
FYVIE, M., MCCALL, J.A.W. and CHRISTIE, L.A. 2021. Towards explainable metaheuristics: PCA for trajectory mining in
evolutionary algorithms. In Bramer, M. and Ellis, R (eds.) Artificial intelligence XXXVIII: proceedings of 41st British
Computer Society's Specialist Group on Artificial Intelligence (SGAI) Artificial intelligence international conference

2021 (AI-2021) (SGAI-AI 2021), 14-16 December 2021, [virtual conference]. Lecture notes in computer science,
13101. Cham: Springer [online], pages 89-102. Available from: https://doi.org/10.1007/978-3-030-91100-3_7

The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-91100-3_7. This pre-
copyedited version is made available under the Springer terms of reuse for AAMs:
https://www.springer.com/gp/open-access/publication-policies/aam-terms-of-use

This document was downloaded from
https://openair.rgu.ac.uk

Towards explainable metaheuristics: PCA for
trajectory mining in evolutionary algorithms.

FYVIE, M., MCCALL, J.A.W. and CHRISTIE, L.A.

2021

https://doi.org/10.1007/978-3-030-91100-3_7
https://doi.org/10.1007/978-3-030-91100-3_7
https://www.springer.com/gp/open-access/publication-policies/aam-terms-of-use

Towards Explainable Metaheuristics: PCA for
Trajectory Mining in Evolutionary Algorithms

Martin Fyvie[0000−0001−8491−7008], John A.W. McCall[0000−0003−1738−7056], and
Lee A. Christie[0000−0001−8878−0344]

The Robert Gordon University, Garthdee Road, Aberdeen, UK
{m.fyvie, j.mccall, l.a.christie}@rgu.ac.uk

Abstract. The generation of explanations regarding decisions made by
population-based meta-heuristics is often a difficult task due to the na-
ture of the mechanisms employed by these approaches. With the increase
in use of these methods for optimisation in industries that require end-
user confirmation, the need for explanations has also grown. We present a
novel approach to the extraction of features capable of supporting an ex-
planation through the use of trajectory mining - extracting key features
from the populations of NDAs. We apply Principal Components Analysis
techniques to identify new methods of population diversity tracking post-
runtime after projection into a lower dimensional space. These methods
are applied to a set of benchmark problems solved by a Genetic Algo-
rithm and a Univariate Estimation of Distribution Algorithm. We show
that the new sub-space derived metrics can capture key learning steps
in the algorithm run and how solution variable patterns that explain the
fitness function may be captured in the principal component coefficients.

Keywords: Evolutionary Algorithms · PCA · Explainability · Popula-
tion Diversity

1 Introduction

Non-Deterministic Algorithms such as population-based meta-heuristics have
seen an increase in use in applications that involve end-user interactions such
as transport route planning, delivery scheduling and medical applications. This
increase has highlighted the need for the decision processes behind these system
to be more understandable by end-users. This is turn may help build a level
of trust in the solutions generated by these systems, as seen in conclusions and
recommendations of the Public Health Genetics (PHG) foundation [1].

Two significant metaheuristic approaches are Genetic Algorithms (GA) and
Estimation of Distribution (EDA) algorithms. Both are evolutionary algorithms
and explore a solution space using a population-based search metaheuristic. As
a GA explores the search space, solution populations generated represent the
implicitly learned structure of the problem it is solving. The EDA similarly rep-
resents this but also generates a sequence of explicit probabilistic models of the
problem structure. Problem Structure refers to the graphical dependency rela-
tionship between solution variables and their joint influence on fitness value. This

has been variously interpreted in the EDA literature through Bayesian, Markov
or Gaussian probabilistic models [2]. For both GAs and EDAs, the collected
populations generated over the course of a run can be considered the trajec-
tory through the search spaces that the algorithm has taken as it converges on
an ideal or near-ideal solution. These trajectories reflect the implicit knowledge
gained.

We hypothesize that the trajectories generated in this process can be mined
for valuable information regarding population changes that can aid in gener-
ating explanations for end-users. Our approach involves the projection of the
high-dimension solutions space to a lower dimension space that can be used to
generate more easily understood visualisations and provide a possible source of
new metrics. This is accomplished through the application of Principal Compo-
nents Analysis (PCA). The results can then be used to generate explanations
with the aim of increasing an end-user understanding of the problem being solved
and the process by which the algorithms have arrived at the provided set of so-
lutions.

