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Abstract 

Facility management and built infrastructure asset management are necessary functions of 

any organization that utilizes buildings to operate and run their businesses. However, most 

organizations require facility managers to do more with less and ensure the successful 

operation of their assets without providing sufficient resources to accomplish this task. 

Therefore, in resource-scarce environments, facility managers require thoughtful and data-

driven solutions to manage their assets and make the best decisions for their assets 

throughout their life cycle. Facility managers need novel solutions to help make these life-

cycle decisions. This research provides such a solution. Capitalizing on available data, a 

technical performance metric is created, allowing facility managers to calculate their assets' 

operational performance. This performance metric provides a criterion for facility 

managers to make manufacturer selection decisions: choosing one manufacturer over 

another and picking the best brand for use in their facilities. The performance metric that 

informs manufacturer selection decisions provides a basis for making initial procurement 

decisions, thereby solving one of the life-cycle decisions facility managers must make. The 

performance metric is calculated utilizing basic attribute and condition assessment data. 

Leveraging real-world built infrastructure data from the United States Air Force (USAF), 

case studies are performed to calculate the technical performance of assets, show the utility 

of an organization making or validating manufacturer selection decisions, and to show the 

effect of local climate on technical asset performance. 
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INVESTIGATING MANUFACTURER SELECTION DECISIONS FOR BUILT 

INFRASTRUCTURE ASSETS USING A TECHNICAL PERFORMANCE 

METRIC 

 

I.  Introduction 

Background 

Organizations in all sectors of industry require facilities to house their operations 

and offer their services. These facilities require built infrastructure assets to ensure their 

doors can remain open and provide for continued operations. Facility managers who are 

assigned to maintain and manage built infrastructure assets often operate with scarce 

budgets and manning, but they must still guarantee the successful operation of these assets. 

Therefore, facility management is critical to all organizations, and providing innovative 

solutions to current obstacles in facility management can benefit facility managers and the 

companies they serve. 

The United States Air Force (USAF) is no different from any other organization; it 

relies on facilities and infrastructure to operate efficiently, successfully, and uninterrupted 

to provide a power-projection platform to achieve its mission. Air Force Civil Engineers 

are tasked to manage and maintain that infrastructure. Currently, the USAF has over 

128,000 buildings, structures, and horizontal structures in its real property inventory 

totaling $351 billion in physical assets (“Base Structure Report” 2017). These assets all 

require careful management and oversight to ensure mission success and continued support 

of Air Force personnel.  

Critical decisions need to be made during the facility management process to 

manage this large asset inventory successfully. Life cycle decisions like which asset to 
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procure for use in facilities, the frequency and level of rigor at which to maintain assets, 

and when to make end-of-life-cycle decisions for assets must be made by facility managers. 

All decisions made throughout the facility management process are paramount for mission 

success, but the initial procurement decision sets the trajectory and may influence the 

successful operation of the asset throughout the rest of its lifespan. Civil Engineers should 

appropriately consider all options when choosing the asset to employ in facilities and 

consider which asset will provide the best return on investment while ensuring mission 

success. 

Manufacturer selection is the concept of using a selection criterion to choose the 

manufacturer brand that provides the best operational capabilities when compared to 

competing manufacturers. Manufacturer selection can provide a means to determine which 

asset to choose when making initial procurement decisions. Investigation is required to 

understand how manufacturer selection decisions can be implemented into practice for 

assets and the practicality of making these decisions across the USAF enterprise. This 

thesis presents the results of the preliminary analysis into the viability of using Air Force 

data to make manufacturer selection decisions and what role exogenous factors like the 

climate may have when making manufacturer selection decisions. 

Problem Statement 

The Air Force Civil Engineer career field relies on utilizing data to make informed 

decisions for successfully managing infrastructure and building system assets. 

Manufacturer selection offers the ability to choose the best product for use in facilities; 
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however, investigation needs to occur to understand the viability of making manufacturer 

selection decisions. 

Research Objectives 

The research objectives for this thesis are: 

1. Investigating whether the Air Force Enterprise has sufficient data available to 

make and validate manufacturer selection decisions. 

2. Developing a technical performance metric to quantify the operational 

performance of built infrastructure assets. 

3. Exploring potential climatic influences on the technical performance of built 

infrastructure assets. 

Thesis Organization 

This thesis follows a scholarly article format to address the thesis problem 

statement and achieve the previously mentioned research objectives. Chapters 3 and 4 have 

been developed as independent academic journal articles. Chapter 2 provides an extensive 

background into BUILDERTM, an Enterprise Asset Management (EAM) system, which 

provides the case study data for this thesis. In Chapter 3, “Performance-based building 

system manufacturer selection decision framework for integration into Total Cost of 

Ownership evaluations,” research objectives #1 and #2 will be addressed. This article 

builds the foundation to investigate the viability of making manufacturer selection 

decisions in the Air Force. A technical performance metric is developed that uses actual 

Air Force infrastructure data from BUILDER to illustrate the utility of a technical 

performance metric to quantify asset performance. This work provides the capability for 
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technical asset performance to be implemented into Total Cost of Ownership (TCO) 

models to more accurately characterize all costs an asset owner incurs throughout the 

lifespan of owning assets and provide a criterion to make manufacturer selection decisions. 

This article is targeted for publication in the Journal of Performance of Constructed 

Facilities, a peer-reviewed American Society of Civil Engineers journal. 

Chapter 4, “Evaluating climatic influences on technical performance of built 

infrastructure assets,” addresses research objective #3. This work expands on the 

development of a technical performance metric to investigate any potential climatic 

influences on asset performance. Testing four climatic variables, potential correlations will 

be analyzed to understand any environmental links that might exist between weather 

variables and asset performance. This article is targeted for publication in the Journal of 

Building Engineering, a peer-reviewed Elsevier journal. 

Finally, Chapter 5 provides research conclusions, highlights the significance and 

contributions of this research, and provides future research recommendations. 
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II. BUILDER Background 

Overview 

 BUILDERTM Sustainment Management System (SMS) is a type of Enterprise Asset 

Management (EAM) system that provides a repository for infrastructure and asset data that 

asset managers rely on to help make data-driven decisions regarding facility management. 

BUILDER is a web-based program that was developed by the Engineer Research and 

Development Center (ERDC), which is an engineering and scientific research organization 

of the U.S. Army Corps of Engineers (“U.S. Army Engineer Research and Development 

Center, ERDC Overview” 2021). BUILDER provides a solution to track and manage 

facilities and infrastructure assets and supports facility management decisions related to 

when, where, and how to best sustain built infrastructure assets to make the best investment 

decisions (“BUILDERTM SMS” 2012).  

History 

 In response to U.S. Government Accountability Office (GAO) critiques on how the 

Department of Defense (DoD) was managing their facilities and infrastructure, BUILDER 

was developed and eventually implemented DoD-wide (“BUILDERTM SMS” 2012). 

Currently, the DoD has over 270,000 facilities in its real property portfolio valued at $749 

billion (“Base Structure Report” 2017). BUILDER provides a solution to manage this vast 

facility portfolio and provide a level of accountability regarding the condition of facilities 

and building infrastructure investment that had previously been unavailable. BUILDER is 

now in use by all branches of the military and other federal, state, local, and private 

organizations, enabling the ability to track and manage infrastructure assets. 



6 

Capabilities & Functionality 

 Since BUILDER’s creation, it has quickly become the industry-leading EAM 

because of the vast facility management capabilities it offers that allow facility managers 

to track and manage their assets and provide a predictive capability to plan future 

investment decisions for assets. BUILDER is structured around the UNIFORMAT II 

building classification system, which classifies building elements into different categories 

to group similar structures together (Charette and Marshall 1999). UNIFORMAT II is 

organized into system, component, and section levels in a hierarchical fashion to group 

similar elements. Because BUILDER uses UNIFORMAT II, information regarding major 

systems (like an HVAC system or Plumbing system) within a facility can be tracked, or a 

facility manager can track individual components (air handlers, boilers, electrical 

transformers, or chillers). The hierarchical structure of UNIFORMAT II is shown below 

in (Fig. 1).  

