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AFIT-ENV-MS-21-M-278
Abstract

Cost and schedule overrun plague over 50% of all construction projects,
engendering diminished available funding that leads to deferred maintenance and
impaired award ability for needed projects. Though existing research attempts to identify
overrun’s sources, the results are inconclusive and frequently differ. Accordingly, this
research reviews DoD construction contract data from the past ten years to identify the
contract attributes of 79,894 projects that correlate with superior performance for use in
future project execution. This research starts with creating a database that houses the
largest single source of construction contract information. The research then evaluates the
data to determine if differences in project performance exist when comparing contracting
agents, funding agents, and award months. Next, the research utilizes stepwise logistic
regression to determine the significant contract attributes and predict future projects’
overrun likelihoods. Model accuracy for predicting the likelihood of cost and schedule
overrun is 65% and 75%, respectively. Finally, this research concludes by providing
insights into efforts that could improve modeling accuracies, thereby informing better
risk management practices. This research is expected to support public and private sector
planners in their ongoing efforts to execute construction projects more cost-effectively

and better utilize requested funds.
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AN EMPIRICAL ANALYSIS OF DOD CONSTRUCTION TASK ORDER
PERFORMANCE

1. Introduction

Background

More than half of all construction projects exceed their target budget or schedule
(Assaf et al. 1995; Habibi et al. 2018a; Ramanathan et al. 2012a). Department of Defense
(DoD) construction projects are no exception (Dicks et al. 2017; Thal et al. 2010). The
DoD was authorized $26.7 billion in fiscal year 2020 to construct, repair, alter, maintain,
and modernize its 585,000 facilities and associated infrastructure (Office of the Under
Secretary of Defense (Comptroller)/Chief Financial Officer 2019). Despite this
considerable funding, there remains an estimated $116 billion maintenance project
backlog (Cronk 2018). This backlog is made worse by a consistently underfunded yearly
sustainment model and represents an increasing financial risk (Serbu 2015; USGAO
United States Goverment Accountability Office 2019). Therefore, properly executing
these projects and developing strategies for mitigating overruns and delays is crucial in
reducing the project backlog.

The consequences of cost overruns and delays are manifest throughout the DoD.
These issues lead to overtasked contracting and construction personnel, alter planned
budgets affecting construction programs, and can even limit the ability to award future
projects (Alleman et al. 2020). Deferring projects can result in delays in mission-essential
readiness, missed requirements, lower morale, and reduced effectiveness (Mills et al.

2017; Roulo 2015). Furthermore, cost and schedule overrun can lead to a need to use



funds from the fixed operations and maintenance budget (Congressional Research
Service 2019).

Identifying the sources of delays and cost overrun in the construction industry has
been an ongoing effort for at least 40 years (Rowland 1981). However, according to most
research, overrun sources vary from region-to-region, owner-to-owner, and project-to-
project, with no single agreed-upon source. One previous study shows that the only
underlying reason for cost overrun is design change (Chang 2002), while another
identifies 73 different causes (Assaf and Al-Hejji 2006). Accordingly, this research
investigates the primary causes of DoD construction project cost overrun and schedule
delay.

Previous studies that analyzed construction performance using contract attributes
have garnered considerable insights into the factors that significantly affect performance
(Al-Momani 2000; Bordat et al. 2004; Lu et al. 2017; Rowland 1981). However, no
studies have used DoD contract information at the scale to which this research attempts,
to the authors’ knowledge. Therefore, this review and analysis of the DoD’s construction
portfolio’s past performance based on contract data could help determine future work’s
optimal execution strategy.

The U.S. government requires funding oversight and tracking for all contracts
greater than $10 thousand. The DoD has used the Federal Procurement Database System
— Next Generation (FPDS-NG) to track construction contracts meeting this requirement,
making it the most relevant and complete contract data source (“Federal Procurement

Data System - Next Generation” n.d.). Accordingly, the DoD could use information from



this database to analyze its entire project portfolio and potentially reduce the occurrences

and magnitude of cost overrun and schedule delay.

Problem Statement

The United States Federal Government has enacted several policy changes
regarding the execution of construction projects and the divestment practices of existing
infrastructure to mitigate the project backlog. The realignment of the National Defense
Strategy and implementation of base realignment and closure attempt to reduce the
amount of infrastructure the DoD must maintain (“Base Realignment and Closure
(BRAC)” n.d.; Serbu 2015). Newer project execution strategies, including enhanced use
leases, public-private-partnerships, and use of condition assessments, have also been
implemented to help curb ongoing maintenance costs (Aragon 2018; “Facilities
Investment & Management” n.d.; Herrera 2019). While these efforts do much to reduce
recurring expenses, funding shortfalls persist (Serbu 2019).

DoD facilities and infrastructure condition directly affect the military’s capability
and mission readiness, with service branches deliberately putting off mission-critical
infrastructure projects because of the inability to fund them (Serbu 2015). Deferring
maintenance to facilities and infrastructure because of budget shortfalls can quickly turn
into a need to restore or modernize those same issues years later. Allowing further
infrastructure degradation through maintenance deferment can ultimately lead to an
increased cost for repairs (Deferred Maintenance: The Cost of Doing Nothing 2016).

Therefore, a means to further mitigate this underfunding is needed.



This thesis seeks to identify construction contracting data attributes that
significantly correlate to a project’s ability to be completed within budget and delivered
on-time. The DoD can avoid those attributes of contract data correlated with a greater
cost overrun and schedule delay frequency or magnitude based on risk tolerance.
Conversely, those correlated with better performance can be implemented on a greater
number of projects to potentially mitigate cost and schedule overrun and further aid in

diminishing the backlog of DoD construction projects and maintaining mission-readiness.

Research Objectives

The DoD can improve their management practices and possibly mitigate the need for
unforeseen funding requests for future construction programming by identifying the
contract attributes positively and negatively correlated with project performance. This
research is expected to support military planners in their ongoing efforts to execute DoD
construction projects more cost-effectively and responsibly utilize DoD funds, which
contribute to maintaining the U.S. as the world’s preeminent fighting force.

Due to the inconclusive nature and scope of current research, this study investigates
sources of schedule and cost overrun within DoD construction project contract data. The

specific research objectives within this project are determining:

1. the sources of cost and schedule overrun for construction contracts using the
attributes contained within FPDS;

2. which execution agents and contract delivery methods are more effective at
staying on budget and schedule;

3. iflocally contracted projects perform better than centrally managed projects;



4. if the contract award date impacts the overall project performance in cost and
schedule metrics; and
5. the likelihood and magnitude of a DoD construction project to experience an
overrun.
This research’s objectives align directly with the priorities outlined in the
National Defense Strategy, specifically “Working with military engineering contracting
communities to develop smarter contracts and executing contracts smartly” (Cronk

2018).



Thesis Organization

The following sections comprise this thesis:

Chapter Two — A literature review of the current body of knowledge that focuses
on cost and schedule overrun. This high-level overview provides information on
common sources of overrun. This chapter also discusses how the categorization of
literature follows techniques used to determine those overrun sources, including
qualitative and quantitative methods. Each section of the chapter concludes by
discussing the gaps within the current research.

Chapter Three — Publication One — “United States Department of Defense (DoD)
Real Property Repair, Alterations, Maintenance, and Construction Project
Contract Data: 2009- 2020.” This publication covers how the contract data were
procured from the Federal Procurement Database System and transformed into a
working DoD construction project database. The publication covers the
compilation of 62 unique attributes for 132,665 projects into a single source,
offering military planners the ability to perform analyses on the DoD’s execution
capability. These data also translate well for the private sector as they closely
mirror work conducted in this area. To the authors’ knowledge, this is the most
extensive open-source data of its kind. This article was published in Elsevier’s
Data-In-Brief journal with a CiteScore of 1.5 (Stout et al. 2020).

Chapter Four — Publication Two — International Journal of Project Management:
“A Two-Stage Statistical Prediction Framework for Predicting Construction Cost
and Schedule Overrun.” This article analyzes the contract data of 79,894 projects
from the past 11 years to determine those contract attributes significantly

6



correlated with a project’s ability to remain within budget and be delivered on-
time. The regression model developed for this analysis is then used in concert
with testing and validation data sets to predict the likelihood of cost overrun and
schedule delay. Additionally, a random forest algorithm is also applied to the data
to categorize the expected magnitude of overrun a project will experience. Project
programmers, planners, and managers alike can use this information to aid them
in identifying projects that are likely to experience overrun. By identifying these
at-risk projects, construction professionals can attempt to mitigate their effects.
This paper has been submitted to the International Journal of Project Management
(2021) for publication.

Chapter Five — Publication Three — The Military Engineer: “Using Construction
Contract Data to Improve Decision Making and Project Performance.” This paper
covers the investigation and outcome of a study conducted to identify the sources
of cost and schedule overrun within DoD construction. Contract data are
compared with performance indicators to determine which attributes increase the
likelihood of overruns and how this information can be used to improve project
planning. In addition, suggestions for the improvements of modeling efforts is
also discussed. This article also serves as the summary and conclusion of the
thesis. This paper has been submitted to The Military Engineer (2021) for
publication in their May-June project delivery issue. Chapter five also includes
those conclusions pertaining to the Air Force and recommendations for future

research.



II. Literature Review

Chapter Introduction

The purpose of this chapter is to provide a summary of the body of knowledge
surrounding cost overrun and schedule delay within construction. This chapter begins by
defining cost overrun and its prevalence within this industry. It then discusses the
findings of literature and those most commonly identified causal factors according to the
methods utilized to include both qualitative and quantitative efforts. A similar format
including predictive measures and mitigation sections are used in outlining the body of
knowledge that currently exists for schedule delay. Finally, the chapter ends with a

summary of the current literature limitations and research opportunities.

Cost Overrun

Cost overrun is a persistent and widespread issue plaguing the construction
industry. Studies report that nearly 50% of all construction projects experience cost
overrun (Ramanathan et al. 2012a) with an average growth of 8-12% (Love et al. 2013;
Odeck 2004a; Turcotte 1996). The additional funds needed to cover construction
overruns are frequently resolved with money earmarked to execute future construction
projects. Planners use a host of other mitigation tactics to combat cost overrun, including
the addition of contingency funds to account for the inherent uncertainty in cost
estimation and unpredictable risks throughout the project (Yehiel 2013). Contingencies
may be effective at securing money for unexpected circumstances; however, they do not

identify or reduce the sources of cost overrun. Many researchers have attempted to



qualify and quantify sources of cost overrun in construction, though the studies’
conclusions mostly do not concur.

Construction project characteristics and external factors frequently lead to cost
overruns. Construction project characteristics include project size (Creedy et al. 2010;
Islam et al. 2019a; Love 2002; Love et al. 2013; Odeck 2004a), project type (Creedy et
al. 2010; Islam et al. 2019a; Love 2002; Love et al. 2013), design issues (Polat et al.
2014), and scope changes (Creedy et al. 2010; Kaliba et al. 2009; Kuprenas and Nasr
2003). External factors that lead to cost overrun include weather (Kaliba et al. 2009),
unforeseen conditions (Alleman et al. 2020), and human influence such as management
practices (Dada 2014; Turcotte 1996) and philosophy and politics (Cantarelli et al. 2010,
2012). The causal factors associated with cost growth not only differ based on project-
specific attributes but can vary between studies based on the differences in focus areas
and levels of analysis (e.g., statistical analysis of surveys vs. regression analysis of
contract data). The literature investigating cost overrun can generally be categorized into
two groups based on the methods employed to determine its cause: (1) qualitative
research, including surveys and group decision making; and (2) quantitative research,
including descriptive statistics and modeling.

Qualitative Research

The first step in most researchers’ analysis of cost overruns is often defining the
scope of the problem through extensive literature review. This review provides
researchers with a foundation to proceed by identifying specific areas of interest. Even if
researchers already have a particular purpose or scope of research regarding cost overrun,

they all use literature to discover where the current body of knowledge stands. From this



point, researchers build theories and form hypotheses on what factors may contribute to
cost overruns. At the lowest level, the analysis may end here, merely offering theories as
justifications to cost overrun and calling for further research (Cantarelli et al. 2010).

These theories often provide the impetus for research, which seeks to identify
causal factors for project cost overrun to apply mitigation tactics. One such approach
involves eliciting expert opinions via surveys and interviews, as experts have firsthand
field knowledge of construction projects and the varying factors that influence project
cost performance. In a first-of-its-kind analysis, Rosenfeld (2014) evaluated 146 studies
and surveyed 200 construction professionals to identify causal factors for cost overrun
that universally applied to all construction projects. Rosenfeld tasked the engineers with
ranking the five most influential factors to cost overrun based on their experiences. The
aggregated opinions revealed premature bid documents, too many changes by the owner,
and suicide bidding (i.e., bidding an unreasonable low amount for the sole purpose of
being awarded the project) as top factors, while strikes, bad weather, regulation changes,
and accidents receiving the fewest votes. While this study's results provide a thorough
synthesis of information on the causes of cost overrun, the author indicates that it still
requires local ranking for applicability and would rely on others' experience and expertise
to implement.

Additional studies that focus on the causes of cost overruns that are region-,
construction-, or even respondent-specific have also provided valuable, albeit conflicting,
information. Polat et al. (2014) reported that design problems were the top factor
contributing to cost overrun in Turkish micro-scaled construction. Unlike Rosenfeld's

results, and when analyzing groups of factors, no one group was significantly more likely

10



to experience cost overrun than another. In another study on road projects in Zambia, 60
Zambian construction workers voted weather as the top factor in cost overrun. Though,
like Rosenfeld, interviewees voted scope changes as the next highest-ranking factor
(Kaliba et al. 2009).

Modified fuzzy group decision analysis (MFGDA), which is similar to surveys, is
another qualitative technique one researcher used to identify and rank the influence of
factors. Islam et al. (2019) used survey data and metadata of the interviewees to weigh
the respective responses. The authors surveyed 60 experts on powerplant construction
using a Likert scale to rank various cost overrun factors from the literature. The results
were then transformed based on the respondents’ position and experience. Unlike
previous studies, Islam et al. (2019) identified government bureaucracy as the most
significant contributor to cost overrun in powerplant construction in Bangladesh. These
varying results identify the issues related to the use of surveys in pinpointing the factors
associated with overrun. It has also been shown that respondents' experiences can
introduce bias and error into research (Kumaraswamy and Chan 1998), further
undermining their results.

Quantitative Research

While qualitative analysis techniques often focus broadly on factors that relate to
cost overrun by extracting summaries from literature reviews and opinions from field
experts through surveys, quantitative analysis techniques review and analyze trends
seeking to answer specific questions using construction project data such as initial and

final cost and the number of modifications. At a fundamental level, researchers may use

11



quantitative analysis to purely describe their project data. They can extrapolate
proportions and percentages as the means of comparison among various categories.

In a study on the relationship between cost overrun and scope creep of 90
projects, Kuprenas and Nasr (2003) determined that the magnitude of creep directly
affected the amount of overrun experienced, especially in the design phase. Other
research conducted by Woo et al. (2017), using the contract data from 513 projects, found
that contractors' poor performance led to the most significant amount of cost escalation
on projects. Turcotte (1996) concluded that design errors were the most significant source
of avoidable cost growth in 102 Florida Department of Transportation projects.

These techniques provide analysts with a first glance and foundation to build their
research efforts, though they fail to provide any statistical significance or confidence
level on their findings. However, access to past and present projects' performance can
provide planners with the attributes that are most frequently associated with overrun as
well as the data necessary to analyze, mitigate, and possibly prevent cost overrun through
discussion of changing management practices or quality control (Turcotte 1996).