Previous work covering the visualisation of algorithm trajectories using PCA
can be seen in [3] and more recent methods in which local optima networks are
used to generate search trajectory networks for different algorithm runs in [4].
Other examples of work involving the exploration of algorithm paths via dimen-
sion reduction include [5] in which Sammon mapping is explored as a method
of reduction for visualisation and [6] in which Euclidean Embedding is applied.
These works focus on the visualisation of an algorithm through the search space
however the approach taken in this paper using PCA has the potential to be
used as a method extracting features from algorithm paths. These features can
then be used to help support explanations by highlighting learning steps in the
algorithm run and solution variable patterns that describe the fitness function.

The rest of the paper is structured as follows. Section 2 outlines the experi-
mental setup that covers the algorithms used and the problems they were used
to solve. The section then outlines the concept of Entropic Divergence and how
this is used as measure of population diversity change. introduced at the end
of this section is the background method used to translate the algorithm tra-
jectories into a lower dimension space as well as the new metrics derived from
that space for comparison to the Entropic Divergence measurement. Section 3
highlights the results and performance between the newly created population
metrics and the Entropic Divergence are shown and discussed. This section also
highlights the findings regarding problem structure and post-PCA projection
variable loading’s. Section 4 sets out our conclusions based on the results of
these tests.

2 Experimental Setup

2.1 Algorithm Runs

Two population-based solvers were selected to generate a series of population
trajectories for use in this study. These were a Genetic Algorithm (GA) and

a modified Population Based Incremental Learning (PBIL) Algorithm [7][8] in
which a negative mutation rate and mutation shift value is introduced. These
algorithms were selected for the purpose of comparing the results of a univari-
ate solver and a more traditional genetic algorithm on problems with different
structure. Each algorithm was run on the set of outlined problems in order to
generate the trajectories used in the analysis phase of this trial.

The Genetic Algorithm used was an adaptation of the Canonical Genetic
Algorithm (CGA) [9]. Figure 1 shows the main steps involved as the GA gener-
ates new populations during an optimisation run.

P n runs maxGen mutRate Selection Crossover

100 40 100 100 0.005 Tournament Random 1-Point

Table 1: GA Run Specifications

Fig. 1: CGA Stages taken from [10]

Table 1 outlines the values used in the running of the GA during these ex-
periments.

P shows the number of solutions in each population. maxGen is the maxi-
mum number of generations before termination. mutRate is the mutation rate
within the GA. Selection is the selection method used within the GA for solu-
tion comparison and reproduction. Crossover is the crossover type used in this
trial with a rate of 1 and so occurs each generation. n is the problem length.
runs is the number of runs for each problem the GA ran for.

Population Based Incremental Learning (PBIL) is a form of Estima-
tion of Distribution algorithm. The probability vector is updated and mutated
each generation as seen in Equations 1 and 2:

p(X1, . . . , XN) =

N∏
i=1

p(Xi) (1) p(Xi) =
1

N

N∑
j=1

xij (2)

P n runs maxGen mutRate mutShift learnRate nlearnRate

100 40 100 100 0.005 0.05 0.1 0.075

Table 2: PBIL Run Specifications

Here the vector of marginal probabilities PV = (p(X1), ..., p(Xn)) is created
by calculating the arithmetic mean of each variable X in a population of size
N. As the solutions are comprised of bit strings we will see that values will
range from 0 to 1. Table 2 outlines the values used for the PBIL algorithm
in this trial. Additional to these, the PBIL used a mutShift value that was
applied to mutated probability vector values. learnRate is the learning rate
of the algorithm as is the nlearnRate which shows the negative learning rate
penalty if the best solution matches the worst in a solution when updating the
probability vector.

2.2 Benchmark Problems

The 1D Checkerboard function scores the chromosome based on the sum of
adjacent variables that do not share the same value [11]. The function is seen
here in Equation 3.

CHECKl
1D(x) =

l−2∑
i=0

{
1, xi 6= xi+1

0, xi = xi+1

}
(3)

Because the function scores only adjacent variables it is possible to have two
possible global maxima. As an example, for a bit string of length 5 the two
possible would be [01010] and [10101]. The implementation of the problem used
in this experiment also checks the first and last allele to check if they match.
This allows for a total fitness value equal to the bit-string length for an ideal
solution

The Royal Road function scores chromosomes based on collections of vari-
able values based on a specified set of schema that the solution must fulfil in
order to score an optimal value [12]. below, Equation 4 specifies the fitness func-
tion for the royal road problem with a schema block size of 5, as used in this
experiment.