 

 

Figure 1. UNIFORMAT II Elemental Structure 
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BUILDER offers data management services that allow facility managers to store 

basic attribute data regarding facility assets and condition assessment data garnered from 

visual inspections. This repository of data enables BUILDER to utilize its built-in 

algorithms to predict many metrics that are of interest to facility managers. The remaining 

service life of assets, the predicted condition of assets, and short- and long-term work plans 

can be suggested to align with facility management decisions that need to be made 

throughout an asset’s life cycle (“BUILDERTM SMS” 2012). 

Implementation of BUILDER Data 

 This research utilizes available BUILDER data from the USAF to build a technical 

performance metric that allows several hypotheses to be tested. The technical performance 

metric developed in this research relies on several data fields from BUILDER like the 

observed condition index, installation date of the asset, manufacturer of the asset, location 

of the asset, and Remaining Service Life (RSL) of the asset. Observed condition index is 

the condition index entered from visual inspections by trained assessors, which relays an 

asset's health. The observed condition index is measured on a 0-100 point scale where a 

100 is defined as perfect condition, fully operational, and free from any defects. A rating 

between 86-100 is considered a good condition in fully operational status. A rating between 

71-85 indicates an asset in reduced operational status, and a rating of 70 and below 

indicates a loss of operational capability for an asset. Installation date indicates the date in 

which the asset or system was installed and put into operational status. Manufacturer is the 

company that manufactures the asset that is in use in the facility. The asset's location 

describes the location relative to the facility the asset serves, either an indoor or an outdoor 



8 

unit. RSL is an estimate of the useful years of service left for an asset. RSL is measured 

from the present time until the asset fails and is a dynamic value that is updated upon every 

assessment of an asset. This research relied on these five data fields; however, BUILDER 

is a robust program with many different data points available and a plethora of capabilities 

that help facility managers successfully manage their infrastructure assets. 

 These BUILDER data fields should all be widely available if careful asset 

management procedures are implemented for an organization. This research leverages 

these data parameters to achieve the research objectives laid out in Chapter 1.  
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III. Performance-Based Building System Manufacturer Selection Decision 

Framework for Integration into Total Cost of Ownership Evaluations 

Abstract 

Facility managers are often faced with building system procurement or replacement 

decisions, which require that they select a system from among competitive manufacturers. 

Total Cost of Ownership (TCO) criteria, informed by built assets in operation in the 

manager’s portfolio, provides some of the necessary information to select the right asset 

manufacturer. However, managers must also consider technical performance to complete 

a more robust and comprehensive analysis. Technical performance can be calculated using 

asset parameters such as condition, age, and variation in condition to aid in comprehensive 

TCO assessments. Leveraging past research and approaches, technical asset performance 

is calculated using an additive model that scales each parameter using a minimum-

maximum normalization technique and employs weighting factors to account for decision-

maker input. This equation rewards assets that are expected to have longer service lives 

and provides decision-makers an indication for their portfolio’s performance compared 

against others through the inclusion of variance. Data from 20 Air Force installations across 

the United States and two asset types are used to show the utility of a performance metric. 

Overall, this analysis shows that as manufacturer diversity in portfolios decreases, 

performance increases for most of the asset types modeled. This paper presents new 

performance metrics that can be used as an additional criterion in TCO models to build a 

more robust decision framework for a facility management organization of any size.  
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Introduction 

Decision-makers have traditionally faced budgetary and manpower constraints that 

make it challenging to effectively maintain and repair buildings and infrastructure assets 

to ensure adequate performance. Yet, data-driven approaches have the potential to improve 

many facets of the facility management process, including procurement decisions for 

building-installed equipment and components. For component-level units (e.g. chillers, air 

handlers, boilers, electrical transformers, etc.) hereafter referred to as assets, investment 

decisions occur across the asset life cycle, at points of initial procurement, repair and 

maintenance, and disposal. However, initial procurement decisions may have long-term 

effects and can set the course of future maintenance and repair frequency and cost. As such, 

emphasis must be given to asset manufacturer selection, which is defined as the choosing 

of one asset manufacturer over another, based on some number of selection criteria, e.g., 

Total Cost of Ownership (TCO) criteria.  

TCO is a method to evaluate all costs over an asset’s life cycle (Roda and Garetti 

2014), including initial procurement, regular operating costs, spare part costs, and 

corrective maintenance costs. TCO provides a strategy for decision-makers to evaluate 

their assets (Kappner et al. 2019). Infrastructure system life-cycle costs have been 

estimated using TCO frameworks for facilities (Grussing 2014), roofing systems (Coffelt 

and Hendrickson 2010), stormwater systems (Forasté et al. 2015), and pavements (Rehan 

et al. 2018). These analyses provide an overview of the current body of knowledge 

regarding the use of life-cycle cost evaluations for infrastructure systems and provide an 

excellent starting point to detail the costs associated with purchasing and operating 

infrastructure. However, there is a lack of consideration regarding the performance of 
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assets in the TCO framework (Roda and Garetti 2014; Xu et al. 2012). Roda et al. (2014) 

aimed to fill this gap through the creation of a performance-driven TCO model for assets 

in the manufacturing industry (Roda et al. 2020). However, this same methodology has not 

been applied to building systems or built infrastructure.  

This gap in research provides motivation to evaluate building system performance 

statistics and propose a metric that represents asset performance in competitive markets. 

Ultimately, a performance-based metric could be a component of the TCO framework that 

enables the selection of manufacturers that produce the highest performing asset for use in 

their facilities and not simply those that have the lowest initial cost. 

Performance-based manufacturer selection can provide many benefits and 

efficiencies to facility managers, including the creation of a streamlined and repeatable 

procurement process, simplification of maintenance through asset standardization, and 

reduction of the number and diversity of spare parts required to perform preventative and 

corrective maintenance. Initial procurement decisions can be simplified by directing 

facility managers to source assets that are required in many facilities, e.g., chillers and air 

handlers, from a single manufacturer. Procuring assets from a single manufacturer makes 

the ordering process repeatable, which promotes efficiency and leads to lower initial costs 

(Lee and Drake 2010). As technicians learn the specifications of one asset manufacturer, 

they leverage knowledge gained through repetition to reduce time spent on preventative 

and corrective maintenance activities. Standardizing assets has the advantage of decreasing 

time and money spent on maintenance (Tavakoli et al. 1989). Spare part management can 

be simplified through the reduction of the quantity and costs associated with the number 
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of part types stored (McGean 2001; Neelamkavil 2011). In total, manufacturer selection 

enables facility managers to lower costs and reduce complexity within their asset portfolio. 

The concept of performance-based manufacturer selection can apply to many 

organizational levels and infrastructure portfolio sizes, including academia, medical, 

government, or large businesses. Though, independent of organizational or portfolio 

complexity, each facility manager faces the same challenge: to make or recommend 

decisions that efficiently manage assets. Facility managers in all industry tiers can leverage 

the benefits of performance-based manufacturer selection to build an inventory of assets 

that provide the greatest return on investment considering both performance and total life-

cycle costs. As outlined above, the efficiencies of a performance-based manufacturer 

selection approach affect various aspects of the asset life cycle, but they have not been 

well-described in literature for built infrastructure portfolios. This research expands on the 

current body of knowledge to consider a performance-based metric to support 

manufacturer selection decisions and supplement traditional TCO evaluations to increase 

robustness. In addition, this research develops a novel framework, enabling data-driven 

manufacturer selection that makes use of actual observed performance data associated with 

component condition. To develop the data-driven methodology, data were gathered for 

United States Air Force (USAF) building component assets across 20 separate geographic 

installations. To demonstrate and validate the approach, this research focused on two types 

of building components, chillers and air handlers, chosen because they are routinely found 

in facilities and there are several major manufacturers. Using observed condition, 

remaining service life, and a location-specific condition variance, a performance metric is 
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developed that provides facility managers a measure of asset performance for use in the 

manufacturer selection process. 