When robust construction contract databases are not available, researchers must
carefully use descriptive statistics to relate factors to cost overrun. Without the
accompanying statistical significance, the findings may lack internal or external
reliability and validity. Accordingly, hypothesis testing often includes the difference in
means and one-way analysis of variance (ANOVA) to support their results. In one such
use of these statistical techniques, Love et al. (2013) found that although 276 Australian
construction projects experienced an average of 12% cost overrun; an in-depth statistical

analysis revealed no significant differences in overrun concerning project size or type.

12



Hypothesis testing is also commonly paired with the qualitative component of
surveys to obtain additional insights on those factors affecting cost overrun that may not
be found in contract data, or that may not be readily available for comparison. For
instance, Dada (2014) determined that cordiality among teams played a significant role in
reducing overrun in 274 projects. Additional research by Love (2002) discovered that
51% of overrun could be attributed to rework based on data from 161 respondents, but
that there were no significant differences between procurement method or project type on
the magnitude of cost overrun experienced. Alleman et al. (2020) analyzed change orders
by investigating 162 projects and interviewing 12 owners. The authors concluded that
unforeseen conditions, owner-directed changes, and design errors most commonly led to
cost overrun. However, there appeared to be no difference in mean cost overrun between
several contracting methods (e.g., design-bid-build and design-build).

The conclusions drawn from hypothesis testing may also lead analysts to conduct
subsequent modeling of their data to better understand the causes of, and possibly predict,
overrun. Anastasopoulos et al. ( 2014) used binary probabilistic modeling to identify the
likelihood of a project to experience overrun based on several factors, including planned
duration and cost estimate for 601 Public-Private-Partnerships (PPP). Through the use of
similar methods, Gkritza and Labi (2008) produced a statistically significant model that
calculates the probability of highway projects to experience cost overrun using factors
like project complexity, duration, and initial cost. Touran and Lopez (2006) used Monte
Carlo simulations that predict the likelihood of certain thresholds of cost overrun a
project may experience but require the input of an anticipated level of overrun that will

occur, making it more useful to those with experience in the industry.
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Project managers and owners can better manage the risks associated with cost
overrun if they can determine the scale or magnitude of the overrun a project may
experience. Researchers have accomplished this objective using different methods,
including Multiple Linear Regression (MLR) and machine learning. MLR models have
been utilized to predict the magnitude of cost overrun based on contract characteristics
such as the period of performance and budgeted cost (Anastasopoulos et al. 2014; Gkritza
and Labi 2008). However, comparisons between studies using MLR will often yield
different results on the factors affecting cost overrun. In one case, Creedy et al. (2010)
analyzed contract data from 231 highway projects and concluded that cost overrun was
more due to uncertainty than risk. Jahren and Ashe (1991) used regression and
determined that the difference between the owner’s estimate and awarded contract price
was the most significant cause of cost overrun among 1,561 Navy projects. Still, others
have shown the significance of the contract award date using similar analysis techniques
(Thal et al. 2010).

Processes like supervised machine learning classification techniques offer the
ability to analyze the relationships between variables while allowing the use of data that
may otherwise be unfit for use in MLR. Classification attempts to categorize construction
projects into predetermined cost overrun categories based on some given input
parameters rather than predicting the exact magnitude. These models use past
construction project data to learn trends and to create a model that predicts the category
of cost overrun, with some specified accuracy, on future construction projects. Williams
and Gong (2014) used this process to test the hypothesis that analyzing a project

description through data mining may better predict cost overrun. Their analysis of
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highway construction projects revealed that when a project description contains words
such as “binder” or “sand,” cost overrun is more likely due to the complexities associated
with those projects. To further test this theory, they compared multiple classification
techniques, which predicted cost overrun based on the project description, and
determined that stacked ensembles provided the highest accuracy. Using a stacked
ensemble, they accurately classified 43.27% of projects into the correct cost overrun
category. They further concluded that classification models are better at categorizing
projects with high cost overrun (Williams and Gong 2014).

Though modeling and quantitative analysis are increasingly popular in this
research field, analysts need to give model quality a higher consideration and priority
(van Wee 2007). One series of studies dismisses quantitative analysis as the proper way
to determine factors for cost overrun. As data becomes more available and research
progresses, cost overrun should trend downward. However, cost overrun trends appear to
remain constant, thereby attributing economics, politics, and psychology to the potential
dominant underlying factors (Cantarelli et al. 2010, 2012). As cost overrun continues to
be an ever-present and unfavorable issue afflicting construction, research is still
necessary to rule out those causal factors that significantly impact both the likelihood and
magnitude of overrun. This research should focus on identifying those specific attributes
associated with the cost overrun of DoD construction contract data and provide its
probability and potential magnitude.

The Way Forward

Despite the significant contributions of the aforementioned research studies, there

continues to be a lack of consensus on which factors consistently cause cost overrun.
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Through the direct analysis of more than 79,000 Department of Defense construction
projects, the factors associated with cost overrun, as found in contract data, can be
ascertained. By identifying these factors, projects that are found to be at higher risk for
cost overrun can also be identified. Additional mitigation techniques can be applied to
future projects containing these factors to reduce or possibly prevent cost overrun. By
reducing both the quantity and magnitude of cost overrun, this research adds to those
programs already in place to reduce the nearly $16.8 billion backlog of sustainment

projects currently maintained by the DoD.

Schedule Delay

Schedule delay is a pervasive issue in the construction industry, with as many as
50% of projects experiencing schedule delay (Al-Momani 2000; Assaf and Al-Hejji
2006). Additionally, schedule delays are frequently the source of increased and
unforeseen costs associated with additional overhead incurred on a project (Assaf and Al-
Hejji 2006; Rowland 1981; Semple et al. 1994a). Despite the prevalence of construction
delays, it is difficult to identify the frequency and magnitude of root causes. Studies have
sought to identify the causative factors associated with delays for more than 50 years.
These research studies have utilized (1) qualitative methods, including surveys and
literature reviews; and (2) quantitative methods, including case studies, regression, and
computer modeling. The results of qualitative research provide importance factors or rank
general causes of delay (Faridi and El-Sayegh 2006; Frimpong et al. 2003; Habibi et al.
2018; Kumaraswamy and Chan 1998; Prasad et al. 2018), while quantitative analysis

offers insights into those attributes that result in, or predict the likelihood or magnitude
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of, delay based on information collected from construction project data (Al-Momani
2000; Bhargava et al. 2010; Bordat et al. 2004; Maharjan and Shrestha 2018a; Rowland
1981; Zhang et al. 2019).

Qualitative Research

Questionnaires and surveys identify factors associated with construction delays
(Habibi et al. 2018a). Surveys have contributed a great deal of information regarding the
causes of delays by focusing their efforts on key stakeholders' expertise regarding
specific project types and phases of construction. In doing so, parties involved in projects
can use these results to predict, manage, or even mitigate the potential sources of
schedule delay (Ahmed et al. 2003; Aibinu and Odeyinka 2006; Bhargava et al. 2010;
Habibi et al. 2018a; Larsen et al. 2016a). In their study on the effects of project type on
causes of schedule delay, Prasad et al. (2018) found that the respondents in India
regarded financial issues as a relatively consistent and high-ranking cause of delay. This
is likely due to the projects' locations and the developing nation status associated with the
region. What this paper ultimately determines, however, is that each of the sectors of
construction (transportation, power, building, and water) vary in their rankings of similar
causes of delay.

When considering the different construction phases, few studies have focused on
the engineering phase, which incorporates project planning and design (Yang, J.B. and
Wei 2010). The author identified several engineering phase factors that presented
themselves during the construction phase (Habibi et al. 2018b; Yang, J.B. and Wei 2010).
Construction-related schedule delays were found to occur more frequently though and the

ability to resolve them at this point is much more complicated and typically result in
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disputes between parties (Assaf and Al-Hejji 2006; Prasad et al. 2018; Yang, J.B. and
Wei 2010).

Conclusions from the perceptions of the stakeholders varied significantly, as well.
For example, the lack of project funding was the most significant cause of schedule
delays, according to project managers in Denmark (Larsen et al. 2016a). Based on
contractors' opinion, code-related delays appeared to be the single most significant cause
of delay (Ahmed et al. 2003). Conversely, engineers in Norway concluded that poor
planning and scheduling was ranked highest (Zidane and Andersen 2018). Comparing the
ranking of causes of delay between the different stakeholders of projects within the same
region, Assaf et al. (1995) concluded that there were consistently different results
regarding the causes of delay. This is confirmed in the work of Faridi et al. (2006). They
found that the United Arab Emirates (UAE), Lebanon, and the Kingdom of Saudi Arabia
(KSA) shared only 30% of the identified causes of delay. Conversely, in Nigeria, Aibinu
(2006) notes no statistical difference in ranking between 88% of all identified factors,
which cause 90% of delay.

The differing and sometimes conflicting results of surveys and questionnaires
concerning the causes of delays further highlight the differences in perceptions between
the parties and their ability to agree on matters affecting schedule delay, though. This
could be the result of each parties’ “preconditioned responses” (Kumaraswamy and Chan
1998). In other words, their opinions on the causes of delay are based on their
experiences with the other parties and within their own. If, for instance, a respondent
(contractor) has had consistently worse or more frequent unfavorable dealings with

owners, they would be much more likely to respond that the owner is responsible for
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delays or share those opinions within their organizations. It could also be the result of
certain interdependencies between the causes of delay (Aibinu and Odeyinka 2006).
These interdependencies within construction projects further intertwine and complicate
the schedule and affect both concurrent and downstream activities (Aibinu and Odeyinka
2006; Bankvall et al. 2010). Surveys and questionnaires are also susceptible to attrition or
volunteer bias, leading to the introduction of systematic errors and subsequently affect
the ability to apply the conclusions made to the larger population (Patten 2016). The
issues identified above, therefore, necessitate the use of contractual, unbiased quantitative
data. The information on the causes of schedule delay derived from surveys and
questionnaires has proven useful in developing a deeper and more robust body of
knowledge.

Recent systematic literature reviews on schedule delay have guided researchers
and planners alike by aggregating study findings. Ramanathan (2012) analyzed 41
individual schedule delay studies, each consisting of unique questionnaires for
construction professionals that identified 113 causes. The five most frequently cited
causes of delay were associated with (1) the owner; (2) contractor; (3) design, plant, or
equipment issues; (4) labor; and (5) consultant contractual or relationships. It was noted
in the research, though, that after comparing the rankings between studies that the vastly
different methods of calculating the weighted rankings, as well as the differing scopes
covered by the studies, resulted in a lack of correlation between their respective rankings
(i.e., no significant difference in the causes from the studies). Consequently, the research
uses the top five causes of schedule delay from each study and concludes that the causes

of schedule delay appear to be based on location, country, and project.
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Zidane (2018) and Durdyev (2018) presented similarly ambiguous conclusions.
Zidane identified 33 causes of delay from 105 worldwide projects, whereas Durdyev
found 149 unique causes from 97. Zidane identified a mixture of both design and
construction phase-related causes of delays. Durdyev’s findings were dominated by
construction-related delays, illustrating the difference in causes and the timing that they
can occur. Each of the papers offered unique insights on their findings regarding
construction schedule delays. Lower GDP growth and per-capita earnings were correlated
to the likelihood of the projects within a region to experience delays based on financial
issues (e.g., lack of funding & delayed payments) (Zidane and Andersen 2018). Durdyev
(2018) noted that most studies conducted in the USA focused on uncontrollable delays
like weather, and those within developing nations focused on resource-related factors
such as labor, materials, and finance. Despite these contributions, however, both papers
noted that the literature shows that causes of delays differ from one country to another
and that the causes were country- and project-specific (Durdyev and Hosseini 2018;
Faridi and El-Sayegh 2006; Zidane and Andersen 2018). These studies have proven to be
significant collections of research, and they can serve as the starting point for those
seeking to identify the causes of schedule delay within their area of focus, possibly based
on location or sector of construction using more definitive methods such as statistics,
regression, and machine learning.

Quantitative Research

Quantitative studies that focus on the contractual outcomes, such as comparing
contracted project duration and actual duration, can further narrow the possible causes of

schedule delay. This can be accomplished using contract data and the results from
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literature and surveys to identify potential investigation topics while avoiding some of the
pitfalls associated with surveys (Ramanathan et al. 2012a), whose possibly biased results
could be included in systematic reviews (Durdyev and Hosseini 2018; Habibi et al.
2018b; Ramanathan et al. 2012a). Rowland (1981) analyzed the pre-construction contract
information of 19 Naval Facilities Engineering Command (NAVFAC) projects to provide
information on the factors that most influenced project performance. The data they
considered included award amount, differences between government estimate and
winning bidder, differences between all bids, and project complexity. The authors
determined that the larger a project was, both in terms of cost and duration, the greater
the likelihood that a change order would occur. Additionally, the greater the number of
change orders, the greater the frequency and length of delays that occurred. Shrestha et
al. (2013) reached similar conclusions in their analysis of 363 public works projects. The
authors found that the magnitude of schedule delay increased as both the projects’ initial
size and duration increased.

Al-Momani (2000) reviewed the sources of delays during the construction phase
of 130 publicly funded projects in Jordan. Through the use of this contractual information
and linear regression, he was able to determine that design-related issues, change orders,
weather, site conditions, and late delivery were the leading causes of delays. In a study of
2,668 civil works projects conducted for the Indiana Department of Transportation
(INDOT), Bordat et al. (2004) used ANOVA testing and discovered that the average
delay per contract was 115 days. Through further regression analysis, it was also
determined that the majority of the delays resulted from change orders that stemmed from

issues within the purview of the owner (e.g., errors and omissions in design or quantities)
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and are therefore within their capability to correct. Contract data used in these projects
were able to identify the most frequent sources of delay in these cases. If, however, the
use of contract information is not available, other data has proven useful in determining
the delay sources. In a unique analysis using the judgments of 79 claims from previous
construction projects, change orders, changes in scope, and delayed site handover were
the three most prevalent causes of schedule delays (Yang et al. 2013). These findings
continue to provide evidence that the causes of delays are specific not only to the location
where they are being conducted but also to the type of construction and the parties
involved.

Additional research analyzed the performance of contracting methods, including
design-build, design-bid-build, or Public-Private-Partnerships (P3) and procurement
methods, such as the number of bidders, funding types, and project locations
(Anastasopoulos et al. 2014; Maharjan and Shrestha 2018b; Zhang et al. 2019). Zhang et
al. (Zhang et al. 2019) evaluated the performance of 66 projects greater than $10 million.
The authors discovered that P3 projects experienced significantly less schedule delay
than traditional contracting methods. In fact, the P3 projects finished ahead of schedule,
on average. In a similar study comparing the performance of 100 water infrastructure
projects based on contracting methods, Bogus et al. (2010) determined that design-build
projects experienced less schedule delay than those of design-bid-build. There is also
evidence that the opposite is true, at least concerning large highway infrastructure
projects, in so far as design-build projects had more schedule delay compared to design-

bid-build (Shrestha et al. 2007).

22



Predicting Schedule Delay

Several studies focus on predicting the risk of schedule delays in construction
projects. By identifying the risk potential of a project, mitigation measures such as
refining project scope (Dicks et al. 2017) or adding higher contingencies (Thal et al.
2010) may reduce the severity of schedule delays. A recent study demonstrated that
planners could use a project’s current performance to predict the anticipated magnitude of
schedule delay. Rudeli et al. (2018) processed existing schedule performance from 105
previous construction projects through a clustering analysis using the ongoing Earned
Value Analysis (EVA). The authors used this method to predict final scheduling within
4% of the actual duration. However, in using the EVA as an attribute for analysis,
predictions on schedule performance could only be made during the project's duration,
not before it started.

