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Abstract—The general aim of a cognitive Cyber Physical
System of Systems (CPSoS) is to provide managed access to data
in a smart fashion such that sensing and actuation capabilities
are connected. Whilst there is significant funding and research
devoted to this area, focus remains purely on creating bespoke
systems. This paper presents a novel approach, based on a set
of components to leverage Situational Awareness and Smart
Actuation in large manufacturing industries with the focus on
enabling predictive maintenance for asset and abnormal situation
management. This paper presents a novel generic platform,
named AtiCoS, that combines case-based and common-sense
reasoning, as the enabling methodologies for enhancing CPSoS
with cognitive capabilities.

Index Terms—CPSoS, Predictive Maintenance, Situational
Awareness, Smart Actuation.

I. INTRODUCTION

SEVERAL market data providers agree on a positive out-
look of the industry on the medium term. According to

MarketsandMarkets [1] the predictive maintenance market will
grow from $4.0 billion in 2020 to $12.3 billion by 2025,
and will exhibit a rising trend of Compound Annual Growth
Rate (CAGR) up to the 25.2% for the forecast period. More
optimistic predictions have been made by Statista.com [2] for
an average CAGR of almost 40% between 2018 and 2024.

Despite such positive market outlook, several business needs
are still unmet by the current technology. According to a
survey sponsored by GE [3], an extremely high percentage
of European manufacturing industries are still unsatisfied
with existing maintenance processes. A staggering 73% of
respondents still performs maintenance with human inspectors
using instrument readouts, whereas only 25% of the sample
uses real-time monitoring techniques. This highlights the large
gap for improvement in IoT predictive maintenance deploy-
ment and technology. In this market, CPSoS are an essential
enabling technology. In the research and innovation agenda
for the years 2016-2025 on cyber-physical systems of systems
elaborated by the European Project CPSoS [4], predictive
maintenance is listed as one of the 11 priorities in the medium-
term. This same agenda identifies three core challenges: 1)
cognitive CPSoS; 2) distributed, reliable and efficient man-

agement of CPSoS; and 3) the need for engineering support
for the design-operation continuum of CPSoS.

From a software perspective, NESSI, the Horizon 2020
European Technology Platform (ETP) for software, services
and data published a white paper identifying the challenges
and opportunities for future CPS [5]. Current engineering
principles are not appropriate for systems that, like CPSoS,
cannot assume a closed world with predefined and prescribed
interactions. CPSoS has to be constructed in an evolutionary
and dynamic manner. This work proposes a disruptive AI-
based approach that combines common-sense and case-based
reasoning to dynamically evolve systems on run-time. Ma-
chine Learning (ML) algorithms are also proposed to support
Situational Awareness and Smart Actuation processes.

Predictive analytics is proposed to improve predictive main-
tenance performance. Essentially, predictive maintenance re-
lies on condition-based monitoring (CBM), where a key vari-
able (temperature, vibration, etc.) is monitored and only when
a threshold value is exceeded, the maintenance operation is
launched. However, CBM does not really predict the state of
health of the asset, i.e., CBM does not provide prognosis in-
formation. The architecture proposed in AtiCoS resorts to a set
of predictive analytic tools ranging from time series analysis
to machine learning algorithms to provide a real prediction
of the remaining life time of the components based on all the
digital information acquired. These predictions will be updated
in real time to help scheduling the maintenance operation
with a lower cost. Furthermore, AtiCoS relies on case-base
and common-sense reasoning techniques to comprehensively
tackle the challenge of understanding the situation that is
taking place in the manufacturing facility (by interpreting
the sensed events) and by proposing appropriate responses
that extends those available in predefined plans. Reasoning
about the situation makes use of both the common-sense
knowledge and the experiential knowledge in the casebase of
past similar situations. Run-time responses are enabled by a
novel mechanism that support code injection, in a self-driven
manner, based on the system knowledge (machine learning
models, case-base and common-sense knowledge). In this
sense, the main contributions of this paper can be summarized
as follows:
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• AtiCoS proposes a groundbreaking architecture for pre-
dictive maintenance for large manufacturing facilities
through disruptive Artificial Intelligence technologies that
combine case-based and common-sense reasoning with
machine learning approaches.

