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Macroecological relationships provide insights into rules that govern ecological sys-
tems. Bergmann’s rule posits that members of the same clade are larger at colder tem-
peratures. Whether temperature drives this relationship is debated because several 
other potential drivers covary with temperature. We conducted a near-global com-
parative analysis on marine copepods (97 830 samples, 388 taxa) to test Bergmann’s 
rule, considering other potential drivers. Supporting Bergmann’s rule, we found tem-
perature better predicted size than did latitude or oxygen, with body size decreasing by 
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43.9% across the temperature range (-1.7 to 30ºC). Body size also decreased by 26.9% across the range in food availability. 
Our results provide strong support for Bergman’s rule in copepods, but emphasises the importance of other drivers in modify-
ing this pattern. As the world warms, smaller copepod species are likely to emerge as ‘winners’, potentially reducing rates of 
fisheries production and carbon sequestration.

Keywords: allometry, chlorophyll, continuous plankton recorder, ectotherms, environmental drivers, invertebrate, 
macroecology, statistical modelling, temperature-size rule, zooplankton

Introduction

Although much of ecology has focused on seemingly large 
differences among organisms and ecosystems, especially in 
terms of their spatial and temporal variation, the discipline 
has been criticised for lacking general unifying principles 
(Lawton 1999, Allen and Hoekstra 2015, O’Connor  et  al. 
2019). Macroecology seeks to discover ecological principles 
by averaging over finer-scale variation to reveal large-scale sta-
tistical relationships (Brown and Maurer 1989, Gaston and 
Blackburn 2008). One such unifying principle is the impor-
tance of body size. Body size plays a central role in the physi-
ology and ecology of organisms, governing processes such as 
respiration, metabolism, movement and trophic interactions 
(Peters 1986, Woodward et  al. 2005, Yvon-Durocher et  al. 
2011). As a result, body size is increasingly used in ecosys-
tem models to generalise traits across vast numbers of taxa, 
particularly in the marine environment (Blanchard  et  al. 
2017). Better understanding of global patterns of body size, 
and their drivers, will provide stronger unifying principles in 
ecology and help support development of ecosystem models.

One of the earliest relationships identified in ecology 
was formulated by Bergmann (1848) in German, although 
translation into English (Mayr 1956, James 1970) subse-
quently contributed to confusion surrounding its definition. 
Bergmann’s rule has been tested and verified for many taxa, 
including mammals (Brown and Maurer 1989, Ashton et al. 
2000), birds (James 1970, Ashton 2002), fish (Wilson 
2009, Saunders and Tarling 2018), reptiles (Ashton and 
Feldman 2003, Angilletta et al. 2004), amphibians (Olalla-
Tárraga and Rodríguez 2007), phytoplankton (Sommer et al. 
2017), nematodes (Van Voorhies 1996), insects (Chown 
and Gaston 2010, Osorio-Canadas  et  al. 2016, Tseng and 
Soleimani Pari 2019), crustaceans (Manyak-Davis  et  al. 
2013, Garzke  et  al. 2015, Leinaas  et  al. 2016) and plank-
tonic ciliates (Wang  et  al. 2020). Yet, the taxonomic level 
at which Bergmann’s rule applies is commonly debated. 
Some theorists consider it to be intraspecific (Ashton et al. 
2000, Olalla-Tárraga 2011), whilst others consider it inter-
specific (Blackburn  et  al. 1999, Hessen  et  al. 2013), lead-
ing to some confusion in the literature. Further, since the 
pattern was first described in endotherms, some question its 
applicability to ectotherms (Pincheira-Donoso  et  al. 2008, 
Watt et al. 2010). In this study, we consider Bergmann’s rule 
to be defined as Bergmann (1848) himself defined it: species 
from the same taxonomic clade (here subclass) are generally 
smaller in warmer regions and larger in cooler regions (i.e. 
we consider only the interspecific version of Bergmann’s rule,  

and don’t consider size differences within species, 
Blackburn et al. 1999). It is clear that regardless of the pre-
cise definition used, much can be gained by investigating 
Bergmann’s rule (Olalla-Tárraga 2011) because spatial pat-
terns in body size at all taxonomic levels strongly influence 
the ecology of a system (Peters 1986).