Commonly identified sources associated with schedule delay found in literature,
such as the owner, contractor, equipment, and external factors, were used in schedule
performance research. By incorporating these factors, Yaseen et al. (2020) achieved a
91.67% accuracy rating to predict the percentage increase in schedule delay using a
hybrid Artificial Neural Network (ANN). The Random Forest — Genetic Algorithm used
the results of questionnaires and a 40 project database to determine whether a project
would experience schedule delays of <50%, 50-100%, or >100%. Son and Lee (2019)
demonstrated the value of text mining critical terms from previous lessons learned
Statements of Work (SOW) in predicting the amount of schedule delay risk for
contractors in the construction of 13 offshore drilling projects. Unlike previous studies,

however, the expected delay was on a continuous scale instead of preset bins. The result
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was an accuracy of 81%; yet, it was only tested on one project. The ability of machine
learning to parse through large amounts of data with limited supervision while potentially
providing novel insights about the relationships between attributes associated with
schedule delay makes it an ideal way to analyze construction contract data.

Mitigating Schedule Delay

In addition to identifying and predicting delays, some studies provide
management or mitigation methods to reduce their frequency and severity on projects.
Kumaraswamy and Chan (1998) investigated the ability of increased productivity to
counteract the delays that plagued projects in Hong Kong. While the authors determined
that productivity was effective at decreasing the required duration of labor in a given
activity, the overall project duration was not reduced due to the inability to increase the
productivity in other areas of the projects. The project's complexity and scale likely affect
the ability to enhance productivity across all trades and tasks. Other mitigation efforts
include implementing the Project Definition Rating Index (PRDI), a method of measuring
and scoring the scope's completeness before the design stage. One recent study of 263 Air
Force military construction projects found projects that used PDRI experience 7.8%
fewer schedule delay (Dicks et al. 2017). Still, more studies focus on the use of
experienced personnel (Abdul-Rahman et al. 2006), more detailed contract language
(Yates and Epstein 2006), and even the use of weather derivatives (Brusset and Bertrand
2018; Connors 2003) to either lessen or prevent the burdens of costs associated with

schedule delay in construction.
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The Way Forward

While previous studies have contributed much to identifying the many causes of
schedule delay, none have used a larger or more diverse data set to the author's
knowledge. Containing more than 79,000 projects and spanning 277 types of
construction, the data set used in this research could provide valuable insight into
variations based on location, size, contract type, execution agent, and award time frame
that research using less robust data sets could miss. Still, fewer studies have used
machine learning techniques on such data sets to identify those causes. And while DoD
specific studies on schedule delay exist, none have focused their efforts on analyzing real
property repair, alterations, maintenance, and construction project contract data —
together forming a significant portion of the DoD’s yearly budget. In doing so,
commonly identified causal factors from literature could be used more effectively to
mitigate the chances of future occurrences of delay by identifying contract attributes most
commonly associated with poor schedule performance. In conjunction with current
congressionally mandated policies, this effort could help further reduce the funding

deficits currently being experienced for facility sustainment throughout the DoD.
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Abstract

Nearly one-half of all construction projects exceed planned costs and schedule,
globally (Ramanathan et al. 2012a). Owners and construction managers can analyze
historical project performance data to inform cost and schedule overrun risk-reduction
strategies. Though, the majority of open-source project datasets are limited by the number
of projects, data dimensionality, and location. A significant global customer of the
construction industry, the Department of Defense (DoD) maintains a vast database of
historical project data that can be used to determine the sources and magnitude of
construction schedule and cost overruns for many continental and international locations.
The selection of data provided by the authors is a subset of the U.S. Federal Procurement
Data System-Next Generation (FPDS-NG), which stores contractual obligations made by
the U.S. Federal Government (“Federal Procurement Data System - Next Generation”
n.d.). The data comprises more than ten fiscal years (1 Oct 2009 — 04 June 2020) of
construction contract attributes that will enable researchers to investigate spatiotemporal
schedule and cost performance by, but not limited to: contract type, construction type,
delivery method, award date, and award value. To the knowledge of the authors, this is

the most extensive open-source dataset of its kind, as it provides access to the contract
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data of 132,662 uniquely identified construction projects totaling $865 billion. Because

the DoD’s facilities and infrastructure construction requirements and use of private

construction firms are congruent with the remainder of the public sector and the private

sector, results obtained from analyses of this dataset may be appropriate for broader

application.
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Defense

Table 3-1 Description of Data

Subject

Engineering (General)

Specific subject area

The data within are 10-plus (9 additional months of 2020 contract
data) fiscal years’ repair, alterations, maintenance, and construction
project contract attributes, that represent an annual multi-billion-
dollar effort by the U.S. Federal Government to ensure the
continued use and functionality of DoD facilities (also known as
‘real property’). These data may be used to better predict costs and
durations in nearly all sectors of construction for the U.S. Federal
Government. Furthermore, the data could be used to provide
quantifiable performance metrics on the ability of the DoD to
execute various project types.

Type of data

Table

How data were
acquired

Data were acquired through the Federal Procurement Data System -
Next Generation (FPDS-NG or FPDS). The FPDS-NG offers public
users access to the spending patterns of the Federal government. The
FPDS houses all contract actions of the Federal Government,
beyond construction. Filters were applied to limit the results to just
construction projects funded by the DoD.
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Data format

Raw

Parameters for data
collection

Access FPDS-NG website and create an ad hoc report filtering the
contract data by:

1. Date Signed

2. Contracting Department Name

3. Product Service or Code

Description of data
collection (600 max
characters)

Government agencies are responsible for collecting and reporting
data on federal procurements through the Federal Procurement Data
System—Next Generation (FPDS-NG). Contracting Officers (COs)
must submit complete reports on all contract actions, as required by
the Federal Acquisition Regulation (FAR) (“Federal Procurement
Data System | GSA” n.d.).

Any contract with an estimated value greater than $10,000 must be
reported using FPDS-NG (“FPDS-NG FAQ” n.d.).

FPDS-NG is the sole location for all contractual and procurement
obligations made by the U.S. Federal Government.

Data source location

Institution: Federal Procurement Data System - Next Generation
(FPDS-NG)

Data accessibility

Repository name: Mendeley Data

Data identification number: DOI: 10.17632/yk4s7pdsvk.1
http://dx.doi.org/10.17632/yk4s7pdsvk.1

Direct URL to data:
https://data.mendeley.com/datasets/yk4s7pdsvk/1

Value of the Data

e These data contain 132,662 construction projects, spanning 10-plus years, and

account for $856 billion in DoD spending. These data are categorically diverse;

they contain many types of projects, including but not limited to, roads, runways,
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administrative facilities, communications work, mechanical renovation, and
demolition.

e Statistical analyses may be performed by researchers participating in construction
auditing, cost estimating, planning, or programming.

e These data may identify trends and relationships in construction contract
information at and between geographic locations, construction sectors, contract
types, contracting agents, project costs, project durations, and modification
frequency.

e Current literature focuses on a comparatively small sample size when empirically
analyzing construction contract data. To the author’s knowledge, this is the most
extensive set of construction contract data from a single source.

e These data can also be used to track historical spending on construction projects
within the U.S. DoD. These data could prove useful in creating forecasting
models on construction cost fluctuations or even be used to calibrate project costs

and schedules based on their type.

Data Description

The data were compiled from the FPDS-NG website using specific querying to
obtain all real property repair, alterations, maintenance, and construction projects
executed by the U.S. DoD from 2009 to 2020. These data represent 132,652 construction
projects for which the U.S. DoD contracted outside entities to complete necessary

maintenance, repairs, alterations, and modernization of U.S. DoD real property.
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These U.S. DoD construction projects range from hangar and runway repairs to
modernization projects for office space. Many of the projects completed on U.S. DoD
installations can also be found in the public or private sectors of the construction
industry.

Funding of U.S. DoD construction projects varies from year to year, much like
other public and private entities. This variability in funding is based on factors outside of
the control of the U.S. DoD and, therefore, requires these expenditures to be on-target
with regard to planned cost and schedule. The effects of deviation from these planned
attributes, for any project, can be far-reaching. Projects exceeding planned cost and
schedule can result in deferred or cancelled facility maintenance, repair or construction
initiatives elsewhere in the DoD’s portfolio, both in the current and future years. To
ensure the capability and mission readiness of the U.S. DoD (of which the U.S. military
is a part), the facilities it operates must be maintained to meet the users’ needs.

To mitigate these deferments, possible project cancellations, and in order to meet
the needs of the facility occupants, these data can be used to identify key factors
associated with cost and schedule deviations. Once isolated, these factors can be used to
mitigate future cost or schedule overruns associated with public and private construction,

as well as U.S. DoD construction projects.

Experimental Design, Material, and Methods
As mentioned previously, the data were pulled from FPDS-NG using several progressive
filters. The filters used are listed below:

1. “Contracting Department Name” showing only “DEPT OF DEFENSE”
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2. “Product Service Code” similar to “Y'1” for “Construction of Structures and
Facilities”

3. “Product Service Code” similar to “Z1” for “Maintenance of Real Property”

4. “Product Service Code” similar to “Z2” for “Repair of Alterations of Real
Property”

5. “Date Signed only show values between” with dates “10/01/XXXX"” and
09/31/XXXX” based on the fiscal year (e.g., 10/01/2017 and 09/31/2018 for fiscal
year 2018)

6. “Treasury Account Symbol Main Account Code” showing only “3400”, “3300”,
“3307”, “3404”, “1205”, “1206”, “1804”, “1805”, “1106”, “1107”, “2020”,
€2022”, 20507, “20517, 31227, “3123”,7'3134”, “3135.”

7. Each Product Service Code was used for every fiscal year while keeping the
Contracting Department Name consistently limited to the Department of Defense.
In doing so, at least three spreadsheets were produced for each fiscal year from
2009 through the first 6 months 2020. The database output was limited to CSV
files containing 30,000 or fewer lines that, in some cases, necessitated the
production of additional files based on a given PCS and fiscal year.

A complete description of each of the elements contained in the data are listed below and
unless otherwise noted found in the FPDS-NG User’s Manual (“GSA Federal
Procurement Data System-Next Generation (FPDS-NG) Data Element Dictionary”

2019):

31



Table 3-2 Description of Attributes in the Dataset

Attribute Name Attribute Description

Contracting Agency The code for the agency of the contracting office that executed or is
ID otherwise responsible for the transaction

Contracting Agency Specific branch within the DoD requesting contract action™**

Name

Contracting Office ID | The agency-supplied code of the contracting office that executes the

transaction

Contracting Office
Name

The agency-supplied name of the contracting office that executes the
transaction.

Country Where
Award was Issued

Location of execution agent™**

Major Command
Name

Major Command of DoD requesting contracting action

Modification Number

An identifier issued by an agency that uniquely identifies one
modification for one contract, agreement, order, etc.

Procurement
Instrument Identifier
(PIID)

The unique identifier for each contract, agreement, or order. In other
words, the individual delivery or task orders (projects)

Referenced IDV PIID

When reporting orders under Indefinite Delivery Vehicles (IDV) such
as a Governmentwide Acquisition Contract (GWAC), Indefinite
Delivery Contract (IDC), Federal Supply Schedule (FSS), Basic
Order Agreement (BOA), or Blanket Purchase Agreement (BPA),
report the Procurement Instrument Identifier (Contract Number or
Agreement Number) of the IDV. For the initial load of a BPA under
an FSS, this is the FSS contract number. Note: BOAs and BPAs are
with industry and not with other Federal Agencies. In other words, the
parent contract ID of an IDV issued that can have multiple delivery or
task orders (PIID) obligated against it.

Referenced IDV Mod
Number

When reporting orders under Indefinite Delivery Vehicles (IDV) such
as a GWAC, IDC, FSS, BOA, or BPA, report the Modification
Number along with Procurement Instrument Identifier (Contract
Number or Agreement Number) of the IDV. For the initial load of a
BPA under an FSS, this is the FSS contract number. Note: BOAs and
BPAs are with industry and not with other Federal Agencies

Transaction Number

Tie Breaker for legal, unique transactions that would otherwise have
the same key

Date Signed

The date that a mutually binding agreement was reached. The date
signed by the Contracting Officer or the Contractor, whichever is
later.

Effective Date

The date that the parties agree will be the starting date for the
contract's requirements. The Effective Date cannot be earlier than the
Signed Date on the base document.
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Completion Date

The [current] completion date of the base contract plus options that
have been exercised

Est. Ultimate
Completion Date

The estimated or scheduled completion date, including the base
contract or order, and all options (if any), whether the options have
been exercised or not

Fiscal Year

The fiscal year of action as determined by 'Date Signed'

Funding Agency ID The agency ID that has provided the preponderance of funding

Funding Agency The agency name that has provided the preponderance of funding

Name (e.g, Dept of the Navy)

Funding Department | The Department or Independent Agency ID to which the 'Funding

1D Agency' belongs

Funding Department | The Department or Independent Agency name to which the 'Funding

Name Agency' belongs (e.g., DoD)

Funding Office ID The code provided by the funding agency that identifies the office or
other organizational entity that provided the funds for this transaction.
If the Funding Agency is DoD, the code must be valid in the DoD
Activity Address Code (DODAAC) table. This is a required field
when DoD has funded the action.

Funding Office Name | The funding office is the office within the federal agency that is
providing the funding for the contract

(Type of IDC) Identifies whether the IDC or Multi-Agency Contract is Indefinite
Delivery/Requirements, Indefinite Delivery/Indefinite Quantity, or
Indefinite Delivery/Definite Quantity. A requirements contract
provides for filling all actual purchase requirements of designated
Government activities for supplies or services during a specified
contract period, with deliveries or performance to be scheduled by
placing orders with the contractor. A Requirements IDC or Multi-
Agency Contract is a contract for all of the agency's requirement for
the supplies or services specified, and effective for the period stated,
in the IDC or Multi-Agency Contract.

Multiple or Single Indicates whether the contract is one of many that resulted from a

Award IDV single solicitation, all of the contracts are for the same or similar

items, and contracting officers are required to compare their
requirements with the offerings under more than one contract or are
required to acquire the requirement competitively among the
awardees
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Multi-year Contract
Code

A multi-year contract means a contract for the purchase of supplies or
services for more than one, but not more than five, program years.
Such contracts are issued under specific congressional authority for
specific programs. A multi-year contract may provide that
performance under the contract during the second and subsequent
years of the contract is contingent upon the appropriation of funds,
and (if it does so provide) may provide for a cancellation payment to
be made to the contractor if appropriations are not made. The key
distinguishing difference between multi-year contracts and multiple
year contracts is that multi-year contracts buy more than one year of
requirement (of a product or service) without establishing and having
to exercise an option for each program year after the first

Type of Contract

The type of contract, as defined in FAR Part 16 that applies to this
procurement. The following apply to all Awards and IDVs:

A - Fixed Price Redetermination

B - Fixed Price Level of Effort

J - Firm Fixed Price

K - Fixed Price with Economic Price Adjustment
L - Fixed Price Incentive

M - Fixed Price Award Fee

R - Cost Plus Award Fee

S - Cost No Fee

T - Cost Sharing

U - Cost Plus Fixed Fee

V - Cost Plus Incentive Fee

Y - Time and Materials

Z - Labor Hours

The following apply to IDVs only:

1 - Order Dependent (IDV allows pricing arrangement to be
determined separately for each order)

The following apply to Awards only:

2 - Combination (Applies to Awards where two or more of the above
apply)

3 - Other (Applies to Awards where none of the above apply)

NAICS Code

The North American Industry Classification System (NAICS) codes
designate major sectors of the economies of Mexico, Canada, and the
United States

NAICS Description

Field providing further information on the description of work in
reference to the 'NAICS Code'

Principal Place of
Performance State
Code

This is the location of the principal plant or place of business where
the items will be produced, supplied from stock, or where the service
will be performed.
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Principal Place of
Performance City
Name

This is the location of the principal plant or place of business where
the items will be produced, supplied from stock, or where the service
will be performed.

Principal Place of
Performance Country
Name

This is the location of the principal plant or place of business where
the items will be produced, supplied from stock, or where the service
will be performed.

Place of Performance
Zip Code

This is the location of the principal plant or place of business where
the items will be produced, supplied from stock, or where the service
will be performed.

