 

rates were obtained to be kf
H2O*

 = 11.057.67
14.42 h-1 or 0.180.13

0.24 min-1 and ku
H2O*

 = 0.030.46
0.51 h-1 or 0.00050.008

0.009 min-1 

in good agreement with previous works in other membrane mimetic systems (169, 181–183).  

As expected for a folded -barrel protein, the refolded OmpX1,149 in a denaturant less buffer 

shows a population corresponding to high FRET efficiency (Figure 4-1a) due to close 

proximity of the two labelling positions. The correction factors of =0.881, =0.0247 and 

=0.4907 were used along with gGG=0.85152 and gRR=0.82186 when analysing the FRET 

efficiency histograms. Subsequently, the unfolding experiments were performed across a 

range of denaturant GdmCl concentrations (0, 4, 4.5, 4.75, 5, 5.25, 5.75 and 6 M) in a buffer 

(20 mM Tris, 2 mM EDTA, pH 8.0) containing 10 mM LDAO. After incubation at room 

temperature for 24 hours, smFRET measurements were performed with the equilibrated 

denatured OmpX1,149 at low picomolar concentrations (20-40 pM). All the burst analysis, 

correction factors and filters were set as afore-mentioned for refolded OmpX except for  

(~0.47, slightly varied for every GdmCl measurement, it was calculated according to 

Section 8.3.4, eq. (24)).  As seen in Figure 4-1b, a low FRET efficiency peak corresponding 

to the unfolded state (Unfolded (I)) starts to get populated with increasing GdmCl 

concentration along with another small unfolded population (Unfolded (II)) between the 

folded and the unfolded (I) state suggesting presence of unfolded states. This is in contrast 

with the previously observed single unfolded state by Rath et. al. (124). However, in 

addition to the difference in membrane mimetic environment used (PC 10:0 liposomes 

instead of LDAO), it is possible that smFRET is able to resolve the heterogeneities in the 

unfolded states which were hidden from previous ensemble observations.  

Subsequently, quantification of the probability of these states from each GdmCl 

concentration measurement was performed by Probability Density Analysis (PDA) on 

considering 3 static states: Unfolded-I (U(I)), Unfolded-II (U(II)) and Folded (F) (Figure 
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4-1c). Briefly, the experimental FRET efficiency histograms were fitted to theoretical 

FRET efficiency histograms obtained by Monte Carlo simulation assuming three state 

model with different apparent FRET efficiencies for the U(I) state (Eu(I)*) and global (i.e. 

same) FRET efficiencies for the U(II) (Eu(II)*) and F states (Ef*). The individual distances 

(Ru(I), Ru(II) and Rf) were drawn from a Gaussian distribution probability function with u(I), 

u(II) and f as the distribution width of each state: U(I), U(II) and F, respectively. This 

accounted for the additional widths in excess of shot-noise broadening. By performing chi-

square optimisation, the probability of each state for different GdmCl concentration was 

determined as shown in Figure 4-1c. Such a semi-global PDA fit resulted in Eu(II)* = 0.55 

 0.03, Ef* = 0.89  0.006, u(I) = (0.41  0.04) nm,  u(II) = (0.64  0.03) nm and f = (0.53 

 0.05) nm at an average reduced = 1.91. The FRET efficiencies of the U(I) state along 

with the probabilities of each state at different GdmCl concentration are enumerated in 

Table 4-1. An important message to be derived from this analysis is that the probability of 

not only U(I), but also U(II) increases with incremental GdmCl concentration. This finding 

conveys that U(II) is indeed an unfolded state and can be combined with the U(I) state such 

that the reaction scheme U(I)  U(II)  F can be rewritten as U* F where U* is a 

summation of the two unfolded states. This reaction scheme can then be used to obtain the 

kinetic rates kf* and ku* representing the folding and unfolding rates, respectively.  

In this regard, time-resolved unfolding smFRET measurements (non-equilibrated – without 

incubation) were made with dilution of refolded OmpX1,149 into the same series of GdmCl 

concentration containing buffer as before. The FRET efficiency histograms at incremental 

time intervals (T = 0-2, 0-4, 0-6, 0-8, 0-10, 0-12 hours) for the unfolding experiment 

conducted at 5.5 M GdmCl are shown in Figure 4-1d. It demonstrates that the folded FRET 

population decreases with the passage of time indicating slow interconversion between the 

unfolded (U(I) and U(II)) states and the folded (F) state. The burst data was further analysed 

for each GdmCl concentration measurement to obtain the fraction of unfolded (U(I) and 

U(II)) and folded (F) states. To this end, the Eu(I),u(II),f and u(I),u(II),f  obtained from a 3 free 

state static PDA for each unfolding experiment was obtained to ensure a better stabilisation 

of the fit. Next, a global cumulative PDA fit was employed on the time evolving folded 

fraction (pfolded) so calculated to obtain the folding rates corresponding to a U* F reaction 

scheme. Here, the reader is referred to the dissertation of Andreas Hartmann (138) and to 
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the research article about OmpLA unfolding from the Schlierf lab (123) for a detailed 

explanation of the analysis.  

[GdmCl] (M) Eu(I)* pf pu(I) pu(II) kf* (h-1) ku* (h-1) 

4 0.19  0.01 0.5  0.04 0.31  0.04 0.19  0.02 0.30  0.03    0.20  0.02 

4.5 0.19  0.01 0.49  0.03 0.29  0.02 0.21  0.03 0.28  0.08   0.22  0.06 

4.75 0.18  0.01 0.39  0.03 0.33  0.04 0.28  0.01 0.26  0.04   0.24  0.04 

5 0.18  0.01 0.38  0.04 0.35  0.04 0.27  0.04 0.26  0.11    0.24  0.11 

5.25 0.16  0.01 0.23  0.03 0.40  0.06 0.37  0.04 0.27  0.22   0.23  0.19 

5.5 0.16  0.01 0.02  0.01 0.36  0.05 0.61  0.06 0.13  0.11   0.37  0.28 

6 0.16  0.01 0.04  0.03 0.39  0.04 0.57  0.05 0.10  0.13    0.40  0.42 

 

Table 4-1 - Parameters from PDA fits for equilibrium and non-equilibrium OmpX1,149 unfolding. At 

each GdmCl concentration ([GdmCl] in M), the apparent FRET efficiency (E*) of the unfolded(I) fraction 

(Eu(I)), the probability of the folded (pf), unfolded (I) (pu(I)) and the unfolded (II) (pu(II)) so obtained from the 

semi-global PDA (Free Euf(I) of Unfolded state (I) and global Ef and Euf(I)) fitting of the equilibrium 

measurements are recorded in this table.  The kinetic rates obtained from the global cumulative PDA from 

the non-equilibrium unfolding experiments are also noted down where kf* (h-1) and ku* (h-1) are the kinetic 

rates of folding and unfolding following a U* F reaction scheme. 

The decay of folded fraction for the unfolding experiment performed at 5.5 M GdmCl with 

the corresponding kinetic rates of kf* = (0.13  0.1) h-1 and ku* = (0.37  0.3) h-1 is shown 

in Figure 4-1e. By obtaining the kinetic rates (kf* and ku*) of the unfolding experiments at 

each GdmCl concentration (given in Table 4-1), linear extrapolation was done to a zero 

denaturant concentration leading to a kf
H2O*

 = 11.057.67
14.42

 h-1 or 0.180.13
0.24

 min-1 and ku
H2O*

 = 

0.030.46
0.51

 h-1 or 0.00050.008
0.009

 min-1 in a reasonable agreement with the previously obtained 

kinetic rates (Figure 4-1e) (124, 184, 185). It should be taken into account that the rates are 

influenced by the membrane mimetic environment and the buffer used. While the relatively 

slow folding rate resulting from heterogeneity and conformational restrictions is a rather 

common observation for OMPs (21, 123, 186), the slow unfolding rate testifies to the 

absence of need to unfold (after refolding) in a cellular context as the sequences have had 

no evolutionary pressure to be equipped with unfolding mechanisms (187, 188).  
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4.1.2 Denatured states of OmpX undergo slow interconversion 

The dynamics within the unfolded state of OMPs dictate their binding affinity to the 

chaperones that carry them to the outer membrane (24, 40). Thus, in this section, the focus 

will be on evaluating the unfolded state of OmpX in detail. Already from the previous 

section, it is evident that the FRET efficiency histogram corresponding to the unfolded state 

is broad. On examining the measurement at 5.5 M GdmCl further, as in Figure 4-2a, it is 

seen that the width of the unfolded subpopulation (grey histogram of apparent FRET 

efficiency E*) is in excess of a distribution which would have been limited by shot noise 

(red cityscape). Interestingly, such a broad population is often attributed to slow 

interconversion ( > inter-photon time of 50 s) among the unfolded states of a protein 

compared (169, 178, 189–191).  

 

Figure 4-2 - Slow interconversion among denatured OmpX conformations. a) the apparent E (E*) 

histogram (grey bars) is shown with the theoretical shot noise limited distribution (red cityscape line) 

indicating that the unfolded population is broader than expected for an unfolded polypeptide chain behaving 

like a random coil. b) the lifetime of donor in presence of acceptor - D(A) was found to depend on the fraction 

corresponding to a certain range of FRET Efficiency, E. The orange D(A) histogram corresponds to the FRET 

population with E between 0 and 0.15 and the green D(A) histogram corresponds to the FRET population with 

E between 0.25 and 0.4. The mean values of D(A): <D(A)> indicated with dark orange and dark green line 

are found to be 2.81 ns and 2.59 ns, respectively. c) A 2D plot of relative lifetime of donor (D(A)/D(0)) in 

presence and absence of acceptor vs E shows that the unfolded state population lies on the static FRET line 



Denatured OMP ensembles undergo slow structural interconversion 

 

68 

 

(black line) and does not undergo sub-millisecond dynamics. d) Finally, RASP analysis shows that the 

unfolded OmpX1,149 is composed of heterogeneous conformations that have dynamics slower than 100 ms. 

On choosing two T: 0-5 ms and 5-100 ms with four different initial E: 0-0.2,0.2-0.3,0.3-0.4 and 0.4-0.6 

shown subsequent to each other, the measured (grey bars) and the recurring molecule (maroon) histograms 

were compared. It is clear that the recurring histogram scatters around the E chosen, thus indicating 

interconversion on a timescale slower than 100 ms. 

Further, by comparing the donor lifetimes in presence of acceptor (D(A)) of different 

populations within the unfolded state, one can also reflect upon their dynamics. In the case 

of fast dynamics (<ms), the lifetime of the FRET population would be the same irrespective 

of the unfolded sub-fraction selected. However, we find that the lifetime of donor depends 

on the FRET population selected such that the mean D(A): <D(A)> = 2.81 ns and 2.59 ns 

corresponds to the FRET population filtered by 0<E<0.15 and 0.25<E<0.4, respectively. 

Figure 4-2b attests to this finding as the orange D(A) histogram is shifted from the green 

D(A) histogram for differently filtered FRET efficiencies (E) as indicated in the plot. Such 

an analysis becomes clearer in a 2D plot between the ratio of average donor lifetime in 

presence and absence of acceptor (D(A)/D(0)) to E. As the lifetime ratio is intensity weighed 

and FRET efficiency, E is species weighed, deviation from the static FRET line shown as 

a black line in Figure 4-2c would indicate presence of sub-millisecond dynamics. An 

absence of which corresponds to static sub-populations with a slow timescale (<ms) of 

conformational change as is the case with the unfolded population of OmpX1,149. 

 

Lastly, using RASP, the interconversion timescale within the unfolded states was 

investigated. With this tool, FRET efficiency (E) histograms of recurring molecules were 

compared with the measured E histograms. First, bursts were selected with different initial 

E in a narrow range along the unfolded peak. The bursts of recurring molecules within a 

given time interval (T) after the initial bursts were also recorded. If the measured E 

histogram for a selected E dictates the E histogram from recurring molecules, presence of 

a slow interconversion can be implied. However, if the E histogram from recurring 

molecules is independent of the E chosen and comparably overlaps with the complete 

distribution, dynamics faster than the given T can be inferred. By choosing two T (0-5 

ms and 5-100 ms), and four different E (0-0.2, 0.2-0.3, 0.3-0.4 and 0.5-0.7) (shown by 

black dashed line), it is observed that the measured (grey) and recurring histograms 
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(maroon) are independent of each other, such that the recurring histogram shifts with the 

chosen E for both the time intervals (Figure 4-2d). Hence, the conformations within the 

unfolded population of OmpX1,149 could be undertaking conformational exchanges on a 

time scale longer than 100 ms. One can draw an interesting relation between the observation 

of transient secondary structures and hydrophobic clusters among the unfolded states of 

OmpX by other researchers (121, 122, 173), and the slow interconversion reported here for 

unfolded OmpX1,149. A similar non-random coil like behavior has been previously 

connected to slow interconversion of unfolded states for the last segment of OmpLA (123). 

 

4.2 Denaturing a bigger OMP: 12 -stranded OmpLA 

A strong evolutionary trace was observed in the C-terminal half of outer membrane beta-

barrel proteins by Franklin et. al. (38). They reported that the sequences of 8 -stranded 

OMPs like OmpX and OmpA were conserved majorly in the C-terminal half of differently 

sized OMPs leading to a speculation that they might serve as the nucleation sites when 

folding with the help of BamA (97–99). Since OMPs are bound to chaperones in an 

unfolded form before they reach BamA, it is interesting to investigate if the slow dynamics 

observed in the unfolded states of OmpX in the previous section is a function of just the C-

terminal domain of bigger OMPs or of the whole protein. Interestingly, slow 

interconversion was also demonstrated to be a characteristic of the C-terminal of a bigger 

denatured OMP – OmpLA with 12 -strands (16). Adding on to this finding, in this thesis, 

the global interconversion dynamics of the unfolded protein along with the first and middle 

subsections is examined. Moreover, the stability of each sub-segment against denaturation 

is also evaluated to speculate upon the localisation of chaperone binding region of OmpLA. 

4.2.1 Sub-segments of OmpLA differ in their stability against denaturation 

To probe different sub-segments of OmpLA, four double cysteine variants were designed: 

OmpLA13,125, OmpLA64,187, OmpLA125,234 and OmpLA13,234 probing the first, middle, last 

sub-segment and the whole protein, respectively (also explained in Section. 3.2). In brief, 

all the variants were over-expressed in E. coli BL21 cells and purified from inclusion bodies 

by solubilisation at 8 M urea. They were then refolded in 35 mM LDAO and labelled with 

Atto532 and Atto647N (ATTO-tec, Germany) as the donor and acceptor fluorophores, 
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respectively (Appendix Section 8.3.2). Each variant was then individually subjected to 

smFRET experiments in different concentration of denaturant (GdmCl) containing buffer 

(20 mM Tris-HCl, 2 mM EDTA, pH 8.0) in presence of 10 mM LDAO. All the 

measurements were performed at equilibrium, i.e., the OmpLA variants were incubated 

with the given concentration of GdmCl for 24 hours before the experiments. On diluting 

them to 20 pM in the same denaturant buffer as before, smFRET experiments were 

performed on the home built confocal setup (Section 2.3.1). Single molecule bursts were 

then identified as the ones with a minimum inter-photon time of 40 s having more than 

50 photons. Calculation of the FRET efficiency (E) and the stoichiometry (S) was then 

performed using the correction factors of  = 0.0587,  = 0.0296 and  = 0.865. ALEX-

2CDE < 12 and 0.25 < S < 0.75 were also applied to remove single labelled molecules with 

an additionally NR filter > 5 to remove multiple molecules detected in the confocal volume.  

 

In absence of GdmCl, as expected, all the variants exhibit a high FRET efficiency (E) peak 

corresponding to a refolded -barrel OmpLA (Figure 4-3a, b, c and d for OmpLA13,125, 

OmpLA64,187, OmpLA125,234 and OmpLA13,234, respectively). On increasing the 

concentration of denaturant, all the variants undergo unfolding as demonstrated by the 

decrease in high FRET efficiency population. Intriguingly, unfolded OmpLA13,234 

demonstrated a low FRET efficiency peak with a <E> = 0.18 despite a theoretically 

calculated distance of >10 nm between the two labelling positions. This substantiates the 

previous finding from the Schlierf lab where it was shown that OmpLA125,234 possess long 

range tertiary interactions in its unfolded states (123).  Interestingly, each variant appears 

to have a slight difference towards its unfolding propensity on denaturation. By using a two 

state (folded and unfolded) static PDA fit, the probability of unfolded OmpLA 

(p(unfolded)) was quantified from equilibrium measurements for each variant at different 

GdmCl concentration. Shortly, as done in Section 4.1.1, the basic shape of the measured 

FRET efficiency was fitted to a theoretical one through Monte Carlo simulation for the two 

states. The apparent folded and unfolded FRET efficiencies, Ef* and Eu*, respectively along 

with the standard deviation of each state (u and f) so obtained during the chi square 

optimization for each variant are enumerated in Appendix Section 8.3.5, Table 8.3-2. 

The resulting probability of unfolded fraction for each variant is plotted against the GdmCl 

concentration in Figure 4-4a (page no. 74). It becomes immediately clear both from Figure 
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4-3 and Figure 4-4a that while the middle segment of OmpLA (OmpLA64,187) appears to 

unfold almost completely at 4 M GdmCl, the other segments still maintain a higher fraction 

of low FRET efficiency structure at this concentration of denaturant. Moreover, the C-

terminus of OmpLA (represented by OmpLA125,234 variant) is the slowest to undergo 

denaturation.  

On the one hand, this could simply be an influence of the labelling position chosen, while 

on the other hand, this could suggest that the stability of peptide in this middle region is a 

characteristic of the sequence, secondary structure propensity and long-range tertiary 

interactions in this part of the protein. It should be noted that this probed middle segment 

has the greatest number of loops (9) compared to other sub-segments (5 and 7 for 

OmpLA13,125 and OmpLA125,234, respectively) possibly making it faster accessible to the 

denaturant molecules on average. A recent investigation by He and Hiller has shown that 

frustrated segments of proteins may be recognised by chaperones where they used an 

example of a -sheet rich protein Fyn SH3 which appeared to have the same recognition 

sites for Spy, Skp and SurA (192). Further on, it will be intriguing to analyse if the middle 

segment of OmpLA happens to be the “frustrated region” recognisable by the chaperones 

Skp and SurA, as it appears to be the least stable when exposed to GdmCl. In line with this 

argument, it is also interesting to note that the C-terminal part of OmpLA (OmpLA125,234) 

appears to be the most stable segment. This suggests that at least some part of the most 

conserved region (considering 8 -strands according to ref. (88) it will be from amino acid 

120 – 269 in case of OmpLA) might not distinctly harbour a chaperone binding region and 

be left free for interaction with BamA facilitating its folding in the outer membrane of cells.  
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Figure 4-3 - Stability of different OmpLA segments against denaturation. Equilibrium smFRET measurements were performed for different variants of OmpLA with 

a) OmpLA13,125, b) OmpLA64,187, c) OmpLA125,234 and d) OmpLA13,234 at different concentration of the denaturant Guanidinium Chloride [GdmCl] as indicated in the figure. 

It is evident that incremental concentration of GdmCl unfolds the protein, although each segment appears to have a different stability against the denaturant. It should be 

noted that the data for measurements corresponding to 3.5 M, 5M and 6M GdmCl for OmpLA125,234 variant was obtained from measurements by Pablo Garcia from the 

Schlierf group (123). The pictograms depict the refolded (1qd6.pdb, (93)) and unfolded conformations with labelling positions as indicated.
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4.2.2 OmpLA segments possess slow unfolded chain dynamics 

In a manner similar to OmpX, the next step was to analyse the dynamics of interconversion 

among the different sub-segments of OmpLA. To this end, the last equilibrium 

measurement with the highest GdmCl concentration (6 M GdmCl) was examined further 

for all the OmpLA variants except OmpLA125,234 (already shown by Krainer et. al. (123)). 

Remarkably, a broad peak corresponding to the denatured state is observed for all of them 

(last panel of Figure 4-3), indicating that this asymmetric low-FRET efficiency peak might 

correspond to a slow interconverting population. Further, the width of the measured FRET 

efficiency histogram is indeed broader than the shot noise limited peak as seen in Figure 

4-4b for the OmpLA64,187 variant. Although not shown, similar extra broadening was 

observed for all other variants of OmpLA indicating again slower dynamics among the 

unfolded states. The 2 D plot of relative lifetime of donor in presence and absence of 

acceptor (D(A)/D(0)) vs FRET efficiency, E was also obtained for each variant and is shown 

for OmpLA13,125, OmpLA64,187 and OmpLA13,234 measurements at 6 M GdmCl in Figure 

4-4c . Discernibly, the unfolded populations of all the variants lie on the static FRET line 

further validating the previous inference.  

To further substantiate this claim and also to obtain an insight about timescale of slow 

interconversion, RASP was employed on the 6 M GdmCl measurements of all the variants. 

The FRET efficiency histograms of the recurring molecules were compared with that of 

the measured histograms by choosing four different initial E (0.1-0.2, 0.2-0.3, 0.3-0.4 and 

0.4-0.7) and two T (0-5 ms and 5-100 ms). Again, while an independence between the 

chosen initial E and the recurrence histogram is expected for a fast interconverting 

population, the shift of the recurrence histogram with the chosen initial E implies slower 

interconversion than the picked T. The latter was already observed to be the case for 

OmpLA125,234 with a conformational interconversion among unfolded states on a timescale 

longer than 100 ms. Due to lack of space, such an analysis is shown here only for the 

OmpLA64,187 variant (Figure 4-4d) with T = 0-5 ms and 5-100 ms and for OmpLA13,234 

variant (Figure 4-4e) with T = 5-100 ms with the afore-mentioned E windows. 

Remarkably, a similar trend suggesting very slow interconversion among the 

heterogeneous unfolded states was observed for all the segments of the protein. Thus, 

although each segment of the protein appears to have distinct stability against denaturation, 
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the slow conformational changes within the denatured ensemble itself emerges to be a 

global property of the protein.  

 

 

Figure 4-4 - Slow interconversion between unfolded conformational states of OmpLA. a) Probability of 

unfolded fraction (p(unfolded)) for each variant of OmpLA (OmpLA13,125 – blue, OmpLA64,187 – green, 

OmpLA125,234 – orange, OmpLA13,234 – purple along with respective error bars) is obtained by two state static 

PDA. The concentration of GdmCl is indicated in the x-axis and is shown only from 3 M GdmCl, as the 

measurements at lower concentration, did not show significant unfolded fraction. b) The apparent E (E*) 

histogram (green bars) is shown with the theoretical shot noise limited distribution (red cityscape line) 

indicating that the unfolded population is broader than expected for a fast-interconverting unfolded 

polypeptide chain. c) The relative lifetime of donor (D(A)/D(0)) is plotted against FRET Efficiency, E for 

OmpLA13,125, OmpLA64,187 and OmpLA13,234 measured with 6 M GdmCl at equilibrium indicating that the 

unfolded sub-population appear to be static on a ms timescale for all the variants. d) RASP was performed 

for the middle subsegment (OmpLA64,187) with four different initial E (0.1-0.2, 0.2-0.3, 0.3-0.4 and 0.4-0.7) 
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for two different time intervals T (0-5 ms and 5-100 ms). Remarkably, interconversion slower than 100 ms 

can be inferred for the unfolded states as the recurring molecule histogram (maroon bars) depended on the 

initial E window chosen. e) A similar observation was also made for OmpLA13,234, indicating that the slow 

interconversion among the heterogeneous unfolded states is a global property of the protein. 