Commonly, temperature is considered the primary driver 
of Bergmann’s rule, although some have argued that other 
drivers might modify the anticipated patterns across taxo-
nomic groups (James 1970, Millien  et  al. 2006, Yom-Tov 
and Geffen 2011). This is because latitude (and therefore 
temperature) is confounded with light availability, oxygen 
concentration (in aquatic systems), predation rate and food 
availability (Ho  et  al. 2010). Of these, light is unlikely to 
be a direct driver of Bergmann’s rule because many species 
that follow the pattern do not depend directly on light. 
However, primary productivity depends on light, which 
could in turn influence the food available for many groups. 
It is also likely that drivers of Bergmann’s rule differ between 
endotherms and ectotherms. For endotherms, it is generally 
accepted that temperature is the selective mechanism driving 
Bergmann’s rule, with species from cooler regions conserving 
heat by being larger and consequently having lower body sur-
face-area-to-volume ratios (Mayr 1956, Hessen et al. 2013). 
But this is not true for ectotherms (Olalla-Tárraga  et  al. 
2006, Watt et al. 2010). Ectotherms might benefit at cooler 
temperatures from increased cell sizes (Van Voorhies 1996, 
Hessen et al. 2013, Leinaas et al. 2016), selective protection 
from mortality or increased fecundity, all of which scale with 
body size (Yampolsky and Scheiner 1996, Vinarski 2014). 
Alternatively, the pattern might emerge as a result of a con-
founded driver such as oxygen concentration. For example, 
the ‘oxygen (limitation) hypothesis’ suggests that the size of 
marine ectotherms is limited by concentrations of dissolved 
O2 (Chapelle and Peck 1999, Spicer and Morley 2019). 
Because gas solubility and water temperature are inversely 
correlated, this would predict larger sizes at cooler tempera-
tures (Forster et al. 2012, Rollinson and Rowe 2018).

Food availability is another potential driver of Bergmann’s 
rule, where more food can result in faster growth rates 
(Lin et al. 2013) and larger body sizes (Vidal 1980, Huston 
and Wolverton 2011, Andriuzzi and Wall 2018). Conversely, 
larger body sizes might be favoured in areas where food is 
scarce, because animals must forage further to find food 
(Belovsky 1997, Brown et  al. 2017), or size might provide 
some other selective advantage. Additionally, latitudinal vari-
ation in diet quality could further influence size (Berrigan 
and Charnov 1994, Ho et al. 2010).
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Latitudinal variation in predation rate is also a plau-
sible driver of Bergmann’s rule within a taxonomic group 
(Wallerstein and Brusca 1982, Angilletta  et  al. 2004, 
Manyak-Davis  et  al. 2013) because predation rate tends to 
decline from the equator to the poles (Freestone et al. 2011). 
Predation rate could affect the size and growth of communi-
ties in several ways: through evolution towards species that 
mature at varied sizes (Kiørboe 2011, Manyak-Davis  et  al. 
2013); through selective predator behaviour (Kiørboe 2011); 
through predation-related mortality prior to maximum size 
(Angilletta et al. 2004); and through selective advantages of 
allocating energy to predator defences (Kiørboe 2011).

We focus on Bergmann’s rule in marine pelagic copepods, 
arguably the most abundant multicellular organism on Earth 
(Schminke 2007). Copepods are the primary link between 
phytoplankton and fish in aquatic systems, and they play 
a central role in fisheries production (Verity and Smetacek 
1996). They are crustaceans that swim weakly and thus drift 
in currents. Marine copepods are an ideal group for testing 
Bergmann’s rule in ectotherms because they are widespread 
over diverse environments, from the poles to the equator. 
There are a large number of copepod species, facilitating a 
more robust test of Bergmann’s rule. Moreover, copepods 
are sensitive to many plausible drivers of Bergmann’s rule, 
including temperature (Vidal 1980, Miller and Wheeler 
2012), food availability (Rutherford  et  al. 1999, Miller 
and Wheeler 2012), predation (Kiørboe 2011, Miller and 
Wheeler 2012), oxygen concentration (Rollinson and Rowe 
2018) and latitude (Tseng and Soleimani Pari 2019).

A search for Bergmann’s rule in the literature on copepods 
returned no previous studies; however, Brun  et  al. (2016) 
investigated what has been called the temperature–size rule 
(Atkinson 1994) in marine copepods. This rule describes the 
plastic phenotypic response to temperature within a species, 
with warmer temperatures leading to smaller individuals 
(Diamond and Kingsolver 2009, Ghosh  et  al. 2013). As 
the study actually compared the mean sizes of species and 
not individual sizes within a species, it effectively tested 
Bergmann’s rule. Based on a varied dataset collected using 
many different nets, Brun et al. (2016) found that body size 
declined weakly at warmer temperatures, but there was little 
or no effect of temperature between 10 and 30°C. However, 
the temperature effect was dwarfed by the effect of food, 
which surprisingly led to a decline in body size with increasing 
food availability. This contrasts with many other studies that 
have shown increasing body size with food concentration in 
copepods (Vidal 1980) and other ectotherms (Pafilis  et  al. 
2009, Huston and Wolverton 2011, Andriuzzi and Wall 
2018). In a recent study, Evans et al. (2020) found marine 
copepods in the North Atlantic conform to Bergmann’s 
Rule. Although they found that temperature (2–27°C) had 
a more profound relationship with body size than described 
in Brun  et  al. (2016), they did not consider the effect of 
food availability. Other studies have found the intraspecific 
version of Bergmann’s rule (often called temperature-size rule 
or James’s rule) holds true for several marine copepods species 
(Garzke et al. 2015, Leinaas et al. 2016).