Product or Service
Description

A description of the product or service designated by the product code

Product or Service
Code

These codes indicate “WHAT” was bought for each contract action
reported

Description of
Requirement

A brief description of the contract or award

Award or IDV Type

Types of awards:

- Delivery /Task Order Against IDV
- Purchase Order

- Definitive Contract

- BPA Call

- Other Transaction Order*

- Other Transaction Agreement™

Types of IDVs(Indefinite Delivery Vehicles):

- Federal Supply Schedule (FSS)

- Governmentwide Acquisition Contract (GWAC)
- Basic Ordering Agreement (BOA)

- Blanket Purchase Agreement (BPA)

- Indefinite Delivery Contracts (IDC)

- Other Transaction IDV*

* Can only be used by DoD, DHS, and HHS

Reason For
Modification
Description

Reason for modification (change order) which may or may not be
applicable:

A - Additional Work (new agreement, FAR part 6 applies)
B - Supplemental Agreement for work within scope

C - Funding Only Action

D - Change Order

E - Terminate for Default (complete or partial)

F - Terminate for Convenience (complete or partial)

G - Exercise an Option

H - Definitize Letter Contract

J - Novation Agreement
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K - Close Out

L - Definitize Change Order
M - Other Administrative Action

IDV Type

The type of Indefinite Delivery Vehicle being (IDV) loaded by this
transaction. IDV Types include Government-Wide Acquisition
Contract (GWAC), Multi-Agency Contract, Other Indefinite Delivery
Contract (IDC), Federal Supply Schedule (FSS), Basic Ordering
Agreement (BOA), and Blanket Purchase Agreements (BPA)

Extent Competed

A code that represents the competitive nature of the contract:
A - Full and Open Competition

B - Not Available for Competition

C - Not Competed

D - Full and Open Competition after exclusion of sources

E - Follow On to Competed Action

F - Competed under Simplified Acquisitions Program (SAP)
G - Not Competed under SAP

CDO - Competitive Delivery Order

NDO - Non-Competitive Delivery Order

Number of Offers The number of actual offers/bids received in response to the

Received solicitation

Treasury Account Agency Identifier represents the department, agency, or establishment
Symbol Agency of the U.S. Government that is responsible for the Treasury Account
Identifier Symbol.

Treasury Account The U.S. Federal Agency account code for the agency supplying the
Symbol Main preponderance of funding as assigned by the U.S. Treasury **

Account Code

Treasury Account

Identifies a Treasury-defined sub-division of the main account™*

Symbol Sub Account

Code

IDV NAICS Code The NAICS Code of the parent IDV contract**

IDV NAICS The NAICS Description of the parent IDV contract**

Description

IDV Contracting The code for the agency of the contracting office that executed the

Agency ID parent IDV contract™*

IDV Contracting The name of the entity responsible for the initial parent IDV contract

Agency Name action**

IDV Department ID The department ID of the entity responsible for the initial parent IDV
contract action**

IDV Department The department name of the entity responsible for the initial parent

Name IDV contract action. Typically the U.S. DoD or GSA**
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IDV Major Program This field is not required, but you may enter it on all IDVs except for

Code an FSS. This is the agency-determined code for a major program
within the agency. For an Indefinite Delivery Vehicle, this may be the
name of a GWAC (such as ITOPS or COMMITS).

IDV Referenced IDV | The agency code that initially input the parent IDV contract**

Agency Code

IDV Referenced IDV | The Contract Number of the IDV against which the order is placed

PIID

IDV Subcontract Plan | This data element is required for a DCA, Purchase Order, Delivery

Order against a BOA, and Part 13 BPA Call. A Delivery Order
against FSS, GWAC, and IDC will be propagated. Part 8 BPA Call is
Not Applicable. This field indicates whether the contract award
required a Subcontracting Plan. This field is also used to provide
information to the Electronic Subcontracting Reporting System
(eSRS) on awards that have subcontracting plans. Failure to complete
this field accurately impacts vendors’ ability to report subcontracting
achievement to the eSRS. Select the appropriate value from the drop-
down menu. See Data Dictionary Element 11B Use Case for
appropriate data entry requirements.

A - Plan Not Included - No Subcontracting Possibilities
B - Plan Not Required

C - Plan Required - Incentive Not Included

D - Plan Required - Incentive Included

E - Plan Required (Pre 2004)

F - Individual Subcontract Plan

G - Commercial Subcontract Plan

H - DoD Comprehensive Subcontract Plan

IDV Subcontract Plan
Description

A description of the subcontract plan work performed under the
parent IDV contract**

IDV Type of IDC

This data element is required on an IDC and Populates to the
Modification. It is Not Applicable for all other IDVs. This field
identifies whether the IDC or Multi-Agency Contract is Indefinite
Delivery/Requirements, Indefinite Delivery/Indefinite Quantity, or
Indefinite Delivery/Definite Quantity (FAR 16.5). An entry is
required for civilian agency and DoD IDCs. Values are listed below:

A - Indefinite Delivery / Requirements
B - Indefinite Delivery / Indefinite Quantity
C - Indefinite Delivery / Definite Quantity

IDV Type of IDC
Description

The type of Indefinite Delivery Contract Descriptions of the parent
IDV contract**
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IDV Who Can Use

This data element is required on all IDVs and is Not Applicable for
Modifications. This field designates agencies that may place orders
against this indefinite delivery vehicle. For the initial award of an
IDV, select one of the following:

— Only My Agency — Only the agency awarding the contract may
place orders.

— All Agencies — All Federal Government agencies may place orders
against the contract.

— Defense — Only Department of Defense agencies may place orders
against the contract.

— Civilian — Only civilian agencies may place orders against the
contract.

— Other — Provide a text statement of which agencies may place
orders against the contract.

IDV Who Can Use
Description

The description of the Who Can Use field:

— Only the agency awarding the contract may place orders.

— All Federal Government agencies may place orders against the
contract.

— Only Department of Defense agencies may place orders against the
contract.

— Only civilian agencies may place orders against the contract.

— Provide a text statement of which agencies may place orders against
the contract.

Base and Exercised

The contract value for the base contract and any options that have

Options Value been exercised
Action Obligation The amount that is obligated or de-obligated by this transaction
Base and All Options | Required for all Awards and Modifications except for a BPA Call. It

Value (Total Contract
Value)

is not required for a Change or Delete/Void. It is the mutually agreed
upon total contract or order value including all options (if any). For
modifications, this is the change (positive or negative, if any) in the
mutually agreed upon total contract value.

** Indicates that the attribute definition was not provided by the FPDS-NG user's manual or
wiki, but was provided based on the insight of contracting officers.
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IV. A Two-Stage Statistical Prediction Framework for Predicting Construction
Cost and Schedule Overrun
Tyler S. Stout; Adam B. Teston;
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Submitted for Publication in the International Journal of Project Management (2021)

Abstract

Cost and schedule overrun impact over 50% of all construction projects and create
various cascading effects. Overrun diminish funding for concurrent projects, deplete
operational budgets, causing deferred infrastructure maintenance, and impair future
project award ability. Though existing research identifies sources of overrun, models are
overfitting or too narrowly focused for broad application. This research analyzes 79,894
US Department of Defense (DoD) projects and uses stepwise logistic regression to
determine which of 62 contract attributes are most skillful in determining, categorically,
whether a project will experience cost or schedule overrun. A second, random forest
categorization framework is used to determine the magnitude of project overruns. The
most skillful models explain 65% of cost and 75% of schedule overrun. This research is
expected to support public and private sector planners in the cost-efficient execution of
construction projects and aid in reducing the DoD’s $116 billion project backlog.
Keywords

Cost overrun, Schedule Delay, Construction, Contract Data, Department of Defense
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Introduction

More than half of all construction projects exceed their target budget or schedule
(Assaf and Al-Hejji 2006; Habibi and Kermanshachi 2018; Ramanathan et al. 2012b)
Publicly funded projects are no exception (Bordat et al. 2004; Shane et al. 2009). Among
their many consequences, cost and schedule overrun’s impact on funding for future
construction is especially severe. Public organizations like the United States Federal
Government, state, and local municipalities must adhere to their approved budgets to
remain fiscally accountable and financially solvent. However, the need for infrastructure
construction, repair, and modernization often exceeds those budgets. In these cases,
prioritization and, often, deferment are the only available solutions (ASCE 2016).
Consequently, overruns can further postpone much-needed work.

Despite significant spending on infrastructure and facilities by local, state, and
federal governments, the backlog of projects continues to rise. Currently, it represents an
unfunded gap of $2.1 trillion within the US alone (Deloitte 2009). This backlog of
transportation, utility, environment, and facilities projects (Deloitte 2017; Oberhelman
2015) comes at the cost of continuously deteriorating infrastructure with a high risk of
failure (ASCE 2016). Research indicates that infrastructure’s health is directly related to
the economy’s performance and quality of life for citizens (Clarke 2014; Fischer and
Amekudzi 2011). Given the rigidity of the budget and the urgency of the need for
infrastructure improvements, mitigation of cost and schedule overrun is essential. Though
construction technology and management practices continue to be revised and improved

based on past experiences, cost and schedule overrun persist (Flyvbjerg et al. 2003;
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Katseff et al. 2020). Therefore, avoiding those common sources of cost and schedule
overrun is a critical yet tangible means to execute projects more effectively.

The US Department of Defense (DoD) provides an excellent case study, as it
executes a large construction budget and holds a $116B backlog in construction
requirements (Cronk 2018). This backlog results in a lack of mission-essential readiness,
missed requirements, lower morale, and reduced effectiveness (Knopman et al. 2017;
Roulo 2015). DoD projects are not immune from overrun, with more than 48% of
projects sampled experiencing it, exacerbating the backlog. Furthermore, cost and
schedule overrun on construction projects can drive borrowing from fixed operations and
maintenance budgets (Congressional Research Service 2019), which is already
underfunded (Serbu 2019; USGAO United States Goverment Accountability Office
2019).

The sources of overrun in the construction industry have been studied for at least
35 years (Durdyev and Hosseini 2018). However, overrun sources vary from region-to-
region, owner-to-owner, and project-to-project. One previous study shows that the only
underlying reason for overruns is design change (Chang 2002), while another found 73
different causes identifying incorrect award duration as the most significant contributor to
overrun (Assaf et al. 1995). Literature surrounding overruns is discussed more fully in the
next section. Previous studies that analyzed construction performance using contract
attributes have garnered significant insights into the factors that greatly affect
performance (Al-Momani 2000; Bordat et al. 2004; Rowland 1981; Zhang et al. 2019),

but are limited in terms of scope, projects evaluated, or spatiotemporal variety.
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This research presents the most extensive investigation of construction contract
data on record, to the authors’ knowledge. 79,894 DoD construction projects spanning
ten years are analyzed to determine the primary causes of project cost and schedule
overrun. The size of this data set also increases the meaningfulness of the statistical
relationships found. Additionally, a two-stage statistical approach for determining both
the likelihood and magnitude of cost and schedule overruns are explored. First, a
stepwise logistic regression model is employed to predict the likelihood that a project will
experience overrun. Then, a Random Forest Classification (RFC) algorithm is applied to
determine the extent to which a project will experience overrun. These efforts will enable
project managers and planners to implement mitigation techniques and methods to curb
overrun’s effects based on their own risk tolerance. While this analysis uses DoD’s
construction portfolio’s past performance based on contract data, which could directly
help the DoD mitigate overruns (Darren et al. 2009; Dicks et al. 2017; Rosner et al.
2009), the similarities between public and private projects suggest that the results are

likely more-broadly applicable.

Background/Literature Review

The causal factors associated with cost and schedule overrun varied significantly
between previous studies based on the size and composition of projects contained in their
datasets. Consequently, there exists a myriad of different causes correlated with overrun,
which, according to the same research, tended to be project-, location-, or owner-specific.
The literature investigating overruns can generally be categorized into two groups based

on the methods employed to determine its cause: (1) qualitative research, including
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surveys and group decision making; and (2) quantitative research, including descriptive
statistics and modeling.

Qualitative Research - Cost Overrun

Surveys of experts with firsthand knowledge of construction projects have proven
useful in identifying causes of overrun such as construction project characteristics,
including project size and type (Islam et al. 2019b), design issues (Polat et al. 2014), and
scope changes (Kaliba et al. 2009). This method has also been used to identify exogenous
factors leading to cost overrun, including weather (Kaliba et al. 2009) and optimism bias
and political deceit, e.g., pressing for projects for personal gain (Cantarelli et al. 2010,
2012). Research studies using surveys tend to have a project-, region-, or respondent-
specific focus on overruns, limiting how they can generalize to all projects. Furthermore,
this method can introduce unintended biases in the results, such as party-specific
perceptions (Kumaraswamy and Chan 1995) or volunteerism (Patten 2016). However,
surveys have been used to identify generic root causes for overrun, which are applicable
to all projects (Rosenfeld 2014).

Quantitative Research - Cost Overrun

While qualitative analysis techniques are broadly focused and can identify factors
related to cost overrun, quantitative analysis techniques identify specific relationships and
their strengths using construction project data. Construction contract data has been used
to show how team cordiality (Dada 2014), the use of lowest bid price (Woo et al. 2017),
and contract type (Anastasopoulos et al. 2014) affect project performance. Similar to
research using surveys, these types of studies also tend to use contract data from projects

that are of a specific kind (Alleman et al. 2020; Anastasopoulos et al. 2014; Kuprenas and
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Nasr 2003; Turcotte 1996), location (Kuprenas and Nasr 2003; Turcotte 1996) or similar
execution method (Kuprenas and Nasr 2003). In a broader study of project types, Love et
al. (2013) reviewed 276 different projects spanning all of Australia, ultimately
concluding that neither project size nor type had any significant impact on cost overrun.
In previous research, Love et al. (2002) found that the procurement method did not affect
overrun either. The findings from these types of work have proven invaluable in
expanding the body of knowledge from which more in-depth analysis is performed.

The use of contract data has also enabled researchers to identify the degree to
which project attributes explain variability in project performance and measure the
expected magnitude of cost overrun. Statistical regression-based models are most
commonly used to establish the aforementioned relationships and create forecast models
(Creedy et al. 2010; Gkritza and Labi 2008; Odeck 2004b; Thal et al. 2010). In research
conducted by Thal et al. (2010), there is an apparent implication that cost overruns are an
inevitable part of construction and, as such, focused their efforts on the ability to
accurately account for contingencies as a means to prevent unforeseen spending. Again,
noting the uncertainty associated with construction projects, Touran and Lopez (2006),
asserted that escalation, including inflation, taxes, market conditions, and interest rate,
should be accounted for as it is a significant overrun source in projects with multi-year
durations. However, other research attempts to identify the causes of overrun to help
mitigate cost overruns on future projects instead of merely accounting for them. Odeck
(2004), found that of 620 Norwegian roadway projects, lower cost projects experienced
10.62% more cost overrun than larger projects, which, on average, ended up coming in

below budget.
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Further confirming these results, Creedy et al. (2010) found that for 231
Queensland, Australia highway projects, the amount of overrun incurred reduced as the
project cost increased. They also noted that the work’s geographic location did not impact
overrun costs. The differential in cost between the owner’s estimate and bid price has
also proved useful in modeling cost overruns. In a study of 1,576 navy projects, Jahren
and Ashe (1991) found that as the difference between the estimate and bid increased, so
did overruns. Contract schedule information has also proved useful, as demonstrated by
Gkritza and Labi (2008). As the programmed duration increased, so did the likelihood
and magnitude of cost overruns within 1,957 Indiana highway projects. They also found
that a project’s complexity and initial cost were positively correlated with increased
overrun. In general, modeling efforts have revealed that significant insights into cost
overruns can be gained by analyzing contract attributes. By using these results to modify
future project execution strategies, overruns can be mitigated. There is, however, an
apparent lack of agreement in research as to which attributes of a project are indicators of
overrun, which could be attributed to a lack of scale or diversity in datasets used.