4.3 Summary 

Understanding the folding landscape of a protein involves not only an elucidation of the 

folding kinetics but also the various conformational states of the protein along the folding 

reaction (165, 166). Considering that the biogenesis of OMPs is a rather complicated 

process due to their travel across the cytoplasm, inner membrane and the periplasm in an 

unfolded form, it is even more important to obtain insight into their unfolded states. 

Furthermore, the unfolding reaction might also provide information about the structure-

function relationships of the chaperone-OMP interaction in the periplasm followed by their 

release to the -barrel assembly machinery in the outer membrane (21, 25, 31, 126, 193). 

By performing smFRET experiments under denaturing conditions, this section aimed to 

investigate the folding kinetics and the unfolded state interconversion dynamics of first a 

small OMP, OmpX and then a bigger OMP, OmpLA. While as anticipated, the folding 

kinetics were found to be slow on an order of 11.050.36
22.46

 h-1 or 0.180.006
0.37

 min-1 for OmpX1,149, 

the slow interconversion among the unfolded states (>100 ms) proved to be a rather 

significant observation. Such a finding goes hand in hand with the previous studies that 

have shown presence of hydrophobic clusters and secondary structures in the unfolded 

states of OmpX (121, 122).  

Next, a bigger OMP, OmpLA was probed by choosing different labelling positions to track 

various sub-sections of the protein. Remarkably, the middle segment (represented by 

OmpLA64,187) showed the least stability against denaturation. This refers to the hypothesis 

that the middle segment might harbour binding sites for the periplasmic chaperones due to 

inherent local frustrations in its tertiary structure as was observed previously for Fyn SH3 

(130) . It will be interesting and a rather relevant point of focus in the upcoming Chapter 6, 

where each segment of OmpLA will be probed towards its affinity to SurA and Skp. 

Moreover, the last half of the protein (represented by OmpLA125,234) appeared to be rather 

stable against denaturation when compared to all other segments of the protein. C-terminal 
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sequence conservation of OMPs is supposed to be an important feature evolutionarily as it 

might be the nucleation site for folding. Thus, it is possible that this stability in part might 

play a role during the transfer of OmpLA from a periplasmic chaperone to BamA.  

Lastly, the slow timescales of interconversion among the unfolded states observed for both 

the proteins point towards the possibility that they are not only the rate-limiting steps during 

protein folding but also dictate their binding competency to chaperones. For example, in 

energetic terms, a smaller entropic change (provided that the conformational space of 

bound ensemble is similar to the unbound ensemble) would increase the binding affinity 

between the proteins.  Furthermore, under stress conditions, the preservation of folding 

competent states upon release from chaperones would facilitate their folding into the 

membrane (123, 126). Following this line of thought, the next two chapters will focus 

closely on the aspect of chaperone-OMP interactions for both OmpX and OmpLA and bring 

into the light a broader perspective upon the observations made in this chapter.  

Outlook: It will be interesting to gain insight into OmpLA like segment-based stability of 

other OMPs, by performing smFRET measurements for bigger OMPs like OmpG (14 -

strands), OmpF (16 -strands), BamA (16 -strands) and so on in presence of denaturants. 

This will shed light on the possible binding regions of the unfolded OMPs with both the 

chaperones and BamA and might help in identifying the so called “frustrated regions”.



 
 

 

 

Chapter 5 Expanded chaperone bound OmpX 

displays fast chain dynamics 

The smallest beta-stranded OMP – OmpX has been a well-known model when studying 

chaperone-OMP interactions in the periplasm. Using NMR spectroscopy, Burmann et. al. 

showed that trimeric Skp (Skp3) encapsulated OmpX underwent rapid backbone dynamics 

(103). However, the conformation and dynamics of OmpX in its SurA-bound state remain 

unclear, especially in terms of its comparison with the Skp bound state. Interestingly, recent 

studies have located multiple sites of interactions on both SurA and OmpX using cross-

linking experiments suggesting that the SurA complexed OmpX populates multiple 

conformations in a rather expanded form (34, 36). Furthermore, the timescales of 

reconfiguration among the chaperone bound substrates still remain to be probed directly. 

In actuality, such an interaction mechanism is inferred to be important both biologically 

and energetically (17, 34, 36, 103, 126), as it would not only avoid collapse of bound 

substrate but also lead to a negligible entropic change upon complexing, thus fine tuning 

the thermodynamics as the only source of energy in the periplasm (17). Yet, the enthalpic 

and entropic changes during binding remain undetermined. Furthermore, little is known 

about the disaggregating proteins of chaperones. A recent investigation showed that in 

addition to its holdase functionality, Skp also disaggregates OmpC oligomers unlike SurA 

(194). On the other hand, modelling studies proposed a rather synergistic interaction among 

different chaperones especially under conditions of stress (24, 40). Thus, many questions 

remain open in this field and will be addressed sequentially in this chapter starting with the 

unbound OmpX. It is followed by a structural and thermodynamic investigation of the 

chaperone bound OmpX. Lastly, an exciting insight is obtained into the disaggregation 

action of SurA and Skp under stress conditions. The data analysis in this chapter was 

developed and implemented in close collaboration with Dr. Andreas Hartmann.
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5.1 OmpX expands on a timescale of hours in aqueous solution 

Unlike ensemble techniques, smFRET permits use of picomolar concentrations of proteins, 

which prevents their precipitation and can thus overcome the possible artefacts in data 

arising from high concentrations of aggregation prone OMPs. This advantage enabled an 

investigation of chaperone free state of OmpX in an aqueous environment without 

detergent and denaturants (referred to as OmpXaq from here on). To this end, refolded 

double labelled OmpX1,149 (in 35 mM LDAO) was first diluted in presence of 6 M GdmCl 

to nanomolar concentration, followed by a second dilution step (1:1000) in a buffer lacking 

GdmCl according to the scheme shown in Figure 5-1a. It should be noted that all the 

experiments in this chapter were performed using OmpX1,149 labelled with Atto532 and 

Abberior STAR 635P as the donor and acceptor dyes. SmFRET measurements were then 

performed with the diluted sample over a long duration and single molecule bursts were 

selected as the ones with an inter-photon time of 50 s and a minimum photon number of 

40. FRET efficiency (E) histograms were obtained after applying filters of ALEX-2CDE < 

12 and a stoichiometry filter S of 0.2 < S < 0.75 after background correction, and a Lee 

filter window size of 4. Correction factors of =0.0881, = 0.0247 and 25°C = 0.4567, 31°C 

= 0.4481 and 37°C = 0.4390 were also applied. 

Unlike the high FRET efficiency state of refolded OmpX1,149 (<E> ~ 0.95) and the broad 

FRET efficiency state of unfolded OmpX1,149 (uOmpX) in 6M GdmCl (<E> ~ 0.2), 

interestingly, OmpXaq exhibits a rather broad population in the high FRET efficiency 

region (grey bars with <E> ~ 0.8 in Figure 5-1b). It should also be noted that the 

temperature seems to have negligible influence on its conformation. As observed in Figure 

5-1b, the E histograms at 31 °C (dark grey dashed cityscape) and 37 °C (black cityscape) 

overlay quite well with the FRET population at 25 °C. Subsequently, to understand 

subpopulation dynamics underlying this OmpX state, 2D scatter plot depicting correlation 

of relative fluorescence lifetime of the donor, D(A)/D(0), (ratio of lifetime of donor in 

presence and absence of acceptor, respectively) with FRET efficiency, E, was prepared. 

Using the relation between intensity weighted fluorescence lifetime and species weighted 

fluorescence FRET efficiency, one can distinguish a static population with configurational 

changes slower than a few milliseconds from a population exhibiting fast reconfiguration 

dynamics on the sub-millisecond timescale. Remarkably, the plot in Figure 5-1c shows that 
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OmpXaq is not composed of slowly reconfiguring polypeptide conformations as the 

population does not lie on the static FRET line (black line). It also does not behave like a 

Gaussian chain (red dashed line in Figure 5-1c) possibly due to presence of transient 

secondary structures or hydrophobic clusters as have been detected previously for 

denatured OmpX (121, 122). Strikingly, it appears that the OmpXaq state is comprised of a 

structural ensemble undergoing fast chain reconfiguration on a sub-millisecond time scale 

as it lies between the two lines. In addition to the unbound population, an additional small 

high E peak (at a fraction of ~10%) appears in all measurements and we attribute it to a 

compact collapsed state (also shown by the black dashed Gaussian fit curve in Figure 5-1b).  

 

Figure 5-1 - OmpX expands in an aqueous chaperone free environment while undergoing 

reconfiguration on sub-millisecond timescale. a) Scheme of refolded double labelled OmpX1,149 

(2m06.pdb, (90)) dilution first to nanomolar concentration in 6 M GdmCl and then to picomolar concentration 

without the denaturant resulting in aqueous OmpX1,149 (OmpXaq) state used for smFRET experiments in this 

section. b) FRET efficiency (E) histograms of OmpXaq at three different temperatures (25 °C – grey bars, 31 

°C – dashed dark grey cityscape and 37 °C – black cityscape) overlay well with each other and show a broad 

high FRET efficiency peak in each case. The Gaussian curve corresponding to the compact state is shown by 

the black dashed line. c) 2D plot between the relative lifetime of the donor (D(A)/D(0)) and FRET Efficiency, 

E was created to examine interconversion dynamics of OmpXaq. The shift from the static FRET line (black 

line) indicates presence of sub-millisecond dynamics, although unbound OmpX does not behave like a 

Gaussian chain (red dashed line) either. d) The mean apparent FRET efficiencies (<E*>) and distance width 

(R) of unbound state calculated at two subsequent time intervals T = 0-2, 2-4 and 4-6 hours by applying 

two state PDA.  
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Lastly, the chaperone free OmpX population was examined as a function of time to check 

if the previously reported chain expansion of denatured OMPs is also a mechanism adopted 

by the OmpXaq to prevent aggregation. Taking into account the unbound and collapsed 

states, a two state Probability Distribution Analysis (PDA) was performed for populations 

obtained at every subsequent two hours, i.e. for the durations of 0-2, 2-4 and 4-6 hours. 

PDA is based on Monte-Carlo simulations which considers the limited photon statistic of 

measurement and enables extraction of the mean apparent FRET efficiency, <E*>, and the 

underlying width of the distance distribution, R, of the compact and unbound state by 

fitting the E* histograms with theoretical ones for each time interval (Table 5-1). The time 

evolution of <E*> and R corresponding to the unbound state is presented in Figure 5-1d. 

Here, it is evident that the peak of the unbound state shifts towards lower FRET efficiencies 

and the population broadens (higher distance widths R) on the timescale of hours. It can 

be speculated that such an inter-conformational change possibly arises from the slow 

interconversion among the remaining secondary motifs of the aqueous OmpX chain. 

T (hours) pub Eub* Ec* ub (nm) c (nm) 2

0-2 0.953  0.014 0.613  0.005 0.857  0.002 0.869  0.011 0.104  0.236 5.39 

2-4 0.974  0.013 0.584  0.008 0.857  0.002 0.975  0.012 0.104  0.236 3.06 

4-6 0.966  0.012 0.547  0.003 0.857  0.002 0.998  0.011 0.104  0.236 1.91 

 

Table 5-1 - PDA fit for unbound OmpX expansion. Probability of the unbound state (pub), apparent FRET 

efficiencies of unbound (Eub*) and compact state (Ec*) and the respective distance widths ub (nm) and c 

(nm) obtained from the two state PDA to show expansion. Best reduced chi square (2) values are also given. 

5.2 Trimeric Seventeen kilodalton protein (Skp3) and Survival 

factor A (SurA) bound OmpX is expanded and comprises of 

fast reconfiguring species  

In order to probe the chaperone-bound conformations of OmpX, refolded and double 

labelled OmpX1,149 was diluted as in the previous section such that the last dilution to 

picomolar concentration was now made in presence of different concentrations of Skp3 or 

SurA (Figure 5-2a). Chaperone purifications were carried out as explained in Appendix 

Section 8.3.3. FRET efficiency (E) histograms were then created from single molecule 

bursts using the same inter-photon noise (50 s) and minimum photon numbers of 40 as 
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before with ALEX-2CDE<12 and 0.2<S<0.75. Additionally, a NG/NR filter of <0.75 and 

<0.9 was used for Skp3 and SurA complexed OmpX1,149 measurements. Gaussian fitting of 

either lifetime or/and FRET efficiency filtered molecules was performed to determine the 

peak and centre position of the individual states (chaperone bound, unbound and collapsed 

OmpX populations as explained in Appendix Section 8.3.6).  In the first step, the bound 

OmpX is put to focus by discerning the E histograms of the measurements with high 

chaperone concentrations of 2500 nM Skp and 25000 nM SurA (last right panel of Figure 

5-2b and Figure 5-2c, respectively) at the physiological temperature (37 °C). Here, unlike 

the high E state of unbound OmpX1,149 in previous section, a lower E population 

corresponding to an expanded conformation representing the bound substrate is observed. 

Specifically, while the Skp3 bound OmpX1,149 demonstrates a broad peak in the low to mid 

E range (<E> ~ 0.5), SurA bound OmpX1,149 covers a mid to high E region (<E> ~ 0.6). 

This indicates a difference in the end-to-end distance between the two heterogeneous 

chaperone-bound OmpX populations.  

To evaluate the temperature dependence of chaperone complex formation and its effect on 

the conformation of OmpX, smFRET measurements were performed for OmpX1,149 

complexed with a range of chaperone concentrations and at two more temperatures (31 °C 

and 37 °C). The required temperature throughout the measurement was maintained using 

an objective collar linked to a refrigerated circulator (F25-MC, Julabo, Germany). The E 

histograms for measurements with Skp3 and SurA at all these temperatures with different 

concentrations of the chaperone are shown in Figure 5-2b and Figure 5-2c, respectively. 

The centre positions of the FRET efficiencies which are the same as <E> and the widths 

(E) of the bound, unbound (similar to OmpXaq) and compact states were then obtained 

using these E histograms. The trend followed by these two quantities is shown in Figure 

5-3a and Figure 5-3b, respectively. The unbound and compact FRET states and their widths 

vary negligibly across temperature, concentration and the chaperone under consideration. 

However, strikingly, compared to the uniformity among the Skp3 bound OmpX1,149 (yellow 

error bars) across different concentrations at each temperature, the end-to-end distance 

increases for SurA bound OmpX1,149 (blue error bars) with increasing concentration of 

chaperone regardless of the measurement temperature. This highlights the possibility of 

greater number of SurA monomers binding to the OmpX polypeptide at higher 

concentrations in a possible ‘beads-on-string’ fashion. 
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Figure 5-2 - FRET efficiency histograms of trimeric seventeen kilodalton protein (Skp3) and Survival factor A (SurA) bound OmpX1,149. a) Dilution scheme of refolded 

double labelled OmpX1,149. It was first diluted to nanomolar concentration in 6 M GdmCl and then to picomolar concentration without the denaturant in presence of different 

concentration of chaperone (Skp3 or SurA as indicated) to perform smFRET experiments. b) FRET efficiency histograms of Skp3 (0.5, 20, 100, 300, 500 and 2500 nM) 

complexed OmpX1,149 at 25 °C, 31 °C and 37 °C  c) FRET efficiency histograms of SurA (46, 232, 500, 1160, 5800, 11600 and 25000 nM) complexed OmpX1,149 at 25 °C, 31 

°C and 37 °C. Gaussian fits were performed according to Appendix Section 8.3.6 for the three states: bound, unbound and compact and are shown with black dashed lines along 

with the overall fit indicated by the red line for both Skp3 and SurA containing measurements. 
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Figure 5-3 - Trend of chaperone complexed FRET states. a) Average FRET efficiencies of three states 

(Skp3 bound, unbound and compact) are plotted against Skp3 concentration. While the compact (maroon) and 

unbound FRET (grey) states and their widths (E) do not change with temperature or concentration, the 

average FRET efficiency (<E>) of the bound state (yellow) decreases with increase in temperature, b) 

Average FRET efficiencies of three states (SurA bound, unbound and compact) are plotted against SurA 

concentration. Similar to Skp3 complexed OmpX1,149 states, the compact (maroon) and unbound FRET (grey) 

states and their E do not change with temperature or concentration, <E> of the SurA bound state (blue) 

increases with increase in concentration at each temperature. The fit <E> and E are reported in Table 1-2. 
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Temp <Eb> <Eub> <Ec> <E-b> <E-ub> <E-c> 

Skp3:       

25 °C 0.33 ± 0.02 0.71± 

0.01 

0.922 ± 

0.003 

0.226 ± 

0.005 

0.135 ± 

0.008 

0.0572 ± 

0.002 

31 °C 0.36 ± 0.02 0.71 ± 

0.01 

0.922 ± 

0.003 

0.204 ± 

0.008 

0.135 ± 

0.008 

0.0572 ± 

0.002 

37 °C 0.47 ± 0.01 0.71 ± 

0.01 

0.922 ± 

0.003 

0.185 ± 

0.008 

0.135 ± 

0.008 

0.0572 ± 

0.002 

SurA:       

25 °C -0.00509log([SurA]) + 0.598 0.774 ± 

0.006 

0.922 ± 

0.002 

0.17 ± 

0.02 

0.122 ± 

0.006 

0.052 ± 

0.001 

31 °C -0.0127log([SurA]) + 0.659 0.774 ± 

0.006 

0.922 ± 

0.002 

0.164 ± 

0.009 

0.122 ± 

0.006 

0.052 ± 

0.001 

37 °C -0.350log([SurA]) + 0.906 0.774 ± 

0.006 

0.922 ± 

0.006 

0.1366 ± 

0.009 

0.122 ± 

0.006 

0.052 ± 

0.001 

 
Table 5-2 - Average FRET efficiencies of each FRET state upon complexing OmpX with chaperones. 

bound: <Eb>, unbound: <Eub> and compact: <Ec>) and their widths (bound: <E-b>, unbound: <E-ub> and 

compact: <c>) for both Skp3 and SurA binding.  

Furthermore, it was found that the width of the chaperone bound OmpX population 

(obtained at 2500 nM Skp3 and 11600 nM SurA at 37 ̊ C) exceeded a distribution that would 

be limited by the average shot noise (red cityscape line) as shown in Figure 5-4a and 5-4b 

demonstrating that the bound polypeptide is composed of a heterogeneous structural 

ensemble. To gain insight into the subpopulation dynamics underlying this set of 

chaperone-bound diverse conformations of OmpX, 2D scatter plot between the relative 

lifetime of donor, D(A)/D(0) and FRET efficiency, E for 2500 nM and 11600 nM for Skp3 

and SurA complexed OmpX1,149 measurements were created as shown in Figure 5-4c and 

5-4d, respectively. From a visual inspection, it is clear that the bound states are displaced 

from the static FRET line suggesting that the chaperone bound substrate like unbound 

OmpX undergoes fast configurational changes on the sub-millisecond timescale. 

Subsequently, the configurational space of the bound and unbound populations was 

modelled by using a log-normal distribution with distance width R and an expected inter-

dye distance R (an example of which is shown in inset of Figure 5-4e). Interestingly, Skp3 

bound and the SurA bound (yellow and blue in Figure 5-4e, respectively) states appear to 

cluster around separate dynamic lines for varying temperature and concentration. The 

clusters were then fitted globally with a shared R and the floating parameter R(E) as 

described in Appendix Section 8.3.6. Finally, the coefficient of variance CV=√𝑒𝜎𝑅
2

− 1  
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was calculated to measure the heterogeneity of a population with varying inter-dye 

distances. When investigating the bound state, only the measurements containing a 

significant fraction of complexed molecules were inspected (with >100 nM Skp3 and >1160 

nM SurA as reported in Appendix Section 8.3.6). The unbound states (grey in Figure 5-4e) 

were obtained from the measurements in previous section. 

 

 

Figure 5-4 – Fast chain reconfiguration among the chaperone bound states of OmpX. Apparent FRET 

efficiency (E*) histogram of OmpX with a) 2500 nM Skp3 (yellow bars) and b) 11600 nM SurA (blue bars) 

showing that the bound OmpX population is heterogeneous as it is not shot noise limited (red cityscape). 2D 

plot between the relative lifetime of the donor (D(A)/D(0)) and FRET Efficiency, E was created to examine 

interconversion dynamics of chaperone bound OmpX for c) OmpX1,149 smFRET measurement in presence of 

2500 nM Skp3 and d) 11600 nM SurA. The shift from the static FRET line (black line) indicates presence of 

sub-millisecond reconfiguration dynamics although in both the cases, bound OmpX does not behave like a 

Gaussian chain (red dashed line) possibly due to steric hindrance at the binding regions. e) The plot of average 

relative lifetime of donor (<D(A)/D(0))>) vs  FRET efficiency (E) for OmpX1,149 measurements in presence 

of different concentrations of Skp3 (yellow spheres) and of SurA (blue spheres) on considering that the 

population follows a log normal distribution. Except for OmpX complexed with 2500 nM Skp3 (yellow 

circle), all the other data points show a shift from the static FRET such that the free OmpX lies between the 

Skp3 and SurA bound OmpX population. The inset shows the end-to-end distance without linker correction 

(Rinter-dye) of chaperone bound OmpX1,149 (yellow and blue lines correspond to OmpX measurement with 2500 

nM Skp3 and 11600 nM SurA).  



Expanded chaperone bound OmpX displays fast chain dynamics 

 

86 

 

As seen in Figure 5-4c, remarkably, the population corresponding to unbound OmpX lies 

in between the Skp3 and SurA bound OmpX1,149, indicating that OmpX adopts less 

configurations within the Skp3 bound state and more in the SurA bound state compared to 

the unbound state. This is supported by the determined CVs of 0.25  0.02, 0.20  0.04 and 

0.30  0.02 for unbound, Skp3 bound and SurA bound OmpX1,149, respectively. The 

increased conformational space of OmpX in the SurA bound state together with its 

expansion upon increasing concentration of the chaperone suggests that multiple SurA 

monomers dissolve the remaining secondary structure and/or avoid the collapse of their 

substrate. In contrast, Skp3 encapsulates and reduces the conformational space of OmpX 

while expanding its substrate possibly through multiple interactions within the cavity.  