Here, we test whether food is a more important driver 
of body size than temperature in marine copepods, whilst 
considering other drivers of the potential relationships 
with body size, such as oxygen levels, which have not 
been investigated previously for copepods. We test these 
relationships simultaneously because they are likely partially 
confounded with one another, which could modify 
their perceived relationships with body size when tested 
independently. Further, we account for natural differences 
in size based on diet. These tests are facilitated at a near-
global scale by virtue of the continuous plankton recorder 
(CPR) survey dataset, the largest (~100 000 samples), most 
consistent (collected using the same device), global dataset 
on marine copepods (Richardson  et  al. 2006, Batten  et  al. 
2019). We used a spatial comparative analysis to identify 
statistical relationships over environmental gradients across 
space (Brown 1995, Gaston and Blackburn 2008).

Material and methods

Sample collection

We chose the CPR dataset, assembled by the Global Alliance 
of CPR Surveys (GACS 2011, Batten et al. 2019), because 
it provides the largest, consistent, most spatially-extensive, 
species-resolved plankton dataset (Richardson  et  al. 2006). 
Data were sourced from four surveys: the North Atlantic 
CPR Survey, the Scientific Committee on Antarctic Research 
(SCAR) Southern Ocean CPR Survey (Hosie 2020), 
the North Pacific CPR Survey and the Australian CPR  
Survey (Fig. 1).

Although CPR surveys have better coverage in polar 
and temperate regions than in subtropical and tropical 
regions, samples have been collected in waters as warm 
as 30°C. All surveys use similar methods to collect and 
count copepods (Reid et al. 2003, Richardson et al. 2006 
for more details). Specifically, all CPRs use the same mesh 
size (270 µm), the same mesh material (silk), the same 
size mouth opening (1.61 cm2), towed at the same depths 
(5–10 m) and have similar designs (Hosie  et  al. 2003, 
Reid et al. 2003). The CPR is mainly towed behind ships 
of opportunity on their normal trading routes, but also 
behind research vessels. Each CPR tow is usually up to 
450 nautical miles. The internal silk roll that captures the 
plankton is cut up into samples representing either 5 or 
10 nautical miles, and microscopic counts of copepods are 
converted to number per m3.

Copepod data

Copepods are identified to species whenever possible, and 
shared training and staff exchanges amongst surveys ensure 
comparable data. Names of all copepod taxa were updated 
using the World Register of Marine Species (WoRMS) 
(<www.marinespecies.org/>). Data were available for 388 
taxa and from 97 830 samples.
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To test Bergmann’s rule, we calculated the mean length 
of copepods in each sample and related this to environmen-
tal drivers. Maximum and minimum lengths of different 
copepod taxa were obtained from the Marine Planktonic 
Copepod Database from the Observatoire Océanologique 
de Banyuls-sur-Mer (<https://copepodes.obs-banyuls.fr/en/
index.php>; Razouls et al. 2020) and from Richardson et al. 
(2006). Because juveniles are more difficult to identify 
to species and reliably assign a size than adults, they were 
not included in the estimate of mean copepod size for each 
sample, although adults tend to be more common in CPR 
samples (Richardson et  al. 2006). Each taxon was assigned 
a single size (the midpoint between their minimum and 
maximum lengths). We calculated the mean length of cope-
pods in a CPR sample by multiplying abundance of adults 
of each taxon in the sample by their assigned length, and 
then dividing their sum by the total abundance of all adults  
within the sample.

Bergmann’s rule could also potentially be influenced by 
spatial differences in the trophic structure of communities 
because body size is linked to the ecological role of a species 
(Woodward et al. 2005, Yvon-Durocher et al. 2011). Because 
carnivorous copepods are generally larger than omnivorous 
ones (Mauchline 1998, Supporting information), which 
could affect observed relationships, we distinguished obvious 
differences in diets among taxa. We used a combination of 
dietary studies from the literature (Richardson and Schoeman 
2004) and morphological differences in copepod mouthparts 
(Huys and Boxshall 1991) to assign each taxon to one of two 
diet categories: carnivore; or herbivore/omnivore (hereafter 
called omnivore). To calculate the proportion of omnivores 

we divided the summed abundance of omnivore within each 
sample by the total abundance of copepods within samples.