Qualitative Research - Schedule Overrun

Schedule overruns are frequently the source of increased and unforeseen costs
associated with additional overhead incurred on a project (Assaf and Al-Hejji 2006;
Rowland 1981; Semple et al. 1994b). Accordingly, researchers have utilized surveys to
identify the causes of schedule overruns. Causes include unforeseen site conditions
(Kumaraswamy and Chan 1998), code issues (Ahmed et al. 2003), owner changes (Assaf
and Al-Hejji 2006; Marzouk et al. 2008; Yang, J.B. and Wei 2010), and financial

difficulties (Aibinu and Odeyinka 2006; Assaf et al. 1995; Frimpong et al. 2003; Larsen
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et al. 2016b; Prasad et al. 2018). Much like that of cost overrun, these studies are
frequently project-, region-, or respondent-specific, limiting their capability for broader
application across the industry. However, literature reviews of schedule overruns have
synthesized hundreds of papers in attempts to provide universally applicable overruns,
which provide valuable information and ideas on where industry can start their mitigation
efforts (Durdyev and Hosseini 2018; Habibi et al. 2018b; Zidane and Andersen 2018).

Quantitative Research - Schedule Overrun

Quantitative studies that focus on the contractual outcomes, such as comparing
contracted project duration and actual duration, can further narrow the possible causes of
schedule overrun. Research using these methods has identified several factors, including
delivery method (Bogus et al. 2010; Cheng 2014; Zhang et al. 2019), initial cost
(Rowland 1981), initial duration (Maharjan and Shrestha 2018a), and contract type
(Cheng 2014). A study on 100 different water infrastructure projects determined that the
magnitude of schedule overrun was affected by choice of delivery methods and payment
structures (Bogus et al. 2010). Similarly, Zhang (2019) found that the Public-Private-
Partnership delivery method reduced overruns by four months on average in Western
Canada. In research conducted by Rowland (1981), schedule overrun increased as the
difference between the programmed cost and awarded cost increased and when the
difference between high and low bidders increased. However, Rowland also determined
that projects would experience a more significant overrun if the bids were very close
together, which is likely due to a small sample of only 20 projects. A larger initial or
programmed duration is also shown to increase schedule overrun (Maharjan and Shrestha

2018a). In a study that uses both public and private projects, Chen et al. (2016) concluded
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that contract type and owner were affected by the amount of overrun. The statistical
methods used here equips owners with additional information that may be used to
mitigate schedule overrun further or be analyzed further to estimate the likelihood or
magnitude of overrun.

Statistical regression is commonly used to estimate the expected amount of
project schedule overrun. Al-Momani was able to estimate the duration of various
projects using linear regression, explaining more than 60% of the variation in time using
only the programmed duration, but noted that additional factors like contractor
performance could influence the number of overruns experienced. Bordat et al. (2004)
found that schedule overrun among 2,668 INDOT projects was significantly correlated
with project type (e.g., bridge, resurfacing, maintenance), the proportion of inclement
weather days, programmed duration, and project cost. The importance of the information
contained within the database was also evidenced by the ability to assign responsibility
for most overruns to the owner (Bordat et al. 2004). Using multiple linear regression,
Maharjan (2018) found that among 129 Texas Department of Transportation projects, the
number of bidders and difference between the award and estimated costs were
statistically significant. As the number of bidders and difference increased, so did the
estimated schedule overrun (Maharjan and Shrestha 2018a). In a study on the
interdependencies of cost and schedule overrun, Bhargava et al. (Bhargava et al. 2010)
found that, for all but one type of project, as programmed duration increased, the estimate
for schedule overrun decreased. The study concludes that the number of attributes
accounts for only 40% of the variation and is thus not comprehensive. It can be

summarized that the insight provided by contract data through regression has been
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significant, albeit primarily focused on a specific type of project within a relatively small
geographic area.

Despite these studies’ significant contributions, few have focused on predicting a
project’s likelihood to experience cost or schedule overrun using attributes from contract
data. Even fewer studies have used DoD projects as the basis for analysis despite the
similarities between them and the industry as a whole. The scale and diversity of data
used in this study also solve another of the limitations highlighted above by providing an
unprecedented look at contract information and performance from a construction
portfolio that spans hundreds of project types, more than ten years, and a large
geographic area. Therefore, this study should produce more definitive and broadly

applicable results.

Data Characterization

The data used in this study was obtained from Stout et al. (2020) that spans
132,662 DoD construction projects with 62 contract attributes per-project, covering over
10 fiscal years, and accounting for over $856 billion in funding. A subset of this data was
used to study factors associated with cost and schedule overrun. For this research, cost
and schedule overrun are defined as any positive deviation, as a percentage, from the

original programmed or award amount. These overruns are calculated using Equations (1)

and (2):
Percent Cost Overrun = (Final Z‘:VS;:Z;T COSt) X 100% (1)
Final Duration — Award Duration Q)
Percent Schedule Overrun = ( - ) X 100%
Award Duration
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As overruns are calculated by the percent change from the award value, projects
with an award cost of $0 or duration of 0 days were removed, as a percent change in
cost/schedule cannot be executed with a zero value. Moreover, according to Federal
Acquisition Regulations (FAR), which police government procurement, projects cannot
be awarded with either of these conditions and are therefore considered erroneous. The
remaining dataset, which was the subset used for analysis, contains 79,894 projects.
Additionally, attributes that uniquely identified a project or any of its characteristics were
removed as these would not add value to the analysis given the methods used. Finally,
where redundancy among attributes existed (e.g., contracting agent name v. contracting
agent office), all but a single instance was removed. This work resulted in the retention of
36 attributes.

The final dataset contains construction, maintenance, restoration, and
modernization projects across the DoD to include the military branches: Air Force (AF),
Army, and Navy, which also includes the Marine Corps. Each branch has unique policies,
regulations, structures, and missions, and to investigate whether overruns are subject to
institutional differences, each branch was subset. Table 4-1 below provides a breakdown
of data in each of these subsets, including the historical cost and schedule overrun

occurrences (i.e., the percentage of projects that experienced overrun).

Table 4-1 Data breakdown by military branch subset: Number of projects, historical cost
overrun occurrence, and historical schedule overrun occurrence.

Total Air Force Army Navy
Projects 79,894 21,554 29,541 23,966
Cost Overrun 43.49% 50.00% 47.40% 29.27%
Schedule Overrun 35.13% 43.40% 36.99% 24.31%
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There are many ways to visualize and characterize this dataset due to its breadth
and depth. Accordingly, this section explores various breakdowns of the data to enrich
the understanding of patterns and trends. A project may be awarded any month within the
fiscal year, though as Figure 4-1 visualizes, over 38% of projects are awarded in
September, the last month of the fiscal year. Furthermore, this figure shows that as the
fiscal year progresses, more projects are awarded each month. This spending pattern
likely comes as a direct result of DoD financial policy (i.e., use or lose), in which the
funds set for the fiscal year must be spent prior to its end or risk losing the remaining

funds next year.

03'5 40%
S
= 0,
>
0
J 30%
-éi 2.5
o 25%
(=9 2
= 20%
5 1.5
.g 15%
= 1
z 10%
TR I I .
, = = 1 0 § 0%
O N D ] F M A M ] ] A S

Award Month (Ordered by Fiscal Year)

Figure 4-1 Number of DoD construction projects awarded by month from fiscal year
2010 through fiscal year 2020.

Building on the breakdown by award month, Figure 4-2 visualizes the trends of

cost and schedule overrun occurrence by the month of award, with September
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experiencing the highest rates. Though, it is worth noting cost overrun always exceeds

schedule overrun.
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Figure 4-2 Historical trend of cost and schedule overrun occurrence by project award
month.

Cost overrun rate by award duration (i.e., project length) is another way to inspect
data trends. Figure 4-3 visually summarizes the cost overrun rate for projects with an
award duration of less than one month through projects programmed as longer than a
year. Historically, as the duration increases, the percent of projects that experience cost
overrun also increases. This result is expected because longer projects are typically more
complex, and those exposed to environmental factors (e.g., precipitation and temperature)

are more likely to experience a greater number of weather-related delay events.
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Figure 4-3 Historical trend of cost overrun occurrence by project award duration. The
number of projects awarded by month and overrun category is also annotated by the
number within each column.

Methodology

While many studies use surveys (Assaf and Al-Hejji 2006; Ramanathan et al.
2012a; Yehiel 2013) and statistical analysis such as ANOVA (Love et al. 2013; Senouci
et al. 2016; Thal et al. 2010) and multiple linear regression (El-Maaty et al. 2017; Jahren
1991; Maharjan and Shrestha 2018a) to identify contract/project attributes correlated with
overrun, this research uses logistic regression and RFC to help predict the likelihood and
magnitude of overruns, respectively, while also identifying significant attributes. While
the intended application is running both processes in series, feeding projects classified as
experiencing overrun from the likelihood model into the RFC to obtain a magnitude

prediction, these processes are run independently to calibrate the models most accurately
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without introducing additional noise. This two-fold ideological approach to analysis
explores a novel application of both methods.

Figure 4-4 depicts the process of data entering each model and outputting results.
It is to note, a 70:30 split is used to train the models on a random 70% of data and to test
the models on the remaining 30%. This is a common practice in data analytics (Coleman
et al. 2020; Liu and Cocea 2017; Yang 2020). The resulting methodology is intended to
be applicable for any construction entity; however, this research and resulting models

have been tailored to the DoD and each military branch.

DoD Projects

Air Force Losistic Binary
Army —> gistt —> Likelihood
Regression ..
Navy Prediction
Prol_ects Random Forest Magnitude
with —> i A
Classification Classification
Overrun

Figure 4-4 Ideological methodical approach. Two main methods were utilized: 1)
Logistic Regression to determine cost and/or schedule overrun likelihood and 2) Random
Forest Classification to determine magnitude of overrun.

Logistic Regression

Logistic regression is like multiple linear regression in that multiple variables are
combined to predict some dependent outcome; however, in logistic regression, the
dependent outcome is binary. Logistic regression has been extensively used in medical

research for more than 20 years because of the dichotomous nature of the outcome (i.e.,
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Yes/No) and its robustness regarding deviation from normality, with prediction
applications varying from diagnosis to reaction susceptibility (Bender and Grouven
1997). More recently, it has also been successfully applied within construction research
to determine influential factors in project cost (Lu et al. 2017), project management
factors affecting delay (Nguyen 2020), and critical success factors of contractors
(Alzahrani and Emsley 2013). Accordingly, this model is used to predict the binary
outcome of overrun experienced by a project (1 = overrun predicted; 0 = no overrun

predicted). Logistic regression can be simplified in Equation (3):

Y
LOg [m] = bo + b1X1+. . ann

The left-hand side of the equation, or logit, is the log of the ratio of success
probability to failure probability, where Y is the probability of success. The right-hand
side is a combination of variables (X,,) with their associated beta weights ( b,,) and
addition of the intercept by. The independent variables (X,,) on the equation’s right-hand
side are combinations of seven categories (Contracting Offices, Funding Offices,
Procurement data, Climate Zones, Award Type, Project Type, and Award Type). The
combinations of contract attributes create a model that outputs probabilities between 0
and 1, and a set threshold determines if the model predicts a project as experiencing
overrun or not. The following eight models were created using various combinations of
variables: Cost overrun (DoD, Air Force, Army, and Navy) and Schedule overrun (DoD,
Air Force, Army, and Navy). Before analysis, the attribute categories were converted to

flag variables, and the numeric attributes were normalized using min-max normalization.
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See Table 4-2 for all the tested attributes and their associated type, category, and

explanation.

Table 4-2 Contract attributes used for analysis with their associated type, category, and
a brief explanation of what the attribute represents within the data.

Attribute Type Category Explanation

C_AFCEC Factor Contracting Office  Contract executed by the Air Force Civil Engineer Center

C_USACE Factor Contracting Office  Contract executed by the U.S. Army Corps of Engineers

C_NAVFAC Factor Contracting Office  Contract executed by the Naval Facilities Engineering Systems Command

C_Base Factor Contracting Office  Contract executed by a squadron/unit on the installation (not outsourced)

C_Other Factor Contracting Office  Contract executed by an entity not represented above

F_AFCEC Factor Funding Office Funding provided by the Air Force Civil Engineer Center

F_USACE Factor Funding Office Funding provided by the U.S. Army Corps of Engineers

F_NAVFAC Factor Funding Office Funding provided by the Naval Facilities Engineering Systems Command

F_Base Factor Funding Office Funding provided by a squadron/unit on the installation (not outsourced)

F_Other Factor Funding Office Funding provided by an entity not represented above

September Factor Procurement Data Contract awarded in the month of September, the end of the fiscal year

mmlInitialCost Numeric Procurement Data The programmed cost of the project, normalized

mmlinitialDuration =~ Numeric Procurement Data The programmed duration of the project, normalized

mmNumberofOffers Numeric Procurement Data The number of offers/bids a project receives from contractors, normalized

CZonel Factor Climate Zone Climate Zone 1 from the International Energy Conservation Code (IECC)

CZone2 Factor Climate Zone Climate Zone 2 from the IECC

CZone3 Factor Climate Zone Climate Zone 3 from the IECC

CZone4 Factor Climate Zone Climate Zone 4 from the IECC

CZone5 Factor Climate Zone Climate Zone 5 from the IECC

CZone6 Factor Climate Zone Climate Zone 6 from the IECC

CZone7 Factor Climate Zone Climate Zone 7 from the IECC

CZone8 Factor Climate Zone Climate Zone 8 from the IECC

Competed Factor Procurement Data There was competitive solicitation of contractors for the project

Y1 Factor Project Type Y1 Product or Service Code--Construction of Structures and Facilities

71 Factor Project Type Z1 Product or Service Code--Maintenance of Structures and Facilities

72 Factor Project Type Z2 Product or Service Code--Repair or Alteration of Structures and Facilities

MILCON Factor Contract Type The final approval authority is Congress

FirmFixed Factor Contract Type Contract is any variation of a Firm Fixed contract

Cost Factor Contract Type Contract is any variation of a Cost-Plus contract

DefinitiveContract =~ Factor =~ Award Type Project awarded as a definitive contract

DeliveryOrder Factor =~ Award Type Contract for property that does not procure/specify a firm quantity of property

PurchaseOrder Factor =~ Award Type Purchase orders represent single business transactions

Construction Factor Project Type Proje.cF is c.lassified as Construction under North American Industry
Classification (NAICS)

Manufacturing Factor Project Type Project is classified as Manufacturing under NAICS

Admin Services Factor Project Type Project is classified as Admin and Services under NAICS

Vertical Factor Project Type Project consists of Vertical Construction, based on NAICS classification
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Since there are many variable combinations, forward stepwise regression was
used to determine which factors were significant and which combination of factors

produced optimal model performance. This process is depicted in Figure 4-5.
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Figure 4-5 Stepwise logistic regression process: Variable selection and accuracy
determination.
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Since the logistic regression output is a number between 0 and 1, the threshold
value was set to 0.5, which aligns with current literature that nearly half of projects
experience cost and schedule overrun. If a project received a probability of 0.5 or greater,
it received a predicted classification or experience overrun; otherwise, it was classified as
not experiencing overrun. The whole process was iterated until the solution converged.

Logistic Regression: Model and Results Validation

A visual inspection of the receiver operating characteristic (ROC) curves is the
first step in validating model effectiveness for predicting cost and schedule overrun
likelihood. These curves output a true positive and false positive value for every possible
classification threshold. The shape of the curves indicates performance ability; if the
model curve lies above the no information rate (NIR) curve, the model performs better
than the NIR. Likewise, if the model curve mimics or lies below the NIR, the model

performs as good or worse than the NIR. The NIR is calculated using Equation (4).