Data & Case Study 

Manufacturer selection requires sufficient and appropriate data be collected and 

available to make thoughtful and accurate performance-based decisions. One critical 

source of data comes from periodic condition assessments of the asset throughout its life 

cycle. This condition data must be collected in a standardized and repeatable way, and with 

some regularity, e.g., during scheduled preventative maintenance, to ensure all condition 

information is on the same scale and comparable. Other specific asset information must be 

available, including the installation date, inspection dates, and manufacturer name. 

Combining this basic attribute data with the observed condition data enables the creation 

of the performance-based metric to make manufacturer selection decisions. This requires 

a database or management program to track this asset information. An Enterprise Asset 

Management (EAM) system provides a repository for this information. BUILDERTM 

Sustainment Management System (SMS) is the asset management system used for 

condition assessment and facility management within the Department of Defense (DoD), 

and it offers the necessary tracking and management features to make manufacturer 

selection decisions. Additional information on the organization and features of BUILDER 

has been reviewed in the literature (Bartels et al. 2020; Grussing et al. 2016). 

The BUILDER SMS is a DoD-developed facility life-cycle management program 

used by the entire DoD and other federal, state, local, and private organizations to track 

and manage infrastructure assets (“BUILDERTM SMS” 2012). BUILDER’s purpose is the 
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support of facility management decisions related to when, where, and how to best sustain 

built infrastructure assets in order to make better investment decisions (“Sustainment 

Management System” 2020). The SMS program provides a large database of historic asset 

condition information that can be used to create, validate, and test an asset performance 

metric. It spans the diverse variety of building system and components, and stores related 

information including asset installation year, manufacturer, and observed condition state. 

Asset installation year is the date on which the asset was installed into the facility and first 

put into operational status. Manufacturer information lists the company that built the asset. 

Asset condition is measured on a 100-point index scale, which represents the health of an 

asset. A condition of 100 is considered as-new, free from any defects, distresses, or signs 

of deterioration, while 0 is complete failure. Condition data is derived from visual 

inspections performed by trained assessors and condition data is entered into BUILDER 

either by the assessor or data-entry specialists. Per USAF business rules, all assets must be 

assessed no less than once every five years, but may be more frequent if completed during 

recurring preventative maintenance activities.  

Data from the USAF and its infrastructure assets are used to build, validate, and 

verify the use of a performance-based manufacturer selection metric. The data show a 

variety of manufacturers across USAF buildings for a given asset type. This enables the 

USAF enterprise to compare the performance of building component assets by 

manufacturer across all of its operating locations. The performance metric framework 

presented here is designed to be simple and flexible such that any organization that tracks 

performance and manufacturer data can reproduce this analysis or include additional 

decision criteria valued by the organization, such as up-time, service call frequency, etc. 
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Data Filtering 

In line with BUILDER’s goals, the data is used to supply information to the 

performance metric, which may ultimately be used as a component of a TCO manufacturer 

selection decision model. Before proceeding, SMS data requires initial filtering. While 

BUILDER provides a wealth of data that can be used to construct a performance-based 

metric; the raw data requires pre-processing to align the data with the objectives of the 

metric. The performance metric, described in following Methodology section, is an age-

based index that captures asset performance as it degrades between assessments. Because 

installation and assessment dates vary across assets, the raw data in BUILDER needs to be 

modified to transform the temporal basis from an absolute date to a relative asset age. All 

dates are anchored by the asset’s installation date, which is a value stored in BUILDER. 

For example, an asset that was installed on January 1, 2000, and first inspected on January 

1, 2005, is 5 years old at the time of inspection. This transformation in temporal scale 

ensures that assets are being compared against assets of similar ages, and not installation 

date.  

Next, assets were removed from the analysis if the observed condition saw an 

increase between subsequent inspections. Typically, an increase in condition indicates a 

repair or overhaul was performed between inspections, and these situations can have an 

effect on the resulting life-cycle analysis. These assets were removed in order to retain only 

those assets that were unlikely to have had a repair or overhaul completed between 

inspections. Retaining assets with a positive change in condition between inspections 

would be confounding to the calculation of performance metric.  
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Finally, any assets with an observed condition less than 100 at installation (age 

equal to zero) were removed. Logically, assets should be brand new, and in perfect 

condition at the time of installation, so this exclusion criterion is meant to filter out assets 

that may have been erroneously entered into the database, or assets with initial defects 

(either due to manufacturing or installation) that would typically be covered during the 

warranty period. The Air Force does not purchase reconditioned or used assets. The starting 

data population was 8,579 data points representing all the unique chiller and air handler 

assets at the selected installations. Initial filtering criteria resulted in reducing the overall 

data population by 18% (1,582 assets were removed). Once initial data filtering is 

performed, condition as a function of age can be observed, though it does not provide a 

complete picture of asset performance (Fig. 2). 

 

 

Figure 2. Example of Asset Age versus Condition 



17 

Asset and Location Selection 

The United States Air Force has a long history of recording and tracking its asset 

condition data in BUILDER (11 years of condition assessment data). Data from 20 Air 

Force installations were included in this analysis, with installations drawn from across the 

contiguous United States (Fig. 3). These installations are all spatially dispersed within the 

U.S., to provide a representative sample from the approximately 60 active-duty Air Force 

installations. These installations were selected to represent various mission sets within the 

Air Force, as to not bias the analysis toward one particular function, e.g., mobility versus 

fighter aircraft missions. The 20 installations represent a sampling of 1,631 individual 

facilities and include 35% of the total chillers in the Air Force and 33% of all air handlers 

in Air Force inventory within the contiguous U.S.  

 

 

Figure 3. Location of USAF Installations 
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For this research, air handler and chiller asset types were chosen because they 

represent assets that require a large initial investment, have several major competitive 

manufacturers, have moderate service lives (about 20 years for chillers, and 24 years for 

air handlers), and are complex enough to have multiple parts that combine to generate 

condition changes over their lifespan. For chillers, two manufacturers are compared, which 

include a total of 991 units across the 20 Air Force installations considered in this work. 

While there are many major manufacturers for chiller units, the two most common across 

the 20 installations were chosen that represent 46% of all chillers at these installations. 

There is a large diversity in chillers, both in terms of location (indoor and outdoor) and size 

(20 ton - 1,500 ton). For air handlers, three manufacturers are included in the analysis, 

which produces 2,763 individual units. These three manufacturers represent 43% of the 

total air handlers at the selected installations. Again, both indoor and outdoor air handlers 

are included, and units ranging from 2,000 Cubic Feet per Minute (CFM) to 75,000 CFM 

are included. The goal of this study is to show the use of a performance-based metric to 

make manufacturer selection decisions. As such, manufacturer names are unimportant and 

are removed from the presentation of the results to avoid any endorsement of one 

manufacturer over another. However, each manufacturer is prevalent in the United States 

and the international market. The chosen manufacturers of this analysis represent roughly 

half of all assets at each installation, but the distributions do equal 100% of units within 

that installation’s portfolio. There were some manufacturers that represent only a small 

percentage of assets at an installation, as well as manufacturers that are only regionally 

available which would not be suitable for manufacturer selection decisions at a national 

level for an organization like the USAF. Despite distributions not including all assets at an 
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installation, this selection of manufacturers captures the dominant manufacturers at each 

location. 

Sufficient data must be available for an organization’s assets to reproduce the 

performance metric as laid out in this paper. As such, asset owners should ensure that 

manufacturer data and asset condition data are properly tracked and maintained. For this 

study, assets with incomplete or obviously erroneous manufacturer or inspection data were 

excluded from this analysis. The exclusion of assets without manufacturer information 

resulted in reducing available data points by 38% (3,243 assets are removed) producing the 

final data count of 3,754 assets for analysis. If organizations take care to record all metadata 

for their built infrastructure assets, they will increase the pool of available data to use in an 

analysis such as this. 