Environmental data

We used sea surface temperature (SST) as an estimate of 
ocean temperature for the near-surface CPR samples, and 
chlorophyll-a concentration (Chl-a) as a proxy for food 
availability to copepods. Chl-a is correlated with copepod 
growth and fecundity in herbivorous and omnivorous spe-
cies (Richardson and Verheye 1998, 1999, Hirst and Bunker 
2003, Bunker and Hirst 2004), and more Chl-a leads to 
more of these grazers and thus more carnivorous zooplank-
ton (Richardson and Schoeman 2004). As an index of food 
availability to copepods on each sample, we considered using 
the phytoplankton colour index, which is a visual assessment 
of the greenness of the silk in four levels (no colour, very 
pale green, pale green and green) (Richardson et al. 2006). 
This index is useful for analysis when averaged in time and 
space (Raitsos et al. 2005, 2014); however Chl-a from satel-
lite is more accurate for individual samples (Richardson et al. 
2006). Further, temperature is rarely measured on CPR tows, 
so we used remotely-sensed Chl-a and SST data to ensure 
measurements were consistent among samples. We matched 
the location and time of collection of CPR samples with 
estimates of SST and Chl-a averaged over eight days prior 
to sampling to limit loss of data due to cloud cover and to 
represent feeding conditions over the recent past. For SST, 
we used daily Group for High Resolution SST data, a cloud-
free global product based on satellite, buoy and ship data, 
and interpolated at 0.2° × 0.2° resolution (<https://doi.

Figure 1. The Global Alliance of Continuous Plankton Recorder Surveys (GACS) sampling effort since September 1997. Different coloured 
lines represent sampling transects of individual surveys: the North Atlantic CPR Survey (n = 54 176), the SCAR Southern Ocean CPR 
Survey (n = 34 005), the North Pacific CPR Survey (n = 4674) and the Australian CPR Survey (n = 4975).
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org/10.5067/GHCMC-4FM02>). For surface Chl-a from 
September 1997 until the end of 2016, we used daily data 
from the European Space Agency Ocean Colour Climate 
Change Initiative data (<https://doi.org/10.5285/9c334fbe6
d424a708cf3c4cf0c6a53f5>). Because this is a merged prod-
uct from MERIS, Aqua-MODIS, SeaWiFS and VIIRS satel-
lites, these data provide better coverage than products from 
a single satellite, and are more accurate globally (Mélin et al. 
2017). For 2017 and 2018, we combined data from Aqua-
MODIS (<https://doi.org/10.5067/AQUA/MODIS/L3M/
CHL/2018>) and VIIRS (<https://doi.org/10.5067/NPP/
VIIRS/L3M/CHL/2018>), the only available satellites. 
Chl-a data were retrieved at 4-km resolution and aggregated 
to 0.2° × 0.2° resolution to limit loss of data due to cloud 
cover and match the resolution of SST data. As there are no 
robust satellite Chl-a data before 1997, all analyses used CPR 
samples collected after this time.

To investigate whether oxygen is a driver of Bergmann’s 
rule (Forster et al. 2012, Rollinson and Rowe 2018), we used 
data from the World Ocean Atlas 2018 (WOA-18) (<https://
doi.org/10.17616/R3JZ3J>). We used these relatively 
coarser-resolution data (monthly climatology averaged at 
1° × 1° resolution) because we could not find an observed 
global oxygen product at a finer resolution. We matched the 
resolution of the predictors for this investigation, by using the 
WOA-18 1° × 1° resolution products for SST and oxygen, 
and by aggregating latitude to 1° × 1° resolution.

Although it is plausible that predation pressure may alter 
patterns in Bergmann’s rule, we were unable to account 
robustly for this effect in our study. This is because there are 
no reliable estimates of predation pressure on copepods by 
fish or invertebrate predators, which are poorly estimated in 
CPR samples (Richardson et al. 2006).

Statistical analyses

To test Bergmann’s rule, we used a model-building approach. 
We fitted a weighted generalised linear mixed-effect model 
(GLMM, Bates  et  al. 2011), with fixed effects for all pre-
dictors (SST, latitude, oxygen, Chl-a and the proportion of 
omnivores) (Supporting information). We included the pro-
portion of omnivores in the model to account for omnivo-
rous copepods generally being smaller than carnivorous ones 
(Supporting information). For these models, we transformed 
the proportion of omnivores using an arcsine-square-root 
transformation, and Chl-a using a square-root transforma-
tion, because these predictors were extremely skewed and 
thereby not adequately distributed across their range. Upon 
visual inspection of model residuals, their magnitude gener-
ally increased at larger fitted values. We thus used a gamma 
error structure with a log-link function (there were no zero 
values for size). Because estimates of mean length of copepods 
in a sample are more precise when there are more specimens 
in a sample, we tried several weighting schemes to account 
for this (including weighting points by their square-root and 
fourth-root). However, we found that this choice did not 

affect our results in any meaningful way, so we opted for an 
unweighted approach.