• AtiCoS supports comprehensive dataflows for CPSoS
from the Edge through the Fog to the Cloud, which
eventually contribute to more trustworthy and secure
systems.

This paper is organized as follows. In Section II we present
the background to this work followed by the proposed ar-
chitecture, AtiCoS, in Section III. This architecture supports
Situational Awareness and Smart Actuation features, so the
next section describes how these functionalities are supported.
Finally, the main conclusions of this work are summarized.

II. BACKGROUND

Industrial maintenance can be divided in to three main
strategies [6]: i) Corrective maintenance, also known as
failure-based maintenance. In this strategy, units are either
replaced or repaired after a failure occurs. Note that main-
tenance is delayed if no spare part is available which may
induce high down-times; ii) Preventive maintenance strategy
performs actions to retain an item in a specified condition
while the system is operating; iii) Predictive maintenance
also called condition-based maintenance is based on the
periodical acquisition of data to observe the state of the
system. The parts are replaced when the observations reach
a determined threshold value beyond which normal system
operation is jeopardized. Most of the published bibliography
consider the implementation of condition-based maintenance
by monitoring the current level of degradation, however, they
do not predict the future degradation. Note that, instead of
assuming a statistical distribution (typically Weibull), AtiCoS
builds empirical distributions that will be updated with new
actual observations from sensors that will yield real-time
predictions of the remaining life of the analysed elements.
This novel point of view provides a data-driven predictive
maintenance methodology. Another novelty of the proposed
methodology is to incorporate energy efficiency indicators to
help detect potential failures whenever the energy consumption
of components is increased with respect to the normal (non-
fault) consumption. Note that this loss is generally ignored by
both academics and practitioners alike [7].

III. THE PROPOSED ARCHITECTURE: ATICOS

A. Principles inspiring the AtiCoS architecture

AtiCoS is aimed at supporting predictive maintenance for
improved asset management and abnormal situation manage-
ment, in the context of large manufacturing facilities. Two di-
mensions of predictive maintenance are considered in AtiCoS:
the “known unknowns” and the “unknown unknowns” [8]. The
term “known unknowns” is used to refer to those situations for
which software systems have a predefined set of adaptation
strategies. On the contrary, the term “unknown unknowns”
refers to those situations for which there is no predefined

set of adaptations and therefore, cannot be conveniently ad-
dressed. The challenge, as stated by the NESSI [8], is “to
identify new strategies to adapt systems to new and emerging
requirements, unforeseen interactions with other systems or
new and changing contexts”, all that at run-time. AtiCoS
considers different approaches for handling both the “known
unknowns” and “unknown unknowns”. The known ones will
be addressed through advanced and novel techniques for Big
Data Analytics and Machine Learning approaches, and Case-
Based Reasoning. For the unknown ones a Common-Sense
Reasoning approach will be employed to provide foundational
knowledge of how the world (in general) and certain industrial
processes (in particular) work.

Additionally, AtiCoS builds around the idea of “think glob-
ally act locally” as depicted in Figure 1. To think globally the
considered architecture should have access to the information
generated at the different dimensions (systems) of an industrial
process (Situational Awareness). To act locally, apart from
determining the most appropriate response, it is necessary to
identify how those responses are to be implemented (Smart
Actuation).

B. The three-computational models of AtiCoS

At edge level, both real and virtual (digital twins) devices
will be running. These devices will be employed to monitor
and support actuation over the industrial systems. The Cogni-
tive Operator Console, at the fog level, is the interface between
these devices and the human operators. Operators will actuate
through this console, commanding instructions to either real
or virtual equipment, in a transparent manner for the operator.
Similarly, operators will obtain information from sensors and
equipment either real or virtual, also in a transparent manner.
This console will also provide access to historical data stored
in the cloud as well as predictions, the general state of the
plant or specific elements of it.