Methodology 

This study produces a metric that measures the technical performance of an asset, 

which can be used to guide manufacturer selection decisions. The performance metric 

developed in this work is based on asset condition at the time of inspection, remaining 

service life, and the total variation in asset condition compared to similar assets. It provides 

decision-makers a basis of comparison for determining which assets are performing better 

than another. As previously stated, this performance metric provides a quantification of the 

technical performance of an asset, which can be used as a criterion in a TCO evaluation 

(Fig. 4). The performance metric, if valued meaningfully as compared with cost of 

ownership criteria, could be used to strengthen or change manufacturer selection decisions. 
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Figure 4. Framework Diagram for Manufacturer Selection 

 

To create the performance metric, an equation following a weighted sum model 

approach is adopted. The weighted sum model enables decision-makers to select the 

equation parameters that are most important by varying the corresponding weights. 

Equation 1 below shows the performance metric equation that is used in this analysis. 

 

𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆 = (𝑤𝑖 ×  𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔𝒄𝒂𝒍𝒆𝒅) + (𝑤𝑖 ×  𝑹𝑺𝑳𝒔𝒄𝒂𝒍𝒆𝒅) + (𝑤𝑖 ×  [𝟏 −  𝑹𝑴𝑺𝑬𝒔𝒄𝒂𝒍𝒆𝒅] )         (1) 

 

A performance metric value of one (1) indicates the highest performance compared 

to like assets, and zero (0) is the lowest performance when compared to like assets. Using 

a minimum-maximum normalization technique, each parameter of the performance metric 

is scaled. For each case, a parameter value of one (1) indicates the highest value within the 

dataset, and a zero (0) indicates the lowest value within that dataset for that parameter. A 
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zero value does not indicate absolute zero, but simply represents the minimum value within 

that dataset. The minimum-maximum normalization is a standard method of scaling where 

each value is transformed to a number relative to its distance from the minimum and 

maximum values within the dataset. All values for each parameter are scaled prior to final 

calculation of the performance metric. The implementation of the weighting factors 

attached to each parameter in the equation results in the summative performance metric 

being a value between zero (0) and one (1).  

This equation uses three data parameters to describe the technical performance of 

an asset at a point in time. 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝑐𝑎𝑙𝑒𝑑 is the observed condition of the asset, which is 

converted from the raw condition assessment (0-100), and is obtained directly from the 

BUILDER database.  

𝑅𝑆𝐿𝑠𝑐𝑎𝑙𝑒𝑑 is a measure of the remaining service life (RSL) and is the number of 

years remaining until the component is expected to fail and need replacement. RSL is a 

value taken directly from BUILDER and it is based on the BUILDER degradation curve, 

adjusted for past inspection observations. This means that RSL is dynamic to adjust to how 

the asset is actually performing, if the asset is degrading faster than originally expected the 

RSL value will decrease. It is also scaled to a number between zero and one. This parameter 

provides for a measure of asset age that rewards assets that have more years of useful 

service life left rather than those that are expected to fail sooner.  

𝑅𝑀𝑆𝐸𝑠𝑐𝑎𝑙𝑒𝑑 provides for a consideration of condition variance, representing the 

total variation in the condition of assets at one location, when compared to the average 

condition of all assets within the analysis. Root-Mean-Square Error (RMSE) is a measure 

of variability and utilized for this analysis. A higher RMSE value indicates large variation, 
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and a smaller value indicates a lower variation. Computing software is used to calculate 

the RMSE of each manufacturer’s assets at a location compared to the entirety of that brand 

of manufacturer’s assets in the analysis. So, there will be one value of RMSE for each 

manufacturer at each location, this value is calculated based on the comparison of assets of 

similar ages. RMSE is also scaled to a value between zero and one. The scaled RMSE value 

is subtracted from one to allow for assets with conditions closer to the mean to have a 

greater influence than assets that have a high degree of difference from the mean condition. 

Ultimately, facility managers should value assets that perform consistently, as this enables 

more skillful forecasting of maintenance, repair, and replacement. Because condition 

variation is measured for a location’s assets against all assets in the inventory, a 

manufacturer’s variation parameter will be the same for all assets at one location. 

As previously stated, the calculation of performance metric also includes weighting 

factors that allow for decision-maker input to indicate which of the three parameters is the 

most important for decision-making: condition, age, or variability. Each parameter has a 

weighting factor, which is some fraction of one, and all weighting factors must be greater 

than or equal to zero (𝑤𝑖 ≥ 0) and sum to one (∑𝑤𝑖 = 1). For example, a decision-maker 

may decide that condition and variability in condition are paramount and give them 

weighting factors of 0.4 and 0.4, respectively, which leaves age to have a weighting factor 

of 0.2. For the analyses in this study, all weighting factors were set to equal weights (𝑤𝑖 =

0.333).  

Table 1 shows the example calculation of performance metric for three air handler 

assets, of different manufacturers at one location. These three assets are example units and 

the result of the scaling operation to each parameter comes from a larger subset of data 
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(within the specific manufacturer brand at the location, the result of those operations are 

shown here). Each parameter of the performance metric calculation is shown in a column 

with the actual value and in parenthesis the scaled value after the minimum-maximum 

normalization operation. The final column represents the calculated performance metric 

for the asset. This example shows that asset 2 has the highest performance metric since it 

is in the best condition relative to the other two assets and has the most anticipated years 

of service life left. Asset 2 has the best value for variability meaning its condition is most 

similar to the average condition for similar assets; however, a lower condition and RSL 

result in a lower performance metric for asset 2. Finally, asset 3 is in very poor condition, 

has a high variability value and only one year left of anticipated service life, therefore, asset 

3 has the lowest performance metric value of the three assets. 

 

Table 1. Example Calculation of Performance Metric 

Asset Asset Condition 

𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛,

(𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝑐𝑎𝑙𝑒𝑑) 

Remaining Service Life 

 𝑅𝑆𝐿, (𝑅𝑆𝐿𝑠𝑐𝑎𝑙𝑒𝑑) 

Variability in Asset 

Condition 

𝑅𝑀𝑆𝐸, (1 − 𝑅𝑀𝑆𝐸𝑠𝑐𝑎𝑙𝑒𝑑) 

Performance 

Metric 

1 80 (0.4872) 4 (0.1600) 8.8357 (0.8662) 0.5045 

2 88 (0.7941) 7 (0.7500) 10.9868 (0.7853) 0.7765 

3 61 (0.2444) 1 (0.0769) 10.2158 (0.6940) 0.3384 

 

Results 

 Boxplots illustrate the performance of assets, for each Air Force installation, 

between the 25th and 75th percentiles (Fig. 5). The markers represent median asset 

performance. The figure columns represent the two asset types, chillers (left) and air 
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handlers (right). The plots in each column represent the manufacturers (two for chillers and 

three for air handlers). Each plot includes the percent distribution on the horizontal axis, 

which is the percentage of a particular manufacturer each installation has in its inventory. 

The performance metric is shown on the vertical axis. The average performance within 

each manufacturer category is shown by the horizontal dotted line on each plot. This value 

represents the average performance of a manufacturer across the selected installations. 

Using the average value of the performance metric at each installation, a line of best fit, 

which is represented by green and red dashed lines, illustrates whether there is a 

relationship between performance and manufacturer consistency across installations. For 

most assets and manufacturers presented here, there is a positive relationship (green dashed 

line). This suggests that organic manufacturer selection, whether purposeful or not, results 

in increased asset performance at that installation. For example, Manufacturer A for air 

handlers shows a positive trend in performance metric, increasing from 0.43 to 0.65 as 

percent distribution increases. This positive trend suggests that increasing the amount of 

one manufacturer in an installation’s portfolio has a positive effect on the performance of 

those assets. Overall, these best fit lines have low correlation values, so they do not provide 

statistically significant results, but they do illustrate a general trend in the relationship 

between percent distribution and asset performance. This increase in performance may be 

due to the efficiency gained by technicians maintaining a less diverse pool of assets. The 

trendlines point to some of the benefits of manufacturer selection addressed in the 

Introduction section. 