To account for temporal and spatial correlation in the 
data, we used four random effects associated with the 
time and location of sampling. The first was a random 
intercept for Longhurst Province, which represents a global 
bioregionalisation of the ocean based primarily on differences 
in physical oceanography (Longhurst  et  al. 1995; <www.
marineregions.org>). This accounts for natural, historical and 
sampling differences among marine regions, which minimises 
bias associated with seasonal differences in sampling regions 
as well as any tendency to oversample different times of 
the day within regions. The second was a random intercept 
associated with differences amongst CPR surveys, which 
accounts for the use of different vessels, large-scale regional 
effects and any minor methodological differences. The third 
was a random intercept of Tow within Survey, which adjusts 
for both temporal and spatial differences amongst tows. These 
intercepts further reduce biases due to time of sampling, and 
due to seasonal effects (especially because tows are of relatively 
short duration when compared with the seasons). The last 
was a random slope for days elapsed on Tow within Survey, 
which accounts for spatiotemporal autocorrelation amongst 
samples on tows, which arises due to differing weather and 
collection conditions throughout the period of the tow. This 
helped remove any general linear trends over the period of 
the tow.

Due to the large number of samples (~100 000) and thus 
high statistical power, we did not assess the significance of 
predictors. Rather, we selected the best model using the 
Bayesian information criterion (BIC), which is based on 
the goodness of fit (log-likelihood ratio) relative to model 
complexity (number of parameters). BIC is suitable to fit-
ting heuristic models with large numbers of observations; it 
more harshly penalises overfitting than the more commonly-
used Akaike information criterion (Schwarz 1978, Aho  
et al. 2014).

From a preliminary analysis we found that SST, latitude 
and oxygen were strongly correlated (all r > 0.59, Supporting 
information) and could not be included together in the 
model. We thus first assessed their relative importance in 
separate models with the other predictors (Chl-a, and pro-
portion of omnivores), and then retained the most important 
variable amongst SST, latitude and oxygen for inclusion in  
subsequent analyses.

We used the pseudo R-squared described in Nakagawa 
and Schielzeth (2013) to estimate the proportion of variation 
explained by the gamma GLMMs (Nakagawa et al. 2017). To 
interpret the ecological relevance of the drivers, we evaluated 
effect sizes using expected relationships of the mean length 
with predictors (Nakagawa and Cuthill 2007, Sullivan and 
Feinn 2012). We also evaluated ecological relevance by 
converting copepod length estimates to body mass (using wet-
weight (mg) = 0.03493 × length (mm)2.9878, Pearre Jr. 1980) 
because the food that is available to higher-level predators 
such as fish is related to body mass rather than length.
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To assess the effect of influential points within the 
model, we performed sensitivity tests by iteratively iden-
tifying and removing groups of outliers and high-leverage 
observations; these procedures had no impact on overall 
results. Results presented thus include all available data. By 
mapping residuals globally both with and without random 
effects (Supporting information), we confirmed that the use 
of random effects reduced spatial autocorrelation among 
samples; plotting residuals through time within Surveys 
and on Tows confirmed that our models reduced temporal 
autocorrelation. The code for the statistical analyses is pub-
licly available on GitHub (<www.github.com/maxcampb/
Bergmann-Rule-Copepods>).

Results

We found that the model containing SST instead of latitude 
or oxygen concentration had much lower BIC, so SST was 
used in all subsequent models (Table 1).

The final model for mean copepod length included SST, 
Chl-a (square-root transformed) and proportion of omnivores 
as predictors, and random effects for Longhurst Province, 
Survey and Tow within Survey. All predictors reduced BIC 
and increased the pseudo R2 (Table 1). Together, fixed effects 
explained 9.2% of the variance in mean length of copepods 
(Table 1). Random effects explained a further 40.5%, where 
0.1% was attributed to Longhurst Province (Fig. 2a), 2.3% 
was attributed to Survey (Fig. 2c) and 38.3% to the Tow 
within Survey effects (Fig. 2b).

The mean length of copepods declined with warmer SST 
(Fig. 2d), where the mean length of copepods decreased 
by a factor of 0.982 for each 1°C increase in SST, which is 
equivalent to a 0.85 mm decrease across the temperature range 
(−1.7 to 30°C) or a 43.9% decrease in mean length. This 
equates to an approximate linear decrease in copepod mass of 
~2.7% per °C, equivalent to an 82.2% decrease in mass across 

the entire temperature range. Using a linear approximation, 
we found for each 1°C increase in temperature, the mean 
length of copepods was ~0.026 mm shorter.

The mean length of copepods also declined with increased 
Chl-a (Fig. 2e), where for each square increase in Chl-a 
(based on square-root transformation), the mean length of 
copepods decreases by a factor of 0.899. This is equivalent to 
a 0.45 mm decrease across the entire Chl-a range (0.02–9.51 
mg m−3) or a 26.9% decrease in mean length. This equates to 
an 60.7% decrease in copepod mass across the Chl-a range. 
Using a linear approximation, we estimate for each square 
increase in Chl-a that copepods are ~0.153 mm shorter.

The proportion of omnivores was included in the model 
to account for the effect of trophic role on copepod length. 
The mean length of copepods decreased in samples that had 
a higher proportion of omnivorous copepods (Fig. 2f ). The 
mean length was 1.65 mm or 51.8% smaller in samples 
comprising only omnivores when compared with samples 
comprising only carnivores. This equates to a 88.7% decrease 
in copepod mass.