# of Projects in Category with Largest Sample Size 4

NIR =
Total # of Projects in Sample

The next step in model validation is a numeric assessment of model performance.
In this analysis, performance is measured in three ways: classification accuracy,

sensitivity, and specificity. Equations (5), (6), and (7) below describe these measures.

# of Projects Classified Correctly 5)
Total # of Projects in Sample

Classification Accuracy =
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# of Projects with No Overrun Classified Correctly (6)

Sensitivity =
enstivity Total # of Projects in Sample

# of Projects with Overrun Classified Correctly 7

Specificity =
pectficity Total # of Projects in Sample

The accuracy indicates if the model performs better or worse in overall
classification than the NIR. If the accuracy is greater than the NIR, the model has better
performance. While accuracy is a good summary statistic, the sensitivity and specificity
reveal the skew in the model to classify one category better than another.

Random Forest Classification

Random forest classification is used to predict the magnitude of overrun on the
projects that experience cost or schedule overrun. Of the 79,894 projects, 34,664 projects
experience cost overrun, and 28,067 projects experience schedule overrun. RFC is a
supervised machine learning algorithm that introduces randomness to the normal decision
tree classification process. It randomly combines multiple variables at tree splits and
compares various iterations to determine an overall accuracy. This method was chosen
for its ability to classify or categorize data based on the use of various input variable
types, including ordinal, continuous, and interval. RFC has been successfully applied in
construction research regarding the strength of materials (Han et al. 2019), construction
site safety risks (Poh et al. 2018), and predicting the level of delay from common sources
of delay as seen on-site (Yaseen et al. 2020). Accordingly, this research employs RFC to

predict the magnitude of overruns using contract data.
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For this analysis, 2 to 7 variables were combined at each split, comparing 100-500
trees. The combination with the highest accuracy was considered the best model. Many
variations of RFC models were tested to determine the best classification method and the
ability for the models to predict within different subsets of data. Table 4-3 describes the
classification method used for every model on the various data subsets.

Table 4-3 Models used in random forest classification to classify magnitude of cost and
schedule overruns.

Data Subset Description Model # Classification Method

C: All Projects with Cost Overrun 1C& 1S 3 K-Means Clusters

S: All Projects with Schedule Overrun 2C&?2S 3 Equally Proportioned (EP) Categories
3C &3S 3 K-Means Clusters with Grouping

Clusters

4C & 4S 3 EP Categories with Grouping Clusters
5C&5S 2 Categories (<100% & >100%)

C: Projects with <= 100% Cost Overrun 6C & 6S 3 K-Means Clusters

S: Projects with < 64% Schedule Overrun  7C& 7S 4 K-Means Clusters
8C & 8S 3 EP Categories
9C & 9S 4 EP Categories

C: Projects with > 100% Cost Overrun 10C& 10S 3 K-Means Clusters

S: Projects with > 64% Schedule Overrun  11C&11S 4 K-Means Clusters

12C& 12S 3 EP Categories

13C& 135S 3 EP Categories
Note: Each model has a “C” or “S” next to the number to indicate if the model was tailored to cost
or schedule overrun, respectively.

Four model variations were used: (1) K-Means clustering to determine the
overrun clusters ranges for classification; (2) K-Means to cluster the data, excluding the
overrun amount, into multiple categories and used those category values as attributes in
the classification process; (3) equally proportioned (EP) categories (i.e., all three of four

categories had an even number of projects); and (4) a combination of each of these.
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Results

The results are organized to reflect the order of the methodology. First, the
variable selection outcomes of all eight cost and schedule overrun logistic regression
models are addressed. Next, the accuracies and performance of each model are presented
and compared. Lastly, the performance of the random forest classification models is
summarized.

Logistic Regression: Significant Variables

The forward stepwise logistic regression process served multiple purposes for this
analysis. It was used to identify significant attributes, optimize model performance
through various attribute combinations, output attribute influence (positive/negative) and
magnitude, and evaluate the overall effectiveness of contract attributes prediction
capability in cost and schedule overrun likelihood. Figure 4-6 provides a summary of the
most influential attributes, which were significant in at least five of the eight models.

Each column in this table represents each model.

Cost Overrun Models Schedule Overrun Models
Attributes DoD AF  Army Navy
Intercept
C_USACE
C_Base
F_Base
September

DoD AF Arm; Nai*
mmlnitialDuration
Y1
Z1
MILCON
DefinitiveContract
DeliveryOrder

PurchaseOrder
Note: * indicates model was not significant at the 95% confidence level

Figure 4-6 Summary of the direction and magnitude of the most influential attributes for
all eight likelihood models, based on the attribute logistic regression coefficient values.
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Each column represents the top attributes of the respective models. This color chart uses
green to represent an increase in overrun probability, red to represent a decrease in
overrun probability, and black to indicate an insignificant attribute. Lighter colors
represent attributes with lower influence, whereas darker colors represent those
attributes with higher influence.

The most influential attribute categories in increasing the probability of a project
experiencing overrun are Procurement Data (mmInitialDuration and September) and
Award Type (DefinitiveContract, DeliveryOrder, and PurchaseOrder).

The initial duration (mmlInitialDuration) has the largest positive influence for cost
overrun models. As the initial duration of a project increases, the probability of cost
overrun also increases. Initial duration is also the most influential factor for schedule
overrun models, though it varies between positive and negative influence. The other
procurement data attribute, September, also positively influences overrun in every model,
though its influence is smaller. Notably, initial cost (mmlInitialCost) was not a significant
attribute, regardless of the variable combinations. Within the award type category,
DefinitiveContract has the largest positive influence on overrun for all models but navy
schedule overrun. Delivery Order also has a positive influence on overrun for all models
but one, though its magnitude is smaller. Many factors were significant at the DoD
(global) level, but the significance and influence varied across subsets; the opposite is
also true.

Logistic Regression: Performance

This section displays the variable combinations with the highest accuracies. The
first step of performance evaluation is an inspection of ROC curves. Upon visual
inspection, most models perform better than the NIR. The navy schedule overrun model

appears to perform similarly to the NIR. More variability exists within cost overrun
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models than schedule overrun models, though these differences in performance are
difficult to qualify. Accordingly, the quantitative measures of performance provide useful
insights into the various deviations in model results. Table 4-4 summarizes these

performance metrics for each of the eight models.

Table 4-4 Measures of performance for cost and schedule overrun logistic regression

models.
Cost Overrun Models Schedule Overrun Models
DoD AF Army Navy DoD AF Army Navy*
Sample Size 79,894 21,554 29,941 23,966 79,894 21,554 29,941 23,966
Accuracy 64-66% 61-63% 61-63% 72-74% 67-68% 60-62% 65-67% 75-77%
NIR 57% 50% 52% 71% 65% 57% 63% 75%
Sensitivity 82% 67% 79% 95% 92% 78% 90% 99%
Specificity 43% 57% 43% 19% 22% 39% 24% 5%

Note: * indicates model was not significant at the 95% confidence level

A 95% confidence interval is used to define model accuracy. Additionally, the
solution remained stable regardless of testing threshold values between 0.4 and 0.6. All
models are statistically significant except for the navy schedule overrun model, indicating
they more accurately classify projects than the NIR. Additionally, every model does a
better job of classifying projects that do not experience overrun than projects that
experience overrun. Projects that did not experience overrun were correctly classified by
the DoD cost and schedule models, nearly 82% and 92%, respectively. Conversely, these
models only correctly classified 43% and 22% of the projects that experienced overrun,
respectively. The AF cost overrun model performs with 11% greater accuracy than the
NIR. While the Navy cost overrun model appears to have much higher accuracy than the
other models, this is expected as the subset of navy contracts have a higher rate of
experiencing no overrun. When the Navy model accuracy is compared with the NIR, its

performance, while statistically significant, performs only marginally better.
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Random Forest Classification Performance

The final phase of analysis was predicting the magnitude of overrun for the
projects that experienced overrun. The median cost and schedule overrun are 149% and
36%, respectively. Since models for the likelihood of overrun were created using contract
attributes, the next step in the process is determining if these same attributes are
beneficial in predicting how much overrun a project will experience. RFC was used to
accomplish this step. Table 4-5 provides a summary of the classification accuracy
compared to the NIR for each model variation.

Table 4-5 Random forest classification model accuracy compared with the no
information rate for all cost and schedule overrun models.

Model Accuracy NIR (%) Difference Splits # of Trees
(%)
1C 52.35 51.26 1.09* 4 300
1S 57.26 55.70 1.56* 4 300
2C 43.28 34.00 9.28%** 4 200
2S 44.09 33.61 10.48*** 5 300
3C 51.83 51.27 0.57* 4 200
3S 47.51 54.93 -7.42 2 100
4C 42.74 34.00 8.74%** 5 300
4S 4497 33.61 11.36%** 4 200
5C 62.10 58.98 3.12%* 5 300
5S 68.26 66.39 1.87* 5 300
6C 47.61 47.40 0.21* 4 200
6S 40.62 37.40 3.22%* 3 100
7C 38.70 39.79 -1.09 4 200
7S 30.75 26.92 3.83** 3 300
8C 39.66 34.01 5.65%** 4 200
8S 70.93 63.95 1.58* 3 200
9C 32.61 25.01 7.60%** 7 200
9S 30.63 25.01 5.62%** 4 200
10C 43.38 43.01 0.37* 2 300
10S 56.73 53.01 3.72%* 3 300
11C 36.01 33.82 2.19* 2 300
11S 43.97 43.06 0.91* 3 300
12C 59.23 60.76 -1.53 7 100
12S 61.10 53.79 7.31%%* 5 100
13C 27.85 25.00 2.85* 5 300
13S 29.38 25.00 4.38** 5 100

Note: * = difference of 0-3%; ** = difference of 3-5%; *** = difference of greater than 5%

64



There are varying results amongst the models. Less than half of the models
performed only 2-3% greater than the NIR. Three models performed worse, indicating
these models are not useful for classification purposes, at least given the current data and
attributes used. The best model, model 4S, performed 11.36% better than the NIR. This
model classified schedule overrun into three equally proportioned categories using
grouping clusters as an attribute. Splitting the data into lower and upper subsets and
creating individual models was somewhat successful as well. Additionally, in most cases,
classifying the projects into balanced/even proportioned categories proved more accurate
than using K-Means clustering to determine the classification categories.

Results Summary

The likelihood modeling is currently more successful with prediction than the
random forest classification modeling efforts in this analysis. The likelihood modeling
revealed a strong relationship between the programmed duration (mmlnitialDuration) of
the project and overrun. Additionally, the type of award also highly influenced overrun
on a project. Though RFC was less successful than likelihood modeling, it further
revealed the ability to classify projects into categories of overrun. The use of equally
proportioned categories for RFC modeling proved more successful than using clustering

techniques to form categories.

Discussion
The structure of this section is broken down into three main areas, which highlight

the contributions of the research. Individual attributes and their significance are reviewed
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first. Then the model accuracy and classification impact are discussed. Finally,
discussions on the limitations and broader applicability of this research are provided.

Significant Attributes

Some of the more significant attributes are the initial (i.e., estimated) duration, the
month of award, and award type. These results align with previous literature and provide
additional evidence of the similarities between public and private construction industry
projects. This alignment with the literature also suggests that the use of logistic regression
in the identification of contract attributes correlated with overrun is validated.
Accordingly, based on their importance to the modeling efforts and applicability to the
industry as a whole, these attributes are discussed further.

Procurement Data - Initial Duration

Initial duration is one aspect of project size that has been shown to affect project
performance. Previous research regarding the correlation between initial duration and
overrun indicates that it can have a negative effect (Jahren 1991), a positive effect (Odeck
2004b), or not be of significance (Love et al. 2013). However, this research has found
that initial duration, or the estimated duration at the award, is the attribute with the single
greatest effect on overrun probability. Unlike the previous studies, though, the scale and
diversity of the data set used in the analysis present a unique result that implicates longer
initial durations with an increased probability of cost overruns. This result is likely due to
project length being associated with project complexity. Projects of a month or less may
be more routine and less complicated projects, such as maintenance or repair requests,
reducing variability and the chance of unforeseen errors/conditions. This assertion is

further confirmed by a decreased probability of overruns for those projects classified as
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maintenance. It should be noted that as the initial duration increased, it served to reduce
the probability of schedule overrun within the DoD model. This could be the result of
increased float days or over-estimation of the duration in longer projects, but as it is not
consistent across all models and even serves to increase the probability in others, further
investigation would be required.

Procurement Data - Month of Award

For US federal spending, including DoD construction, September is the last
month to award projects within the fiscal year due to funds being constrained to each
fiscal year. This process is similar in private industry only that the funds available to
them are not “use or lose” but instead crucial for tax and accounting purposes. Thal et al.
(2010) discuss how project award month positively correlates to increased contingency.
Our findings further validate that projects awarded in the last quarter of the fiscal year,
specifically September, increase the probability a project will experience cost/schedule
overrun. However, September is more influential in schedule overrun models, which
implies that a project awarded in the final month of the fiscal year has a greater
probability of experiencing schedule overrun than cost overrun. Nearly 40% of the
projects contained in the data set were issued in September, which provides a much larger
sample from which overruns could occur. This information does not discredit the finding,
though, because it is very well known that unallocated funds that could not be spent by
installations are typically shared among others. This last-minute notification of funds can
lead to ill-defined requirements and scopes for projects, which leads to additional cost

and schedule overrun.
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Award Type

Multiple studies have analyzed the performance of different contract
compositions and found procurement (Dicks et al. 2017), delivery (Zhang et al. 2019),
and payment methods (Bogus et al. 2010; Chen et al. 2016) influenced outcomes.
Conversely, other research indicated execution methods had no significant effect
(Hashem Mehany et al. 2018). This study finds that a relationship between the award type
and cost and schedule overrun does exist. Of the different award types, definitive
contracts were the most influential in increasing the probability of overrun. According to
the FAR, definitive contracts are all contract actions except those executed under an
Indefinite-Delivery Vehicle (IDV). The results indicate that projects requiring a stand-
alone contract action with a definite time frame and quantity are more likely to have
overrun than those IDV actions with specific clauses altering the time or quantity of the
order to an indefinite nature. While the reasons for this are currently unknown, creating
data subsets based on this contract type and performing additional analyses could prove
useful in future research.

Model Accuracy

Overall, model accuracy is very similar between cost and schedule overrun
classifications. The DoD model outperforms branch-specific models except for the cost
overrun model for the Navy. At first glance, this may suggest that a larger, more diverse
dataset equates to better results. However, the DoD model accuracy is being augmented
by the Navy model accuracy as it is higher. Regardless, the model accuracy is higher than
the no-information rate for all models except the schedule overrun Navy model.

Therefore, every model still performs better than chance. The performance could be the
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result of the number of design/procurement phase attributes compared to construction.
The more likely cause for lower accuracy is the variation between the projects and results
in considerable noise within the data set. However, this variability in the size, type, and
location of projects allows the model to be broadly applied to the entire DoD construction
portfolio.

As shown in Table 4-4, sensitivity is higher than specificity, meaning the models
more accurately classified projects with no cost or schedule overrun. Considering 56% of
the projects in the data experience no cost or schedule overrun, this model can classify
the majority of the data. This information is valuable and could be used to prevent
additional resources from being spent scrutinizing a project which may not be warranted.

Limitations

Based on previous research, it is likely that the model accuracy could be improved
with the addition of several attributes not currently available in the system where these
data were procured. Attributes like the delta between cost estimate and award price
(Jahren 1991), risk assessment values for pre-bid documents (Lee and Yi 2017; Son and
Lee 2019), team performance history (Dada 2014), contractor performance history, and
improved project type classifications (Bhargava et al. 2010) have benefited previous
analyses. Model accuracy would likely also improve with the implementation of a more
objective and standardized method for data entry. Values of zero initial cost or estimated
duration were not uncommon. Additionally, issues such as inconsistencies between the
classification of project types and reasons for modifications (i.e., change orders) could
likely have contributed to the lack of significance for attributes that proved significant in

previous research. It should also be noted that overrun is strictly an objective term and
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does not take into consideration the constructive nature or value-added of some
modifications. Therefore, additional information regarding the modification is required to
make better-informed decisions.