R1(x) =

5∑
i=1

δi(x)o(si), where δi(x) =

{
1 if x ∈ si
0 if otherwise

}
(4)

As noted in [12] the equation represents the fitness function, such that R1 is
a sum of terms relating to partially specified schema. The schemata are subsets
of solutions that match the partial specification, si. As an example, one partially
specified schema with a size of 5 could be represented as [11111*****...] where
unspecified members are denoted by “*”

A given bit-string x is an instance of a specific schema s, x ∈ s if x matches
s in the defined positions within that schema. o(si) defines the order of si which
is the the number of defined bits in si. The royal road function was designed
to “capture one landscape feature of particular relevance to GAs: the presence
of fit low-order building blocks that recombine to produce fitter, higher-order
building blocks”[13].

The Trap-5 concatenated problem is designed to be intentionally deceptive
[14][15], such that they ”deceive evolutionary algorithms into converging on a
local optimum. This is particularly a problem for algorithms which do not con-
sider interactions between variables.” [16]. As with the Royal Road problem, the
bit-strings are partitioned into blocks and their fitness scored separately. Seen
in equation 5a is the function of a trap of order k.

f(x) =

n/k∑
i=1

trapk(xbi,1 + ...+ xbi,k) (5a)

trapk(u) =

{
fhigh if u = k, flow − u

flow
k − 1

otherwise

}
(5b)

Blocks within the bit-string are scored according to the fitness function in
equation 5b. A Trap5 problem with a bit-string length of 10 would have the
values n=10, k=5, fhigh = 5 and flow = 4.

The further from the goal of each Trap containing five 1’s, the higher the
fitness value, with only a maximum achieved when the whole Trap is comprised
of 1s, leading the algorithm away from the optimal value.

2.3 Principal Components Analysis

The process of reducing the dimensionality of the algorithm trajectory popula-
tion datasets is done through the use of Principal Components Analysis (PCA).
This allows us to project the higher dimentional space of the solutions to a
three-dimensional space as “PCA produces linear combinations of the original
variables to generate the axes, also known as principal components, or PCs.”[17].
This involves the calculation of a series of perpendicular, non correlated, linear
combinations of the variables in the population such that each combination ac-
counts for the maximum possible variation in the dataset through the use of
singular value decomposition (SVD). A summary of the calculation of linear
combination and weights from [17] can be seen below in the following series of
Equations 6

PC1 = a11X1 + a12X2 + . . . a1pXp

PC2 = a21X1 + a22X2 + . . . a2pXp

PC1 = at1X

PC = XA

(6)

In Equation 6,matrix A denotes the matrix of eigenvectors. These are used
to show the relationship between the original variables and the orientation of the

principal components. The resulting datasets were then mined with the intent of
finding features capable of explaining aspects of the optimisation problems that
they were generated by.

3 Feature Extraction

3.1 Existing Population Diversity Measures

There exist several metrics used to measure the change in population diversity
over the course of an optimisation run by genetic-based algorithms. In [18] a
brief review of many of these metrics can be found. The metrics covered include
the Hamming Distance, the sum of pair-wise comparison in the number of vari-
able differences between two solutions although this method can be considered
computationally expensive. An alternative to Hamming Distance is the Moment
of Inertia [19] which provides a “..single method of computing population di-
versity that is computationally more efficient than normal pair-wise diversity
measures for medium and large sized EA problems.” When researching possible
metrics for comparison, it was decided that the Kullback-Leibler Entropic Di-
vergence distance measure [20] would be the best candidate as it was suitable
for both population diversity monitoring and the detection of the “phase transi-
tion” point, in which it is said that a population based algorithm moves from the
exploration of the search space to the exploitation of known problem structure
to generate higher fitness solutions.

Entropic Divergence The Kullback-Leibler Entropic Divergence (KLd) is a
population diversity distance measure based around the concept of information
gain and Shannon’s Entropy [22] in which “...the entropy of a random variable
is defined in terms of its probability distribution.” [20]. It can be defined in the
following Equation:

KLd(P ‖ Q) =
∑
x∈X

P (x) log

(
P (t)(x)

Q(t0)(x)

)
(7)

Where P and Q are vectors of marginal probabilities for two different popu-
lations in the trajectory[21].