Investigating the relative importance of fixed effects 
showed that both SST and Chl-a were of similar importance 
in determining the mean length of copepods, as indicated by 
their BIC. Removing either of these substantially degraded 
BIC (Table 1), while removing the proportion of omnivores 
within samples degraded the BIC the most (Table 1).

Discussion

We believe that our study provides a robust test of Bergmann’s 
rule because it is the largest study to date (based on 97 830 
samples and 388 taxa within an order), is near-global in its 
distribution, and it applies a statistical approach that allows 
us to disentangle multiple correlated predictors (which is a 
substantial challenge in comparative analyses). We found 
evidence that marine copepods follow Bergmann’s rule, where 
we see a strong decline in copepod body size with temperature, 

Table 1. Step 1 compares three models with the WOA-18 data, to determine whether latitude, oxygen concentration or SST is the best 
predictor of size (n = 90 665). Step 2 compares five competing models to explain Bergmann’s rule in marine copepods including only best 
temperature-dependent predictor (SST, n = 97 830). BIC was the basis for model selection, where lower values indicate a more parsimonious 
model. Additionally, log-likelihood represents the goodness of fit (higher is better), and degrees of freedom (df) used represents the complexity. 
The R2 value reported is the marginal estimate of the psuedo-R2. All models have the same representation of random effects (Longhurst 
Province, Survey and Tow within Survey intercept and slope).

Model df Log-likelihood BIC Pseudo-R2

Step 1 models – WOA-18 data

  Length  ~ Latitude + Chl-a + Omnivore-proportion 10 −51 934 103 982 0.059

  Length  ~ Oxygen + Chl-a + Omnivore-proportion 10 −51 933 103 979 0.059

  Length  ~ SST(WOA-18 data) + Chl-a + Omnivore-proportion 10 −51 796 103 707* 0.095

Step 2 models – higher resolution data

  Length  ~ SST + Chl-a 9 −60 340 120 784 0.051

  Length  ~ Chl-a + Omnivore-proportion 9 −56 760 113 623 0.050

  Length  ~ SST + Omnivore-proportion 9 −56 708 113 520 0.069

  Length  ~ SST + Chl-a + Omnivore-proportion 10 −56 555 113 225* 0.092
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Figure 2. A visual summary of the GLMM for Bergmann’s rule showing relationships between mean length of copepods and (d) SST, (e) 
Chl-a and (f ) proportion of omnivorous copepods. Blue solid lines represent expected values of mean length for each predictor, the grey 
band represents the 95% confidence interval for the expected values, and points are the observations. The (a) Longhurst Province and (c) 
Survey random effects are shown with the intercepts and 95% confidence intervals (partially hidden by the mean estimate), and (b) the tow 
random effects, visualised with a hexplot of the random intercept and random slope for days elapsed (n = 97 830).
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as reported by Evans et al. (2020). We also found evidence 
that is consistent with the hypothesis that temperature is more 
important than latitude or concentration of dissolved oxygen. 
Furthermore, food availability was of similar importance to 
temperature, contrary to the findings by Brun et al. (2016), 
who found that body size was much more strongly related to 
food availability than to temperature. Nevertheless, our results 
corroborate findings by Brun et al. (2016) that copepod size 
decreases where more food is available. This contrasts with 
most previous work on copepods (Vidal 1980), nematodes 
(Andriuzzi and Wall 2018), lizards (Pafilis et al. 2009) and 
mammals (Huston and Wolverton 2011), which found that 
body size increases with food availability.

Explanations for Bergmann’s rule

Although the mechanism underlying Bergmann’s rule in 
copepods is unclear, it is likely that the relationship with 
temperature is more than a spurious correlation driven 
by differences in food availability or differences in trophic 
structure (McNab 1971, Belovsky 1997, Brown  et  al. 
2017). Even after these drivers are accounted for, a strong 
negative relationship between copepod size and temperature 
remains. It is plausible that reduced predation rates in cooler 
environments may alter this relationship (Wallerstein and 
Brusca 1982, Angilletta  et  al. 2004, Manyak-Davis  et  al. 
2013), and more work is needed to uncover the relationship 
between size and predation pressure. We also found that 
dissolved oxygen concentration (which decreases with 
increasing temperature) does not seem to adequately 
account for changes in size when compared with effects of 
temperature, which is consistent with the hypothesis that 
oxygen limitation is not responsible for Bergmann’s rule. 
Instead, it is more likely that copepod size is regulated by 
temperature or some other unmeasured variable confounded 
with temperature. A potential mechanism is the negative 
correlation between growth efficiency and temperature, so 
that colder waters could produce larger copepods (Ikeda et al. 
2001, Isla et al. 2008).