Further, the inter-dye distance of chaperone bound OmpX1,149 indicates that the end-to-end 

distance without linker correction is higher for Skp (5.78  0.05 nm) as compared to SurA 

(5.50  0.05 nm) (inset of Figure 5-4e), a direct result of possible expansion upon chaperone 

association. This distance for Skp bound OmpX obtained here is in good agreement with 

the previously reported spherical volume radius of 21 Å on considering it as a polypeptide 

ensemble (103). In summary, in this section it is discerned that the binding of holdase 

chaperones SurA and Skp to OmpX results in latter’s expansion in a dynamic manner. 

Remarkably, despite a difference in interaction mechanism, the two periplasmic chaperones 

can maintain their substrate in not only a folding competent state but also in a conformation 

capable of being handed over to the BAM complex.  

5.3 SurA interacts with OmpX at a relatively low entropic cost 

A comprehensive biophysical picture of chaperone-OMP binding demands that we gain a 

thermodynamic understanding of their interactions. As described in Section 2.2.3, the 

information about energetic parameters of change in enthalpy and entropy (S and H, 

respectively) is ciphered in the temperature dependency of the association constant, Ka. 

Thus, on combining the previously performed smFRET measurements for three 

temperatures (25 °C, 31 °C and 37 °C) and increasing chaperone concentration for a global 

thermodynamic analysis, it was possible to gain an insight into these two energetic 

parameters.  
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A methodological workflow of the analysis steps is shown in Figure 5-5a. Briefly, the set 

of histograms were globally fitted using the shared variables H and S (change in enthalpy 

and entropy) along with the fraction of compact state, fc,T, and the maximum fraction of 

bound OmpX , fb,max. During optimization for each pair of {H, S} the corresponding 

association constants, Ka(T), were calculated for the respective measurement temperature 

using eq. (11) as illustrated by the van’t Hoff plot shown in Figure 5-5a. The resulting 

association constants were then used to determine the individual theoretical fraction of 

bound OmpX, fb by the Hill equation (eq. (7)). The Hill coefficients of binding were kept 

constant at 1 and 1.5 for OmpX-Skp3 and OmpX-SurA interaction, respectively (34, 103, 

106, 116)). It should be noted that we have considered the trimeric Skp concentration 

simply by dividing the monomeric concentration by 3 as it was rapidly diluted from a stock 

(75 M) with a concentration much higher than c1/2 (108) as fast equilibration with OmpX 

was observed. Moreover, a recent study has shown that exposure of OMPs drives Skp to 

an active trimer form (109). Nevertheless, a case where the trimeric concentration was 

chosen according to the previously published data (108) is also enumerated in Table 5-3.  

In the next step, using the FRET parameters (centre position and width of the individual 

FRET efficiency population) from the previous section and the amplitudes fb(1- fc,T), (1-fb) 

(1- fc,T) and fc,T, FRET distribution was calculated for every measurement condition. 

Finally, the overall reduced Chi-square (2) was calculated from the residuum of the 

theoretical and measured FRET efficiency curves. Upon varying the optimization 

parameters {H, S, fc,T, fb,max} the reduced 2 was minimized to find the best estimators 

for the change in enthalpy and entropy. The errors of the fitted thermodynamic parameters 

were derived from 200 bootstrapping steps, where for each measurement condition FRET 

efficiency histograms were constructed from randomly drawn bursts. 

The apparent dissociation constants at the physiological temperature are determined to be 

(358.88  0.02) nM and (407.40  0.07) nM for Skp3 and SurA, respectively which are in 

good agreement with the previously reported values for OMP-chaperone interactions (34, 

105, 116),. The best estimators of H and S values of OmpX – Skp3 interaction are found 

to be (-297.74  19.06) kJ·mol-1 and (-0.84  0.06) kJ·mol-1·K-1, respectively (yellow set 

in Figure 5-5b). On the other hand, H and S values for OmpX- SurA interaction are 

found to be (-132.3  24.29) kJ·mol-1 and (-0.24  0.08) kJ·mol-1·K-1, respectively (blue 
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set in Figure 5-5b). All the fitting parameters and the influence of the Hill coefficient (n) 

on the OmpX-SurA interaction is shown in Table 5-3.  

 

Figure 5-5 - Interaction between SurA and OmpX is characterised by a relatively lower entropic 

change. a) Scheme for global reduced  minimization to obtain enthalpic change H and entropic change 

S for OmpX + Skp3 and OmpX + SurA interactions with the theoretical van’t Hoff plot and Hill equation 

fitting: H, S, fc,T (fraction of compact OmpX at each temperature) and fb,max (maximum fraction of bound 

OmpX) were the varying fitting parameters. lnKd is the natural logarithm of the dissociation constant, T is 

the temperature in Kelvin (K) and [SurA]0 is the initial SurA concentration in nanomolar. b) All the H 

(kJ·mol-1) and S (kJ·mol-1·K-1) values obtained from bootstrapping algorithm for OmpX-Skp3 (yellow) and 

OmpX-SurA (blue) interaction are indicated and the <H> and <S> are shown as a black circle with an 

error bar and c) The calculated <H> and <S> for OmpX-Skp3 and OmpX-SurA are overlaid on the spread 

of data points as reported in review by Heller et. al (195).   

Here, the enthalpic change is defined as a characteristic of binding between the chaperone 

and the substrate OmpX and represents the change in inter- and intra-molecular bond 

energy and the entropic change majorly corresponds to the change in count of accessible 

configurations of OmpX. As expected, the OmpX-chaperone binding resulted in a big 

negative enthalpic change showing a favourable association with multiple binding regions 
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(Hinter<<Hintra). The negative change in the entropy, on the other hand, suggests a 

reduction of the configurational space for OmpX in the bound state such that it was much 

lower upon binding of Skp3 as compared to SurA. Interestingly, compared to Skp3 – OmpX 

interaction which showed a relatively high negative H and S, more than two times 

smaller S and a decent H was observed as characteristic for small ligand binding (dashed 

area obtained from (Heller et al., 2015) in Figure 5-5c) for the SurA-OmpX interaction.  

This suggests that while both the chaperones interact through multiple binding sites with 

their substrate OmpX (non-specific in case of Skp and specific in case of SurA), the SurA 

bound OmpX has more freedom towards conformational interconversion as compared to 

the Skp3 encapsulated OmpX.  

Chaperone n H 

(kJmol-1) 

S 

(kJmol-1K-1) 

fc-25 fc-31 fc-37 fb,max-25 

SurA 1 -75 ± 12 -0.12 ± 0.04 0.118 ± 

0.008 

0.14 ± 

0.01 

0.11 ± 

0.01 

0.92 ± 

0.01 

SurA 1.5 -132 ± 24 -0.24 ± 0.08 0.119 ± 

0.008 

0.141 ± 

0.009 

0.111 ± 

0.008 

0.88 ± 

0.01 

Skp3 

([Skp]/3) 

1 -298 ± 19 -0.84 ± 0.06 0.195 ± 

0.003 

0.184 ± 

0.007 

0.179 ± 

0.006 

0.69 ± 

0.01 

Skp3 (108) 1 -480 ± 21 -1.42 ± 0.07 0.195 ± 

0.004 

0.188 ± 

0.005 

0.183 ± 

0.006 

0.70 ± 

0.01 

 

fb,max-31 fb,max-37 c1/2-25 

(nM) 

c1/2-31 

(nM) 

c1/2-37 

(nM) 
G25 

(kJmol-1) 

G31 

(kJmol-1) 

G37 

(kJmol-1)



0.92 ± 

0.01 

0.92 ± 

0.01 

109.67 ± 

0.01 

199.06 ± 

0.02 

356.05 

± 0.06 

-39.7 ± 0.3 -39.0 ± 0.3 -38.3 ± 0.4 3.83 

0.88 ± 

0.01 

0.88 ± 

0.01 

102.89 ± 

0.02 

205.94 ± 

0.02 

407.40 

±0.07  

-59.9 ± 0.6 -58.4 ± 0.4 -56.9 ± 0.6 3.97 

0.81 ± 

0.02 

0.998 ± 

0.004  

3.5536 ± 

0.0009 

36.993 ± 

0.005 

358.88 

± 0.02 

-48.3 ± 0.7 -43.3 ± 0.3 -38.3 ± 0.2 3.19 

0.77 ± 

0.01 

0.98 ± 

0.05 

0.0889 ± 

0.0001 

3.9424 ± 

0.0001 

154.39 

± 0.03 

-57.5 ± 0.9 -49.0 ± 0.7 -40.5 ± 0.7 3.46 

 

Table 5-3 - Thermodynamic parameters of OmpX-chaperone interaction. Enthalpic change (H) and 

entropic change (S) are obtained for OmpX-Skp and OmpX-SurA interactions through global 2 

minimization. c1/2-25, c1/2-31 and c1/2-37 denotes the half association concentration at 25 °C, 31 °C and 37 °C, 

respectively with n as the hill coefficient. fc-25, fc-31 and fc-37 are the fractions of compact OmpX state at 25 °C, 

31 °C and 37 °C and fb-max-25, fb-max-31, fb-max-37 is the fraction of chaperone bound OmpX at 25 °C, 31 °C and 

37 °C, respectively. It was the same for SurA at all temperatures. The free energy of interaction so obtained 

at each temperature are also reported: G25 at 25 °C, G31 at 31 °C and G37 at 37 °C. 
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Yet, the balance in the enthalpic and entropic terms for both the chaperone interactions lead 

to a favourable G (at 37 °C) of interaction: (-38.28  0.18) kJ·mol-1 and (-56.96  0.64) 

kJ·mol-1 for OmpX-Skp3 and OmpX-SurA binding, respectively. Many previous studies 

have reported free energy of folding for OMPs in the range of -30 to 160 kJ·mol (126, 196, 

197). On the other hand, some studies have shown that the free energy of chaperone-OMP 

interactions resides in the range of -30 to -55 kJ·mol-1 (105, 197, 198). It is indeed possible 

that the free energy of folding is lower than the free energy of interaction such that a sink 

is formed in order to enable folding of OMPs when they encounter the outer membrane. 

However, it must be noted that the folding of OMPs on the outer membrane is a rather 

complicated process with an involvement of -barrel machinery as well and thus a free 

energy comparison based solely on folding into detergents or micelles in absence of 

chaperones and BAM is incomplete. For instance, an estimation of G from the OmpX1,149 

unfolding experiments documented in Section 4.1.1 appears to be much higher (~-15 

kJ·mol-1) than the interaction free energies calculated for OMP-chaperone interactions in 

this section. Nevertheless, with regards to the developing hypothesis in this field (17, 37), 

our investigations here provide an exciting functional insight into the energetics of bio-

molecular interactions.  

5.4 Skp and SurA act as disaggregases under cellular stress 

Stress induced over-expression of OMPs might lead to their aggregation in the periplasmic 

environment. Under such conditions, cells are known to employ the protease DegP to 

disaggregate the OMP precipitates (27, 112). However, as was recently reported, Skp might 

also act as a stress chaperone (194), bringing into light the need to decipher if more than 

one chaperone is capable of acting upon the aggregated OMPs. 

In this work, to investigate the action of chaperones against aggregated OmpX (OmpXAgg), 

Fluorescence Correlation Spectroscopy (FCS) was used (Section 2.3.4). In a first step, 

OmpX1,149 measurements were conducted at a low concentration (10 pM) followed by the 

OmpXAgg measurements at three different temperatures (25 °C, 31 °C and 37 °C). To 

achieve the latter, 1 M unlabelled unfolded OmpX (uOmpX) was mixed with 30 pM 

labelled uOmpX in the assembly buffer so as to enable aggregation without denaturant, 

chaperones and detergent (Figure 5-6a). After 10 mins of incubation, neither, either or both 
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Skp3 and SurA in their periplasm like concentrations (2500 nM and 5800 nM, respectively) 

were added to examine the effect of chaperones on the OmpXAgg. FCS curves were then 

obtained by probing for just the acceptor photons. The autocorrelation curves (fitted 

according to eq. (25), Appendix Section 8.3.7) corresponding to OmpXAgg measurements 

without chaperones at all the temperatures show an increase in amplitude at a delay time of 

around 30 ms (Figure 5-6b) indicating presence of aggregates.  

At the physiological temperature, while the aqueous OmpX1,149 showed a diffusion time 

(D) of (0.27 ± 0.002) ms, the diffusion time of aggregated OmpX (OmpXAgg) was 

determined to be (31.6 ± 1.3) ms. It should be taken into account that the afore-mentioned 

OmpXAgg is possibly an ensemble of differently sized oligomers or aggregates. The 

diffusion times of 2500 nM Skp3 and 5800 nM SurA complexed OmpX1,149 measurements 

were determined to be (1.79 ± 0.05) ms and (1.38 ± 0.03) ms, respectively (Figure 5-6c). 

Now, having obtained the diffusion times of each species, it was possible to determine the 

fraction of OmpXAgg, aqueous OmpX1,149, and chaperone bound OmpX1,149 from the FCS 

curves. All the autocorrelation curves with different reaction schemes at the physiological 

temperature are depicted in Figure 5-6d. Interestingly, the measurement with 1 M OmpX 

showed a significant fraction of OmpXAgg (0.24 ± 0.02 – green bar) at 37 °C, although the 

fraction of aggregated OmpX seemed to decrease with decreasing temperature. However, 

presence of aggregates at every mentioned temperature at even a micromolar concentration 

of OmpX, highlights the need to avoid ensemble techniques requiring micromolar 

concentrations when studying aggregation prone proteins like OMPs. 

Upon introduction of the two chaperones separately to the aggregated OmpX sample (green 

bars in Figure 5-6e), it was observed that compared to Skp, SurA disaggregates OmpXAgg 

more efficiently as shown by a greater decrease in the aggregated fraction (0.13 ± 0.01) as 

compared to that on addition of Skp (0.20 ± 0.02). Strikingly, the decrease in OmpXAgg in 

both the cases results in a corresponding increase of the aqueous OmpX1,149 fraction 

(0.87±0.08, grey bars in Figure 5-6e) instead of an increase in the chaperone bound OmpX 

fraction (purple bars in Figure 5-6e). Assuming, uniform mixing of labelled and unlabelled 

OmpX sample, the previous observation indicates that the chaperones have a higher affinity 

towards aggregated OmpX as compared to OmpXaq.  
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Figure 5.6 - The disaggregating property of Skp and SurA. a) Dilution scheme to investigate OmpX 

disaggregation capabilities of chaperones Skp and SurA, uOmpX denotes the unfolded OmpX, OmpXAgg is 

the aggregated OmpX. b) Autocorrelation curves demonstrating the diffusion times () of OmpXAgg at three 

different temperatures (25 °C (blue), 31 °C (orange) and 37 °C (green)). c) Diffusion times (D) of OmpXaq, 

OmpX complexed with 2500 nM Skp3 and 5800 nM SurA and OmpXAgg  at 37 °C obtained from the acceptor 

autocorrelation curves for each of these measurements, the errors are small and not visible in the plot, but can 

be found in the main text c) Autocorrelation curves demonstrating the diffusion times of OmpX aggregation 

at 37 °C (green line) where GRR is the normalized autocorrelation coefficient of the acceptor dye and  is the 

diffusion time in ms. The disaggregating properties of chaperones Skp (blue line) and SurA (red line) 

individually and both together (purple line) is apparent from the autocorrelation curves for the respective 

measurements. e) The probability of OmpXaq (grey bar), chaperone bound OmpX (purple bar) and OmpXAgg 

(green bar) in different measurement conditions as in the previous plot. 
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Remarkably, when both the chaperones were together added to the OmpXAgg mixture, we 

find that the fraction of OmpXAgg (0.05) is reduced as compared to measurements with 

individual chaperones. Intriguingly, it is also lower than the theoretical added fractions of 

individual chaperone measurements (0.09) which indicates a cooperativity between the two 

proteins. In addition, a small fraction of chaperone bound OmpX around 8% can also be 

observed for the last case. This suggests that the chaperones might elevate the binding 

affinity of each other to the OmpX when present together. These findings address the need 

for presence of two different chaperones widely speculated to be functioning redundantly. 

It is plausible to expect that stress induced OMP aggregates are rescued back to a folding 

competent OmpX form when both the chaperones function together. Indeed, SurA-Skp 

deletion mutants have resulted in lethal phenotypes when probed both experimentally (27) 

and by simulations (24). However, their cooperativity in normal condition still needs to be 

investigated. 

5.5 Summary  

Avoiding the artefacts due to aggregation and ensemble averaging, in this chapter, a rather 

comprehensive picture of SurA and Skp3 action on OmpX has been deciphered. On probing 

the conformation of chaperone bound OmpX, it was found that both SurA and Skp3 expand 

OmpX. Remarkably, the bound OmpX similar to unbound OmpX was also found to 

undergo sub-millisecond reconfiguration. Such an expansion of the bound protein might 

not only prevent aggregation but also facilitate recognition by the BAM complex. A 

mechanism prominently observed for the cytoplasmic chaperone DnaK-bound 

polypeptides (Kellner et al., 2014). Furthermore, the intricate balance in kinetics and 

energetics was seen to be maintained for chaperone action so as to keep the bound OmpX 

in a folding competent state. This follows from the finding that the large configurational 

space of the substrate OmpX when bound to SurA results in a significant lowering of 

entropic change despite a relatively low enthalpic change making these chaperone-OmpX 

interactions thermodynamically favourable. Thus, in addition to the enthalpic component 

contributed by multiple interactions, the resulting increase in the entropy of the bound state 

keeps it both unfolded and complexed to the chaperone at the same time. However, when 

confined within the Skp3 cavity, it appears that it is indeed the multiple interactions between 
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OmpX and Skp3 that results in a high enthalpic change making this interaction as 

favourable as that of OmpX with SurA.  

 

Figure 5-7 - Summary of chaperone-OmpX interactions. Model of Skp3 and SurA chaperone action on 

OmpX: In this work, a thorough examination of the conformation and dynamics of OmpX with and without 

chaperones was performed through smFRET. It was found that OmpX exhibits sub-millisecond dynamics in 

aqueous solution and when bound to the chaperones. Remarkably, chaperone-bound OmpX is expanded such 

that the SurA bound substrate possess greater heterogeneity than both the free and Skp bound OmpX. 

Furthermore, the thermodynamic parameters governing these chaperone-OMP interactions were also 

elucidated as shown in the figure. Lastly, using FCS, it was demonstrated that OmpX aggregates even at 

micromolar concentration and both the chaperones can act as disaggregases under stress conditions. 

Lastly, it was found that both the chaperones solubilize aggregated OmpX possibly induced 

under external stress conditions. Increasingly, disaggregation mechanisms are being 

observed in the ATP dependent cytoplasmic chaperones of Hsp70 family, raising the 

possibility that the periplasmic chaperones too possess such characteristics. Hence, the 

observation that the ATP-independent chaperones Skp and SurA can also function as 

disaggregases especially in presence of each other, calls for attention beyond the chaperone 

DegP as a disaggregase in periplasm. Periplasm thus appears to harbour a highly effective 

dynamic system of chaperone-OMP associations very much like the cytoplasmic systems, 

which not only function to protect OMPs from aggregation but can also rescue them when 

required. A model of these findings is shown in Figure 5-7. 
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Outlook: The analysis in this chapter was done based on a valid assumption that in these 

experiments, Skp was always in a trimeric state when binding and bound to OmpX. In 

future, it will be of great value to probe the monomer affinity and trimerization activity in 

presence of its substrate OmpX by increasing the incubation times of diluted Skp through 

smFRET experiments. Such a premise might be important to consider as a significant 

amount of Skp is shown to be present in a monomer concentration at cellular concentrations 

(108). Fascinatingly, a recent investigation used NMR spectroscopy to demonstrate that 

Skp exists in a disordered monomer conformation such that only upon exposure to its 

substrate the alpha-helices are fully folded and stapled into a trimer form (109). 

Furthermore, it will be interesting to see if there is any handover of the substrate OmpX 

between the two chaperones under normal cellular conditions as has been observed 

previously for a much bigger OMP: FhuA (33). 



 
 

 

 



 

 

 

 

Chapter 6 Trimeric Skp pushes and pulls OmpLA 

Chaperone bound states of 12 -stranded OmpLA unlike many other OMPs are still not 

investigated to a great extent. Interestingly, bigger OMPs like OmpC, OmpF (both 16 -

stranded) and FhuA (22 -stranded) have been complexed with Skp and/or SurA in a few 

previous studies. Using smFRET, it was reported that OmpC has chaperone specific bound 

conformations such that while SurA expands the protein upon binding, Skp expands only 

certain regions of the substrate (35), but not much was suggested in regard to the dynamics 

of the bound state. Through real time NMR spectroscopy, a sublime work found that FhuA 

was held by both Skp and SurA in a fast conformational interconversion regime while the 

complex itself was on the timescale of 102 and 12 min, respectively (33). However, a 

thermodynamic analysis of this interaction has been missing. Moreover, other studies 

focussed majorly on the chaperone aspect of the chaperone-OMP interaction. For example, 

ion mobility spectrometry – mass spectrometry (IMS-MS) and molecular dynamics 

simulations were used to demonstrate that OmpF and tBamA were sequestered by at least 

two copies of the Skp trimer (106).  In conjunction, smaller OMPs like OmpX required 

only an expansion of the Skp cavity (104). Conformational changes were observed between 

the core-P1 domains of SurA on its complexation with both OmpX and OmpF (34). But 

the conformation of the bound substrate was not a part this interesting work. Thus, a clear 

lack of knowledge about the biophysical aspects of a bigger OMP client in the chaperone-

OMP complex necessitates a systematic smFRET study as was done in the previous chapter 

for OmpX. In addition, the chaperone binding ability and the recognition sites on many of 

these OMPs is still unknown. That is precisely the aim of this chapter which begins first by 

examining the chaperone free state of the 12 -stranded OmpLA. The Skp and SurA 

complexed OmpLA are then investigated from a structural perspective along with a 

characterization of chaperone recognition. Subsequently, thermodynamics of Skp bound 

OmpLA is also explored. 
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6.1 OmpLA exhibits a compact state in aqueous environment 

To comprehend the difference between the chaperone bound and unbound state, the first 

step was to investigate OmpLA in absence of detergent, denaturant and the chaperones. 

Thus, the 269 amino acid protein (without signal sequence) was designed with cysteine 

mutations on different sites pairwise so as to probe different segments of the protein 

(OmpLA13,125 – first, OmpLA64,187 – middle and OmpLA125,234 – last) along with the whole 

protein conformation (OmpLA13,234) like in previous chapters. After purification and 

labelling under denaturing conditions (Appendix Section 8.3.2), each of the variant was 

first diluted to a nanomolar (nM) concentration still in presence of 6M GdmCl. It was then 

diluted to picomolar (pM) concentration in absence of the denaturant and chaperone so as 

to probe the chaperone free state of OmpLA (called as aqueous OmpLA in this text) in the 

assembly buffer (20 mM Tris-HCl, 150 mM NaCl and pH 8.0) by smFRET experiments. 

Such a dilution scheme is shown in Figure 6-1a for the OmpLA64,187 variant.  