 For chiller units, the boxplots show that Manufacturer A has an average 

performance metric of 0.61, and Manufacturer B has an average performance metric of 
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0.59. Chiller units have percent distribution values between 2.08% and 63.53%. For air 

handlers, boxplots show that Manufacturer A has an average performance metric of 0.56, 

Manufacturer B has an average performance metric of 0.59, and Manufacturer C has an 

average performance metric of 0.52. Air handler units have percent distribution values 

range between 0.76% and 33.74%. Boxplots provide a summary figure for facility 

managers to make manufacturer selection decisions at the installation-level. Installations 

can compute the performance metric for all their assets of varying manufacturers to identify 

whether there is a manufacturer that provides higher performance at their installation over 

another. This information can aid in manufacturer selection decisions. 

 

 

Figure 5. Location-specific Performance Metric Plots 

 

 Bi-directional boxplots, which are similar to rangefinder plots, combine the 

installation-level performance and percent distribution metrics to more concisely display 

manufacturer performance (Fig. 6). These boxplots provide an overview of how a 

manufacturer performs across all Air Force installations compared to another and could 



26 

provide a useful framework for an organization with multiple operating locations to make 

enterprise-level decisions. These boxplots show that for chiller units, the performance 

metric of Manufacturer A ranges between 0.00 and 1.00, but 50% of the assets have 

performances that fall between 0.48 and 0.69. Manufacturer B has a slightly smaller range 

of performance (0.00 - 0.94), though its interquartile range is the same as Manufacturer A, 

falling between 0.48 and 0.69. For air handlers, Manufacturer A has a range of performance 

metric between 0.01 and 1.00, with the majority of the assets falling between 0.47 and 0.65. 

Manufacturer B of air handlers has a performance between 0.01 and 0.96, with 50% of the 

assets ranging between 0.40 and 0.68. Manufacturer C of air handlers has a range of 

performance metrics between 0.00 and 0.97 but the majority of the data falls between the 

values of 0.42 and 0.65. The air handler analysis shows that the average performance metric 

of Manufacturer A is very similar to Manufacturer B and Manufacturer C. Given the 

relative performance similarity between all manufacturers, the enterprise may allow facility 

managers to select whichever manufacturer provides the highest performance at their 

individual locations. The bi-directional boxplots provide a useful validation tool for 

enterprise-wide decisions that may not be as apparent on the location-specific boxplots 

(Fig. 5). However, the bi-directional plots do lose the visualization of any trends in the data 

for performance metric and percent distribution across installations. An enterprise-level 

facility manager could employ this tool to validate manufacturer selection decisions made 

by spatially distributed operating locations. 
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Figure 6. Bi-directional Manufacturer Plots for Performance Metric 

 

Discussion 

 The results presented in the previous Results section illustrate the utility of a metric 

targeted to evaluate the technical performance of assets, in order to augment, make, and 

validate manufacturer selection decisions. Facility managers at individual locations can use 

the results of the location-specific performance metric analysis (Fig. 5) to compare which 

manufacturer provides the best technical performance at their location and make 

procurement decisions accordingly. If the analysis shows that the manufacturer they are 

most heavily invested in provides the best performance, then they can continue to invest in 

that manufacturer brand. If the location-specific boxplots show that better performance is 

achieved by a manufacturer that they currently are not heavily invested in, then the facility 

managers can use that analysis as rationale to switch manufacturers when procuring new 

assets.  



28 

The bi-directional boxplots provide oversight for enterprise-level facility managers 

and show the overall manufacturer portfolio at all operating locations. This tool allows 

them to validate manufacturer selection decisions that are made at lower tiers of their 

organization. It provides them a tool to see which manufacturer brands their locations are 

most heavily invested in and whether those are good investment choices based on the 

performance metric. In the case of the 20 Air Force installations analyzed in this study, the 

bi-directional boxplots show that overall, enterprise-level decisions should not be made to 

only choose one manufacturer. For this case, the average performance metrics of all 

manufacturers are similar enough that directing installations to choose one manufacturer 

over another does not make sense. Enterprise-level facility mangers could use the location-

specific performance metric analysis to help bases validate their choice for manufacturers. 

For example, if a location chooses to proceed with the procurement of a particular asset 

manufacturer, but the data shows that manufacturer does not provide a higher performance 

than another, an enterprise-wide facility manager could choose to redirect the location to 

choose a manufacturer that does provide higher performance. An example of this 

redirection is when comparing the performance of air handlers at two Air Force 

installations (Fig. 7a). This plot shows that at each installation there is a manufacturer that 

provides higher performance when compared to other manufacturers. For Barksdale Air 

Force Base, LA, Manufacturer A provides higher performance than Manufacturer B & C. 

For Seymour Johnson Air Force Base, NC, Manufacturer B provides higher performance 

than that of Manufacturer A & C. Even though Manufacturer A & B have the same 

investment rate in terms of the percent distribution, Manufacturer B provides greater 

performance than that of Manufacturer A and shows a clear choice in which manufacturer 
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to select. These distinctions between which manufacturer is superior makes selection clear 

at the installation-level. However, if Barksdale Air Force Base were to choose 

Manufacturer B for future manufacturer selection decisions, an enterprise-wide facility 

manager could use this tool to show the installation the data that proves that their assets 

that are Manufacturer B do not perform as well as Manufacturer A, and therefore they 

should continue to invest in Manufacturer A. At Seymour Johnson, the installation can use 

the data to see that while Manufacturer B provides a higher performance, their portfolio is 

split between Manufacturer B and Manufacturer A. Decision makers could use the data to 

decide that as their assets that are of Manufacturer A reach the end of their service life, 

they be replaced with those of Manufacturer B.  

This analysis provides the tools to help decision makers at both a local-installation 

level as well as an enterprise-wide level to aid in decision-making. Additionally, the 

previous example also points out that each of these two installations reaches separate 

conclusions as to which air handler brand to select, either Manufacturer A or Manufacturer 

B. The bi-directional boxplot for air handlers (Fig. 6b), show relatively equal performance 

from each of these manufacturers, so this shows more evidence that for the Air Force, there 

should not be an enterprise-wide decision for manufacturer selection of air handlers. 

Additionally, this tool aids in decision-making that is helpful to make and validate 

manufacturer selection decisions. This analysis provides a measure of technical 

performance not previously described in the literature for building systems and built 

infrastructure that can be included in TCO calculations. And while this novel approach 

solves a problem for facility managers, technical performance alone does not provide the 

only means of comparison when selecting an asset. The technical performance analysis 
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allows facility managers to see which manufacturer brand provides the highest 

performance for their assets, but it does not speak to the costs related to purchasing and 

maintaining an asset. Technical performance needs to be factored into a TCO assessment 

so total costs, as well as technical performance, can be considered when facility managers 

make initial procurement decisions. 

 

 

Figure 7. Boxplots of 2 Base Analysis for Performance Metric 

 

 As previously stated, the weighting factors that are included in the performance 

metric calculation provide the opportunity for decision-makers to decide which of the three 

parameters are the most important when calculating the technical performance of assets. 

These weighting factors can be varied to provide a customized formula for performance 

metric, that is tailored to the preferences of the decision-maker. Varying the weighting 

factors to create a condition-weighted model (Fig. 7b) or a variability-weighted model (Fig. 