Further analysis of these data was conducted to classify the magnitude of cost and
schedule overruns a project would experience. The work focused on the use of a random
forest classification algorithm to model the magnitude of overrun for those projects that
did experience it into predetermined bins (e.g., 0-25%, 25-50%, 50-75%, etc.). Overall,
the model accuracies were low though some were successful at classifying magnitude
better than the NIR, as shown in Table 4-5. Given the data’s breadth and variety, there
currently may not be enough similarity for the RFC algorithm to learn and classify
projects correctly. Had the projects been more homogeneous, the algorithm could have
likely produced more accurate results and should improve as more projects are added to
the dataset. Therefore, given these results, it is logical to conclude that the use of RF
algorithms is a viable option for classifying the magnitude of overrun despite the limited

granularity in category sizes (e.g., 0-50% overrun).

Conclusions

The prevalence and detrimental impacts of cost and schedule overruns on
construction projects have made the search for their causes vital to improving failing
infrastructure and the continued success of construction programs. Previous research has
shown that modifying project procurement and contracting methods have served to
mitigate the occurrence of overruns. Not having been the focus of much research, this

work analyzes the DoD construction portfolio, 48% of which experience overrun.
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Accordingly, a means to identify the contract attributes that correlate to poorer project
performance was investigated.

Logistic regression has proven an invaluable method in medical and social
sciences research. Similarly, RFC models are used for classification and multiple
prediction efforts within these same fields. To the author’s knowledge, however, neither
of these methods have been used to predict the likelihood and magnitude of construction
overruns. The result was an efficient way to predict cost and schedule overrun that could
be applied to future projects identifying those at risk with probabilistic modeling in lieu
of deterministic (e.g., linear regression). Eight models were created using logistic
regression to predict the likelihood of overruns (i.e., binary output), with accuracies
varying between 66% and 75% for cost and schedule, respectively.

Additionally, this study identified several attributes that significantly impacted the
likelihood of overrun, including initial duration, award month, and award type (i.e.,
definitive or IDV). The likelihood of overrun was seen to increase as a project’s awarded
duration increased. A similar increase in overrun was found to occur for projects as their
award month approached the end of the fiscal year. Furthermore, those projects with
definitive award contract types were found to have a greater likelihood to experience
overrun than those of indefinite such as indefinite delivery indefinite quantity. These
results will aid owners, project managers, and planners by providing insights into the
risks associated with their projects and allowing for the implementation of mitigation
techniques.

These results also demonstrate the use of project procurement data, through cost

and schedule overrun likelihood predictions at the DoD-level, could help project
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managers make better data-informed decisions, resulting in improved proactive
construction planning and better cost management. This could take the form of revised
guidance and more strict project award controls for projects containing high-risk factors
as identified previously. These findings could also be used to identify the level of
maturation and vetting that must occur for a project’s scope, definition, requirements, and
subsequent documentation.

Ultimately, this exploration of DoD-level cost and schedule overrun prediction
modeling is one of the first of its kind in terms of size and diversity of data analyzed.
Containing 79,894 projects, the quantity of data used in this study is an order of
magnitude greater than the next largest sample from previous studies. Moreover, the data
used here covers 281 different types of construction. These hallmark features provide a
more holistic view of the contract factors that play a significant role in the project
performance of entire construction portfolios in lieu of the project-centric conclusions of
previous studies.

Future research should focus on better predicting the magnitude of overrun a
project will experience. Knowing how much a project may increase in cost and schedule
can facilitate more accurate planning and contingency. Improving the accuracy of both
likelihood and magnitude predictions may be accomplished through including additional
contract attributes (i.e., government estimate, planning time, etc.), and the addition of the
human factors of construction such as contractor quality, team cordiality, political
climate, and expert opinions.
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Article Summary

This article covers the investigation and outcome of a study conducted to identify
the sources of cost and schedule overrun within DoD construction. Contract data are
compared with performance indicators to determine which attributes increase the

likelihood of overruns and how this information can be used to improve project planning.

The Problem

48% of DoD projects completed in the last decade have experienced some form of
overrun. Additional metrics outlining the severity of overrun issues in DoD construction
are shown in Figure 5-1. Despite technological and organizational advances in
construction planning and execution, these issues persist. These issues occur at the
expense of overtasked contracting and construction personnel, altered budgets, and
ultimately, the ability to award future projects. Deferring projects can result in delays in
mission-essential readiness, missed requirements, lower morale, and reduced
effectiveness. Furthermore, cost and schedule overrun can lead to a need to use fixed
operations and maintenance funds. With more than 585,000 facilities to maintain and an

existing $116 billion backlog of projects, the causes of these overruns must be identified
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and mitigated through every available means (Cronk 2018; Office of the Under Secretary

of Defense (Comptroller)/Chief Financial Officer 2019).

DoD Construction Contract

Performance
$501 billion

was spent on cost overruns in the
past 10 years

48%

of the DoD construction
of total funding was spent projects analyzed,
on overruns experienced cost overrun

DoD construction, maintenance,
alteration, & repair projects were
analyzed, spanning 10+ fiscal
years, and $1.5T in spending

Projects lasting 1+ years are 380/ voun
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which increases the
probability of cost and
schedule overrun
These findings reflect the results of the AFIT Master's Thesis conducted by Lt Tyler Stout & Lt

more likely to experience overrun
than projects of just one month

il

Adam Teston.

Figure 5-1 Summary of DoD Construction Contract Performance

For at least the past four decades, researchers performed hundreds of analyses on
overrun using various methods, including surveys, questionnaires, statistical regression,
and even machine learning (Durdyev and Hosseini 2018; Zidane and Andersen 2018).
The first two methods ranked respondent responses while the latter two primarily focused
on the attributes (e.g., contract type, delivery method, sector of construction) of contract
data or bid documents to identify and mitigate the causes of overrun. However, even as a

considerable consumer of construction, the DoD has not found itself at the center of
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much of this research. Furthermore, the development of smarter, more effectively
executed contracts is a current priority of the National Defense Strategy .

Through a partnership between the Air Force Civil Engineer Center (AFCEC) and
the Air Force Institute of Technology (AFIT), a research project was funded to review
and analyze the contract data for all military projects designated as maintenance,
alteration, repair, or construction. Ultimately, the research focused on determining which

contract attribute(s) significantly affected project performance.

Analyzing the Data

Using the Federal Procurement Database System-Next Generation (FPDS-NG)
(now beta.SAM.gov), construction contract data from the past ten years was obtained and
transformed into a construction repository housing 79,894 DoD projects (Stout et al.
2020). These data contained attributes like the location, duration, cost, and modifications
associated with the maintenance, alteration, repair, and construction of real property.
Initial statistical analysis of this data revealed that there were, in fact, differences between
the performance of projects based on attributes like contracting agents, funding agents,
and award months. These results proved informative and would serve as the foundation
for future, more in-depth analysis.

Further investigation using logistic regression produced models that accounted for
the complex interactions between contract attributes to help predict the likelihood of
overruns and to grasp a holistic view of the attribute’s roles in overrun occurrence. The
dependent variable (overrun) was converted from a percentage to a simple ‘yes’ or ‘no’

for all projects. Eight models were created to determine the significance of each attribute
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concerning this outcome. The results were twofold: 1) Models that could predict whether
a project experienced overrun and 2) an understanding of how each significant attribute
changes a project’s probability of overrun.

Accuracies ranging between 66% and 75% were achieved. Additionally, all
models exceeded the no information rate, a key performance indicator for logistic
regression modeling. The no information rate is, essentially, an educated guess given no
other information beyond the distributions of the attributes contained within the data. In
other words, if we know that 50% of all DoD projects experienced overrun, then we have
a 50% chance of guessing that a given project experiences overrun. The drawback of this
model was that the accuracy lay in predicting the likelihood of a project that would not
experience overrun. However, this information is still of use to planners and
programmers because it identifies projects that represent less risk and likely require no
additional vetting or mitigation methods to prevent cost or schedule overruns.

The contract attributes that greatly increased the probability of overrun across the
DoD were the project duration at award, award type (i.e., purchase order, delivery order,
bid-purchase agreement, definitive contracts), and award month. For the length of
duration at award, the probability that a project will experience an overrun increases as
the project’s length increases. Definitive contracts increased the likelihood of overrun
compared to other award types, including delivery orders. Additionally, projects awarded
in September were found to have a higher probability of overrun than any other month. A
closer look at each month revealed that nearly 50% of all projects awarded at the end of
the fiscal year experienced overrun while, on average, the other months experienced only

39%. However, 38% of DoD projects were issued in September, larger than any other
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month. Additional data, not currently available in FPDS, and further analysis would be

required to better understand each attribute’s significance in the probability of overrun.

Moving Forward

While the goal of this investigation was to aid planners and programmers in
analyzing the risk of overruns using contract attributes currently available in FPDS-NG,
its impact stretches beyond post-hoc analysis. This research could serve as the starting
point for data-informed decisions regarding planning within DoD construction. Decisions
currently made based on personal experience, expertise, and opinion could incorporate
more objective lessons learned from the success and failure of past projects (DoD-wide).
Additionally, this data can be used to assess construction project execution efficacy at the
base-level to fine-tune local procurement methods and as a means of performance
reporting and accountability should it be required. Ultimately, these analyses and
decisions rely on the veracity and relevancy of their source. Therefore, improving
existing attributes, adding supplemental information, and maintaining an up-to-date
repository of projects is vital to ensuring success.

Accordingly, this research concluded by providing a list of changes that could be
implemented in contract data tracking to increase the DoD’s capability to curb overruns
through more effective risk management in the procurement process. It was noted that,
throughout this research effort, several of the contract attributes recorded in FPDS-NG
were input inconsistently. Moreover, a review of previous overrun studies revealed

additional attributes of construction projects that could be used to increase the modeling
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accuracy (i.e., predicting project performance) and create a better understanding of the

causes of overrun when they do occur.

Improvements to existing attributes:

o

Prevent zero values for awarded cost and duration - an additional 52,768
projects were excluded because of this issue

Provide objective guidance for product service code (PSC) entry (e.g.,
what is construction v. repair)

Provide specific reasons for modifications (e.g., “design error - voltage for

chiller incorrectly specified” )

Additional attributes:

Government estimate to compare to award price
Contractor evaluation (e.g., CPARS)
Type(s) of work (by percentage) of man-hours/cost (e.g., HVAC,
electrical, civil, etc.) involved in the project
Controllable v. Uncontrollable modification reasons (e.g., scope creep =
controllable cost increase, rain = uncontrollable delay)
Value-added v. not added indication for modifications (e.g., value-added =
an omission that is required to make the facility complete and usable)
Information from engineering databases like TRIRIGA, BUILDER, and
TRACES

m Pay apps and project progress

m Building and component conditions

m Project metrics (e.g., sq. ft. of renovation or length of road)
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For the Future - Create an ad-hoc system, rather than post-hoc reports
o A system designed to give real-time metrics of projects. Used for planning
future projects and reflecting on lessons learned from past projects
m Actual working days versus available working days
m Percentage of equipment downtime
m Percentage of labor downtime
m Time to rectify defects
m  Number of accidents
m Problems discovered in construction documentation
m Logging requests for information and responses
o Include live-time Top Factors of “Non-Value Added, Controllable Cost
Overrun,” “Value Added, Controllable Cost Overrun,” etc.
o Enable real-time access to average cost/schedule overrun of current
projects, past projects, specific project types, etc.

The vast majority of these attributes already exist in some form or fashion within
project documentation or even within other databases used by the DoD. Researchers,
planners, and programmers would benefit from a centralized system that maintains this
information, if for no other reason than to provide a project-specific source of lessons
learned. By arming DoD personnel with this knowledge, it is hoped that future
construction projects will be delivered with fewer overruns enabling the DoD to fund

more projects and reduce its current backlog.
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Conclusion — Mitigating Overruns in DoD Construction

This research illustrates both the prevalence and impact of cost and schedule
overruns within DoD construction by creating a repository that houses all construction,
repair, alteration, and maintenance task orders from the past decade. From this repository,
it was determined that 48% of projects had experienced some form of overrun, totaling
over $500 billion in unplanned expenditures. These overruns diminish funding for
concurrent projects, deplete operational budgets that cause deferred infrastructure
maintenance, and impair future project award ability. To aid in the reduction of an
existing $116 billion backlog in projects, the DoD must address these overruns in new
and innovative ways.

Accordingly, this research demonstrates the application of and efficacy in using
historical DoD construction contract data in objectively identifying projects that will
experience cost and schedule overrun. This same data was also shown to be useful in
predicting the magnitude of project overruns. Consequently, projects that are at risk for
experiencing overruns can be identified before their award. Additional measures and
resources can then be selectively applied to help mitigate overrun occurrence based on

both the risk assessment of the project and risk tolerance of the organization.

Research Significance

Studies focusing on identifying the sources of cost and schedule overrun have
been ongoing for at least the past 40 years. In that time, existing research has found that
the sources vary between projects, locations, and parties. However, these same studies

have used methods that may be overfit, introduce biases, or are based on limited data sets.

80



Moreover, the DoD has garnered little attention from previous research in this field. The
data used in this analysis is the single largest source of construction contract information
to the authors' knowledge, containing 79,894 projects. Furthermore, as the database spans
281 types of construction and contains 62 contract attributes, the conclusions drawn from
this work offer more robust results that can be more broadly applied to the DoD’s diverse
portfolio of facilities and infrastructure in an attempt to mitigate overrun.

While additional factors contribute to overruns within DoD construction projects,
including inclement weather, contractor performance, and poor requirement definition,
this research demonstrates that skillful models can be created to inform planners and
programmers of the risks posed by specific attributes of contract data. The DoD must

consider historical construction contract data when planning future projects.

Research Contributions

This research offered the first large-scale review at DoD construction. It
reinforced the need to track historical construction spending for which a repository was
created using key attributes of contract data from FPDS-NG (Chapter 3). Furthermore,
this thesis reviewed the capability of predicting the likelihood and magnitude of overruns
within DoD construction. The applicability of logistic regression was demonstrated by
creating a binary output with regard to whether a project was going to experience overrun
(i.e., overrun?, ‘yes’ or ‘no’). RFC was also identified as a means to predict the
magnitude of overrun a project is likely to experience (Chapter 4).

In using the database and methods established in this thesis, DoD planners and

programmers are empowered with the ability to analyze future projects, providing an
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objective assessment of risk which could inform execution strategies like the need for
further scope development, alternative contracting methods, or deferment of projects to
create a more risk-neutral portfolio based on current priorities. By reviewing, analyzing,
and modifying planning and procurement methods based on performance metrics (i.e.,
data-driven decisions), the DoD can better align itself with the National Defense
Strategy’s directive to develop smarter contracts and execute contracts more effectively.
As part of this work, a poster presentation was created and culminated in the
development of two journal articles, which created a construction task order database
(Chapter 3) and determined contract attributes most significantly correlated with project

performance (Chapter 4).