 

Figure 6-1 - Compact conformation of unbound OmpLA. a) Dilution scheme followed so as to probe the 

chaperone free state of OmpLA using the OmpLA64,187 variant as an example– unfolded or denatured OmpLA 

in 6M GdmCl was first diluted to nanomolar concentration still in presence of 6 M GdmCl. It was then diluted 

into the assembly buffer in absence of denaturant, detergent and the chaperone to perform smFRET 

measurements of OmpLA in an aqueous solution. b) The FRET efficiency histograms of OmpLA13,125 (blue 

cityscape), OmpLA125,234 (orange cityscape) and OmpLA13,234 (purple bars) exhibit high energy transfer states 

asserting that the whole protein appears to be compact in the unbound state at 25 °C. c) In agreement, the 

middle segment too appears to have a compact conformation, even at three different temperatures: 25 °C 

(green bars), 31°C (dashed green cityscape) and 37 °C (dark green cityscape). d) Lastly, 2D plot between the 

relative lifetime of the donor (D(A)/D(0)) and FRET Efficiency, E was created to examine interconversion 

dynamics of aqueous OmpLA64,187. The slight shift from the static FRET line (black line) indicates presence 

of sub-millisecond chain dynamics, although it also does not behave like a Gaussian chain (red dashed line). 
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From the smFRET measurements, the acquired photon stream was filtered for bursts with 

a maximum inter-photon time of 50 s and having at least 40 photons. A stoichiometry 

filter of S between 0.2 and 0.75 was applied along with an ALEX-2CDE filter of <10 and 

NG/NR filter <1 to remove single fluorophore labelled, quenched and multiple molecules. 

Further, correction factors = 0.0881, = 0.0247 and =0.4550 with gGG= 0.84745 and 

gRR= 0.80809 were used to obtain the FRET efficiency (E) histograms. The E histograms 

obtained for the first (OmpLA13,125 - blue cityscape line) and last (OmpLA125,234 - orange 

cityscape line) subsection probing OmpLA variant along with the whole protein variant 

(OmpLA13,234) are shown in Figure 6-1b. The high FRET efficiency peaks (<E> ~ 0.9) 

obtained for all these variants makes it clear that the aqueous OmpLA is indeed a compact 

misfolded state. Moreover, each of these variants along with the variant representing the 

middle sub-section (OmpLA64,187) showed no big change in their conformation upon 

changing the temperature from 25 °C to 31 °C and 37 °C as observed in Figure 6-1c. The 

temperature was maintained using an objective collar linked to a refrigerated circulator. 

In a final step, the conformational dynamics of each of these variant was probed using the 

2D plot between the relative lifetime of donor (D(A)/D(0)) vs FRET efficiency, E. Such a 

plot is presented for OmpLA64,187 from the smFRET measurement at 25 °C. Like in 

previous chapters, the static FRET line (black line) depicts the theoretical relation between 

the intensity weighed average ratio of donor lifetimes in presence and absence of acceptor 

and E, while a Gaussian chain behaviour is represented by the dotted red line. Although 

challenging to decipher, the population corresponding to the aqueous OmpLA64,187 does 

appear to have shifted from the static FRET line at 25 °C. OmpLA13,125 also showed similar 

behaviour, while the FRET population of other two variants appeared to coincide with the 

static FRET line (not shown here). Hence, it is interesting to note that although compact, 

at least a sub-section of OmpLA seems to have conformational reconfiguration dynamics 

on timescales faster than milliseconds.  

6.2 OmpLA is partially encapsulated by Skp3 and lacks distinct 

conformational change upon complexing with SurA 

It was recently recognised that OmpLA lacked SurA recognition sites (36). This brings into 

light the significance of identifying different roles for Skp and SurA in a cellular context. 
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Furthermore, little is known about the Skp recognition sites on OmpLA and the structural 

aspects of chaperone bound states of OmpLA. To this end, this section explores the 

conformation and where plausible the conformational dynamics of first Skp complexed and 

then SurA complexed states of OmpLA. 

For the purpose of performing smFRET experiments probing the Skp-OmpLA interaction, 

the dilution scheme was modified so as to include a high concentration (3.2 M) of Skp 

trimer (Skp3) at the last step involving picomolar dilution of OmpLA (Figure 6-2a). As 

discussed in the previous chapter, since Skp was diluted from a concentration higher than 

its c1/2 (108), it can be safely considered to be in its trimeric state (Skp3) when binding to 

the substrate. Moreover, a recent investigation found that exposure of substrate shifts the 

equilibrium towards Skp trimers (109). Thus, from here on, the reported concentration of 

Skp always corresponds to its trimeric state such that the measured concentration was 

simply divided by 3. Subsequently, each variant was subjected to smFRET measurements 

in 3.2 M Skp3 containing assembly buffer at the physiological temperature (37 °C). The 

same inter-photon burst time of more than 50 s with more than 40 photons was used to 

filter for single molecule bursts. Additionally, same ALEX-2CDE filter of <10, 

stoichiometry filter of 0.2<S<0.75 and NG/NR filter of <1 was applied along with 

correction factors  = 0.0881 and  = 0.0247.  slightly changed for every variant and was 

0.4420, 0.4050, 0.4188 and 0.4260 for OmpLA13,125, OmpLA64,187, OmpLA125,234 and 

OmpLA13,234, respectively.  

The filtered FRET efficiency histograms so obtained were then used to compare the 

chaperone bound and unbound (or free) state of each OmpLA variant so as to examine 

region specific effect of the chaperone on the relatively big OMP. Strikingly, from Figure 

6-2b, it is evident that the first segment of the protein represented by OmpLA13,125 appears 

to have a greater distance between the two probed sites when complexed with Skp (yellow 

bars) as compared to its chaperone unbound state (dark green cityscape). This follows from 

the observation that the Skp bound OmpLA13,125 has a broad FRET efficiency histogram in 

the mid to high E region ((<E> ~ 0.7) unlike the relatively high FRET efficiency peak from 

the chaperone free OmpLA13,125 measurement.  
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Figure 6-2 – Skp3 binds to and expands specific regions of OmpLA. a) Dilution scheme used to probe the 

chaperone bound OmpLA using the OmpLA64,187 variant as an example– unfolded or denatured OmpLA 

(uOmpLA64,187) in 6M GdmCl was first diluted to nanomolar concentration still in presence of 6 M GdmCl. 

It was then diluted into the assembly buffer in absence of denaturant and in presence of 3.2 M Skp3 to 

perform smFRET measurements of Skp3 complexed OmpLA at 37 °C. FRET efficiency (E) histograms of 

the chaperone bound (yellow bars) and chaperone unbound (green cityscape) are compared for each variant: 

b) OmpLA13,125, c) OmpLA64,187, d) OmpLA125,234 and e) OmpLA13,234. Strikingly, the broad mid to high 

FRET efficiency histogram corresponding to the chaperone complexed OmpLA13,125 variant appears to be 

different from the high FRET efficiency peak corresponding to the compact free OmpLA13,125. Further on, 

while the middle segment (OmpLA64,187) shows a distinguishable low to mid-FRET efficiency peak 

corresponding to Skp3 bound conformation, OmpLA125,234 and OmpLA13,234 show negligible change in FRET 

efficiency histograms upon complexing with the chaperone. f) 2D plot between the relative lifetime of the 

donor (D(A)/D(0)) and FRET Efficiency, E were again created to examine interconversion dynamics within 

aqueous OmpLA and chaperone complexed OmpLA population for each variant without (left panel) and with 

the chaperone (right panel) as indicated in the figure. Sub-millisecond dynamics were observed for the 

OmpLA13,125 variant in presence of Skp3, while the chaperone encapsulated OmpLA64,187 population appeared 

on the static FRET line (black line). None of the states behaved like a Gaussian chain (represented by the red 

dashed line). 
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Furthermore, the middle section of OmpLA (probed by OmpLA64,187 variant in Figure 6-2c) 

indicates an obvious change in its conformation upon binding with Skp3 as seen by the 

additional low to mid FRET efficiency peak (from E = 0.1 to 0.5, yellow bars) in 

comparison to just one high FRET efficiency peak (from E = 0.5 to 1) corresponding to 

unbound OmpLA64,187 (green cityscape).  This suggests that the chaperone expands this 

part of its substrate upon association. However, from the measurements corresponding to 

Skp3 complexed OmpLA125,234, it is clear that the last segment of the protein possesses only 

a limited recognition by Skp3 as most fraction of the protein (~80 %) is seen to adapt a 

compact conformation corresponding to aqueous OmpLA125,234 at the same concentration 

of 3.2 M Skp3 (Figure 6-2d). Interestingly, the variant probing major part of the protein 

(OmpLA13,234) shows only a small expansion in its chaperone bound state as compared to 

its chaperone free state (Figure 6-2e). These findings suggest that Skp has a ‘pushing and 

pulling’ effect on OmpLA. Importantly, all the variants showed relatively broad FRET 

efficiency peaks in both their chaperone bound and unbound state indicating a subset of 

heterogeneous conformations in both populations. 

Consequently, the conformational interconversion dynamics within these bound and 

unbound states was probed. To this end, the powerful tool of 2D plot between the relative 

lifetime of donor (D(A)/D(0)) vs FRET efficiency, E was employed for each variant. In 

Figure 6-2f, the first panel shows plots corresponding to measurements of OmpLA variants 

(as indicated) without the chaperone and the second panel shows plots for OmpLA variants 

(as indicated) in complex with 3.2 M Skp3 at 37 °C. A shift from the static FRET line can 

be observed for unbound states of both OmpLA13,125 and OmpLA64,187 variants but not so 

clearly for OmpLA125,234 and OmpLA13,234. Remarkably, such a shift from the static FRET 

line was now observed for OmpLA13,125 and OmpLA125,234 in presence of Skp3 although 

the chaperone complexed conformations of OmpLA64,187 remained static. Perhaps, the C-

terminus segment of the substrate is not bound or is bound only transiently to Skp3 such 

that it now has increased freedom to undergo sub-millisecond reconfiguration dynamics 

since the first sub-section of the protein is already encapsulated within the Skp3 cavity. In 

accordance, the variant probing the major part of the protein (OmpLA13,234) shows an 

average sub-millisecond dynamic behaviour within its chaperone bound and unbound 

population.  
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It is in this manner that Skp3 is able to sequester a big OMP: while the first segment is 

encapsulated within the chaperone cavity by expansion resulting from multiple interactions 

between the proteins, the last segment remains free.  In addition, this interaction mechanism 

ensures that OmpLA does not collapse as seen in absence of the chaperone and the 

conserved C-terminus is exposed so that it is easily recognised by the -barrel machinery 

to enable folding upon reaching the outer membrane. 

Next, in order to investigate the interaction of SurA with OmpLA, the dilution scheme was 

redesigned to include addition of 7.5 M SurA instead of Skp in the assembly buffer (20 

mM Tris-HCl, 150 mM NaCl and pH 8.0) in the last picomolar dilution step (Figure 6-3a). 

FRET efficiency (E) histograms were obtained with the same filter parameters as used 

previously for Skp3-OmpLA smFRET experiments at 37 °C.  

 

Figure 6-3 - OmpLA lacks distinguishable conformational change upon complexing with SurA. a) 

Dilution scheme used to probe the chaperone bound OmpLA using the OmpLA64,187 variant as an example– 

unfolded or denatured OmpLA (uOmpLA64,187) in 6M GdmCl was first diluted to nanomolar concentration 

still in presence of 6 M GdmCl. It was then diluted into the assembly buffer in absence of denaturant and in 

presence of 7.5 M SurA to perform smFRET measurements at 37 °C. FRET efficiency (E) histograms of 

the chaperone bound (yellow bars) and chaperone free (green cityscape) are compared for each variant: b) 

OmpLA13,125, c) OmpLA64,187, d) OmpLA125,234 and e) OmpLA13,234. Intriguingly, none of the variants showed 

a distinguishable change in the FRET efficiency histograms in presence of 7.5 M SurA thus indicating that 

SurA might possess no specific recognition towards OmpLA. 
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In Figure 6-3a, Figure 6-3b, Figure 6-3c, Figure 6-3d, the FRET efficiency (E) histograms 

corresponding to the smFRET measurements in absence of SurA (dark green cityscape) 

and in presence of SurA (blue bars) are plotted together for each variant: for OmpLA13,125, 

OmpLA64,187, OmpLA125,234 and OmpLA13,234, respectively. It was already reported before 

that the chaperone unbound (free OmpLA) states appear to have a compact collapsed 

conformation. Astonishingly, presence of SurA appeared to show only a minor expansion 

of the FRET efficiency histogram corresponding to all the variants indicating that SurA 

possibly possess no specific recognition towards OmpLA. This observation goes in accord 

with a report that observed low cross linking efficiencies between OmpLA and SurA (36). 

Furthermore, it brings into light the possibility that the periplasmic chaperone SurA might 

possess selective recognition, thus highlighting that Skp and SurA might not have a 

redundant function as was observed in a previous work (27). 

 

6.3 Skp3 binds OmpLA with a relatively low entropic cost 

Identification of a clear conformational change upon binding of Skp3 to OmpLA, especially 

for the middle segment represented by OmpLA64,187, enabled a thermodynamic analysis of 

the Skp3 – OmpLA interaction. To this end, a series of smFRET measurements were 

performed with OmpLA64,187 and incremental concentration of Skp3 (from 32 nM to 6400 

nM) at three different temperatures (25 °C, 31 °C and 37 °C). Single molecule bursts were 

identified by using the same inter-photon time of 50 s and a minimum of 40 photons as in 

previous section. ALEX-2CDE <10, stoichiometry filter of 0.2<S<0.75 and NG/NR<1 

filters were also used along with the correction factors of  = 0.088,  = 0.0247 and 

=0.4330, 0.4355, 0.4050 for 25 °C, 31 °C and 37 °C, respectively to obtain the FRET 

efficiency (E) histograms shown in Figure 6-4.  

A global Gaussian fit was then performed for all the E histograms from each temperature 

to obtain E and  corresponding to three populations: the Skp3 bound (Eb, b), the unbound 

or free (Eub, ub) and compact OmpLA64,187 (Ec, c). The values so obtained are enumerated 

in Table 6-1 and the Gaussian fits for all the E histograms are shown with black dashed 

lines in Figure 6-4. Since no distinguishable binding was observed between OmpLA and 

SurA, it was unreasonable to make an energetic analysis for their interaction. 
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Figure 6-4 - Series of FRET measurements performed with OmpLA64,187 and incremental Skp3 

concentration at three different temperatures. a) FRET efficiency (E) histograms from the measurements 

of OmpLA64,187 performed at each temperature in absence of the chaperone are shown for reference. b) FRET 

efficiency histograms from the measurements performed at each temperature with three Gaussian fits (dashed 

black line) for three states of OmpLA64,187 : compact, unbound and Skp3 bound show an obvious increase in 

the chaperone bound state with increasing concentration (as indicated in the figure).  
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Temperature Eb b (nm) Eub ub (nm) Ec c (nm) 

25 °C 0.332  

0.021 

0.180  

0.015 

0.738  

0.019 

0.119  

0.018 

0.908  

0.006 

0.068  

0.005 

31 °C 0.354  

0.017 

0.175  

0.012 

0.744  

0.014 

0.113  

0.012 

0.904  

0.006 

0.066  

0.004 

37 °C 0.409  

0.027 

0.194  

0.015 

0.730  

0.016 

0.111  

0.011 

0.877  

0.006 

0.077  

0.003 

 

Table 6-1 - The FRET parameters obtained by performing global Gaussian fit for Skp3 + OmpLA64,187 

measurement series at each temperature (25 °C, 31 °C and 37 °C). Eb, Eub, Ec, are the FRET efficiency 

and b,ub,c are the distance widths in nm for the Skp3 bound, unbound and compact misfolded states of 

OmpLA64,187, respectively. 

In order to obtain the thermodynamic parameters: change in enthalpy (H) and change in 

entropy (S) for OmpLA64,187 – Skp3 interaction, similar analysis algorithm was employed 

as done for previously for OmpX-chaperone experiments (Section 5.3). The scheme of the 

algorithm is also shown in Figure 6-5a with the theoretical van’t Hoff plot and the fitting 

using Hill equation. Briefly, the FRET efficiency histograms for each OmpLA64,187 + x M 

Skp3 measurement was globally fitted using the shared variables H, S, and fb,max 

(maximum bound fraction) and the individual variable fc,T (fraction of compact 

OmpLA64,187) at every temperature. Using the van’t Hoff equation (eq. (11)), dissociation 

constants were obtained at each temperature during the optimization of H and S. Based 

on the Hill equation (eq. (7)), resulting Kd was then used to obtain the Skp3 bound fraction 

(fb) for each measurement at all three temperatures. Next, FRET distributions were 

calculated for every measurement condition with the FRET parameters (Ec, Eub,Eb,c,ub, 

b) obtained previously and the amplitudes (fb(1-fc,T), (1- fb)(1-fc,T)) and fc,T. Ec, Eub,c,ub 

and b were kept constant as little change was observed in their values across different 

temperatures as is evident from Table 6-1.Lastly, the reduced chi-square (2) was 

calculated from the residuum of the theoretical and experimental FRET efficiency curves. 

By varying the initial parameters {H, S, fb,max and  fc,T}, the reduced 2 was minimized 

to obtain the best fitting thermodynamic parameters:  H and S. To determine the errors 

of the fitted parameters, 200 bootstrapping steps were performed where the FRET 

efficiency histograms were constructed from randomly drawn bursts for each measurement. 
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The dissociation constants were found to be temperature dependent and in the order of low 

M concentration: Kd,25 = (0.52   0.06) M, Kd,31 = (1.38   0.08) M and Kd,37 = (3.52   

0.13) M. Interestingly, the resulting H and S were found to be relatively low with H 

= (-122.41  -8.08) kJ·mol-1 and S = (-0.29  -0.036) kJ·mol-1·K-1 (Figure 6-5b). This 

leads to a plausible explanation: the partial encapsulation of OmpLA results in a favourable 

high affinity interaction between the chaperone and its substrate such that all its segments 

occupy a large conformational space ensuring that the entropic change is lowered in 

absence of a big enthalpic change. 

 

Figure 6-5 - Skp3 interacts with OmpLA at a relatively low entropic cost. a) The algorithm used to obtain 

the thermodynamic parameters (H and S) is shown with the theoretically calculated van’t Hoff plot and 

fitting by Hill equation for OmpLA+Skp3 interaction. An explanation of the steps can be found in Section 

5.3. b) the enthalpic (H) and entropic (S) change values in kJ·mol-1 and kJ·mol-1·K-1 values obtained from 

bootstrapping algorithm for OmpX-Skp3 and OmpX-SurA interaction are indicated as yellow dots and the 

<H > and <S> are shown as a black circle with an error bar. c) The calculated <H> and <S> for OmpX-

Skp3 and OmpX-SurA are overlaid on the spread of data points as reported in review by Heller et al (195) for 

protein-small molecule interactions. 
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Finally, the obtained values were compared with enthalpic and entropic contributions 

reported for protein-ligand binding as used in the review by Heller et. al (195). It appears 

that the thermodynamic parameters for OmpLA-Skp3 interaction is within the given range 

of values (Figure 6-5c) and similar to OmpX-SurA interaction. However, it is in contrast 

with the high enthalpic and entropic change observed for OmpX-Skp3 interaction. Since 

OmpX is a much smaller protein than OmpLA, the whole of the protein might have been 

encapsulated within the Skp3 cavity leading to a multitude of stable interactions under 

confinement. This might lead to a much higher entropic and enthalpic change of the OmpX-

Skp3 interaction as compared to that of OmpLA and Skp3. Here, it is important to note that 

unfortunately, even a very high concentration of chaperone did not lead to >50% bound 

fraction of OmpLA64,187 for 25 °C measurement, thus these results are only a discussion of 

the plausible parameters and need to be built upon in future. Nonetheless, the interaction 

between the chaperone Skp3 and its substrate OmpLA was found to be a favourable one 

with G at 37 °C = (-32.38  -0.28) kJ·mol-1.  

 

6.4 Summary 

Without the chaperone or denaturant, the unbound state of OmpLA was found to adapt a 

collapsed state in the aqueous solution. Remarkably, on complexing with Skp3 only the first 

sub-section of OmpLA was found to expand while the rest of the protein remained compact 

and showed relatively low affinity to the chaperone. Here, it is also interesting to note that 

this was also the region found to be more unstable against a high concentration of 

denaturant (Section 4.2.1), raising the possibility that this might be the frustrated region of 

the protein (130) recognisable by chaperones. To verify this hypothesis, a freely available 

online tool called as AWSEM-MD Frustratometer (199) was used to quantify the local 

conformational frustration within the OmpLA structure. While a high frustration index 

(normalized using the variance of that distribution) would mean that the particular contact 

is unfavourable in relation to the set of all possible contacts in that location, a low 

frustration index emphasizes vice versa. The index value is a Z-score of the energy of the 

native pair compared to the N decoys. Further information about the algorithm can be found 

on the website and the reference paper (199) for AWSEM-MD Frustratometer. Strikingly, 

as shown in Figure 6-6a with a red box, most of the frustrated regions seem to be located 

on the first-middle segment while the second part of the protein seems to be rather 



Trimeric Skp pushes and pulls OmpLA 

 

109 

 

minimally frustrated, thus agreeing with the previous hypothesis that Skp3 recognizes these 

local frustrated regions of the protein. On mapping the probable binding regions of OmpLA 

with chaperone Skp3, a model picture is made to visualize the chaperone bound substrate 

in Figure 6-6b.  

 

Figure 6-6 - Frustrated regions of OmpLA are located close to its N-terminus. a) The conformational 

frustration map with the frustration index of different contacts between amino acid residues i and amino acid 

residues j is shown on a scale of -3 to 3 with -3 being the most frustrated and 3 being the least frustrated 

contacts. The red box shows the region with the most frustrated contacts which intriguingly happens to be the 

first segment of OmpLA. b) A model of Skp3 bound OmpLA is designed based on the FRET experiment data 

obtained in this chapter. 

On examining the interconversion dynamics of the chaperone bound and unbound states, it 

was found that the first segment of OmpLA possessed a static heterogeneous population 

when bound to Skp3. Intriguingly, the C-terminus of substrate exhibited faster dynamics in 

its chaperone bound state as compared to the static nature of its chaperone free state. This 

might be a result of the increased freedom for the second half of the protein as its 

accessibility to the first half is now inhibited due to latter’s encapsulation within the Skp3 

cavity. Furthermore, a coherent picture agreeing with the structural information above was 

drawn through analysis of the energetic parameters such that a relatively low enthalpic and 

entropic cost (compared to OmpX-Skp3) were determined to be contributing to the 

OmpLA- Skp3 interaction thereby increasing the affinity between these two proteins. 