7c) show the effects each parameter has on the performance metric. These two examples 

display the same data as the equal weighting factors model (Fig. 7a) with the only change 

being the weights used for calculation in the performance metric equation. The condition-
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weighted model more heavily weights the condition of the asset (𝑤𝑖 = 0.50), and the age 

and variability parameters are equally weighted (𝑤𝑖 = 0.25). In the variability-weighted 

model, the variation in condition is more heavily weighted (𝑤𝑖 = 0.50) and the condition 

and age parameters are equally weighted (𝑤𝑖 = 0.25). These shifts in the weighting of 

parameters show the effect that decision-maker preference may have on the outcome of a 

manufacturer selection decision. Overall, the decision as to which manufacturer to select 

does not change, but the variability-weighted model has tighter spreads of performance 

metric which may help make the best manufacturer become more evident. Additional 

parameters could also be added into this performance metric calculation, such as the 

frequency of preventative maintenance required, which would capture how often 

technicians need to attend to the asset to keep it in good working condition. The likelihood 

of corrective maintenance could also be factored into the calculation of performance metric 

to describe what the probability is of an asset needing a major repair to keep it in good 

condition. To qualify if an asset is over- or under-performing relative to its expectation, a 

ratio of the RSL to the remaining years left based on original design life could be added as 

an additional parameter. Because RSL changes depending on the condition of the asset at 

each assessment, if the assessment shows the asset is degrading quicker than expectation 

the RSL will shorten to a value smaller than the years left based on original design life. 

This ratio would provide an indication if the asset is doing better or worse than expected 

relative to its age. These additional parameters would also include weighting factors to 

allow the decision-maker influence over the fraction of performance metric that is 

attributed to each parameter. The equation developed here to calculate the performance of 

assets shows it can be used to make and validate manufacturer selection decisions, though 
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the performance metric framework is flexible and customizable to allow for additional 

parameters to be added and weighting factors to be optimized to the decision-maker’s 

preference. 

While the framework has been developed so that it is flexible such that facility 

managers and decision makers can tailor it to meet their needs, the parameterization 

presented here does provide value in its current form. The inclusion of asset condition, 

remaining service life, and variability in asset condition describe major considerations for 

facility managers to consider. Asset condition depicts current operating efficiencies (or 

lack thereof) of assets, remaining service life quantifies how far into an asset’s useful 

service life it currently is, and variability in asset condition provides a measure of 

consistency for facility managers to understand if this asset will perform similarly to other 

assets. These parameters capture what are likely the most important data points for decision 

makers to consider when making initial procurement decisions. So, while the framework 

itself is flexible, this analysis has dialed into useful parameters that provide facility 

managers a way to make manufacturer selection decisions based on asset condition that is 

service life and variance-informed. 

In addition to the utility of developing a technical performance metric, this analysis 

also underscores the general benefits of collecting and maintaining built infrastructure data. 

Collecting data enables facility managers to leverage data to make sound decisions that 

benefit their organizations. Whether facility managers need to decide which maintenance 

regiment to implement for their asset portfolios, or which asset to select when building 

their portfolios, data provides a tool to enable sound decision making. This study focuses 

on Air Force data that highlights, with just 11 years of condition assessment data, how a 
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performance metric can be calculated enabling a determination, at multiple levels, of the 

technical performance of assets in order to make manufacturer selection decisions. 

One potential obstacle of using this technical performance metric to make and 

validate manufacturer selection decisions is overcoming the lack of data for new 

technologies and new manufacturers that become available in the future. This methodology 

is predicated on using historical data from manufacturers to quantify the performance of 

their assets, and without data facility managers are unable to calculate the performance of 

newer manufacturers that they have not invested in. Additionally, this proposed 

implementation of making performance-based manufacturer selection decisions does not 

safeguard against one manufacturer having a monopoly over all assets in a portfolio and 

subsequently reducing their effort to deliver high performing assets. If a location solely 

invests in one manufacturer after completing this analysis they have no point of comparison 

for those assets against any other manufacturer, nor does that manufacturer have incentive 

to provide for sustained performance of those assets. Overall, both of these points are 

legitimate concerns for facility managers, but the authors believe the benefits of a 

performance-based manufacturer selection outweigh no selection criteria as the alternative. 

This analysis includes asset data from 20 Air Force installations that were spatially 

distributed across the contiguous United States. These installations are located in different 

climate zones that are subjected to varying amounts and extremes of climate variables like 

temperature, rainfall, humidity, and solar irradiance. Also, indoor and outdoor chillers and 

air handlers were included, which have different levels of climatic exposure depending on 

their location. Climate variables may play a role in asset condition and ultimately affect 

asset performance, which could be investigated by analyzing any trends in performance 
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across climate zones. Further research could be carried out to analyze any possible 

influences of climatic conditions on asset performance. This level of analysis may lead to 

conclusions on manufacturer performance in a particular climate zone. 

Conclusion 

 Analyzing the technical performance of assets offers a data-driven solution to 

provide facility managers at all levels of infrastructure management the analytical tools to 

make and validate performance-based manufacturer selection decisions. The measurement 

of the technical performance of assets shows the utility of a metric to assess the technical 

aspects of an asset. As research points out, this technical performance has not widely been 

included in TCO evaluations, which is a limiting factor of TCO models. Without any 

consideration for technical performance of assets, TCO evaluations miss the opportunity 

to capture the operational capabilities of assets. Ultimately, a performance-based metric 

should be incorporated as a criterion in Total Cost of Ownership assessments (Fig. 4). 

Using asset condition, a measure of remaining asset service life, and variation in 

asset condition, a performance metric is created to assess the technical performance of an 

asset. Using condition data collected on thousands of Air Force buildings, performance 

metrics are calculated for each asset type and bi-directional boxplots are used to visualize 

the results. The performance metric of chillers and air handlers at 20 different Air Force 

installations show how different levels of asset management can utilize this analysis to 

make manufacturer selection decisions. The multi-level analysis shows the utility for 

different levels of organizations, local installation-levels that are managing assets day-to-

day, as well as enterprise-level management that oversees the operation of several 
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locations. The location-specific boxplots as well as bi-directional boxplots highlight the 

benefit of performance metric calculation to make manufacturer selection decisions at 

many tiers of an organization. The equation for performance metric is customizable with 

the use of weighting factors that allow for decision-maker preference in which asset 

parameter should carry the most weight for technical performance. Additional parameters 

can also be included in the calculation to account for other asset-related variables 

depending on the goal of decision-makers. 

Future research should implement the technical performance of assets into a Total 

Cost of Ownership model to capture all asset costs over their life cycle. With the addition 

of initial procurement, maintenance, and repair costs, the performance can be added to aid 

decision-makers in choosing the right asset for their inventory. Performance is one aspect 

of the Total Cost of Ownership, but combining it with other costs provides a holistic 

assessment of all costs incurred over the lifespan of an asset. 

Technical Performance analysis provides a starting point for manufacturer selection 

decisions and enables facility managers to choose the brand of manufacturer that offers the 

highest technical performance. This methodology can empower facility managers in all 

industries and at all echelons of built asset management the solution to choose the right 

manufacturer for their portfolio. 
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IV.  Evaluating Climatic Influences on Technical Performance of Built 

Infrastructure Assets 

Abstract 

Facility managers are tasked with making efficient and cost-effective investment 

decisions to maximize asset life-cycle performance. Evaluating technical asset 

performance provides a benchmark for facility managers to understand their assets' 

operational capabilities and current performance. Integrating a technical performance 

metric into Total Cost of Ownership (TCO) models provides a holistic picture of the 

operational efficiencies of assets in addition to the economic burden of owning these assets. 

This criterion can be used to make asset manufacturer selection decisions, i.e., choosing 

the brand of manufacturer that provides the highest performance amongst all brand 

competitors. Understanding the environmental conditions to which assets are subjected 

provides facility managers another data point to understand asset performance. This 

research builds upon previous work that established a performance-based manufacturer 

selection metric by investigating the linkages between asset performance and exposure to 

local climate. Built infrastructure data from 20 Air Force installations from across the 

United States is used to calculate chillers and air handlers' technical performance. The link 

between observations of Heating Degree Days (HDD), Cooling Degree Days (CDD), Solar 

Irradiance, and the number of Humidity days above 55% relative humidity from weather 

stations nearest installations and asset performance is investigated using Analysis of 

Variance (ANOVA) testing, and correlation coefficients. The analysis shows a link 

between asset performance and exposure to climate; most assets in each climate zone had 
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a moderate to strong relationship between their performance and cumulative climate 

exposure. The ANOVA testing showed that climate zone and asset manufacturer do 

influence the performance of assets. Ultimately, facility managers should implement 

technical performance metrics as a consideration for TCO models, and understanding the 

influence of climate on technical performance is an important step. 