Our results suggest that when the negative relationship 
between taxon body size and temperature is adjusted for, the 
relationship between taxon body size and food availability 
is also negative. The direction of this relationship seems 
counterintuitive because typically more food leads to faster 
growth (Lin et al. 2013) and larger size (Vidal 1980, Berrigan 
and Charnov 1994). A potential explanation for the negative 
relationship between copepod length and increasing Chl-a is 
that it might result from diel vertical migration and satiation. 
Larger copepod species vertically migrate extensively, 
moving between near-surface and deeper layers, whereas 
smaller species are unable to migrate far and spend most 
of their time near the surface (Hays et al. 1994). For larger 
species that can balance the tradeoff between greater food 
availability at the surface and the reduced predation pressure 
at depth through diel vertical migration, individuals that 
are satiated spend less time in surface waters (Huntley and 
Brooks 1982, Atkinson et al. 1992, Huggett and Richardson 

2000, Hays et al. 2001). Thus, under poor food conditions 
(here low Chl-a), larger species will spend longer in surface 
waters when Chl-a is low, increasing the mean size of the 
community observed in the CPR, which samples in the top 
10 m. By contrast, in a rich food environment (high Chl-a), 
copepods are more rapidly satiated and larger copepods can 
return to deeper waters sooner, where they are not captured 
by the CPR. Thus, the negative relationship between copepod 
length and Chl-a could be the result of a combination 
of copepod behaviour and how samples were collected. 
This would be an artefact of the study, and this hypothesis 
requires further testing. In our dataset this explanation is 
probably more likely than copepods being larger in response 
to having to forage further (and deeper) to find food in areas 
where food is scarce, as suggested in other studies (Belovsky 
1997, Brown et al. 2017). An alternative explanation is that 
copepods might grow larger in response to seasonality of their 
food supply (Brun et al. 2016). For example, copepods grow 
larger in systems with short seasonal pulses of food (e.g. Chl-
a) by accumulating lipids for survival when food is limited 
(Kattner et al. 2007). Thus, being larger and having greater 
reserves could allow better survival during periods without 
food.

It is always difficult disentangling highly correlated 
environmental variables with considerable spatiotemporal 
autocorrelation present. Although we were able substantially 
reduce the amount of spatiotemporal autocorrelation using 
random effects, we acknowledge that there is still a significant 
amount of spatial autocorrelation remaining in the residuals 
(Supporting information). Strictly speaking, this could 
confound the effects in our analyses, which could in term 
lead to selecting sub-optimal candidate models using BIC and 
lead to us making poor inferences about effects. However, we 
believe that our model is an adequate representation of reality, 
because our results remained relatively consistent regardless 
of the choices we made within the modelling and because we 
have a large number of samples across a vast spatial extent, so 
strongly confounded effects are less likely to be present.

Nevertheless, we believe we were able to estimate the 
relative contributions of the drivers of Bergmann’s rule 
because of our large number of samples, and through the use 
of random effects to adjust for spatial and temporal variations. 
Using BIC allowed us to select robust models that explain 
the data well without overfitting (Schwarz 1978, Aho et al. 
2014), which is important when analysing very large datasets. 
We are more confident in the relationship at temperatures 
typical of temperate regions (5–20°C), and at lower Chl-a, 
where we have most data. Unfortunately, we have a paucity 
of data in tropical regions, although these are the largest areas 
in the ocean.

Implications for climate change

Although comparative studies like ours does not necessar-
ily mean the analogous patterns will emerge with warm-
ing through time, space-for-time substitution in ecological 
modelling remains a robust approach for providing insights 
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into future changes (Blois et al. 2013). The effect of tem-
perature seems profound when considered across its range, 
with a 43.9% decrease in copepod length from −1.7 to 
30°C. Bergmann’s rule thus suggests that as oceans warm 
under climate change, the size (and mass) of copepods is 
likely to decline (Walther et al. 2002). Under a high-emis-
sions scenario (RCP8.5), SST is likely to warm by ~2.7°C 
in 2090–2099 (compared to 1990–1999) based on the 
mean of the Coupled Model Intercomparison Project 5 
(Bopp et al. 2013), or warm by ~0.6°C under a low-emis-
sions scenario (RCP2.6) (Bopp et al. 2013). Based on our 
statistical model, the effect of warming of ~2.7°C under 
RCP8.5 could equate to a decrease in body mass of cope-
pods globally of ~7.3%. For RCP2.6, the ~0.6°C warming 
could equate to a decrease in body mass of copepods glob-
ally of ~1.6%. These estimates would translate to a similar 
decline in copepod biomass globally assuming abundance 
remains unchanged.