Data as provided by sensors have to be pre-processed for
feature extraction and dimensionality reduction and pattern
recognition. To this end, FPGA-based nodes will perform the
first computational works. Data will also be translated into a
qualitative feature, normally based on thresholds. The data pre-
processing module will therefore provide two measures: one
considered quantitative and another one considered qualitative.
The quantitative one will be the input for the machine learning
algorithms running at the fog. Trained models obtained from
the training stages run at the cloud will be deployed in FPGAs
nodes. A first prediction of the useful-lifetime or situation
will be carried out. Based on the obtained result (either
within normality or not) different paths will be enabled in
the Situational Awareness and Smart Actuation components.

Two elements comprise the Situational Awareness compo-
nent. On the one hand, the Machine Learning (ML) component
will consider classification algorithms for predicting which
component is going to fail and when. If evidence is strong
then the Situational Awareness component will trust such a
prediction and consider it the single hypothesis. Thereafter the
Solution Proposer will look to the case-base for a match. If
there is a match (i.e. this is a “known unknown”) the associated
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Fig. 1. Overview of the AtiCoS dataflow

plan will be provided to the Smart Response Planner compo-
nent, which will eventually devise the most appropriate way
to undertake it. These actions will be autonomously executed
because a good match was found in the case-base. The solution
will be displayed in the Cognitive Operator Console.

Alternatively, if the Machine Learning algorithm yields
weak evidence, it is the role of the Common-Sense Reasoning
(CSR) component either to provide confirmation or to propose
an alternative interpretation. Following an episodic-reasoning
approach [9], qualitative measures are considered, in parallel,
as hypothesis of different ongoing situations. Whenever one
hypothesis stands out over the others, it is considered the most
plausible causal explanation. If the case-base has a match for
that situation the solution is applied. On the contrary, if there
is no good match among the existing cases, the Common-
Sense Reasoning component will devise the most appropriate
solution based on the general and domain specific knowledge
captured in the knowledge base. The proposed solution will
be provided to the Smart Response Planner (SRP) which will,
eventually, adapt existing code to run the proposed solution.
Successful solutions are retained for future reuse in the case-
base, thereby improving the experiences of the planner

IV. SITUATIONAL AWARENESS AND SMART ACTUATION

AtiCoS proposes a five-stage approach (see Figure 2) for
understanding ongoing situations based on the information
provided by sensors and devising appropriate ways to handle
them.

A. The Pre-Processing Module

Situational awareness is very challenging because of the
heterogeneity, uncertainty, and imprecision of the data used
for situation interpretation. During data collection different
sources of information are employed, therefore involving
different devices, technologies, protocols, etc., turning data
homogenisation is yet another major challenge. Data ho-
mogenisation is necessary before any further analysis and this
task is carried out by the Pre-Processing module.

B. The Machine Learning Module

Once homogenized, the next step for Situational Awareness
consists in a first classification of the data. The Machine Learn-
ing component will evaluate and select the most appropriate
algorithm, among the different ones suitable for this end. This
component will yield both the classification and its confidence
score. Depending on that, as well as the accuracy of the models
and algorithms, this first classification will be assigned a level
of credibility. When credible (i.e.: accuracy is over a certain
threshold), the recognized situation will be directly provided to
the Solution Proposer module (SP) which will devise the most
appropriate means to handle it. However, if the evidence is not
strong enough for that interpretation of the ongoing situation
the Hypothesis Generator module will come into play.