Introduction 

Facility managers overseeing the operation and sustainment of built infrastructure 

assets are tasked to make data-driven decisions throughout the life cycle of assets, often in 

resource-scarce environments. These decisions begin with selecting an asset to purchase 

from a manufacturer for use in their facility. This decision is made with expectations about 

the asset’s performance and longevity. Additional consideration must be given as to the 

frequency and robustness of a preventative and corrective maintenance program. 

Throughout the asset’s life cycle, facility managers continue to make decisions up until 

disposal, at which time they need to replace the asset entirely. All of these decisions and 

associated costs can be evaluated using Total Cost of Ownership (TCO) models, which 

calculate all costs incurred by owners of any physical assets over the asset’s lifespan 

(Durán et al. 2016).  

TCO models have been reviewed widely in literature, and they are used extensively 

by facility managers to understand all costs related to owning assets. Various infrastructure 

system costs have been evaluated through a TCO framework, including facilities, roofing 

systems, stormwater systems, and pavements (Coffelt and Hendrickson 2010; Forasté et 

al. 2015; Grussing 2014; Rehan et al. 2018). Performing a TCO evaluation enables facility 
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managers to understand the true cost of owning and operating an asset and provide a point 

of comparison if facility managers employ different asset manufacturers for use in their 

portfolios. Comparing different asset manufacturers allows facility managers to employ the 

best performing asset in their inventory that provides the best return on investment when 

considering all costs. However, most TCO models do not consider asset performance in 

the cost analysis (Roda and Garetti 2014). Failing to consider asset performance leaves 

facility managers with an incomplete understanding of total costs for assets, e.g., the least 

expensive asset may not provide the highest performance.  

Efforts in the manufacturing industry have been made to include asset performance 

as a TCO model factor (Roda et al. 2020). Using this research as a guide, modeling of 

technical performance of built infrastructure assets to aid in manufacturer selection 

decisions has been completed (Brown et al. 2021). Manufacturer selection is the idea of 

choosing one manufacturer over another based on some number of selection criteria, which 

can be factored into TCO models. To calculate asset performance, a technical performance 

metric has been created that utilizes built infrastructure data such as asset condition, 

remaining asset service life, and variation in asset condition from similar assets to quantify 

the performance of assets. 

These recent contributions to the body of knowledge help develop more holistic 

TCO models that consider all financial aspects, from direct costs like initial procurement 

costs to indirect costs that may stem from performance-related criteria. Ultimately, viewing 

asset life-cycle decisions through a technical performance lens helps facility managers 

understand how their assets are performing and what benefit or lack-there-of they are 

receiving in terms of the successful operation of those assets. Calculation of asset 
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performance also enables facility managers to investigate exogenous factors impacting 

asset performance. One of these factors might be the climate in which that asset is operated. 

It is well cited in literature that climate, and especially extreme climate events, impact 

infrastructure systems. Civil engineering infrastructure has been studied to understand the 

effects of climate on assets (Dowds and Aultman-Hall 2015; Liao et al. 2018; Shi et al. 

2020). Climate may affect the frequency and rigor of asset maintenance; winter weather 

conditions may increase maintenance operations for pavements (Chinowsky et al. 2013; 

Dao et al. 2019). Climate conditions may also affect the expected life cycle of assets by 

increasing deterioration rates for those assets (Tari et al. 2015). As a product of climate 

change, changing weather conditions may also affect infrastructure systems that are 

vulnerable to the effects of extreme weather events (Douglas et al. 2017; Guest et al. 2020; 

Pregnolato et al. 2017). Literature has provided a link to the effect of climate on assets at a 

macro-level, but investigating specific climate zones can help answer the question: what if 

any role does climate play in the technical performance of built infrastructure assets?  

While previous research has investigated the role of climate on assets, this study is 

the first to evaluate the effects of climate on the performance of assets, completed at the 

manufacturer-level, and the first to propose that climate should be included as a component 

of a performance-based manufacturer selection process. Trends in climate variables are 

investigated to determine if climate affects asset performance and how different asset 

manufacturers respond to climate influences. Leveraging the authors’ previous work, 

United States Air Force (USAF) assets from 20 separate geographic installations, spanning 

three different climate zones according to the Kӧppen-Geiger classification, are used. Two 

asset types, chillers and air handlers, are investigated to detail the relationship of climate 
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with technical asset performance. This research aims to evaluate the link between asset 

performance and climate to help facilities managers make manufacturer selection decisions 

to employ the asset manufacturer that provides the highest performance in their facilities, 

tailored to their climate zone. 

Data & Case Study 

A case study using observed, manufacturer-level observed infrastructure data is 

conducted to investigate the link between built infrastructure asset performance and 

climate. This case study builds upon the work of Brown et al. (2021) in the development 

of a performance-based metric to quantify the performance of assets and link relevant 

climate data to investigate any trends that may exist. 

Selection of Assets and Locations 

This analysis used built infrastructure asset data from BUILDERTM Sustainment 

Management System, an industry-leading program used to track and manage infrastructure 

assets (“BUILDERTM SMS” 2012). BUILDER has been adopted across the Department of 

Defense (DoD) and it is used in the private sector by many educational and municipal 

organizations (“Sustainment Management System” 2020). Additional information 

regarding the features, capabilities, and organization of BUILDER has been discussed and 

can be found in Bartels et al. (2020) and Grussing et al. (2016). BUILDER supplied the 

following data points for this analysis: 

1) asset condition, which is a 0 to 100-point value that represents the health of an 

asset as observed by a trained inspector, and the assessment’s corresponding 

inspection date; 
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2) the installation date of the asset, or when it was first put into service;  

3) the asset’s remaining service life (RSL, years) is the number of useful years left 

an asset has in service adjusted to account for the current degradation rate of the 

asset; 

4) the manufacturer of the asset; and 

5) the location of the asset (indoor versus outdoor unit).  

The USAF utilizes BUILDER to manage its infrastructure assets, and its data was 

utilized for this case study. A total of 20 Air Force installations from across the Contiguous 

United States are studied (Fig. 8). These locations were chosen to provide a sample of 

installations from each Kӧppen-Geiger climate zone to portray locations subjected to 

different climates. These locations represent one-third of all Air Force installations within 

the Contiguous U.S., providing a good representation of the USAF’s data. 

Two asset types were included in this analysis, chillers and air handlers. These 

assets have relatively long expected service lives: 20 years for chillers and 24 years for air 

handlers, exhibit condition degradation throughout their lifespans, and have several major 

manufacturers. Additionally, both of these asset types are subjected to environmental 

impacts throughout their operation. The study includes package units from 20 tons to 1,500 

tons for chillers and 2,000 cubic feet per minute (CFM) to 75,000 CFM for air handlers. In 

order to relating asset performance to climate variables, each asset is grouped by its 

manufacturer. Two chiller manufacturers are studied and hereafter labeled Manufacturer A 

and Manufacturer B. Three air handler manufacturers are studied, Manufacturer A, 

Manufacturer B, and Manufacturer C. This analysis aims not to provide definitive 

conclusions about which manufacturer, by name, an organization should procure. Instead, 
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it aims to show the utility of investigating the link between manufacturer performance and 

climate variables. Manufacturer names have been omitted to avoid any endorsement of one 

brand over another. 

Climate Classifications & Climate Variables 

The Kӧppen-Geiger climate classification categorizes each part of the globe into 

climate zones based on precipitation and temperature data for the region (Peel et al. 2007). 

The Kӧppen-Geiger classification further divides each climate zone into sub-regions for 

more accurate grouping by like climate areas; however, the five main climate zones are 

utilized for this analysis. A map of the Kӧppen-Geiger climate zones pertinent to this study 

has been created (Fig. 8) utilizing open-access data of Kӧppen-Geiger climate zones (Beck 

et al. 2018). The 20 Air Force installations included in this analysis are marked on the map. 