Using the above Equation it is possible to track the information gain from
the initial population generated by the algorithms as Q(x) remains constant as
the probability vector of the generation t=0. This metric is called the “Global
Learning” and it measures the total information gain from initial population
to the population at any given t. The expected behaviour for this metric is to
increase over time until a “steady state” is arrived at.

It is also shown in [20] that it is possible to use the above KLd Equation to
measure the information gain between two consecutive populations whereQ(i)(x)
and P (i+1)(x) are used. This is known as “Local Learning” with the expected
behaviour of increasing until a “Phase Transition” point at which the algo-
rithm moves from exploring the search space to exploiting knowledge learned. In

the exploitation phase, higher fitness solutions are generated using this implicit
knowledge. When this happens it is expected that the local learning rate will
decrease as the diversity within the population decreases until convergence has
been completed or a local basin of attraction is escaped [23]. This is of interest
as it can be used to inform end-users when maximum population diversity is
reached in a trajectory.

3.2 Sub-Space Derived Features

Population cluster centers The dimensionality of the dataset is reduced
through the projection of the data into a lower dimension set based on the
principal components calculated using 6. In this paper we project into a three-
dimensional sub-space to help visualise the population as a cluster, illustrated
in Figure 2.a. The centroid of this cluster can be found by calculating the point
that minimizes the sum of squared Euclidean distances between itself and each
point in the set as seen in Equation 8.

C =
x1 + x2 + · · ·+ xk

k
(8)

Figure 2.a is an example of a single trajectory visualisation post-PCA con-
version. Each point in the trajectory represents the centroid of a population of
solutions. For each generation in a given trajectory the centre point of the cluster
is calculated. This process results in a set of points in 3D space that represents
the algorithm trajectory, Figure 2.b, from the initial population to the final pop-
ulation in terms of variation, as measured by the reduction in PCA coefficients
over time from t=0 to t=final.

(a) Single Run Cloud (b) Single Run Centres (c) 100 Run Centres

Fig. 2: PBIL 1D Checkerboard Trajectory visualisation

It is important to note that this method does not chart the algorithm tra-
jectory in objective space and does not explicitly reflect the fitness landscape
but instead can be used to measure the direction and magnitude of changes in
population diversity after being projected into this subspace. Seen in Figure 2.c
are all 100 trajectories created by the PBIL on the 1D Checkerboard problem,
projected against the first three principle components.

Angle from Origin measures the angle between the centroid of the initial
starting population in the trajectory and each subsequent population that was
created. Each of the two points in the space are represented by the centroids
coordinates as a vector of [PC1,PC2,PC3] coefficients in place of x, y and z
coordinates. In order to calculate the acute angle α between two vectors we use
the inverse cosine of vector products as seen in Equation 9

α = arccos

(
C0 · Ci

‖C0‖ ‖Ci‖

)
C0, Ci = Cluster Centroids (x, y, z)

(9)

Angle between clusters is calculated as in equation 9 using Ci and Ci+1,
where (i <= 0 <= maxGen). This allows for the angle between consecutive
populations to be calculated.

PCA Loading Values can be calculated using the resulting matrices from
the principal component decomposition process outlined earlier in this paper.
Loadings can be considered the weighting of each variable as they describe the
magnitude of contribution each variable has to the calculation of each Principal
component. Loading signs indicate the type of correlation between the PC and
the variable in terms of negative and positive correlation and the strength of
that relationship can be seen in the values – larger values indicate a stronger
relationship. These loadings are shown in Equation 6 as the matrix A and are
the coefficients of the principal components (eigenvectors) with respect to the
solution variables.

4 Results

We hypothesize that is it possible to derive features from algorithm trajectories
that can aid in generating explanations for end-users similar in nature to existing
known metrics such as the Kullback-Leibler Entropic Divergence values. For two
population-based NDAs – a genetic algorithm and a univariate population based
incremental learner – we generated a total of 100 algorithm trajectories on each
of the three test functions used. These trajectories were transformed using PCA
to allow the projection of the populations into a lower dimension space for the
purpose of visualisation and feature extraction.

4.1 PCA Explained Variation

The values in Table 3 show the mean percentage of variation in the popula-
tion data explained by the first three principal components, broken down by
algorithm and problem.