C. The Hypothesis Generator Module

AtiCoS conceives the Hypothesis Generator (HG) module
as the component responsible for seeking causal explanations
for sensed events. According to Woodaward [10] a causal
explanation is “any explanation that proceeds by showing how
an outcome depends (where the dependence in question is not
logical or conceptual) on other variables or factors counts as
causal”. For example, an explanation for a big crash noise and
a sudden stop of a line can be the occurrence of an explosion.
Explanations should be considered as preliminary hypothesis
since there might be many different explanations catering for
the same sensorial information, and it cannot be obviated that
events are neither always clear nor precise due to sensors
malfunctioning or low precision. For that reason, inspired by
work in [11] we propose a seven-stage process for hypothesis
generation (see Figure 3).

A first stage will be intended to associate sensor measures
(as captured effects of events) to the actions that might have
caused them. This view has been identified as the dT point of
view. Then, a second stage will take care of identifying the
situation in which such sequence of actions could make sense.
This view has been referred as ∆T point of view. Finally, the
T domain point of view will be accomplished by the big data
analytics. Combining the dT and ∆T point of views will bring
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Fig. 2. Stages for Situational Awareness and Smart Actuation

into light inconsistent interpretations or, alternatively, confirm
the action initially hypothesized.

Based on the theory of situation calculus, proposed by
McCarthy and Hayes [12] to formally represent world changes
as situations, we plan to extend it with the possible world
theory [13]. In this sense, the possible world abstraction is
going to be employed to simultaneously consider parallel, and
therefore inconsistent, causal explanations until enough infor-
mation is available to support the election of one hypothesis
over the others. Each world is plausible within itself although
incongruous among the others. Eventually, only one hypothesis
will be considered plausible and this will be provided to the
Solution Proposer module to work out the best way to address
it.

D. The Solution Proposer Module

This module combines Case-Based and Common-Sense
Reasoning techniques.

The hypothesis of the ongoing situation yielded by either the
Machine Learning or the Hypothesis Generator component is
considered the situational description provided as input for the
Solution Proposer. This module will compare that situational
description to all known situational instances in the case-base
and, when a match is detected, it will return a response that
is adapted for the current query. The development of the case-
based reasoning component consists of the following main
steps:

1) Retrieval of similar cases: Implementation of the case
comparison using existing libraries and tools such as
COLIBRI [14] Studio or CloodCBR [15]

2) Reuse the solution from the case-base: The first stage
is to use local and global similarity metrics to compare a
query case with stored situational awareness cases in the
case base. This typically involves a pair-wise similarity
computation to compare cases.

3) Revise the solution from the case-base: Once a match-
ing case is found, the case-based reasoning component
has to refine the solution to fit the current situation by
taking into account the differences between the current
situation and the differences between the best matching
case. For instance the type of asset may be more
specialised and the compliance constraints will need to
be considered. This may add further steps in to the main-
tenance plan, which in turn will impact the maintenance
prediction. Revision will be guided by the common-
sense reasoning component which will be based on the
differences between the situational descriptors and any
conflicts will be resolved accordingly. Output of this
stage is an adapted maintenance plan for the queried
situation

4) Retention of cases: Once the system has created a
new problem/solution pair that is sufficiently dissimi-
lar to existing cases, common-sense reasoning will be
triggered with regards to case retention policies. These
heuristics will guide the level of novelty that is required
in a new refined solution before it can be added as
case in its own right within the case-base. Once the
decision is made to retain the case then the necessary
situational descriptors together with the lessons learned
and explanations represented and the case added to the
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Fig. 3. Stages for hypothesis generation

existing case-base, thereby creating the feedback loop
of the experiential learning cycle

Fig. 4. The feedback loop of the experiential learning cycle

As summarized in Figure 4, the idea is to determine whether
there is a match in the case-base for that same situation. If
so, the solution will be reused by devising (this is the goal
provided to the Smart Response Planer) the set of actions
that will be executed. If there is no exact match, common-
sense knowledge can be used to generalise concepts so as to
improve the retrieval of relevant similar cases using analogical
reasoning. Heuristics can be used to check which requirements
are not being met and then, using common-sense knowledge to
adapt the existing solution by reasoning about the differences
between the actual and the retrieved situation descriptions.
Finally, common-sense knowledge will also be used to explain
why this is a good solution and store it in the case-base as a
new experience.