Finally, an absence of a distinguishable FRET efficiency change for all the segments of 

OmpLA on complexing with SurA suggests that Skp and SurA could be selective with 

respect to substrate binding thus avoiding functional redundancy. 
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Outlook:  This work has established a comprehensive approach to study big OMPs in 

complex with chaperones. Building upon this platform, it will be interesting to identify the 

recognition sites of other OMPs along with their conformational and biophysical changes 

upon binding. Furthermore, upon combining the structural details of such smFRET 

experiments with molecular dynamics simulations, an atomistic picture of these chaperone-

OMP interactions can be built. 



 

 

 

 

Chapter 7 Conclusion and Outlook 

Protein-chaperone interactions especially between OMP and periplasmic chaperones: Skp 

and SurA have been challenging processes to decipher. Being one of the major 

determinants of cell integrity, the binding of these two chaperones to the newly secreted 

polypeptides ensures that their clients reach the outer membrane in a folding competent 

state. Despite some interesting in vitro investigations, studying chaperone-OMP 

interactions through ensemble techniques presents two critical challenges: averaging 

properties of composite bound substrates and aggregation tendency of the concentrated 

hydrophobic OMPs required to perform these experiments. In this regard, the objective of 

the thesis has been to overcome these obstacles and gain a comprehensive structural and 

thermodynamic insight into the unfolded and chaperone bound states of two differently 

sized OMPs: OmpX and OmpLA by employing smFRET. Furthermore, by mapping FRET 

efficiencies and conformational interconversion timescales of individual segments of 

OmpLA through different labelling variants, a volumetric structural insight is obtained into 

its denatured, unbound and chaperone-bound states.  
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Optimization of labelling strategies 

Certainly, the first step when intending to probe OMPs through smFRET was to construct 

a competent maleimide labelling protocol since an efficient donor and acceptor fluorophore 

tagging leads to qualitatively better measurements. As seen in Chapter 3, using the 

chromatograms obtained from SEC and the stoichiometry filter upon the photon bursts 

collected from smFRET experiments, it was possible to determine the effectiveness of 

OmpLA labelling assay under consideration. While a higher concentration of both dye and 

the dissolving solvent DMSO increased labelling efficiencies to ~30%, they also damaged 

the conformational integrity of refolded OmpLA. Since multiple binding positions were 

chosen to probe segment specific configurational changes of OmpLA upon denaturation 

and chaperone binding, it was vital to probe site-specificity of labelling efficiencies. 

Indeed, tagging the fluorophores on the refolded protein was found to be dependent on 

position such that the rather exposed 64 and 187 cysteine residues labelled more 

successfully than any other variants. Lastly, labelling under denaturing conditions proved 

to be advantageous for some variants (example: double labelling efficiencies increased by 

~10% for OmpLA125,234) and reduced the effect of positions chosen for labelling.  

Slow interconversion amongst the denatured structural ensemble of OMPs 

OMPs have to be maintained in an unfolded state for extended periods of time during their 

biogenesis. Thus, deciphering the structural characteristics of denatured OMP states 

provides an interesting perspective not just fundamentally but also biologically. In Chapter 

4, it was demonstrated that irrespective of the OMP (or its sub-section in case of OmpLA) 

under examination, slow interconversion dynamics (>100 ms) within the denatured 

population was a common feature (illustrated in Figure 7-1). Such a chain behaviour agrees 

with previously found secondary structures and hydrophobic clusters in case of OmpX 

(121, 122) and long range tertiary interactions of denatured OmpLA (123). Consequently, 

such slowed sampling of competent folding states led to folding rates on order of hours 

(~11 h-1) for OmpX into LDAO micelles.  

In a cellular setting, long timescale dynamics within unfolded states might help in reduction 

of the entropic cost upon binding. This argument follows from the idea that while typically 

chaperone binding reduces entropy substantially due to depletion in accessible 
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conformations, in case of Skp and SurA interaction with OMPs, the loss might be decreased 

as the polypeptide chain cannot access the complete conformational space even in the 

absence of chaperones. Thus, in thermodynamic terms, this might increase the affinity 

between the proteins in the ATP-deficient environment of the periplasm. Furthermore, such 

slow dynamic behaviour of the unfolded chain could assist the anti-folding activity of 

chaperones (by preventing chain collapse) and facilitate the handover of their substrates to 

the upstream protein folding machinery (by preserving folding competent states upon 

release from chaperones).  

In addition to these observations, an interesting observation was also made through 

examination of different sub-sections of OmpLA. Here, it was revealed that the middle 

segment of protein (represented by OmpLA64,187) was the least stable against denaturation 

indicating that it might be the ‘frustrated region’ which is recognisable by Skp3. Association 

mechanisms facilitated through transient binding of chaperones on these locally situated 

non-favourable intra-substrate interactions have been shown to be playing an important 

role in binding of Spy, SurA, and Skp with Im7 and SH3, independent of the sequence or 

conformation of the specific motifs (130).  

 

Figure 7-1 - Slow interconversion among the heterogeneous unfolded OMP states. Using a) OmpX and 

b) OmpLA as model OMPs, the denatured states were studied through smFRET. In both cases, the unfolded 

populations were found to possess inter-conformational changes on long timescales (>100 ms). Moreover, 

using different OmpLA labelling variants, it was found that the middle segment of the protein had a reduced 

stability against denaturation. 
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Chaperone bound OMPs are expanded and exhibit sub-millisecond conformational 

changes 

Unlike the rather collapsed states of unbound OMPs, chaperone bound OmpX and OmpLA 

appeared to possess rather expanded conformations. Importantly, because of the differential 

interaction mechanisms of the two proteins, it was found that their substrates occupied 

distinct conformational space. For instance, OmpX expanded increasingly upon gradually 

incrementing the concentration of SurA, suggesting that the chaperone interacts with its 

client in a ‘beads-on-string’ fashion demonstrating a tendency towards multivalent binding. 

However, an absence of such a behaviour upon increasing the concentration of Skp3 follows 

from the previous findings (25, 104, 106, 109) that due to the small size of the substrate, 

Skp3 is capable of encapsulating a major part of OmpX without requiring anymore 

chaperone molecules. Furthermore, it was observed that SurA bound OmpX adopted a 

larger number of configurations than both unbound and Skp3 bound OmpX. Interestingly, 

in case of Skp3 bound OmpLA, the stretching was limited to the first-middle segment of 

the protein corroborating with the assumption that this is the recognisable region of the 

protein. Strikingly, both the chaperone bound and unbound states of OMPs showed fast 

peptide chain reconfiguration as was predicted from denaturation experiments previously. 

It is intriguing to note that the sub-millisecond timescale of dynamics was also found to be 

a feature of the C-terminus of chaperone bound OmpLA, possibly due to absence of steric 

hindrance as that experienced by the largely encapsulated middle segment of the protein.  

 
Overall, the observations made in this thesis imply that the difference in functioning 

mechanisms of chaperones leads to a dissimilarity in the conformational ensemble of the 

bound OMP in the periplasm. Multiple molecules of SurA avoid collapse of its client by 

binding on multiple sites of OmpX (multiple recognition sites have by now been reported 

between the two proteins (34, 36)), imaginably functioning in a manner analogous to 

Trigger Factor. In contrast, encapsulation (partial in case of OmpLA) by Skp3 cavity 

comparatively limits the adaptable structures of the bound substrate, although numerous 

interactions ensure that the protein is unable to collapse and misfold. Intriguingly, Skp3 

possibly exposes the evolutionarily conserved C-terminal of partially bound OMPs for 

handover to BAM as is perceivable with OmpLA in this work. Moreover, the fast-

reconfiguration of the bound polypeptide independent of the OMP sequence and chaperone 
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suggests that at least certain regions of the substrate are bound to Skp3 and SurA in a loose 

and transient manner, possibly aided by the anti-folding activity of the chaperones. 

Ultimately, all these interaction features can also be postulated to facilitate unhindered 

recognition by BamA which can now easily access the specific recognisable segment of 

OMP (so called -signal (200, 201)) within the substrate’s vast chaperone bound 

conformational ensemble. 

A thermodynamic insight into the OMP - chaperone interactions 

Since periplasm in an ATP-deficient environment, the affinity between the chaperones and 

their substrates in this space is strongly regulated by the energetics inherent to their 

interaction. Yet, previous studies lack a description of the thermodynamic parameters 

governing these protein-protein associations. Experimentally, one can elucidate the 

energetic contribution in terms of change in enthalpy and entropy (H and S, respectively) 

by determining the dissociation constants at different temperatures according to the van’t 

Hoff equation. In this work, upon performing smFRET experiments with OmpX and 

OmpLA at three different temperatures (25 °C, 31 °C and 37 °C) involving chaperone 

titrations across a range of concentrations (from low nanomolar to micromolar), it was 

possible for the first time to determine H and S of chaperone-OMP interactions as shown 

in Figure 7-2. In context of the protein-protein interactions probed in this thesis, while a 

large negative H results from a bigger change in intermolecular interactions as compared 

to intramolecular interactions (Hinter >> Hintra), S majorly reflects upon the differences 

in the conformational space of bound and unbound states of the substrate.  

Remarkably, in agreement with the structural observations of Skp3 and SurA bound OmpX 

(relating to its configurational space), it was found that the change in entropy corresponding 

to interaction of SurA with OmpX ((-0.2 ± 0.1) kJ·mol-1·K-1) was much smaller than that 

of Skp3 with OmpX ((-0.8 ± 0.1) kJ·mol-1·K-1). Intriguingly, the entropic change upon 

encapsulation of OmpLA by Skp3 was much lower ((-0.3 ± 0.1) kJ·mol-1·K-1) than that of 

OmpX, possibly due to only a partial sequestration by the chaperone. Significantly, all the 

chaperone-OMP interactions probed in this thesis showed a considerable H ((-298 ± 19) 

kJ·mol-1, (-132 ± 24) kJ·mol-1, and (-122 ± 8) kJ·mol-1 for OmpX-Skp3, OmpX-SurA and 

OmpLA-Skp3 interactions, respectively) due to presence of multiple binding sites between 
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the proteins. It is plausible to presume that a relatively low H determined for OmpX-SurA 

and OmpLA-Skp3 interaction also points towards local transient binding between the 

proteins, which in turn enables fast reconfiguration of the peptide chain observed 

previously. In conclusion, the intricate balance between the structural and thermodynamic 

features of complex formation led to favourable affinities between the two proteins with a 

negative Gassociation:  (-38.3 ± 0.2) kJ·mol-1 and (32.4 ± 0.3) kJ·mol-1 for OmpX and 

OmpLA -Skp3 interaction, respectively and (-57 ± 1) kJ·mol-1 for OmpX-SurA interaction. 

All the chaperone bound OmpX and OmpLA interaction features established in Chapter 5 

and Chapter 6 are summarised in Figure 7-2a and 7-2b, respectively. 



Figure 7-2 - A structural and thermodynamic perspective of OMP - chaperone interactions in the 

periplasm. With a) OmpX and b) OmpLA as the two differently sized OMPs, unbound and Skp3/SurA bound 

states of OMPs were deciphered during this work. It was established that both the chaperones expand the 

bound OMPs (or segments in case of OmpLA). A direct examination of the dynamics demonstrated that 

OMPs undergo fast reconfiguration dynamics on a sub-millisecond timescale in both non-complexed and 

complexed forms. Remarkably, it was found that the thermodynamic parameters determined during the course 

of this work agreed with the conformational information and strongly modulated the affinity between the two 

proteins. Thefree energy of interaction, G, is indicated for the interactions. Other energetic parameters and 

their errors can be found in the main text. The disaggregating property of both Skp and SurA was also brought 

into light in this thesis, establishing periplasm as a rather synergistic and dynamic system.  
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Disaggregation action of Skp3 and SurA 

It is possible that under conditions of stress, cells overexpress OMPs, which might increase 

the chances of their aggregation. Under such circumstances, it is highly likely that cell 

employs more than one kind of chaperone to rescue the aggregated proteins. To this end, 

this thesis also shed light on the disaggregation properties of Skp and SurA. First of all, it 

was found that even a micromolar concentration of OmpX led to its aggregation under non-

denaturing conditions without a detergent. This brings into attention the need to avoid 

techniques using high concentration of OMPs when studying these proteins. Remarkably, 

upon introduction of Skp or SurA, the fraction of aggregated OmpX (OmpXAgg) was 

observed to reduce from 0.24 to 0.2 with Skp and to 0.13 with SurA. Furthermore, a 

corresponding increase in free OmpX fraction instead of the bound fraction indicated that 

these chaperones have a greater affinity towards aggregated OMPs as would be required 

by the distressed cells. In addition, it was also revealed that Skp and SurA can be 

functioning cooperatively towards disaggregating OMP oligomers as upon simultaneous 

introduction of the two chaperones, the fraction of OmpXAgg determined through 

experiments (0.05) was much lower than that calculated theoretically (0.09). Recent studies 

have found that many other co-chaperone systems which were generally described to be 

involved in substrate solubilisation functions such as that of Human HSP70 (78, 202) and 

Hsc70 (203) are also able to dissolve amyloid aggregates. In this regard, it is interesting to 

identify that periplasm too has a dynamic and cooperative chaperone system which can be 

modulated according to the cellular conditions. 
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Outlook 

Certainly, while this work answers some pressing open questions in the field, it also raises 

further prospects of inquiry into the subject. Combining smFRET with techniques like 

RASP, nsFCS, FCS or a lifetime filtering approach, one can start to build upon the folding-

unfolding experiments of OMPs performed in this thesis. For this purpose, a better 

membrane mimicking environment can be designed by reconstituting OMPs into the 

recently designed asymmetric liposomes with lipopolysaccharides (204). OMPs with 

different number of -strands can then be probed for both their region-specific stability 

against unfolding by partnering smFRET with techniques like molecular dynamics 

simulations. Futhermore, one interesting candidate to study chaperone-OMP interaction in 

context of bigger OMPs (with more than 12 -strands) would be the transmembrane part 

of BamA, which could shed light on the ‘chicken-egg’ problem as BamA itself also has to 

be transported from inner membrane and refolded into the outer membrane. 

In the next step, it is conceivable to examine the chaperone-OMP interactions from the 

perspective of chaperones.  A complete conformational and dynamic picture of the binding 

process can be gained by probing the structure and dynamics of chaperone domains in case 

of SurA and monomers in case of Skp with different substrates. To this end, a preliminary 

study has been initiated for examining the conformation of SurA in absence of OMPs 

(Appendix 8.1). Indeed, many recent works are also adding on to the knowledge in this 

field (34, 36, 104, 106, 109, 116). In this light, a far-reaching step would be to investigate 

the dynamics of SurA domains and Skp monomers as they hand over their client OMP to 

the -barrel machinery using the liposome reconstituted BamA by Anna Svirina in the 

Schlierf group.  

Interestingly, at the cellular concentration of Skp, a significant fraction of monomers has 

been detected (10). However, it is also demonstrated that in presence of substrates, the 

concentration of trimers is increased due to interaction with the client proteins (109). By 

applying the lifetime filtering strategy during smFRET experiments (as done for DNA-

Origami complexed with other biomolecules – Appendix 8.2) in conjunction with FCS, one 

can envision a way to detect Skp trimers from Skp monomers through smFRET 

experiments in presence of OMPs. Furthermore, using the chemically linked Skp 

monomers (plasmids already exist in the Schlierf lab), it is possible to compare the 



Conclusion and Outlook 

 

119 

 

structural and thermodynamic properties between the two designs of the chaperone to 

reveal effects of ‘forced’ trimerization. 

The disaggregation experiments with chaperones showed us that Skp and SurA could be 

working cooperatively in the periplasmic environment. It will then be intriguing to 

investigate if the chaperones work cooperatively or handover their substrates in a 

unidirectional manner in absence of aggregation. To this end, the microfluidics based setup 

(205) being established in the Schlierf lab with the help of Koushik Sreenivasa and Dr. 

Andreas Hartmann can be used.  

Lastly, it will be of great value to the bio-medicinal field, if through smFRET, the effects 

of certain newly developing antibiotics (50, 206) on not just the OMP assembly on outer 

membrane but also the chaperone-OMP interactions are probed directly. Such a high 

throughput assay system for drug identification is currently being developed for the Cystic 

Fibrosis transmembrane hairpins in the Schlierf lab by Mathias Rolf Schenkel, Koushik 

Sreenivasa and Dr. Andreas Hartmann. On combining such findings with in vivo 

applications of microscopy, it is also possible to gain direct insights into the cellular effects 

of these drugs.



 

 

 

 



 

 

 

 

Appendix 8.1 Fast inter-domain dynamics of SurA 

in solution 

Up until now, the major part of the thesis involved understanding chaperone-OMP 

interactions from the perspective of OMPs. However, not much has been known about the 

conformational aspects of chaperone, in this case SurA, in absence and presence of its 

substrate. SurA is majorly composed of four domains: N-terminal, C-terminal and two 

parvulin-like peptidylprolyl isomerase (PPIase) domains commonly referred to as P1 and 

P2 domains. Despite the known crystal structure (110), the motion of domains in presence 

and absence of the substrate with respect to each other remained unclear for a long time. 

Moreover, the role of these domains in sequestering OMPs has also been of great interest 

(207). One study has questioned the role of PPIase domains in sequestering OMPs, as it 

was found that SurA can still efficiently chaperone OMPs in the absence of these domains 

(115). But a few previous studies have indeed found that this is not the case for certain 

OMPs like OmpT, where the absence of even one PPIase domain lead to its aggregation 

(116). Thus, to obtain an understanding from the standpoint of SurA during chaperone-

OMP interaction and its conformational dynamics in solution, an additional smFRET study 

was also performed with double labelled SurA variants. A few recent investigations (34, 

36) are found to be in good agreement with the results presented in this chapter. 

8.1.1 SurA shows quick distance fluctuations between its C-terminal and P1 

domains in absence of its substrate 

To examine the conformational dynamics of SurA in solution through smFRET 

experiments, two double cysteine mutants were designed by site-directed mutagenesis. 

While one mutant – SurA197,435 (S197C and S435C) aimed to examine the dynamics 

between the P1 and C-terminal domains, the other mutant – SurA324,435 (S324C and S435C) 

probed the dynamics between the P2 and C-terminal domains (Figure 8.1-1a). 

Subsequently, the two variants were overexpressed in E. coli BL21 cells and purified from 

the cell lysate using affinity chromatography. They were subsequently refolded in reducing 

conditions (5 mM TCEP) and labelled with Atto532 (ATTO-TEC, Germany) and Abberior 
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Star 635P (abberior) as the donor and acceptor fluorophores. SEC was then used to separate 

the labelled protein from free dyes (Appendix Section 8.3.3). Labelled variants of SurA 

were then subjected to smFRET experiments at pM concentrations. To isolate the single 

molecule events from the spectrum, bursts with a minimum inter-photon time of 50 s and 

more than 50 photons in case of SurA197,435 and more than 100 photons in case of SurA324,435 

were selected. The analysed burst was then filtered with ALEX-2CDE<10 and 

Stoichiometry of 0.2<S<0.75 parameters and correction factors of = 0.0881, = 0.0247 

and = 0.5125 and 0.4575 for SurA197,435 and SurA324,435, respectively.  

 

Figure 8.1-1 – Fast translational dynamics between the domains of SurA. a) Crystal structure of SurA 

(1my5.pdb, (110)) is shown with the labelling positions (S197C, S324C and S435C). The four domains are 

highlighted with different colours: N (green) and C-terminal (purple), peptidyl-prolyl isomerase P1 (red) and 

P2 (yellow). b) FRET efficiency (E) histogram from the smFRET measurement with SurA197,435 in solution 

(20 mM Tris-HCl, 150 mM NaCl and pH 8.0) shows a surprisingly broad population. c) FRET efficiency (E) 

histogram from the smFRET measurement with SurA324,435 in solution (20 mM Tris-HCl, 150 mM NaCl and 

pH 8.0) shows a low FRET efficiency population at an <E>  0.25 corresponding to a relatively smaller 

distance between the two labelling positions than would be expected from the crystal structure. d) 2D plot 

between the relative lifetime of the donor (D(A)/D(0)) and FRET Efficiency, E was created to examine 

interconversion dynamics of the broad population corresponding to SurA197,435. The population appears to 

behave like a Gaussian chain suggesting a sub-millisecond inter-domain movement of SurA in solution. The 

static FRET line (black line) and the line representing Gaussian chain (red dashed line) behaviour are also 

shown in the plot. e) 2D plot between the relative lifetime of the donor (D(A)/D(0)) and FRET Efficiency, E 

suggests that the SurA197,435 population is largely static. A pictorial representation of the possible SurA 

structure in solution is shown in d and e. 
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Figure 8.1-1b shows the FRET efficiency (E) histogram (red bars) so obtained for the 

double labelled SurA197,435. Surprisingly, instead of an expected single high FRET 

efficiency peak, the protein appears to occupy a rather broad conformational space. On the 

other hand, the E histogram obtained from smFRET experiments with SurA324,435 shows 

only a single low FRET efficiency population (yellow bars in Figure 8.1-1c). Intriguingly, 

the average FRET efficiency (<E> ~ 0.25) appears to be smaller than expected for a 

distance of 10 nm between the labelling two positions (according to the crystal structure). 

This indicates that the C-terminal and the P2 domain ends of the protein might be closer to 

each other in solution than suggested from the crystal structure (110).  

In the next logical step, the interconversion dynamics of the conformations within the 

heterogeneous population of the two variants was examined. To this end, a 2D plot was 

created between the relative lifetime of donor (D(A)/D(0)) and FRET efficiency, E with the 

static FRET line (black line) and the line representing a Gaussian chain behaviour (red 

dashed line) and is shown for SurA197,435 and SurA324,435 in Figure 8.1-1d and Figure 8.1-1e, 

respectively. It is interesting to note that the broad population belonging to SurA197,435 was 

found to shift away from the static FRET line and seems to have reconfiguration dynamics 

on the timescale expected for a polypeptide behaving like a Gaussian chain (Figure 8.1-1d). 

Thus, the distance between the C-terminal and the P1 domain changes on a timescale of 

sub-milliseconds in solution. This observation is in good agreement with a recent study by 

Calabrese, Schiffrin and Watson et. al. (34), where they saw sub-millisecond dynamics 

between the core and P1 domain. However, the distance between the P2 and C-terminal 

end seems to be largely static in solution as the FRET population belonging to SurA324,435 

lies on the static FRET line (Figure 8.1-1e).  

Corroborating with findings from other labs (34, 36), this study demonstrates that while the 

distance between the tip of P2 domain and the end of C-terminal domain remains largely 

static albeit lower than in the crystal structure, the distance between the C-terminal and P1 

domain seems to change on an extremely fast timescale (shown as pictograms in Figure 

8.1-1d and Figure 8.1-1d, respectively). Such a reorganisation of domains might not only 

facilitate substrate binding but also release of substrates to the -barrel machinery.  
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8.1.2 Distance between ends of C-terminal and P2 domains remain 

unchanged upon substrate binding 

A loosening of the core-P1 domain was suggested to bias SurA towards a more active state 

by Soltes et. al (207). Indeed, a recent study showed that SurA adopts a structure 

intermediate between the core-P1open and core-P1closed domain (34). Adding on to this study, 

here, the distance between the C-terminal and P2 domain is probed by diluting labelled 

SurA324,435 (to pM concentration) into M wild type SurAwt with the substrate of interest 

(pM OmpXwt or OmpLAwt) to perform smFRET experiments. Knowing the KD for OMP-

chaperone binding to be in a micromolar range (Section 5.3), M SurAwt was added so as 

to satisfy the concentration conditions for chaperone-OMP binding, since a higher 

concentration of OMPs cannot be used due their propensity towards aggregation and a 

higher affinity of SurA to aggregated OmpX as compared to unfolded OmpX (Section 5.4).  