Algorithm Problem PCA1 Exp % PCA2 Exp % PCA3 Exp % Total %

PBIL 1D Checker 25.6 5.2 3.6 34.4
GA 1D Checker 32.5 10.8 7.6 50.9
PBIL Royal Road 25.1 5.9 3.8 34.8
GA Royal Road 28.8 10.0 7.4 46.2
PBIL Trap5 27.0 4.6 3.3 34.9
GA Trap5 37.9 11.0 7.6 56.6

Table 3: PCA Variance Explained by Three Components

These results show that for the PBIL, total variation explained by the first
three principal components was 34.4% in the 1D Checkerboard problem, 34.8%
in the Royal Road problem and 34.9% in the Trap5 Problem. The results also
show that for the GA, explained variation was 50.9% in the 1D Checkerboard,
46.2 in the Royal Road and 56.6% in the Trap5 Problem.

4.2 Information Gain and Cluster Angle Results

Table 4 displays the Spearman Correlation Coefficients of Local and Global
information gain to the Inter-Cluster and Angle from Origin features extracted.
Global Information shows a strong positive correlation to the Angle from Origin
feature with a range of 0.76 to 0.99 across all problems and algorithms. The
PBIL coefficients were 0.99 for the 1D Checkerboard, 0.96 for the Royal Road
and 0.88 for the Trap5. The GA coefficients were 0.98 for the 1d Checkerboard,
0.88 for the Royal Road and 0.76 for the Trap5 problem.

Algorithm Problem Local to Inter-Cluster Global to Origin

PBIL 1D Checker -0.69 0.99
GA 1D Checker 0.83 0.98
PBIL Royal Road 0.36 0.96
GA Royal Road 0.94 0.88
PBIL Trap5 0.39 0.88
GA Trap5 0.79 0.76

Table 4: Spearman Correlation Coefficient

Global Information Gain and Angle from Origin comparison results
are shown in figure 3, split by algorithm and problem. It can be seen in the
results and the correlation coefficients in table 4 that for all three problems and
both algorithms, the angle from origin metric closely matches the behaviour
of the Global Information Gain behaviour. Both metrics detect the increase in
information gained as the algorithms solve the supplied problem.

(a) PBIL Check Mean Global (b) PBIL Royal Mean Global (c) PBIL Trap5 Mean Global

(d) GA Check Mean Global (e) GA Royal Mean Global (f) GA Trap5 Mean Global

Fig. 3: Global Information Vs PCA Angles by Problem and Algorithm

(a) PBIL Check Mean Local (b) PBIL Royal Mean Local (c) PBIL Trap5 Mean Local

(d) GA Check Mean Local (e) GA Royal Mean Local (f) GA Trap5 Mean Local

Fig. 4: Local Information Vs PCA Angles by Problem and Algorithm

Local information Gain and Inter-Cluster Angle comparison results
are more varied and appear to be showing that learning behaviour differs be-
tween algorithms on the same problem, seen in figure 4. The inter-cluster angle
calculated for the populations generated by the PBIL do not share the same

pattern of behaviour as the Local Information gain. The results show a peak
approximately 25 to 30 generations later than the local information gain and so
these events do not co-occur at the same point in the trajectory in all problems
tested. This difference in behaviour is reflected in the wider range of correlation
coefficients calculated.

The results for the GA however do show a similar behaviour with a time lag
of approximately 5 generations across all problems tested to the local informa-
tion gain. Both sets of data peak early in the trajectory with the Inter-Cluster
Angle peaking approximately 5 generations after the Local Information metric,
displaying that the Inter-Cluster metric is detecting the occurrence of phase
transition point only slightly later in the trajectory. The Inter-Cluster metric
closely follows the profile of the Local Information as supported by the high
positive correlation coefficients in table 4

The results show a clear difference between the two algorithms when Local
Information Gain is compared to the Inter-Cluster-Angle results. This may be
due to the fact that the PBIL increments the probabilistic model gradually over
successive populations so local information gain accumulates before it is reflected
in Inter-Cluster Angle change. As a GA can be considered a Markov process,
the probability of each population is only dependant to the current state of the
system. This can also be seen when Global information Gain is compared to
Angle from Origin. The PBIL reaches maximum Global Information later in
the trajectory than the GA with a shallower ascent. The PBIL reaches point
at which Global Information Gain stops increasing between generations 25 and
40 whereas the GA has a steeper Global Information Gain rate, reaching the
maximum value between generations 10 and 20. This may be due to the GA
taking a more varied path across the search space than the PBIL which tends to
have less varied performance. Together, these show that it is possible to detect
differences in algorithm behaviour over the same optimisation problems through
the differences in both sets of results.