Recommendations for Future Research

This research explored the relevance and impact of cost and schedule overruns in
DoD construction by creating a historical database. Additionally, methods to identify
those contract attributes significantly correlated with project performance using logistic
regression and RFC were determined. Accordingly, there are several areas where this
research could be expanded:

1. Sub-setting data: Analyzing the data in smaller quantities based on specific award
months, contracting agents, or project types could result in alternate attributes
significantly correlated with project performance. Identifying those attributes that
apply to only a smaller sample of projects could lead to amended execution

strategies, thereby expanding the DoD’s capabilities in mitigating overruns.
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2. Inclusion of additional data: It was noted in literature that several attributes not
present in FPDS-NG served to enhance the skillfulness of modeling efforts used
to predict the likelihood and magnitude of cost and schedule overrun. These
attributes include, but are not limited to, the programmed estimate, project metrics
(e.g., sq. ft. of flooring), and contractor performance. It is expected that if these
and other similar attributes were incorporated into the task order database from
sources such as TRACES or TRIRIGA, the skillfulness of the methods used here
could be enhanced.

3. Alternative Machine Learning Techniques: Several techniques outside of logistic
regression and RFC have shown proficiency in quantifying the probability and
magnitude of risk associated with overruns. Research could focus on comparing
these techniques' capabilities, which include text mining, principal component
analysis, ensemble learning, and fuzzy logic to determine the optimal method, or
methods, which further mitigate overrun in future awards.

Among others, these avenues provide further research and development opportunities for

mitigating cost and schedule overrun in DoD construction projects.
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Appendix

This section includes the statistical comparison between the factors of the
contracting agent, funding agent, and award month that were not published. This effort
was undertaken at the behest of AFCEC to investigate whether project performance could
be improved by selecting any one factor comprising these attributes. Subsequent sections
of this appendix offer further insights into each of these attributes to include descriptive
statistics.

The research uses statistical analysis software, SPSS, to conduct the comparison
between the various factors of each attribute. This software is well known and commonly
used for this type of work. Additionally, a comparison of means between these factors is
a readily accepted method within mathematical and social sciences to determine if
significant differences exist. As the residuals’ distribution is not assumed to be normal,
the non-parametric Kruskal-Wallis test was used to compare each of the attributes’
overrun rates. This test compares the variance of each factor’s ranked overrun
percentages and, as it is a form of ANOVA, tests the difference between only two each
time.

Consequently, each factor is compared to every other factor in a single test (i.e.,
pairwise comparisons). We can also not assume that each of the factors’ distributions is
similar and must use the mean or average ranked overrun in lieu of comparing the
medians. The average ranked overrun is computed by ranking all of the overrun
percentages from 1 to N without their groupings (i.e., the factor within each attribute is
disregarded when projects are ranked). Once the rankings have been assigned, an average

of the ranks within each factor is calculated.
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All pairwise comparisons with an adjusted significance of 0.05 or lower provide
the test’s confidence level, ensuring a true difference between the factors. That is not to
say that greater significance levels (e.g., p > 0.05) indicate a lack of true difference
between the average ranked overrun. Significance levels of 0.10 are not uncommon in
statistical analyses. A higher level of confidence was utilized in testing to ensure future
research focuses solely on those factors which have a high probability of affecting project
performance.

An additional step is required to determine which of the factors within each
attribute experienced greater overrun among the significant pairwise comparisons. The
average rankings can then be compared using the ranking distance relationship figures.
The larger the average ranked overrun value, the greater the amount of overrun
experienced by each factor.

Contracting Agent
Descriptive Statistics

The contracting agent attribute is composed of six individual agents, including
AFCEC, USACE, NAVFAC, ARNG, Base, and Other. When the contracting agent is
listed as base, it implies that the contract execution was handled at the base level instead
of being contracted out to AFCEC, USACE, or NAVFAC. Additionally, when the
contracting agent is listed as other, it implies that a higher-level agent like a MAJCOM or

HQ executed the project.
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Table A-1 The number and percentage of projects awarded by each contracting agent.

Agent |Frequency | Percent
AFCEC 152 2
ARNG 321 5
Base 24827 37.7
NAVFA 19691 299
C
Other 10520 16.0
USACE 10280 15.6
Total 65791 100.0

Table A-1 above shows the number of projects executed by each contracting agent over
the past ten years. Base and NAVFAC agencies executed the majority of projects.
Statistical Comparison

A comparison between the contracting agents’ effect on both cost and schedule
overrun was conducted to determine if any single agent significantly impacts project
performance. Regarding cost overrun, the significant differences in performance between
agents are noted in the rows where the adjusted significance is less than 0.05. These

values are also highlighted in yellow.
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Pairwise Comparisons of COffCat

"-.,‘ NAVFAC
03 0,697.31

Each node shows the sample average rank of COffCat.

Sample1-Sample2 StZ:iZttic 3‘,‘:,} sst&t;:is: Sig. Adj.Sig.

ARNG-NAVFAC 914575  847.058 -1.080 .280 1.000
ARNG-Other -2,344.820  B852.959 -2.749 .006 .090
ARNG-USACE -4473238  853.254 -5.243 .000 .000
ARNG-Base -4647.640  B45.651 -5.496 .000 .000
ARNG-AFCEC 5,109.097 1,482.212 3.447 .001 .009
NAVFAC-Other -1,430.245 181.800 -7.867 .000 .000
NAVFAC-USACE -3,558.663 183.178 -19.427 .000 .000
NAVFAC-Base 3,733.065 143.657 25.986 .000 .000
NAVFAC-AFCEC 4194522 1225750 3.422 .001 .009
Other-USACE -2,128.418  208.776 -10.195 .000 .000
Other-Base 2,302.820 175.130 13.149 .000 .000
Other-AFCEC 2764.277 1229.836 2.248 .025 .369
USACE-Base 174.402  176.560 988 .323 1.000
USACE-AFCEC £35.860 1,230.041 517 .605 1.000
Base-AFCEC 461.458 1,224.779 377 .706 1.000

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions
are the same. ) ) o )
éssymptotlc significances (2-sided tests) are displayed. The significance level is .

Figure A-1 Average ranked cost overrun comparisons by contract agent.
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AFCEC, as a sponsor of this research, was interested in understanding how they
compared with other agents. An output of this analysis is found in Figure A-1. There
were only two statistically significant pairwise comparisons that included AFCEC.
Accordingly, when compared to NAVFAC and ARNG agents, AFCEC experienced a
greater average ranked cost overrun. AFCEC also wanted to understand how they fared
when compared to USACE. The adjusted significance of that comparison reveals that
neither agent outperformed the other. Their average ranked cost overrun values found in
the distance/relationship figure were very similar.

It should also be noted that projects executed at the base level were no more likely
to experience cost overrun than those executed by USACE or AFCEC. This overrun
could result from the difference in size between the types of projects executed between
these agents. If, however, larger Air Force projects are traditionally executed by AFCEC
and USACE, then based on these results, a smaller amount of cost overrun is incurred at

the base level.
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Pairwise Comparisons of COffCat

2615052
2516052

Each node shows the sample average rank of COffCat.

Sample1-Sample2 Stkigtti = Esrtr%r ssttda";;eif Sig.  Adj.Sig.

NAVFAC-ARNG 1730.414  896.769 1.930 054 805
NAVFAC-Other -3,277.404 192.470 -17.028 .000 .000
NAVFAC-Base 5365293  152.088 35.278 .000 .000
NAVFAC.USACE  -7484.869  193.929 -38.596 .000 .000
NAVFAC-AFCEC 8,091.906 1,297.687 6.236 .000 .000
ARNG-Other -1546.930  903.018 -1.713 .087 1.000
ARNG-Base -3634.879  895.280 -4.060 .000 .001
ARNG-USACE 5754454 903.330 -6.370 .000 .000
ARNG-AFCEC 6,361.492 1569.200 4.054 .000 .001
Other-Base 2,087.889 185.408 11.261 .000 .000
Other-USACE -4207.465  221.029 -19.036 .000 .000
Other-AFCEC 4814502 1302.013 3.698 .000 .003
Base-USACE -2,119.576 186.922 -11.339 .000 .000
Base-AFCEC 2726613 1296.658 2.103 035 532
USACE-AFCEC 607.038 1,302.229 466 641 1.000

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions
are the same. ) ) o )
6\Ssymptot|c significances (2-sided tests) are displayed. The significance level is .

Figure A-2 Average ranked schedule overrun comparisons by contract agent.
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Similar to cost, schedule overrun was similarly affected by each of the factors
within the contracting agent. That is to say, a similar number of statistically significant
comparisons exists. As shown in Figure A-2, AFCEC construction projects experienced
the largest average ranked schedule overrun of all the contracting agents. NAVFAC
projects experienced the least overrun, followed by ARNG, Other, Base, and USACE.
Like cost, the amount of schedule overrun experienced by projects could likely increase
with its size based on these results.

Funding Agent
Descriptive Statistics

The funding agent attribute is composed of six individual agents, including
AFCEC, USACE, NAVFAC, ARNG, Base, and Other. When the contracting agent is
listed as base, it implies that the contract funding was provided from the base level.
Additionally, when the contracting agent is listed as other, it means that a higher-level

agent like a MAJCOM or HQ funded the project.
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Table A-2 The number and percentage of projects awarded by each funding agent.

Agent Frequency | Percent
AFCEC 158 2
ARNG 52 1
Base 40459 61.5
NAVFAC 3802 5.8
Other 15022 22.8
USACE 6298 9.6
Total 65791 100.0

Table A-2 shows the number of projects funded by each of the agents. Note that a
majority of projects were funded at the base level. The next most frequent source of
funding was other, implying that MAJCOM or their equivalents were used.

Statistical Comparison

It was assumed that, like the contracting agent, the funding agent also played a
role in a project’s likelihood to experience cost and schedule overrun. At least in terms of
FPDS data, the funding agent is the party responsible for the preponderance of the funds
for the requirement (i.e., project). Traditionally this also means that that same party
establishes the initial requirements. As the initial requirements can dictate how a project
performs throughout its duration, this attribute may give insight into each of these agents’

ability to communicate a project’s overall scope consistently and effectively.
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Pairwise Comparisons of FOffCat

Other O Base
1,076.03 / 133,239.26

NAVFAC
30,106.49

Each node shows the sample average rank of FOffCat.

SamplelSample2 | grest. St S Test g, pgjsig.
ARNGNAVFAC 885449 2225205  -3%8 691  1.000
ARNG.-Other 1854992 2213964 -838 402 1.000
ARNG Base 4018223 2211862 1817 069 1.000
ARNG-USACE 7414448 2219248 3341 001 013
ARNGAFCEC 8086917 258011 3174 002 023
NAVFACOther  -969543 289340  -3351 001 02
NAVFACBase 3132774 270345 11568 000 000
NAVFACUSACE 652999 32732  -19947 000 000
NAVFACAFCEC ~ 7201468 1294002 5865  .000 000
Other-Base 2163232 152273 14206 000 000
OtherUSACE ~  -5550.457 239249  -23237 (000 .00
Other-AFCEC 6231926 1274575 4889 000 000
Base-USACE 3396225 216832 15731 000 | 000
Base-AFCEC 4068694 1270398 3203 001 020
USACE-AFCEC 672469 1283730 524 GO0 1.000

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions
are the same.
ég.ymptotic significances (2-sided tests) are displayed. The significance level is .

Figure A-3 Average ranked cost overrun comparisons by funding agent.
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As shown above in Figure A-3, a majority of funding agents have a significant
statistical difference between one another regarding project cost overrun. Again, AFCEC
has the largest average ranked cost overrun of any of the funding agencies. ARNG was
the agency with the least average ranked overrun, followed by NAVFAC, Other, Base,
and USACE. Similar to the contracting agent attribute, when USACE or AFCEC was the
funding agent, no significant difference exists in the average ranked cost overrun of their

projects.
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Pairwise Comparisons of FOffCat

/9 Base
- /| 33456.42

NAVFAC
31,019.82

Each node shows the sample average rank of FOffCat.

Sample1-Sample2 St-gfifﬁc g‘:;, Ssttda.t?;is: Sig. Adj.Sig.

ARNG-NAVFAC -2809.615 2,101.852 -1.337 181 1.000
ARNG-Other -2868.545 2091.235 -1.372 170 1.000
ARNG-Base -5,246.214 2 ,088.966 2511 012 .180
ARNG-USACE -6,544.381 2,096.225 -3.122 .002 .027
ARNG-AFCEC 6562.121 2,406.764 2727 .006 .096
NAVFAC-Other -58.930  273.300 -.216 .829 1.000
NAVFAC-Base 2436599 255359 9.542 .000 .000
NAVFAC-USACE -3,734.766  309.177 -12.080 .000 .000
NAVFAC-AFCEC 3752505 1,222.270 3.070 .002 .032
Other-Base 2 377.669 143.832 16.531 .000 .000
Other-USACE -3675.836  225.986 -16.266 .000 .000
Other-AFCEC 3693576 1,203.920 3.068 .002 .032
Base-USACE -1,298.167  203.924 -6.366 .000 .000
Base-AFCEC 1315907 1,199.974 1.097 273 1.000
USACE-AFCEC 17.740 1,212.568 015 .988 1.000

Each row tests the null hypothesis that the Sample 1 and Sample 2 distributions
are the same.
éxssymptotic significances (2-sided tests) are displayed. The significance level is .

Figure A-4 Average ranked schedule overrun comparisons by funding agent.
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The order of performance for the funding agents’ average ranked schedule
overrun is the same for cost. The only difference here is that three fewer comparisons
were statistically different, as shown above in Figure A-4.

Award Month

Descriptive Statistics

The award month of the project was assumed, at least anecdotally, to influence the
amount of overrun a project would experience. The assumption being that those projects
issued close to the end of the fiscal year would experience more overrun based on their

perceived lack of scoping or definition.

Table A-3 The number and percentage of projects awarded in each month.

Month Frequency | Percent
April 3958 6.0
August 7452 11.3
December 2011 3.1
February 2618 4.0
January 2210 3.4
July 6554 10.0
June 5683 8.6
March 3849 59
May 4561 6.9
November 1416 2.2
October 1337 2.0
September 24142 36.7
Total 65791 100.0

As indicated in Table A-3 that the DoD executed a large portion of projects in

September. Additionally, the results presented earlier showed that a greater percentage of
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projects awarded in September experienced overruns than other months. However, these
statistics alone cannot be used to determine whether or not the month of September is the
cause of increased overruns within projects. As this month contains a large percentage of
projects, greater variability in performance is expected. Therefore, projects awarded in
September would need to be investigated further to identify the factors correlated with
overruns.
Statistical Comparison

The statistical comparison results revealed additional information about the end of
the fiscal year concerning cost and schedule overrun. These comparisons are visualized in
Figure A-5, Figure A-6, Figure A-7, and Figure A-8. The months of July, August, and
September were higher in average ranked overrun than other months in most cases. These
results indicate that, generally, projects awarded in the final quarter of the fiscal year

experience more overrun than those in other quarters.

September
34,738.47

Fehruary -
31,547.83

Each node shows the sample average rank of AwardMonth.

Figure A-5 Average ranked cost overrun distance/relationship by month.
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Fehruary
30,977.4

Each node shows the sample average rank of AwardMonth.

Figure A-6 Average ranked schedule overrun distance/relationship by month.
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SamplelSample2 | ghest S S Test o pgjsig. March-November 529246 495354 1068 285 1.000
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Figure A-7 Average ranked cost overrun comparisons by month.
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Figure A-8 Average ranked schedule overrun comparisons by month.
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In all cases except one, the comparisons revealed that projects awarded in
September experienced more average ranked cost overrun than in any other month. The
only other month to experience a similar amount of overrun was October. It’s not clear
from this statistical analysis why that is. As October is the beginning of the fiscal year, an
increased average ranked cost overrun could result from a premature project award. In a
rush to obligate the initial disbursement of funds, projects could be prone to the same lack
of scoping and definition that likely occurs in September. With fewer projects issued in
October than in any other month, the overrun amount is comparatively worse than in
September and should be investigated further.

In every comparison made, projects awarded in September experienced a
significantly greater average ranked overrun than any other month. This result reveals the
increased likelihood of projects to experience schedule overrun when awarded in
September and indicates the seriousness of schedule overrun and its correlation with cost

overrun.
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