 

Figure 8.1-2 - C-terminal and P2 domains of SurA lack change in distance upon addition of the 

substrate OMPs. a) The FRET efficiency histogram (blue bars) of the measurement with pM SurA324,435 and 

1 M SurA wildtype (SurAwt) is used as a negative control. It demonstrates that addition of higher 

concentration of SurA had no visible influence on the conformation of the labelled SurA as it overlays well 

with the FRET efficiency (E) histogram (black cityscape) belonging to measurement with just pM SurA324,435. 

b) The FRET efficiency (E) histogram (grey bars) of the measurement with pM SurA324,435, 1 M SurA 

wildtype (SurAwt) and 20 pM OmpXwt is overlaid with E histogram (black cityscape) obtained from 

measurement with just SurA to show that addition of OmpXwt results in no change in distance between the 

two labelled positions. The maroon cityscape belongs to the FRET efficiency histogram obtained from 

measurement with pM SurA324,435 and 200 nM OmpXwt which also suggests negligible distance change. c) 

Addition of 20 pM OmpLAwt to pM SurA324,435 and 1 M SurAwt also seems to result in no change of distance 

between the two labelled positions upon addition of a bigger substrate. 

 

As a negative control, a smFRET measurement of SurA324,435 with M wild type SurAwt 

was performed to check if the high concentration induced a conformational change among 

the SurA monomers. The FRET efficiency (E) histogram shown for this measurement in 
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Figure 8.1-2a demonstrates that presence of SurAwt had no influence on the labelled SurA 

molecules. In the next step, 20 pM OmpXwt was added to the buffer (20 mM Tris-HCl, 150 

mM NaCl and pH 8.0) with 20 pM SurA324,435 and 1 M SurAwt. The FRET efficiency 

histogram so obtained is shown with grey bars in Figure 8.1-2b and compared with the 

SurA only measurement (black cityscape). The absence of a change in FRET efficiency 

upon addition of OmpXwt suggests that the distance between the two positions does not 

change upon addition of the substrate. Similarly, addition of a bigger OMP instead of 

OmpX, in this case, OmpLAwt also had little effect on the distance between the two labelled 

positions as seen from the FRET efficiency histogram (dark green bars) in Figure 8.1-2c.  

 

These observations suggest that there appears to be no noticeable distance change between 

the tip of P2 and C-terminal domain upon binding of the client OMP to SurA like was found 

to be the case for core-P2 domain in a previous study (34). It should be noted that the 

labelled chaperone molecules are 106 times more dilute than the unlabelled molecules. 

Thus, it is possible that statistically not many OMP-bound labelled molecules were probed 

during the measurement leading to a biased FRET-efficiency histogram. But one can 

assume that the labelled molecules are distributed evenly and thus the findings from the 

experiments here are inferable. Moreover, addition of 200 nM OmpXwt (possibly the 

maximum concentration usable while avoiding aggregation (35)) to 10 pM labelled 

SurA324,435 also resulted in no distinguishable change in the FRET efficiency histogram 

(Figure 8.1-2b – maroon cityscape) agreeing with the afore-mentioned conclusion.  

 

8.1.3 Summary 

The results in this chapter show that SurA appears to be conformationally dynamic in 

solution with the distance between the C-terminal and P1 domains changing on a sub-

millisecond timescale. Remarkably, the structure itself appears to be rather compact in 

solution than is suggested from the crystal structure of the protein (110). Furthermore, 

addition of differently sized substrates seems to show no perceivable influence on the 

distance between the tips of C-terminal and P2 domains. 

Outlook: The next interesting step would be to probe the conformational change of 

SurA197,435 upon addition of the substrate. This can help in investigation of the changes in 
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conformational distance between the P2 and C-terminal domain upon OMP binding and 

will be a task for future experiments. Furthermore, an insight into the change in 

conformation of the chaperone when releasing its substrate to the -barrel machinery will 

be of immense value in future.



 

 

 

 

Appendix 8.2 Lifetime based filtering of DNA-

origami coupled molecules. 

DNA origami (208) is a robust tool used in various fields of science. Its versatility has 

established its role in not only molecular lithography (209, 210) and nanotechnology (211–

213) but also as a reporter (214) or a drug delivery vehicle in biomedicine (215, 216). It is 

also of great relevance to single molecule experiments (217–220) where it is used as a 

substrate for conjugation of DNA or protein biomolecules. In general, DNA origami is 

constructed with a long single stranded DNA-scaffold and a large number of 

complementary short oligonucleotides, the so-called staple strands. These staple strands 

can be functionalized with fluorophores (221), nanoparticles (222), proteins (223) and 

DNA molecules of desired sequence (224) and topology (225) thus rendering DNA origami 

as a useful platform with tunable positioning of molecules of interest. Furthermore, the 

origami structures are found to be stable at even high concentrations of GdmCl or urea (6 

M) for up to 24 hours (226, 227), with a possibility of stability enhancement by enzymatic 

ligation (228) and photo-cross-linking (229). This opens up the opportunity to study protein 

folding in presence of denaturants, controlled local crowding using for example 

poly(ethylene glycol) (PEG) polymers (230) or with interacting partners like nucleic acids 

and chaperones during smFRET experiments. Moreover, as the DNA origami conjugated 

proteins diffuse slower, thus increasing their residence time under the confocal volume, a 

better resolution of fast folding proteins can be obtained by combining the two techniques. 

One way of coupling DNA origami with biomolecules is the biotin-streptavidin reaction 

whereby both the biomolecule and one of the staple strands of origami have a biotin 

molecule. Both of these biotins then bind to streptavidin – in this case neutravidin (with 

four pockets for biotin binding) in the solution resulting in a conjugation of the two 

molecules. However, such a coupling mechanism is not 100% efficient, thus making it 

essential to isolate the coupled from uncoupled molecules especially when probing through 

single molecule techniques like smFRET. To this end, in this chapter, a powerful lifetime-

based filtering technique is employed to identify the origami complexed and un-complexed 

biomolecules like rulers and DNA hairpin during the smFRET experiment.  
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8.2.1 Distinguishing differently labelled DNA origami by 

evaluating acceptor lifetime during smFRET experiments 

The setup used for measurements in this thesis was operated in a pulsed interleaved 

excitation (PIE) mode i.e. the donor and acceptor fluorophores were excited alternately 

(Section 2.3.1). As the fluorescence decays of the fluorophores did not overlap (ensured by 

an appropriate temporal separation of 20 ns), it was possible to detect the photons due to 

excitation of the donor and the acceptor fluorophore individually. Therefore, upon 

identification of the single molecule bursts containing a certain number of photons, average 

apparent lifetime of a burst can be obtained for both acceptor and donor separately. 

Furthermore, in the case that a particular molecule is labelled with two different acceptor 

fluorophores having two different lifetimes, an average lifetime of the two dyes will be 

reflected in the acceptor lifetime histogram resulting due to simultaneous presence of both 

of them during detection.  

Such a system can be easily formulated using DNA origami with staple strands having two 

different acceptor fluorophores with distinguishable lifetimes. To this end, staple strands 

with ATTO647N and ALEXA647 were used in different combinations when preparing the 

origamis. Considering that the labelling of staple strands is not 100% efficient during DNA 

origami preparation (performed according to the method reported in (227, 231)), it was 

possible to distinguish the single labelled origami from the double labelled origami using 

the acceptor lifetime from each experiment. As the lifetime of ATTO647N is 3.5 ns 

(ATTO-TEC, Siegen, Germany) and that of ALEXA647 is 1 ns (Thermo Fisher Scientific 

Life Technologies GmbH, Darmstadt, Germany), it was possible to easily distinguish a 

molecule labelled with either (3.5 ns or 1 ns) or both the dyes (an average lifetime of the 

two dyes) during the smFRET experiments. The fluorescence bursts belonging to single 

molecules were identified by using an inter-photon time of 50 s with at least 400 photons. 

Correction factors = 0.054, = 0.0275 and = 0.9 were also applied during data analysis.  

In Figure 8.2-1a, since the origami was labelled with only ATTO647N dye (red star) as 

shown in the adjacent pictogram, an average acceptor lifetime (<A>) of 4.04 ns was 

obtained by fitting the Gaussian curve on the respective population. On addition of a staple 

strand with ALEXA647 dye (red circle) to the origami along with the staple strand 
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anchored with ATTO647N fluorophore, as expected, two more lifetime peaks were 

detected: one belonging to the lifetime of ALEXA647 only labelled origami with <A> = 

0.99 ns and one to the average lifetime of the two dyes with <A> = 2.61 ns (Figure 8.2-1b) 

corresponding to the double labelled molecules. Similarly, addition of two ALEXA647 

dyes and three ALEXA647 dyes anchored staple strands along with one staple strand 

having ATTO647N, shifted the <A> of the middle peak (2.32 ns and 1.98 ns, respectively) 

to further left (Figure 8.2-1c and Figure 8.2-1d, respectively). As expected, DNA origami 

labelled with just the ALEXA647 dye showed an average lifetime <A> = 0.92 ns. In all 

the cases, relevant number of Gaussian curves (1 for single labelled and 3 for double 

labelled origami) were fitted to report the average acceptor lifetimes. 

 

Figure 8.2-1 - Differently labelled DNA origami are identified by using two acceptor fluorophores with 

distinguishable lifetimes. a) Acceptor lifetime (A) histogram of a DNA origami measurement with a staple 

strand labelled with just the ATTO647N dye was fitted with a Gaussian curve (red dashed line) showing an 



Lifetime based filtering of DNA-origami coupled molecules. 

 

130 

 

average acceptor lifetime (<A>) of 4.03 ns. The pictogram of the origami (a triangular blue structure) with 

one ATTO647N fluorophore (red star) is shown adjacent to the histogram. b) Acceptor lifetime histogram of 

a DNA origami with one staple strand labelled with the ATTO647N dye and another with ALEXA647 dye 

(red circle) was fitted with three Gaussian curves showing an average acceptor lifetime (<A>) of 0.99 ns, 

2.61 ns and 3.68 ns corresponding to ALEXA647 only, both ALEXA647 and ATTO647N and ATTO647N 

only labelled origami, respectively. c) and d) Acceptor lifetime histogram of a DNA origami with one staple 

strand labelled with the ATTO647N dye and two and three staple strands with ALEX647 dye, respectively. 

The mean lifetime resulting from the DNA origami labelled with more than one ALEXA647 dye shifts the 

<A> to the left (<A> = 2.32 ns and 1.98 ns for c and d, respectively). e)  Acceptor lifetime histogram of a 

DNA origami with one staple strand labelled with ALEXA647 dye shows an expected <A> = 0.92 ns.  

These results show that it is possible to distinguish a double labelled origami from a single 

labelled origami just by probing the acceptor lifetimes. While the single labelled molecules 

with a particular dye show the characteristic lifetime of that dye, a double labelled molecule 

with the two different fluorophores demonstrate a mean acceptor lifetime based on the 

number of either dyes present on the molecule. 

8.2.2 Probing FRET efficiency of the origami coupled DNA rulers. 

Indeed, the next step was to couple the DNA origami with a biomolecule labelled with a 

FRET pair of fluorophores and use the acceptor lifetime parameter to distinguish the 

coupled from the uncoupled molecules while simultaneously recording the FRET 

efficiency of the biomolecule. To this end, a simple reaction of biotin-neutravidin binding 

was used to complex the origami with DNA rulers. Two different kind of DNA rulers 

(sequence as in Appendix Section 8.3.8) were used: one with a distance of 9 bp between 

the acceptor (ATTO647N) and donor (ATTO532) fluorophore (will be referred to as 9 bp 

ruler further on) and one with a gap of 21 bp between the two fluorophores (will be referred 

to as 21 bp ruler further on). While the former shows a high FRET efficiency peak due to 

smaller distance between donor and acceptor, the latter shows a low FRET efficiency peak 

due to larger distance between the two dyes (Figure 8.2-2a).  The FRET efficiency (E) 

histograms were obtained upon identification of the single molecule bursts with an inter-

photon time of 50 s and at least 75 photons. An additional ALEX-2CDE filter of less than 

15 and a Stoichiometry (S) filter of > 0.25 and < 0.75 was also applied along with the 
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correction factors mentioned previously. The pictograms representing each kind of DNA 

ruler is shown in Figure 8.2-2a. 

In order to couple the double labelled DNA rulers with the DNA origami, both the rulers 

(1X) and the origami (1X) were designed with one strand having a biotin molecule (ordered 

from biomers). They were both incubated overnight in a solution with 1 M neutravidin, a 

molecule with four pockets for biotin. In addition to the biotin strand, DNA origami was 

also prepared with two ALEXA647 dye labelled staple strands, so as to enable isolation of 

the complexed (origami + ruler) from the uncoupled molecules (origami or ruler). Since 

the labelling position on the origami was chosen such that the distance between the acceptor 

on the origami and donor on the ruler was more than 10 nm in case of a coupled molecule, 

there was no energy transfer possible between these two dyes. This ensured that the FRET 

efficiency recorded belonged only to the double labelled ruler in consideration. Thus, 

following the observation from the previous section, while a coupled molecule would show 

a mean acceptor lifetime of ATTO647N + ALEXA647 dyes, uncoupled molecules would 

show a mean lifetime of either dyes depending on if it is the ruler (thus ATTO647N) or the 

origami (thus ALEXA647) being probed in the confocal volume at that instant.  

 

Figure 8.2-2 - Origami coupled rulers are distinguished from the uncoupled molecules by acceptor 

lifetime filtering. a) The FRET efficiency (E) histogram of a DNA ruler measurement labelled with donor 

and acceptor fluorophore at a distance of 9 base pairs (9 bp ruler – grey bars) shows a high FRET efficiency 

state as compared to the low FRET efficiency population (red bars) of a 21 bp ruler with the two fluorophores 

situated at a gap of 21 base pairs. b) and c) Acceptor lifetime (A) histogram shows three populations 

corresponding to ruler only, ruler coupled to origami and origami only species belonging to 9 bp ruler 

complexed with origami and 21 bp complexed with origami experiments, respectively. Average acceptor 

lifetimes obtained from the Gaussian curve fitting (red dashed line) for each population is reported in the 

main text. The pictograms corresponding to each species are shown in the figure, the rulers are showed as 

ladders with ATTO532 (donor – green star) and ATTO647N (acceptor -red star) dyes. DNA origami is shown 

as a triangular structure as in the previous figure with two ALEXA dyes (red spheres). The conjugated 

molecules can be distinguished in the heterogeneous sample by filtering for the particular acceptor lifetimes.  
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Figure 8.2-2b demonstrates an acceptor lifetime histogram belonging to a measurement of 

DNA origami complexed with 9 bp ruler. The three possible species (DNA origami only, 

DNA ruler only and origami complexed DNA ruler) in such an experiment are shown as 

pictograms in the same figure. While the Gaussian curve of the acceptor lifetime population 

belonging to an uncoupled origami and ruler showed an <A> = 0.82 ns and 3.20 ns, 

respectively, as anticipated, the acceptor lifetime peak belonging to a coupled molecule 

showed a <A> = 2.11 ns (Figure 8.2-2b). Similarly, when a 21 bp DNA ruler was used 

instead of the 9 bp ruler, <A> of 0.74 ns, 2.07 ns and 3.45 ns were obtained corresponding 

to origami only, ruler + origami and ruler only molecules (Figure 8.2-2c).  

Due to the apparent difference in the average lifetimes of conjugated and unconjugated 

molecules, it was possible to quantify the efficiency of conjugation. For this purpose, 

lifetime filters were applied such that -0.1 ns < A < 1.2 ns corresponded to the origami 

only molecules, 1.2 ns < A < 3 ns corresponded to the coupled molecules and 3 ns < A < 

100 ns corresponded to the ruler only molecules. It was found that the efficiency of 9 bp 

ruler - origami coupling was 30 % and 21 bp ruler – origami coupling was 37 %. Moreover, 

as expected the average burst duration (<Tb>), an indicator of the residence time of a 

molecule in confocal volume was found to increase from 2.50 ns to 5.30 ns upon successful 

conjugation (not shown). This is an important aspect of origami conjugation which will be 

examined in the next section. 

8.2.3 Conformational states of DNA hairpin are not perturbed upon 

coupling to DNA origami  

DNA hairpins are simple nucleic acid structures that consist of inverse repeats of single-

stranded DNA which is connected by a non-complementary loop region. The opening and 

closing kinetics of DNA hairpins has been extensively studied by Schlierf group previously 

(232). As shown in Figure 8.2-3a, depending on the salt condition and the hairpin used (in 

this with a T21 loop, sequence in Appendix Section 8.3.8), the hairpin could undergo 

interconversion between the open and closed state on a millisecond timescale. In a smFRET 

experiment, such millisecond dynamics can be detected by plotting FRET-2CDE 

(Appendix Section 8.3.9) against FRET efficiency, E. If a molecule is undergoing structural 
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interconversion on a millisecond timescale, the FRET efficiency peak corresponding to the 

dynamic molecules will lie above a FRET-2CDE value of 20. This appears to be the case 

for the hairpin used in the smFRET experiments in this work at a concentration of 2mM 

MgCl2 (and 1 X TAE buffer, pH 8.0). Figure 8.2-3b demonstrates the FRET efficiency (E) 

histogram obtained from the hairpin measurement and Figure 8.2-3c shows the 

corresponding FRET-2CDE vs E plot. The parameters for isolation of single molecule 

bursts and analysis of FRET efficiency histograms were the same as for the rulers. 

 

Figure 8.2-3 - Resolution of DNA hairpin dynamics can be achieved by coupling it to the origami. a) 

DNA hairpin (shown with ATTO532 – green star and ATTO647N – red star fluorophores) can interconvert 

between the open and closed states on a millisecond timescale depending upon the salt concentration. b) The 

FRET efficiency (E) histogram from the hairpin smFRET experiment indicates a third population between 

the open and closed state. c) This third state appears above the threshold of 20 on a FRET-2CDE vs E plot 

indicating sub-millisecond dynamics between the two populations. d) Acceptor lifetime (A) histogram of the 

origami complexed hairpin measurement shows three species: origami only (labelled with two ALEXA647 

dyes), origami coupled hairpin, and hairpin only. For each species, a pictogram is shown with the respective 

peak. The red dashed lines indicate the Gaussian fits for each population. e) The FRET efficiency (E) 

histogram of the origami coupled hairpin after filtering for the acceptor lifetime corresponding to the 

complexed molecules (1.2 < A < 3 ns). f) FRET-2CDE vs E plot for the origami coupled hairpins also show 

sub-millisecond interconversion between the open and closed states. An increase in the middle state shows 

the effect of increase in residence time of the coupled molecules.  
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Due to the fast diffusion of hairpins through confocal volume (because of their small size), 

it is not possible to resolve the various fast interconverting (<ms) conformations of the 

hairpin when passing through the confocal volume. To this end, attaching the hairpin to the 

origami provides an opportunity to increase the effective size of the molecule in focus as 

increasing its diffusion time enables a better structural resolution of the coupled hairpin 

molecules. By complexing the hairpin with the origami through an overnight biotin-

streptavidin coupling reaction, the dynamics of the coupled molecules were inferred by 

applying the acceptor lifetime filtering approach by labelling the hairpin with ATTO532 

and ATTO647N as the donor and acceptor fluorophore, respectively while the origami was 

labelled with two ALEXA647 acceptor dyes. SmFRET experiment was then performed 

with the complexed sample at a concentration of 2 mM MgCl2 as that was the salt 

concentration at which hairpin was found to undergo millisecond dynamics. As shown in 

Figure 8.2-3d with the pictograms corresponding to the species in each population, while 

the <A> of origami only and hairpin only molecules was found to be 0.73 ns and 3.70 ns, 

respectively, the coupled molecules had a <A> = 2.25 ns. On applying the same acceptor 

filters as in the previous section, a coupling efficiency of 39 % was obtained. Furthermore, 

as expected an increase in residence time was observed for coupled molecules such that 

<Tb> increased from 2.81 ns to 5.34 ns for hairpin molecules upon coupling. 

Remarkably, an increase in the middle population can be seen among the coupled 

molecules due to a better resolution of the hairpin dynamics upon slower diffusion. This is 

evident from both the FRET efficiency (E) histogram in Figure 8.2-3e and the FRET-2CDE 

vs E plot in Figure 8.2-3f corresponding to the origami coupled hairpin molecules. Using 

dynamic two-state PDA (readers are referred to (232) for explanation of the analysis 

algorithm), the kinetic rates of opening and closing were also obtained for the hairpin and 

origami coupled hairpin molecules. The kopen (representing kinetic rate of opening) and the 

kclose (representing kinetic rate of closing) between the open and closed states were found 

to be (0.89  0.04) ms-1 and (0.80  0.04) ms-1, respectively for the origami coupled hairpin. 

The apparent FRET efficiencies from the fitting were: Eopen* = 0.122  0.004 (for the open 

state) and Eclose* = 0.749  0.006 (for the closed state). The dynamic PDA analysis on the 

hairpin only measurement resulted in kinetic rates of (0.71  0.01) ms-1 and (0.91  0.02) 

ms-1, respectively with Eopen* = 0.105  0.001 and Eclose* = 0.728  0.002. This 

demonstrates that origami coupled hairpins slightly favour the open state possibly due to 
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steric hindrance or salt concentration bias induced by the bulky DNA origami. However, 

the conformational states of the hairpin remain unaffected in presence of the origami as 

indicated by the respective FRET efficiencies. 

8.2.4 Summary  

DNA origami promises to be an extremely useful substrate when probing conformation of 

biomolecules under different controlled conditions during smFRET experiments. In this 

regard, this chapter provided a robust and clean approach to distinguish origami coupled 

molecules from the uncoupled molecules. Using DNA hairpin as a dynamic conformational 

system, it was shown that it is also possible to increase the residence time of the molecules 

leading to a better resolution of the dynamic states.  

Outlook: Previous experiments in the group (performed by Xiaoyue Shang) show that such 

a system can also be used for identification of protein molecules coupled to DNA origami 

without affecting their conformational states. However, the coupling reactions need to be 

optimized so as to not only probe the individual proteins but also protein-protein 

interactions and effects of molecular crowding on DNA origami. Moreover, it is interesting 

to note that such a tool can also be applied to study other interaction mechanisms where the 

labelling positions can be ensured to be sufficiently far (> 10 nm).