4.3 Principal Component Loadings

The results of charting the mean loadings across all runs for each algorithm and
problem can seen in Figure 5.

The 1D Checkerboard results show that the loadings reflect the patterns
of the coefficients. Adjacent variables in the solutions discovered have opposing
values in both the PBIL Figure 5.a and GA Figure 5.b figures for the majority of
cases. This matches closely the mathematical structure of the fitness functions.
Both algorithms however show instances in which the loadings did not conform to
the expected pattern, showing a flip in the alternating sequence at three or more
points in the bit-string. The Royal Road results for the PBIL in Figure 5.c do not
show any clear pattern that would match the expected fitness function structure
however the GA in Figure 5.d does show some partial detection, with consecutive
blocks of 5 bits having similar values that do not match the next block in 4
instances. The results for the Trap5 problem for the PBIL in Figure 5.e do not
show any strong relation to the expected fitness function structure however the

GA in Figure 5.f captures this correctly. It shows all 8 blocks of 5 consecutive
bits possess similar values but are distinct from the next block. Since PBIL is
univariate, it cannot detect multivariate interactions. 1D Checkerboard results
show that some bivariate interaction was detected but this will be accidental.
These results shows that the algorithm trajectories reflect the simpler features
of the problem structure that the algorithms have learned but the higher order
features are less likely to be recovered.

(a) PBIL Check Mean Loadings (b) GA Check Mean Loadings

(c) PBIL Royal Mean Loadings (d) GA Royal Mean Loadings

(e) PBIL Trap5 Mean Loadings (f) GA Trap5 Mean Loadings

Fig. 5: PCA Loading Values by Problem and Algorithm

5 Conclusions

In this paper, we presented the results of the application of Principal Com-
ponents Analysis (PCA) to the trajectories created by two population-based

Non-Deterministic Algorithms (NDA). This was done to mine features that can
enrich explanations regarding how these algorithms traverse the search space and
present significant solution features detected by the algorithms. We generated a
collection of algorithm trajectories by solving a set of benchmark problems with
a Genetic Algorithm (GA) and modified Population Based Incremental Learning
(PBIL) algorithm and projected the resulting trajectories into a lower dimen-
sional space through the application of PCA. This process resulted in a dataset
that was mined using a novel set of angular based metrics. Our evaluation of
these metrics when compared to the Kullback-Leibler Entropic Divergence mea-
sure of both Local Information and Global Information gain shows that there
is potential to capture a similar level of detail regarding the Global information
learned. These metrics were used to detect differing algorithm behaviour on the
same problems as seen between that of the PBIL and GA in the Inter-Cluster
Angle values. Finally, it was shown that principal component loadings were used
to represent what the algorithms have learned in terms of variable contributions
to overall fitness. This is a move towards the generation of explanation of solu-
tions returned by the algorithm. This can be seen in the Eigenvector values for
the GA that implied the fitness function structure of the optimisation problem
for the 1D Checker and Trap 5 Problem. This feature in the PBIL results show
partial structure detection only in the 1D Checker problem and shows that some
structure has not been captured using the features used in these tests. Being uni-
variate, PBIL is incapable of creating probability features that capture higher
level features with interactions as found in the remaining problems. The results
of this paper have shown that the PC derived features are associated with the
algorithm learnings regarding problem structure. These techniques can be con-
sidered a stepping stone towards supporting explanations by relating changes in
information gain to the discovery of specific interaction features.

References

1. J. Ordish, T. Brigden, and A. Hall, “Black box medicine and transparency — PHG
Foundation,” p. 34, 2020.

2. Shakya, Siddhartha; McCall, John; Brownlee, Alexander; Owusu, Gilbert;,Deum-
distribution estimation using markov networks, Markov networks in evolutionary
computation, 55-71, 2012, Springer, Berlin, Heidelberg

3. Trevor D Collins, Applying software visualization technology to support the use
of evolutionary algorithms, Journal of Visual Languages & Computing, Volume
14, Issue 2, 2003, Pages 123-150, ISSN 1045-926X, https://doi.org/10.1016/S1045-
926X(02)00060-5.