E. The Smart Response Planner Module

The Solution Proposer will yield a solution (stage 5 of
Figure 3) to the Smart Response Planner. Two challenges are
faced here: how should system responses be driven by the
CPSoS and how are they going to be articulated. Regarding the
first aspect, AtiCoS plans to provide a model that describes the
propositional attitudes that are going to guide its behavior. The
propositional attitudes or mental states will capture the system
knowledge, the system objectives, and the available means.
This knowledge will be obtained from interviewing with op-
erators. Regarding the support to automatic and unsupervised
system responses, the first challenge to be faced is how to
address a context in which available means or systems cannot
be foreseen in advance. Then, predefined system responses
cannot be elaborated in terms of available system or services

because they might or might not be available at that moment.
Establishing a similarity with a common situation faced by
people in our daily life, during a blackout or while in the dark,
we look for sources of light at hand, being our mobile phone
the most common solution. This is not pre-coded as we have
the ability to devise clever uses of things we have at hand.
Basically, this capability is based on the well understanding
we have about how things works. This enables us to derive
the phone’s capability to work as a torch or source of light.

In the context of CPSoS, the only way of figuring out
an alternative way of accomplishing a task for which there
is not any specific system is by composing or reconfiguring
available ones into a new system whose combine functionality
emulates the desired one. This process has to be undertaken
in an autonomous and self-sufficient way without requesting
the user or programmer intervention.

AtiCoS resort to the a semantic composition approach [16]
based on the profound understanding of the capabilities, held
at this level, by hardware devices and systems. This analytical
capability will be driven by a planning scheme that, given a
desired result (illuminate a space) it is going to look for a
reconfiguration or composition setup through the whole space
of available resources. To enable such a setup, a common
semantic model should be shared among the different layers
of the architecture. Finally, it has to be highlighted that the
strength of the planning scheme resides at the knowledge it
holds about how the world works, also known as common
sense, and the detailed descriptions of hardware devices,
services, and systems: what they are, how the work, what
they are capable of, etc. We plan to use Scone1 to model and
hold AtiCoS knowledge. Scone is also particularly well suited
to manage possible worlds, through its implementation of
the multiple-contexts mechanism [17]. Eventually, the Smart
Response Planner will articulate the execution of the solution
plan by interacting directly over systems (through the digital
twins). An element known as the Wiring Service (a solution
made available by [16]) will take care of supporting code
injection in runtime to make possible the execution of the
plan.

V. CONCLUSION

AtiCoS plans to propose a reference architecture with
systems and components that support CPSoS designers to-
wards autonomous and smart CPSoS. To this end, the project
architecture ambitiously aims to support the construction of
systems that, based on a myriad of technologies, are capable
of understanding events (Situational Awareness) and evolving
systems at run-time without a previously dictated plan (Smart

1http://www.cs.cmu.edu/∼sef/scone/
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Actuation). AtiCoS will address the challenge of enhancing 
CPSoS with cognitive capabilities what will, eventually, lead 
to enable distributed, reliable and efficient management of 
such systems. To demonstrate the achievement of this general 
goal, AtiCoS focuses on enabling predictive maintenance for 
improved asset and abnormal situation management resorting 
to different Artificial Intelligence techniques. Two types of 
situations will be considered to show the need for two levels 
of intelligence. Machine learning techniques will be employed 
to learn behavioral patterns, trends, and models that help the 
reasoning system to recognise the known unknowns from expe-
riential knowledge. More sophisticated reasoning mechanisms 
are required, rather than just classification or characterization 
tasks, in order to address (in an autonomous and trustwor-
thy manner) the unknown unknowns. A common-sense-based 
approach will be employed to address this situations and 
appropriate resources will be made available to speed up the 
process of knowledge gathering and modelling.
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