 

 

 

 



 

 

 

 

Appendix 8.3 Materials and Methods 

This appendix chapter provides an account of materials and the detailed protocol for 

designing double mutant OMPs (OmpX, OmpLA) and double cysteine mutants of SurA. 

The expression, purification and labelling of OMPs (OmpX and OmpLA) and periplasmic 

chaperones (Skp and SurA) is also described. Additionally, measurement schemes for OMP 

unfolding, chaperone complexation and aggregation formation are also explained. 

 

8.3.1 Site directed Mutagenesis 

Studying conformational changes through smFRET requires that the protein of interest is 

double labelled with an acceptor and donor fluorophore. Of the many approaches, this 

thesis used maleimide chemistry based stochastic labelling technique. For this purpose, 

OMPs and SurA were mutated at various positions so as to introduce the cysteine residue 

into the protein sequence by either point mutation or extension of the sequence by a cysteine 

residue. Double mutation of OmpLA to OmpLA13,85, OmpLA125,234 and OmpLA13,234 was 

done by Pablo Gracia and that of OmpX1,149 was done by Mai Quynh Ma in the Schlierf 

group. During this thesis work, double mutants OmpLA13,125, OmpLA64,187, SurA197,435 and 

SurA324,435 were created from OmpLA wt and SurA wt plasmids (made previously by Dr. 

Georg Krainer from Schlierf group), respectively. A general step-by-step protocol for site 

directed mutagenesis, transformation and test expression is as follows: 

 

1. Designing Sequences: The sequence of interest was obtained from UniProt. For designing mutants, the 

mutation sites were identified such that the amino acid to be replaced is: on the loop/turn region, 

preferably a serine/aspartate/lysine and not a part of active domain or involved in the functioning of the 

protein. A table of all the protein sequences with the corresponding mutations are provided in Table 8.1. 

2. Primer for site directed mutagenesis: 

2.1. 1x forward and 1x reverse primer were designed according to the following rules: 

a. Primers were 20-40 nucleotides long. 

b. Primers had a GC content of 40-60%. 

c. Primer pairs did not share complementary sequences at the 3' end. 

d. The melting temperatures had a difference of approx. 3 °C. 

e. When designing double mutants, both the primers were ensured to be on the same strand. 
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2.2. The QuickChange Primer Design (https://www.agilent.com/store/primerDesignProgram.jsp) 

website was used for designing primers. Primers were then ordered from Biomers company 

(biomers.net).  

3. Polymerase Chain Reaction (PCR) was then performed with 25 l reaction mix with following 

concentrations/volumes:  

10X reaction buffer 1X - 2.5 l 

QuickSolution reagent 1 l 

Template plasmid 100 ng (x l) 

Primers  100 - 125 ng each (x l) 

dNTP mix 1 l 

Enzyme blend – should be added last 1 l  

ddH2O Added to make up the volume to 25 l 

 

PCR protocol generally used: 

Heat lid to 95 °C. 

Maintain 95 °C for 2 mins. 

Start cycle (30X): 

Temp 95 °C for 25´´ 

Temp 55 °C for 35 ´´ 

Temp 65 °C for 3´5´´ 

Close cycle 

Maintain 65 °C for 5 mins. 

4. After PCR, DNA sample was incubated on ice for 2 mins and then 1 l Dpn1 enzyme was added. The 

sample was then spin down and incubated at 37 °C for 15 mins. 

5. Transformation: 

i. E. coli XL10 ultracompetent cells (from Agilent Technologies) were thawed on ice. 

ii. 2 l ligated DNA was mixed into 45 ml XL10 cells. 

iii. The mixture was then placed on ice for 30 mins. 

iv. Meanwhile SOC medium was incubated on 42 °C water bath. 

v. Heat shock was done at 42 °C in a water bath for 30 sec. 

vi. The cells were then incubated on ice for 2 min. 

vii. 1 ml SOC medium was then added and the cells were grown for at least 1 hour at 37 °C.  

viii. Max. 500 ml of culture was plated on a LB + Kanamycin plate and incubated overnight at 37 °C. 

6. In order to check for successful transformation, a few colonies were picked and used to make 5-10 ml 

suspension culture overnight in a shaker at 37 °C. 

7. Plasmid isolation was performed using the MiniPrep kit in order to send for sequencing: Both reverse 

and forward T7 Primers were used for sequencing as the insert size was bigger than 800 bp in most 

cases. 
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8. The sequence was checked and if correct, the isolated plasmid was transformed into BL21 (DE3) cells 

according to the protocol above. Glycerol stocks were then made of the correct XL10 and BL21 clones. 

9. Test Expression: The 10 ml suspension culture so obtained after transformation was used as preculture. 

50 ml LB Medium + Antibiotic (Kanamycin) was inoculated with the preculture till an OD of 0.6-0.8 

was reached. Overnight induction of expression was performed with 0.4 mM IPTG at 20 °C. SDS PAGE 

was then performed to check for the expression of the desired protein. 

Protein Amino acid sequence Primers used 

OmpX wt ATSTVTGGYAQSDAQGQMNKMGGFNLKYRYEEDNSPLGVIGSFTY

TEKSRTASSGDYNKNQYYGITAGPAYRINDWASIYGVVGVGYGKF

QTTEYPTYKHDTSDYGFSYGAGLQFNPMENVALDFSYEQSRIRSVD

VGTWIAGVGYRF 

 

OmpX1,149 

(A1C, 149C) 

CTSTVTGGYAQSDAQGQMNKMGGFNLKYRYEEDNSPLGVIGSFTY

TEKSRTASSGDYNKNQYYGITAGPAYRINDWASIYGVVGVGYGKF

QTTEYPTYKHDTSDYGFSYGAGLQFNPMENVALDFSYEQSRIRSVD

VGTWIAGVGYRFC 

*OmpX_A1C: 

5´gatcccatggggtgcacttctactgta

actggcgg 3´ 

OmpX_149C 

5´gatcctcgagttaacagaagcggtaa

ccaacacc 3´ 

OmpLA wt QEATVKEVHDAPAVRGSIIANMLQEHDNPFTLYPYDTNYLIYTQTSD

LNKEAIASYDWAENARKDEVKFQLSLAFPLWRGILGPNSVLGASYT

QKSWWQLSNSEESSPFRETNYEPQLFLGFATDYRFAGWTLRDVEM

GYNHDSNGRSDPTSRSWNRLYTRLMAENGNWLVEVKPWYVVGNT

DDNPDITKYMGYYQLKIGYHLGDAVLSAKGQYNWNTGYGGAELG

LSYPITKHVRLYTQVYSGYGESLIDYNFNQTRVGVGVMLNDLF 

 

OmpLA13,85 

(A13C, N85C) 

QEATVKEVHDAPCVRGSIIANMLQEHDNPFTLYPYDTNYLIYTQTSD

LNKEAIASYDWAENARKDEVKFQLSLAFPLWRGILGPCSVLGASYT

QKSWWQLSNSEESSPFRETNYEPQLFLGFATDYRFAGWTLRDVEM

GYNHDSNGRSDPTSRSWNRLYTRLMAENGNWLVEVKPWYVVGNT

DDNPDITKYMGYYQLKIGYHLGDAVLSAKGQYNWNTGYGGAELG

LSYPITKHVRLYTQVYSGYGESLIDYNFNQTRVGVGVMLNDLF 

 

OmpLA13,125 

(A13C, D125C) 

QEATVKEVHDAPCVRGSIIANMLQEHDNPFTLYPYDTNYLIYTQTSD

LNKEAIASYDWAENARKDEVKFQLSLAFPLWRGILGPNSVLGASYT

QKSWWQLSNSEESSPFRETNYEPQLFLGFATCYRFAGWTLRDVEMG

YNHDSNGRSDPTSRSWNRLYTRLMAENGNWLVEVKPWYVVGNTD

DNPDITKYMGYYQLKIGYHLGDAVLSAKGQYNWNTGYGGAELGL

SYPITKHVRLYTQVYSGYGESLIDYNFNQTRVGVGVMLNDLF 

OmpLA_A13C: 

5´ggtgcatgacgcgccatgcgtgcgtg

gcagtatta3´ 

OmpLA_D125C: 

5´gttcctcggttttgccacgtgttacaact

ttgctggctg3´ 

OmpLA64,187 

(K64C, D187C) 

QEATVKEVHDAPAVRGSIIANMLQEHDNPFTLYPYDTNYLIYTQTSD

LNKEAIASYDWAENARCDEVKFQLSLAFPLWRGILGPNSVLGASYT

QKSWWQLSNSEESSPFRETNYEPQLFLGFATDYRFAGWTLRDVEM

GYNHDSNGRSDPTSRSWNRLYTRLMAENGNWLVEVKPWYVVGNT

DDNPCITKYMGYYQLKIGYHLGDAVLSAKGQYNWNTGYGGAELG

LSYPITKHVRLYTQVYSGYGESLIDYNFNQTRVGVGVMLNDLF 

OmpLA_K64C: 

5´tcaacttgaaactttacttcatcgcaac

gcgcattttccgcccagt 3´ 

OmpLA_D187C: 

5´gcccatatatttggtgatgcacgggtta

tcgtccgtattc 3´ 

OmpLA125,234 

( D125C, H234C) 

QEATVKEVHDAPAVRGSIIANMLQEHDNPFTLYPYDTNYLIYTQTSD

LNKEAIASYDWAENARKDEVKFQLSLAFPLWRGILGPNSVLGASYT

QKSWWQLSNSEESSPFRETNYEPQLFLGFATCYRFAGWTLRDVEMG

YNHDSNGRSDPTSRSWNRLYTRLMAENGNWLVEVKPWYVVGNTD
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DNPDITKYMGYYQLKIGYHLGDAVLSAKGQYNWNTGYGGAELGL

SYPITKCVRLYTQVYSGYGESLIDYNFNQTRVGVGVMLNDLF 

OmpLA13,234 

( A13C, H234C) 

QEATVKEVHDAPCVRGSIIANMLQEHDNPFTLYPYDTNYLIYTQTSD

LNKEAIASYDWAENARKDEVKFQLSLAFPLWRGILGPNSVLGASYT

QKSWWQLSNSEESSPFRETNYEPQLFLGFATDYRFAGWTLRDVEM

GYNHDSNGRSDPTSRSWNRLYTRLMAENGNWLVEVKPWYVVGNT

DDNPDITKYMGYYQLKIGYHLGDAVLSAKGQYNWNTGYGGAELG

LSYPITKCVRLYTQVYSGYGESLIDYNFNQTRVGVGVMLNDLF 

 

SurA wt APQVVDKVAAVVNNGVVLESDVDGLMQSVKLNAAQARQQLPDDA

TLRHQIMERLIMDQIILQMGQKMGVKISDEQLDQAIANIAKQNNMT

LDQMRSRLAYDGLNYNTYRNQIRKEMIISEVRNNEVRRRITILPQEV

ESLAQQVGNQNDASTELNLSHILIPLPENPTSDQVNEAESQARAIVD

QARNGADFGKLAIAHSADQQALNGGQMGWGRIQELPGIFAQALST

AKKGDIVGPIRSGVGFHILKVNDLRGESKNISVTEVHARHILLKPSPI

MTDEQARVKLEQIAADIKSGKTTFAAAAKEFSQDPGSANQGGDLG

WATPDIFDPAFRDALTRLNKGQMSAPVHSSFGWHLIELLDTRNVDK

TDAAQKDRAYRMLMNRKFSEEAASWMQEQRASAYVKILSN 

 

SurA197,435 

( S197C, S435C) 

APQVVDKVAAVVNNGVVLESDVDGLMQSVKLNAAQARQQLPDDA

TLRHQIMERLIMDQIILQMGQKMGVKISDEQLDQAIANIAKQNNMT

LDQMRSRLAYDGLNYNTYRNQIRKEMIISEVRNNEVRRRITILPQEV

ESLAQQVGNQNDASTELNLSHILIPLPENPTCDQVNEAESQARAIVD

QARNGADFGKLAIAHSADQQALNGGQMGWGRIQELPGIFAQALST

AKKGDIVGPIRSGVGFHILKVNDLRGESKNISVTEVHARHILLKPSPI

MTDEQARVKLEQIAADIKSGKTTFAAAAKEFSQDPGSANQGGDLG

WATPDIFDPAFRDALTRLNKGQMSAPVHSSFGWHLIELLDTRNVDK

TDAAQKDRAYRMLMNRKFSEEAASWMQEQRASAYVKILCN 

SurA_S197C: 

5´ccggaaaacccgacctgtgatcaggt

gaac3´ 

SurA_S435C: 

5´cctacgttaaaatcctgtgcaactaact

cgagaac3´ 

 

SurA324,435 

(S324C, S435C) 

APQVVDKVAAVVNNGVVLESDVDGLMQSVKLNAAQARQQLPDDA

TLRHQIMERLIMDQIILQMGQKMGVKISDEQLDQAIANIAKQNNMT

LDQMRSRLAYDGLNYNTYRNQIRKEMIISEVRNNEVRRRITILPQEV

ESLAQQVGNQNDASTELNLSHILIPLPENPTSDQVNEAESQARAIVD

QARNGADFGKLAIAHSADQQALNGGQMGWGRIQELPGIFAQALST

AKKGDIVGPIRSGVGFHILKVNDLRGESKNISVTEVHARHILLKPSPI

MTDEQARVKLEQIAADIKCGKTTFAAAAKEFSQDPGSANQGGDLG

WATPDIFDPAFRDALTRLNKGQMSAPVHSSFGWHLIELLDTRNVDK

TDAAQKDRAYRMLMNRKFSEEAASWMQEQRASAYVKILCN 

SurA_S324C: 

5´gattgctgctgatatcaagtgtggtaaa

acgacttttgc 3´ 

SurA_S435C: 

5´cctacgttaaaatcctgtgcaactaact

cgagaac 3´ 

 

Skp wt ADKIAIVNMGSLFQQVAQKTGVSNTLENEFKGRASELQRMETDLQA

KMKKLQSMKAGSDRTKLEKDVMAQRQTFAQKAQAFEQDRARRSN

EERGKLVTRIQTAVKSVANSQDIDLVVDANAVAYNSSDVKDITADV

LKQVK 

 

 

Table 8.3-1 - Sequences of proteins, single and double cysteine mutants designed used in this work 

along with the primers designed during this work are reported in the table. The primers for OmpX1,149 were 

made by Mai Quynh Ma. The signal sequences were absent for the proteins and the chaperones had a His tag 

in addition. The red letters indicate the mutated residue. The unmentioned primers are the ones not designed 

during this work. In this case, the already transformed OmpLA expressing glycerol stocks of E. coli from the 

Schlierf lab were used. 
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8.3.2 Expression, purification, refolding and labelling of OMPs 

OMPs were overexpressed in inclusion bodies (IBs). After extraction, IBs were solubilised 

with 8M Urea and the purified OMPs were then subjected to refolding. Below are the steps 

followed for large scale expression, purification and refolding of OmpX and OmpLA: 

1. Large scale expression: 

 

Materials: 

LB medium: 50 ml+1 L 

Kanamycin: 50 g/ml 

IPTG: 0.4 mM (400 l from 1M Stock for 1L cell culture) 

NaCl: 154 mM  

 

Method: 

i. Preculture (PC): 50 mL LB/Kan was inoculated with OMP expressing E. coli BL21 cells using an 

inoculation loop. Overnight incubation at 37 °C was done on a shaker (180 rpm) and OD was 

recorded. 

ii. 1 L LB/Kan culture was inoculated with the overnight preculture to an OD (600 nm) of 0.1-0.2. 

iii. The main culture (MC) was cultivated at 37°C on a shaker until an OD (600 nm) of 0.6-0.8 was 

reached. OD was recorded with 500 l of the culture. 

iv. Gene expression was then induced with 0.4 mM IPTG and the culture was incubated at 37 °C on a 

shaker for 2-4 hours and then overnight at 20 °C.  

v. OD was again recorded the next day, after which the cells were harvested by centrifuging the cultures 

for 15 min at 4 °C and 6317g with Beckman Coulter centrifuge. 

vi. The supernatant was discarded and the cells were resuspended in 40 ml 154 mM NaCl.  

vii. The cell-suspension was then transferred into two 50 ml falcons: 20 ml in each (weigh the falcons 

before use). 

viii. The washed cells were then harvested by centrifugation for 10 min at 4°C and 7197g (max speed, 

Eppendorf centrifuge). The supernatant was discarded and the wet weight of the cell pellets was 

recorded (generally between 2-4 g). 

ix. The cell pellets were frozen for future use. (Either at -20 °C for short time periods (approx. 1-3 

months) or at -80 °C for longer time periods.  

x. A sample of at least 500 l was collected at each point so as to check for protein expression through 

SDS PAGE (Figure 8.3-1a and d for OmpX1,149 and OmpLA13,125, respectively). 

 

2. Purification, solubilisation and refolding:  

 

Buffers required for cell wt of approx 2.5 g: 
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Breakage Buffer (BB) (50 ml): 50 mM Tris, 40 mM EDTA, pH 8.0, 25% (w/v) sucrose 

Washing Buffer (WB) (50 ml): 10 mM Tris, 1mM EDTA, pH 8.0 

Solubilization Buffer (SB) (50 ml): 8 M Urea, 100 mM Glycine, 20 mM Tris, 2 mM EDTA, pH 8.3 

Refolding Buffer (RB): 20 mM Tris, 2 mM EDTA, 0.87 M Urea, 35 mM LDAO, 5 mM TCEP, pH 8.3 

 

Cell Breakage: 

i. Cell pellets were thawed on ice and resuspended in 1:10 (w/v) ice-cold breakage buffer (10 ml/g cell 

material). 

ii. The cell mass was passed through French Press (EmulsiFlex-C3, Avestin) 2 times at an air pressure 

of 12000 bar in cold room (4 °C) and B-TCM was collected. 

iii. Brij 25 at 0.1% w/v was mixed after the 2nd time and the cell mass was passed three more times. 

iv. A sample of total cell material: TCM was collected. 

 

Solubilisation: 

v. TCM was centrifuged for 45 min at 4 °C and 7000 x g. 

vi. The supernatant was retained and a sample of soluble fraction SF was collected, followed by pellet 

resuspension in 40 ml washing buffer and of that a sample insoluble fraction IF was collected. 

vii. Next, washed IF was centrifuged for 30 min at 4 °C and 7000 x g and a sample of the supernatant: 

Washing fraction WF was collected. 

viii. The pellet was then solubilized overnight or for at least 3-4 hours in 20 ml solubilisation buffer 

overnight at 4 °C on a rotor (vortexing was avoided at this step). 

ix. A sample called solubilised inclusion bodies SIB was collected and the sample was centrifuged for 

30-40 min at 4 °C and 7000 x g.  

x. Subsequently, a sample of the supernatant: Soluble fraction II (SF II) containing the 

denatured/unfolded OMP was collected while the pellet was resuspended in 5 ml SB and a sample 

of the insoluble fraction (IF II) was collected. 

Refolding: 

xi. The total volume of OMP (x ml) was adjusted so as to refold it at an optimal concentration of 0.33 

mg/ml. 

xii. The thus calculated unfolded SFII was added to the refolding buffer by rapid drop dilution under 

stirring (T = 50 °C). 

xiii. The refolding solution was incubated overnight for 16 h at 50 °C under stirring, after which a sample 

of the possibly refolded OMP was collected.  

xiv. The precipitate formed during the refolding process (RF(P)) was separated from the refolded solution 

by centrifugation at 4 °C, 7000 x g for at least 15 mins. The supernatant was filtered by syringe 

filters 0.45 m (Carl Roth). A sample of which was then collected as RF(F). 

 

SDS PAGE was then run for all the collected samples to check for purification and refolding (Figure 

8.3-1a and d for OmpX1,149 and OmpLA13,125, respectively). 
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Figure 8.3-1 - OMP expression and purification. a) SDS PAGE with OmpX1,149 expression and purification 

fractions: M-marker, MC-Main Culture, TCM – Total Cell Mass, SF – Soluble Fraction, WF – Wash Fraction 

(expression), IF - Insoluble fraction, SIB – Solubilised Inclusion Bodies, IFII – Insoluble Fraction II, RF(P) 

– Pellet after Refolding, RF(F) – Filtered Refolded OmpX1,149 and RF(D) – Heat Denatured Refolded 

OmpX1,149. The OmpX fraction (mol wt. 16.4 kDa) can be identified above 15 kDa in the relevant fractions 

and is shown by the red box in the RF(F) fraction. b) Chromatogram from HiPrep DEAE 1ml anion exchange 

column run to separate refolded and unfolded fraction – RF-OmpX1,149 is the refolded OmpX1,149 eluted in 

the flow through and UF is the unfolded fraction in the elution fraction shown on a linear gradient of elution 

buffer (B%) shown with an orange line. The blue line is the absorbance of the protein at 280 nm. c) SDS gel 

showing the fractions from Flow through, wash fraction (purification) and elution fraction as indicated in the 

figure. The refolded fraction can be distinguished from the unfolded fraction due to their difference in 
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migration. d) SDS gel with OmpLA13,125 expression and purification fractions: M-marker, PC-PreCulture, B-

TCM – Total Cell Mass before and after addition of Brij detergent, all the other fractions are like for 

OmpX1,149. The OmpLA13,125 (mol wt. 30.84 kDa) fraction can be identified around 25 kDa as indicated in 

the figure.  e) Chromatogram from HiPrep DEAE 1ml anion exchange column run – RF-OmpLA13,125 is the 

refolded OmpLA13,125 eluted in the flow through. f) SDS gel showing the fractions from flow through, wash 

fraction (purification) and elution fraction as indicated. The refolded fraction can be distinguished from the 

unfolded fraction due to their difference in migration and are indicated on the gel. 

3. Separation and Labelling of Refolded OMP: 

 

Buffers required for 50 ml RF-F sample: 

Binding Buffer: 20 mM Tris, 35 mM LDAO, 2 mM EDTA, 5mM TCEP; pH 9.5. 

Elution Buffer: 20 mM Tris, 35 mM LDAO, 2 mM EDTA, 1.5 M KCl, 5mM TCEP; pH 9.5. 

Pre-labelling Buffer: 20 mM Tris, 2 mM EDTA; pH 5 

Labelling Buffer: 20 mM Tris, 2mM Tris, 17.5 mM LDAO; pH 7.5 

 

Purification/Separation of RF OMP from UF by weak anion exchange chromatography:  

Column used: DEAE - Sepharose HP 1 ml with ÄKTApurifier and other equipments from GE Healthcare 

Life Sciences 

i. The column was washed and equilibrated with 20% Ethanol, Water and Binding Buffer with at least 

10 CV (10 ml). Meanwhile, the sample was loaded in a 50 ml Superloop. 

ii. The superloop was set up and the prewritten program for 1ml DEAE HP column was started to 

separate the refolded OMP from the unfolded OMP on a linear gradient. While the flow through 

contained the refolded OMP, the elution fraction contained the unfolded OMP.  

iii. After the program finished, the column was washed again with elution buffer, water and 20% 

ethanol. 

iv. Important fractions were collected and SDS PAGE was run to confirm purification of refolded OMP 

from unfolded OMP. On confirmation, the concentration of refolded OMP (RF) was recorded and 

when required it was further concentrated with a Vivaspin 500 (10,000 MWCO) spin centrifuge tube 

from Sartorius. The chromatograms and the gel result for OmpX1,149 and one of the OmpLA variant 

(OmpLA13,125) are shown in Figure 8.3-1b,c and e,f for OmpX1,149 and OmpLA13,125, respectively. 