However, most Earth System models also project a 
decline in primary production and Chl-a (Bopp et al. 2013, 
Stock et al. 2014, Lefort et al. 2015, Galbraith et al. 2017, 
Woodworth-Jefcoats et al. 2017). The relationship between 
copepod length and Chl-a is more counter-intuitive, less-
well understood and less substantiated by other studies than 
the relationship between copepod length and SST. More 
empirical evidence is required to confirm how copepod 
size varies with Chl-a. Regardless, decreases in primary 
production of between 2% and 16% by 2100 are predicted 
under RCP8.5 (Lefort  et  al. 2015). Using net primary 
production estimates from Bopp  et  al. (2013) and the 
conversion to Chl-a from Marañón et al. (2014), we find that 
under the RCP8.5 Chl-a is projected to decrease globally by 
~0.086 mg m−3, and could lead to an increase in body mass 
of copepods globally by ~1.2%. Under the RCP2.6, Chl-a is 
projected to decrease globally by ~0.020 mg m−3, and could 
lead to an increase in body mass of copepods globally by 
~0.3%. Thus given that the relationship between copepod 
length and Chl-a is more than an artefact of our study, the 
combined effects of increased temperature and decreased 
Chl-a are likely to decrease global copepod biomass by ~6.2% 
under the RCP8.5, or decrease by ~1.3% under a RCP2.6. 
Current Earth System Models also project a future decline 
in zooplankton biomass (Woodworth-Jefcoats  et  al. 2017) 
– and copepods dominate zooplankton biomass (Verity and 
Smetacek 1996, Sommer et  al. 2001) – by ~7.9% globally 
(Stock  et  al. 2014). This decline in copepod size and mass 
could negatively impact global fisheries (Sheridan and 
Bickford 2011). No Earth System Models consider the effect 
of Bergmann’s rule on copepod size.

There could be several other important ecosystem 
consequences of copepod size following Bergmann’s rule as 
the climate warms. Because swimming ability and thus the 
amplitude of their vertical migration is related to their size 
(Hays et al. 1994, Ohman and Romagnan 2016), a decline 
in body size with warming implies less extensive vertical 
migration. Thus, reductions in body size could potentially 
weaken the biological pump that transfers carbon from 

surface layers to the deep ocean (Cavan et al. 2019). Further, 
copepods significantly contribute to carbon exports via their 
sinking faeces and moults following ecdysis – at rates mostly 
determined by their body size (Stamieszkin  et  al. 2015). 
Therefore, reduction in copepod body size with warming 
could have significant ramifications for deep-ocean systems 
(Levin and Le Bris 2015, Sweetman  et  al. 2017) and for 
feedbacks to the climate system (Portner et al. 2019).

Final thoughts

There are now many studies that support Bergmann’s rule 
– across marine (Saunders and Tarling 2018, Wang  et  al. 
2020) and terrestrial systems (Arnett and Gotelli 2003, 
Ho  et  al. 2010) – and across ectothermic (Olalla-Tárraga 
and Rodríguez 2007, Wilson 2009) and endothermic taxa 
(Ashton et al. 2000, Brown et al. 2017). Despite this scien-
tific support, there remains limited uptake of Bergmann’s rule 
– and other macroecological ideas – in modelling studies. To 
project changes in biodiversity, ecosystems and fisheries under 
climate change, a host of modelling approaches are increas-
ingly being coupled with Earth System Models (Everett et al. 
2017), including nutrient–phytoplankton–zooplankton 
models (Stock et  al. 2014), population models (Feng et  al. 
2018), size-spectrum models (Carozza et al. 2019), end-to-
end ecosystem models (Griffith et al. 2011, 2012) and sta-
tistical models (Grieve  et  al. 2017). There is considerable 
opportunity to include well-tested macroecological principles 
such as Bergmann’s rule in future modelling efforts focused 
on climate change. Our analysis shows that these principles 
could substantially influence future projections.

This study also highlights the utility of using large global 
datasets for testing macroecological theory. Datasets such as 
the CPR, which have been collected consistently for decades 
have predominantly been used to understand ecosystem 
dynamics or describe global change (Edwards  et  al. 2010). 
There is great potential for comparative analyses with similar 
consistent, global datasets. Further, with the advent and 
increasing accessibility of powerful statistical techniques such 
as GLMMs – that make it possible to test multiple predictors 
whilst adjusting for spatial and temporal autocorrelation 
– there is increasing opportunity for providing robust and 
nuanced tests of macroecological relationships through spatial 
comparative analyses (Bolker  et  al. 2009). We recommend 
that future studies appropriately account for spatial and 
temporal autocorrelation, and consider simultaneously 
testing multiple potential predictors to avoid spurious and 
confounded relationships, as both were common in the past.

There is still much to learn about Bergmann’s rule. Future 
research could be directed towards testing the rule across 
varied taxonomic levels, detailed investigations of regional 
differences, and testing nonlinear relationships between size 
and drivers of Bergmann’s rule. These studies could consider 
the trophic roles of species when investigating these relation-
ships, particularly for groups with diverse roles such as cope-
pods, because they can explain a large amount of variation 
in body size and thereby may confound the relationships of 
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interest. With directed research in this area, we could get 
closer to understanding and resolving the many complexities 
of Bergmann’s rule that have been debated for decades.
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