4. Gabriela Ochoa, Katherine M. Malan, Christian Blum, Search trajectory net-
works: A tool for analysing and visualising the behaviour of metaheuris-
tics, Applied Soft Computing, Volume 109, 2021, 107492, ISSN 1568-4946,
https://doi.org/10.1016/j.asoc.2021.107492.

5. Pohlheim H. Multidimensional scaling for evolutionary algorithms–visualization of
the path through search space and solution space using Sammon mapping. Artif
Life. 2006 Spring;12(2):203-9. doi: 10.1162/106454606776073305. PMID: 16539764.

6. K. Michalak, “Low-Dimensional Euclidean Embedding for Visualization of
Search Spaces in Combinatorial Optimization,” in IEEE Transactions on
Evolutionary Computation, vol. 23, no. 2, pp. 232-246, April 2019, doi:
10.1109/TEVC.2018.2846636.

7. S. Baluja and R. Caruana. Removing the genetics from the standard genetic algo-
rithm. In ICML, pages 38–46, 1995.

8. S. Baluja, “An empirical comparison of seven iterative and evolutionary function
optimization heuristics,” Carnegie Mellon Univ., Pittsburgh, PA, Tech. Rep. CMU-
CS-95-193, 1995

9. J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis
with applications to biology, control, and artificial intelligence, Oxford, England: U
Michigan Press, 1975.

10. Goldsmiths University of London Computational Creativity Research
Group [Online] http://ccg.doc.gold.ac.uk/ccg old/teaching/artificial intelli-
gence/lecture16.html. [Accessed: 12/11/2020]

11. S. Baluja and S. Davies. Using optimal dependency-trees for combinatorial opti-
mization: Learning the structure of the search space. Technical report, DTIC Doc-
ument, 1997.

12. Stephanie Forrest and Melanie Mitchell, Relative building-block fitness and the
building block hypothesis, Foundations of Genetic Algorithms 2 (San Mateo), Mor-
gan Kaufmann, 1993, pp. 109–126

13. B.2.7.5: Fitness Landscapes: Royal Road Functions. Handbook of Evolutionary
Computation M MitchellS Forrest

14. D. E. Goldberg, “Genetic algorithms and Walsh functions: part i, a gentle intro-
duction,” Complex Systems, vol. 3, no. 2, pp. 129-152, 1989.

15. D. E. Goldberg, “Genetic algorithms and Walsh functions: part ii, deception and
its analysis,” Complex Systems, vol. 3, no. 2, pp. 153-171, 1989.

16. Brownlee, A.E.I. 2009. Multivariate Markov networks for fitness modelling in an
estimation of distribution algorithm. Robert Gordon University, PhD thesis.

17. M.Holland, S., 2019. Principal Components Analysis (PCA). [Online]
Strata.uga.edu. Available at: https://strata.uga.edu/software/pdf/pcaTutorial.pdf
[Accessed 19 June 2021].

18. Nguyen Thi Hien and Nguyen Xuan Hoai, “A Brief Overview of Pop-
ulation Diversity Measures in Genetic Programming”, 2006, [Online]
http://gpbib.cs.ucl.ac.uk/aspgp06/diversityMeasures.pdf [Accessed 20 June
2021].

19. Morrison R.W., De Jong K.A. (2002) Measurement of Population Diversity. In:
Collet P., Fonlupt C., Hao JK., Lutton E., Schoenauer M. (eds) Artificial Evolution.
EA 2001. Lecture Notes in Computer Science, vol 2310. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/3-540-46033-0 3

20. V. Cutello, G. Nicosia, M. Pavone and G. Stracquadanio, ”Entropic divergence
for population based optimization algorithms,” IEEE Congress on Evolutionary
Computation, 2010, pp. 1-8, doi: 10.1109/CEC.2010.5586044.

21. MacKay, David J.C. (2003). Information Theory, Inference, and Learning Algo-
rithms (First ed.). Cambridge University Press. p. 34. ISBN 9780521642989.

22. C. E. Shannon, “A mathematical theory of communication,” SIGMO BILE Mob.
Comput. Commun. Rev., vol. 5, no. 1, pp. 3–55, 2001

23. Protter, Murray H.; Morrey, Jr., Charles B. (1970), College Calculus with Analytic
Geometry (2nd ed.)

	coversheet_template
	FYVIE 2021 Towards explainable (AAM)
	coversheet_template
	FYVIE 2021 Towards explainable (AAM)