Labelling reaction of Refolded OMP  

i. The RF OMP was diluted 1:2 with the Pre-labelling Buffer so as to lower the concentration of 

LDAO, TCEP and pH to an optimal labelling pH of approx. 7.25-7.5.  

ii. The final volume of the reaction mixture did not exceed 500 l.  

iii. Accordingly, 20X ATTO532 and 20 XATTO647N (Attotec) or Abberior Star 635P dye (abberior) 

concentrations were calculated.  
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iv. The protein was first labelled with 20X ATTO532 for 2 hours and then 20X ATTO647N was 

introduced into the above labelling reaction and the mixture was incubated for 2 more hours.  

Free dye separation by Size Exclusion Chromatography (SEC): 

Column: 75/100 300-GE Healthcare Life Sciences 

i. In the meantime, the column was preequilibrated with 20 % ethanol, water and labelling buffer with 

at least 2CV. 

ii. The reaction sample was injected into the column with a 500 l Hamilton syringe.  

iii. After the SEC run, the labelled OMP was separated from the free dyes as evident from the 

chromatogram for OmpX1,149 and OmpLA13,125 in Fig. 2a and Fig. 2b, respectively. The 

concentration of double labelled OMP was measured and concentrated when required with a 

Vivaspin 500 (10,000 MWCO) spin centrifuge tube from Sartorius. Aliquots were then prepared and 

stored at 4 °C. The peak values of absorbance at 280 nm (for protein), 532 nm (for Atto532 dye), 

647N (for Atto647N dye) and 635P (for Abberior Star 635P) were noted down to reflect upon the 

labelling efficiencies as in Chapter 3. 

iv. At the end of the run, the column was equilibrated again with the labelling buffer, water and 20% 

ethanol. 

Labelling reaction of Unfolded OMP: When labelling unfolded OmpLA, SF II of each variant was directly 

used. First it was exchanged into a 6M GdmCl containing buffer (20 mM Tris and 150 mM NaCl) and 

then labelling reaction was done with 20X dyes added together. The labelled OmpLA was then separated 

from free dyes using SEC as before (Figure 8.3-2). 

 

Figure 8.3-2 - OmpX1,149 and OmpLA13,125 (refolded and denatured) labelling. a) Chromatogram obtained 

after Size Exclusion Chromatography of the labelled OmpX1,149. The inset shows the magnified double 

labelled OmpX1,149 fraction. b) Chromatogram obtained after Size Exclusion Chromatography of the labelled 

OmpLA13,125. The inset shows the magnified double labelled OmpLA13,125 fraction. c) Chromatogram 

obtained after Size Exclusion Chromatography of the labelled denatured OmpLA13,125. The inset shows the 

magnified double labelled denatured OmpLA13,125 fraction. The blue, green and red line shows the absorbance 
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at 280 nm (protein), 532 nm (donor) and 647 or 635 nm (acceptor - as indicated), respectively. The peak 

positions were noted down from the chromatograms to reflect upon the labelling efficiencies as in Chapter 3. 

Note 1: Any variation in the labelling assay as noted in Chapter 3 was adopted at the labelling reaction step 

while the rest of the steps remained the same. 

Note 2: Temperatures below 4 °C denatures the OMP. Thus, long term storage was done at 4 °C to avoid cold 

denaturation. 

Note 3: 5mM TCEP was always included after solubilisation when purifying double cysteine variants.  

 

8.3.3 Expression, purification, refolding and labelling of chaperones 

A protocol based on the one used by Schiffrin et. al (106) with some modifications was 

used for both Skp and SurA expression and purification: 

1. Large scale expression: 

Materials: 

LB medium: 50 ml+1 L 

Kanamycin: 50 ug/ml 

IPTG: 0.4 mM (400 l from 1M Stock for 1L cell culture) 

 

Method: 

i. Preculture: 50 mL LB/Kan was inoculated with E. coli BL21 cells using an inoculation loop 

expressing Skp or SurA.  

ii. After overnight incubation at 37 °C on a shaker (180 rpm), OD was recorded. 

iii. 1 L LB/Kan was inoculated with the overnight preculture to an OD (600 nm) of 0.1-0.2. 

iv. The culture was cultivated at 37°C on a shaker (180 rpm) until an OD (600 nm) of 0.6-0.8 was 

reached (approx. 3-4 hours). OD was recorded with 500 l of the culture. 

v. Gene expression was induced with 0.4 mM IPTG and the culture was incubated on a shaker 

overnight at 20 °C.   

xi. OD was again recorded the next day, after which the cells were harvested by centrifuging the cultures 

for 15 min at 4 °C and 6317g with Beckman Coulter centrifuge. 

vi. Pellet was resuspended in 50 ml Buffer A, pH 7.2 and complete EDTA free protease inhibitor tablet 

(Roche). While half of it was stored in -80 °C for long term, the rest was stored at -20 °C for short 

term. 

vii. SDS PAGE was run for all the samples at each step to check for expression of chaperones (Figure 

8.3-3a and c for Skp and SurA, respectively). 
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2. Purification and refolding by dialysis 

 

Buffers:  

Buffer a (pH 7.2): 20 mM Imidazole, 20 mM Tris HCl, and 150 mM NaCl   

Buffer B (pH 7.2): 500 mM Imidazole, 20 mM Tris HCl, and 150 mM NaCl 

Assembly Buffer (pH 7.2): 150 mM NaCl, 20 mM Tris HCl. 

 

Method: 

i. When needed, the cell pellet was thawed and passed through EmulsiFlex-C3, Avestin 4 times to 

break the cells.  

ii. The cell lysate was centrifuged at 4 °C, 18000 x g for 30 mins with OptimaTM L-80 XP 

Ultracentrifuge. The supernatant was retained. While half of it (12.5 ml) was mixed with Buffer A 

+ 6M GdmCl, the rest was stored at -20 °C for later use. The former sample was then rotated for at 

least 24 hours at 4 °C. 

iii. As the chaperones had a His-tag, they were purified from other proteins using a 5ml His Trap HP 

column on an ÄKTApurifier system from GE Healthcare Life Sciences. 

iv. The column was preequilibrated with 20% ethanol, water and Buffer A+6M GdmCl and then the 

sample was introduced with the help of a Superloop (GE Healthcare Life Sciences).  

v. Using Buffer B as the elution buffer, a step gradient of 0-100% was applied with steps at 0,50 and 

75 and 100%. The chromatogram shows the typical volume and concentration gradient at which Skp 

and SurA were eluted (Figure 8.3-3b and d, respectively). SDS gel was run with important fractions 

to confirm the fraction containing chaperone, it was especially important for Skp as it had no 

tryptophan and showed little absorption at 280 nm. 

vi. The chaperone containing fractions were pooled and refolded overnight at 4 °C with the assembly 

buffer using dialysis bags with MWCO of 3.5 kDa (Spectrum Labs). The bag was first equilibrated 

by soaking in the assembly buffer and the protein was added after. The 200 X v/v buffer was 

exchanged at least 2 times during the dialysis process. If any precipitation was present, the dialysed 

sample was centrifuged at 10000 rpm for 15 mins at 4 °C. Refolded chaperone was shock frozen and 

stored at -80 °C for long term while for short term purposes it was stored at 4 °C. 

vii. Whenever required, the refolded chaperones were thawed and concentrated with Vivaspin 500 

(10,000 MWCO) spin centrifuge tube from Sartorius. 

viii. In order to clean them for performing smFRET experiments, the buffer of the sample was exchanged 

with a cleaner assembly buffer by Micro Bio-Spin 6 columns (Bio-Rad Laboratories, Inc.). 

ix. Due to absence of tryptophan in Skp, it was difficult to obtain the true concentration through 

absorbance at 280 nm. Therefore, BCA Assay (BCATM protein Assay Kit by Thermo Scientific) was 

performed to determine the concentration of Skp after every purification. The protocol was followed 

according the manual from the company. 

x. Labelling: Labelling (reaction and free dye separation) of double cysteine variants of SurA was done 

in a manner similar to OMPs (with 20X Atto532 and Abberior Star 635P dyes).  
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Figure 8.3-3 - Expression and purification of periplasmic chaperones Skp and SurA. a) SDS PAGE with 

samples collected during Skp expression and purification. M-Marker, PC-Preculture, MC(1) – Main Culture 

after 1 hour, MC(3) – Main Culture after 3 hours, BF – Before French Press, P – Pellet of cell lysate, S – 

Supernatant of cell lysate, all the other fractions are as indicated in the figure. Due to presence of denaturant 

(6 M GdmCl) in the His Trap fractions, the gel did not run properly, but a big fraction of Skp can be detected 

in the elution fraction. The dialysed supernatant fraction (S-Supernatant and P-Pellet) shows presence of 

purified Skp slightly above 15 kDa. b) Chromatograms from the His Trap HP 5 ml affinity column run to 

purify Skp from other proteins. The fractions so obtained were then collected and the Skp fractions in the 

elution fraction were dialysed. The orange line shows the concentration step gradient of the elution buffer (B 

%) at 0, 50, 75 and 100%. c) SDS PAGE with samples collected during SurA expression and purification. 

The fraction after induction (AI), AF – After French Press and the dialysed supernatant fraction (S-

Supernatant and P-Pellet) shows presence of purified SurA around 55 kDa. d) Chromatograms from the His 

Trap HP 5 ml affinity column run to purify SurA from other proteins. The fractions so obtained were then 

collected and the SurA fractions in the elution fraction were dialysed e. The orange line shows the 

concentration step gradient of the elution buffer (B %) at 0, 50, 75 and 100%. 
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8.3.4 Derivation of correction factor,  

The correction factor , which accounts for differences in detection efficiency and quantum 

yield was calculated for every measurement condition (GdmCl concentration or 

temperature) as mentioned in the main text in case of OMPs labelled with Atto532 and 

Abberior STAR 635P as the donor and acceptor dyes. The donor and acceptor lifetimes 

(D(0) and A, respectively) obtained from experiments were used to correct for their 

quenching and obtain the theoretical , * according to the following equation: 

γ*= 
τA

τA,theo

τD(0),theo

τD(0)

γ (24) 

Here, A,theo  and D(0),theo are the theoretical lifetimes of acceptor and donor. 

8.3.5 Probability density analysis (PDA) results of denaturant concentration 

range with OmpLA variants 

A Monte Carlo simulation based two state PDA fitting was performed for the static folded 

and unfolded states of OmpLA variants to obtain the fraction of molecules in each state.  

OmpLA13,125: 

[GdmCl] (M) Eu* Ef* u (nm) f (nm) p(unfolded)  2 

0 - 0.903  0.001 - 0.453  0.016 - 25.6 

1 0.543  0.015  0.899  0.001 0.986  0.044 0.279  0.008 0.282  0.008 7.8 

2 0.475  0.010 0.871  0.002 0.852  0.057 0.398  0.012 0.289  0.013 5.0 

3 0.416  0.006 0.865  0.002 0.910  0.025 0.396  0.016 0.319  0.013 5.4 

3.5 0.411  0.026 0.837  0.006 0.979  0.068 0.362  0.005 0.469  0.039 4.5 

4 0.348  0.005 0.867  0.003 0.726  0.022 0.362  0.026 0.676  0.009 3.8 

4.5 0.260  0.002 0.722  0.009 0.525  0.018 0.431  0.082 0.909  0.004 1.6 

5 0.232  0.002 0.758  0.005  0.611  0.019  0.650   0.053 0.891  0.007 1.8 

6 0.180  0.003 0.735  0.017 0.728  0.021 0.746  0.121 0.911  0.010 1.1 

 

 

OmpLA64,187: 

[GdmCl] (M) Eu* Ef* u (nm) f (nm) p(unfolded) 

0 - 0.832  0.000 - 0.236  0.003 - 12.2 

1 0.522  0.015  0.822  0.151 0.968  0.361 0.230  0.317 0.059  0.429 3.2 
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2 0.573  0.125 0.796  0.067 0.964  0.265 0.963 0.012 0.176  0.217 5.2 

3 0.364  0.007 0.756  0.002 0.558  0.029 0.285  0.006 0.383  0.009 2.5 

3.5 0.362  0.001 0.757  0.003 0.467  0.012 0.279  0.021 0.845  0.004 3.5 

4 0.363  0.001 0.734  0.018 0.441  0.006 0.493  0.041 0.951  0.006 5.4 

4.5 0.320  0.002 0.730  0.022 0.549  0.012 0.651  0.163 0.963  0.005 4.7 

5 0.266  0.002 0.721  0.030 0.473  0.054 0.468  0.108 0.953  0.010 2.0 

6 0.212  0.002 0.724  0.005 0.640  0.029 0.414  0.108 0.950  0.010 7.2 

 

 

OmpLA125,234: 

[GdmCl] (M) Eu* Ef* u (nm) f (nm) p(unfolded)  2 

0 - 0.815  0.002 - 0.490  0.008 - 15.9 

1 0.254  0.030  0.790  0.020 0.585  0.363 0.389  0.072 0.076  0.009 5.0 

2 0.389  0.072 0.791  0.003 0.989  0.147 0.317  0.020 0.169  0.033 5.8 

3 0.490  0.006 0.783  0.001 0.710  0.030 0.322  0.009 0.156  0.009 2.6 

3.5 0.472  0.006 0.775  0.001 0.806  0.030 0.288  0.006 0.261  0.007 2.1 

4 0.522  0.021 0.820  0.003 0.831  0.030 0.373  0.017 0.246  0.016 4.0 

4.5 0.341  0.003 0.838  0.004 0.577  0.011 0.467  0.026 0.869  0.002 2.5 

5 0.268  0.003 0.642  0.033 0.504  0.015 0.618  0.041 0.881  0.016 6.8 

6 0.248  0.004 0.714  0.065 0.551  0.043 0.626  0.073 0.920  0.026 2.5 

 

For OmpLA13,234: 

[GdmCl] (M) Eu* Ef* u (nm) f (nm) p(unfolded)  2 

0 - 0.871  0.001 - 0.306  0.005 - 22.7 

1 0.484  0.020  0.875  0.001 0.811  0.060 0.371  0.010 0.150  0.011 5.6 

2 0.472  0.006 0.870  0.001 0.693  0.010 0.329  0.007 0.302  0.009 4.4 

3 0.388  0.009 0.848  0.002 0.817  0.036 0.365  0.002 0.336  0.012 5.2 

3.5 0.530  0.029 0.845  0.001 0.832  0.040 0.333  0.026 0.424  0.039 5.8 

4 0.309  0.004 0.819  0.007 0.441  0.006 0.566  0.027 0.426  0.022 2.0 

4.5 0.270  0.003 0.732  0.016 0.528  0.012 0.531  0.065 0.967  0.004 6.2 

5 0.265  0.002 0.733  0.011 0.520  0.032 0.554  0.091 0.965  0.004 3.5 

6 0.216  0.002 0.672  0.016 0.631  0.022 0.457  0.072 0.976  0.003 5.4 

 

Table 8.3-2 - Parameters obtained from PDA fit for all OmpLA variants with a range of GdmCl 

concentration. ([GdmCl] reported in Molar): Eu* and Ef* are the apparent FRET efficiencies of unfolded 

and folded state, u and f are the distance widths of unfolded and folded states and p(unfolded) is the 

probability of unfolded state at a particular GdmCl concentration as reported.  
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8.3.6 Modelling the aqueous and chaperone bound OmpX state heterogeneity  

First, the center positions of unbound, Skp- and SurA-bound OmpX distributions were 

extracted as illustrated in Figure 8.3-4. In a next step, the resulting coordinates were used 

to analyse the underlying inter-dye distance distribution showing interconversion dynamics 

on the sub-millisecond timescale. To this end, the inter-dye distance was modelled with a 

log-normal distribution: 

𝑃(r) =
1

√2𝜋𝜎Rr
exp (−

(ln(r) − 𝜇R)2

2𝜎R
2

) (25) 

  

with √eσR
2
-1  being the coefficient of variance, CV, and e

μ + 
1

2
σR

2

 the expected distance of the 

distribution. A corresponding coordinate of donor lifetime, D(A), and FRET efficiency, E, 

is then obtained by integration over time and distance, respectively, as described by 

Soranno et. al. (172). In the global fit, for each variation of R, a dynamic curve was 

calculated for the range R = {0.1-20} nm so as to record the Chi-square value. Finally, the 

most likely width, R, of the log-normal distribution corresponding to the minimal Chi-

square were obtained for the unbound, Skp- and SurA-bound states of OmpX. 

 

Figure 8.3-4 - Scheme employed for extraction of center positions of unbound, Skp3 and SurA bound 

states of OmpX. a) 2D plot between relative lifetime of donor (D(A)/D(0)) in presence and absence of acceptor 

vs FRET Efficiency, E with black dashed lines showing the range of filters applied to get the center position 

corresponding to b) FRET efficiency, E and c) D(A)/D(0) as reported in the respective figures. d) Center 
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positions of all the Skp3- (yellow spheres) and SurA- bound (blue spheres) OmpX at all three temperatures 

(25 ˚C, 31 ˚C and 37 ˚C). It should be noted that the center positions for chaperone bound species were 

calculated only for measurements which had a significant fraction of the same (>100 nM [Skp3] at 25 ˚C and 

31 ˚C and >2500 nM [Skp3] at 37 ˚C and >1160 nM [SurA] at all three temperatures except for 11600 nM 

[SurA] at 25 ˚C).   

  

8.3.7 Calculation of autocorrelation function  

For the purpose of quantifying the fraction of OmpX aggregates in the solution, first the 

diffusion time of OmpX was characterized in absence of Skp and/or SurA, respectively, at 

low protein concentration (~10pM). To this end, the autocorrelation function (G()) was 

calculated from the collected acceptor photons (red PIE pulse) of the FRET measurements 

and fitted by following equation:  

G(τ)=
∑ (Q

i

2)Figi
(τ)k

i=1

N(∑ Q
i
Fi

k
i=1 )

2
(1+

T

1-T
exp (-

τ

τT

)) (26) 

where   g
i
(τ)= (1+

τ

τDi

)
-1

(1+
τ

2τDi

)
-
1
2
 

 

with Fi and Di being the fraction and diffusion time of species i, respectively and N denotes 

the average number of molecules in the spot. It should be noted, that a similar triplet state 

fraction, T, and characteristic triplet time, T, was assumed for both the bound and unbound 

state. In the presence of chaperones two diffusion components (k=2) were used to model 

the extracted correlation curve. The molecular brightness, Qi, of state i of the corresponding 

FRET distribution was directly derived from the same measurement by applying a FRET 

filter. The autocorrelation curves for all the fits are shown in Figure 8.3-5. 

The resulting fit parameters together with the molecular brightness and triplet state values 

are reported in Table 8.3-3. In a next step, the measurements of aggregated OmpX in 

absence of Skp and/or SurA, respectively, were analysed using the aforementioned 

parameters. Here the ensemble of aggregated OmpX was summarized with different 

coexisting size in a single diffusion time. While the correlation curve of ~1 µM OmpX 

without chaperones was fitted with two diffusion components (k=2), three diffusion 

components (k=3) were used in the presence of chaperones. In the case where both 

chaperones were present at the same time only three components were used due to the quite 
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similar diffusion times of the Skp and SurA bound state. For the error calculation a Jack-

knifing approach was employed, where randomly chosen chunks of the photon stream were 

removed to measure the variance of the extracted fractions. 

 

Figure 8.3-5 - FCS results of aqueous, chaperone bound and aggregated OmpX. Autocorrelation curve 

from measurements as indicated to obtain diffusion times (D) corresponding to a) aqueous OmpX (OmpXaq) 

with D1, b) Skp3 complexed OmpX with D2, c) SurA complexed OmpX with D3 and aggregated OmpX 

(OmpXAgg) with D4. GRR is the autocorrelation coefficient corresponding to acceptor photons. The data is 

shown by the black squares and the fit is shown by the red line. 

Measurement Q (kHz) τD (ms) τT (µs) T 

OmpXaq 48.79 

 

0.27 ± 0.01 9.3 ± 0.4 0.164 ± 0.003 

OmpX-SurA 52.82 

(-0.1<E<0.75) 

1.38 ± 0.03 5.9 ± 0.1 0.191 ± 0.001 

OmpX- Skp3 47.85 

(-0.1<E<0.6) 

1.79 ± 0.05 4.4 ± 0.1 0.223 ± 0.001 

OmpXAgg 52.66 32 ± 1 1.5 ± 0.1 0.185 ± 0.001 

 

Table 8.3-3 - FCS results of aqueous OmpX (OmpXaq) i.e., without chaperones, OmpX in complex with 

SurA (OmpX-SurA), or Skp3 (OmpX-Skp3) and aggregated OmpX (OmpXAgg). Q is the brightness in kHz, 

D the diffusion time in ms, T is the characteristic triplet time in s and T is the triplet fraction of each state. 
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8.3.8 Sequence of DNA rulers and hairpin  

Sequence of 9 bp DNA ruler: 

(Biotin)-5'-GCA TCA XCC AAG CGA CAC AAA CAG ACA ACC-3' 

              3'-CGT AGT AGG TTC GCX GTG TTT GTC TGT TGG-5' 

Sequence of 21 bp DNA ruler: 

(Biotin)-5'-GCA TCA XCC AAG CGA CAC AAA CAG ACA ACC-3' 

              3'-CGT AGT AGG TTC GCT GTG TTT GTC TGX TGG-5' 

Sequence of DNA hairpin: 

5'-TAA GTT TGT GAT AGT TTG GAC TGG TXT GTG AAG AA-3' 

3'-XGG TTT TTT TTT TTT TTT TTT TTT TTA ACC A-Biotin-5' 

 
Here X is the position of labelling. 

 

8.3.9 Calculation of FRET-two-channel kernel-based density distribution 

(FRET-2CDE) estimator 

FRET-2CDE is a score calculated using the donor and acceptor photon arrival times (t{D} 

and t{A}, respectively) and average FRET efficiency of the burst determined by the photon 

densities with respect to the donor ((E)D) and acceptor channel ((1-E)A) according to the 

following relation: 

FRET-2CDE(t{D},t{A}) = 110-100.[(E)
D

+ (1-EA)] (27) 

Further details about all the parameters can be found in (232). If the score is lower than 20, 

the underlying population is said to be composed of static molecules while that larger than 

this threshold corresponds to molecules possibly undergoing millisecond interconversion. 

The arc-shaped distribution due to such fast dynamics is a typical signature of such a 

population as shown for hairpin in Appendix Section 8.2.3.
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