Based on Kӧppen-Geiger classification, seven installations fall within the Arid zone, seven 

in the Temperate zone, and six in the Cold region.  

The climatic variables chosen for analysis are Heating Degree Days (HDD), 

Cooling Degree Days (CDD), Total Solar Irradiance, and Total number of Humidity Days 

above 55% relative humidity. These variables were selected because numerous citations in 

the literature point to their effect on the operation of assets (Crawley 1998; Jazaeri et al. 

2019; de Rubeis et al. 2020) as well as the current climatic design standards used for 

Heating, Ventilation, and Air Conditioning (HVAC) units (“ASHRAE Handbook - 

Fundamentals” 2009; Roth 2017). Based on this information, it is hypothesized that they 

may influence the technical performance of assets. HDDs are an environmental measure 

of how cold the climate is for a given day below a specific threshold value; CDD is a 

measure of how warm the climate is for a given day above a threshold value (“Degree-days 
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- U.S. Energy Information Administration (EIA)” 2020). A standard value of 65°F is used 

for the threshold value for both HDD and CDD. Total Solar Irradiance is the total light 

intensity observed in watts per square meter between sunrise and sunset for a day. This 

value provides a measure of the amount of exposure assets have to the sun. Total number 

of Humidity Days above 55% relative humidity is the count of days where the average 

relative humidity was above 55%, which provides a metric for how humid the environment 

is that the asset is operating in. All weather data was sourced from AccuWeather’s 

propriety database. The chosen climate variables do not provide an exhaustive look at all 

climatic variables which may affect an asset’s performance but provide a starting point for 

analysis. These chosen variables target the climatic variables that influence chillers and air 

handlers based on how they operate and are backed up by research. 

 

 

Figure 8. Kӧppen-Geiger Climate Zone Classifications 
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Initial Data Filtering & Statistics 

The built infrastructure data stored in BUILDER provides a wealth of information 

for the case study and investigating the link between asset performance and climate. 

However, initial pre-processing was required to organize the data in a ready-state for 

analysis. Initial data filtering and processing actions included rebaselining the temporal 

scale of stored data from an absolute date to a relative asset age to compare all assets on a 

similar basis. Any assets with a change in condition greater than or equal to zero between 

inspections were removed to only consider assets that have not had a major repair or 

improvement. Any assets that had a condition less than 100 at the installation time were 

removed because assets should be in perfect condition at the installation date. This pre-

processing step was meant to exclude assets that may have been incorrectly entered into 

the BUILDER database. Lastly, any assets with missing or incomplete data fields were 

removed. A complete record of an asset’s manufacturer, condition, and RSL must be 

available to calculate asset performance. An extensive explanation of this filtering and 

exclusion process has been covered in Brown et al. (2021). For this climatic influence 

analysis, an additional filtering criterion was applied to remove assets that had an 

installation year before 1985 or an installation year after 2018. This step was done to align 

the asset data with the temporal range of available climate data. The data sourced from 

AccuWeather was daily climatic data from 1985-2018.  

The initial population of asset data available from BUILDER included 8,579 unique 

chiller and air handler units from the 20 Air Force installations. Data filtering and exclusion 

criteria reduced the data population by 66% (5,705 assets were removed). This large 

percentage highlights the need for rigorous asset management programs that track and 
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manage data for their built infrastructure assets. Despite the percentage of removed assets, 

the analysis still contains 2,874 unique assets from 1,341 facilities at the 20 Air Force 

installations. This filtered population of assets contains 765 chiller units and 2,109 air 

handlers. Of the chiller units, 33% of units are located in the Arid climate zone, 42% are 

located in the Temperate climate zone, and 25% are in the Cold climate zone. For the air 

handlers, 23% are located in the Arid climate zone, 48% are located in the Temperate 

climate zone, and 29% are located in the Cold climate zone. 

Further breakdown of the number of units of each manufacturer brand within each 

climate zone is detailed in Table 2. This table shows the prevalence of each manufacturer 

within the climate zone. Overall, there are a majority of manufacturer A branded chillers 

across the three climate zones. Manufacture A is also the most prevalent brand in operation 

for air handlers for these Air Force installations. 

Table 2. Manufacturer Prevalence within Each Climate Zone 

Asset Type Climate Zone Manufacturer 
Prevalence of Manufacturer 

in Climate Zone 

Chillers 

Arid 
Manufacturer A 49% 

Manufacturer B 51% 

Temperate 
Manufacturer A 82% 

Manufacturer B 18% 

Cold 
Manufacturer A 84% 

Manufacturer B 16% 

Air 

Handlers 

Arid 

Manufacturer A 50% 

Manufacturer B 29% 

Manufacturer C 21% 

Temperate 

Manufacturer A 63% 

Manufacturer B 20% 

Manufacturer C 16% 

Cold 

Manufacturer A 59% 

Manufacturer B 14% 

Manufacturer C 27% 
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Methodology 

Asset Performance Metric 

Investigating the link between asset performance and climate requires a metric to 

quantify asset performance, the authors have formulated a way to do this using available 

built infrastructure data. This methodology creates an age-based metric that uses asset 

condition and includes a measure of condition variation to compute each asset's 

performance value. Equation 1 below is the equation used to calculate asset performance. 

 

𝑷𝒆𝒓𝒇𝒐𝒓𝒎𝒂𝒏𝒄𝒆 = (𝑤𝑖 ×  𝑪𝒐𝒏𝒅𝒊𝒕𝒊𝒐𝒏𝒔𝒄𝒂𝒍𝒆𝒅) + (𝑤𝑖 ×  𝑹𝑺𝑳𝒔𝒄𝒂𝒍𝒆𝒅) + (𝑤𝑖 ×  [𝟏 −  𝑹𝑴𝑺𝑬𝒔𝒄𝒂𝒍𝒆𝒅] )         (1) 

 

This equation follows a weighted sum model approach to utilize three parameters 

to calculate asset performance. The first parameter is 𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠𝑐𝑎𝑙𝑒𝑑, which is the 

observed condition of the asset directly taken from the BUILDER database. The 0-100 

point value for condition is scaled to a number between zero (0) and one (1) using a 

minimum-maximum normalization technique. The next parameter is 𝑅𝑆𝐿𝑠𝑐𝑎𝑙𝑒𝑑, which is a 

measure of the remaining service life (RSL) of the asset and represents the number of years 

between the current age and the asset’s expected service life. RSL is updated after each 

asset assessment to either decrease or stay the same depending on the asset's current 

deterioration rate. For example, if the asset is degrading quicker than expected, the RSL is 

decreased. This number is also scaled to a value between zero (0) and one (1). The final 

parameter of the equation is 𝑅𝑀𝑆𝐸𝑠𝑐𝑎𝑙𝑒𝑑, which provides a consideration for condition 

variation. The inclusion of this parameter compares the condition of assets at one location 

to the mean condition for all similar assets in the organization’s inventory. The variation is 
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computed using root-mean-square error (RMSE), which is a formulation of distance of 

individual means to an overall population mean. Facility managers should value assets that 

behave similarly to the majority of their assets because this allows for more predictable 

operation and easier time planning maintenance activities. This parameter is also scaled to 

a number between zero (0) and one (1) and then subtracted from one. This final subtraction 

operation allows assets that exhibit conditions closer to the mean to have greater influence 

in the performance equation. 

Each parameter in the performance metric equation has a weighting factor attached, 

allowing decision-makers to choose which parameter is most important and should carry 

the highest weight. Each weighting factor must be greater than or equal to zero (𝑤𝑖 ≥ 0) 

and all factors must sum to one (∑𝑤𝑖 = 1). This analysis has equally weighted each 

parameter (𝑤𝑖 = 0.333). The final performance metric is a value between zero (0) and one 

(1), where one (1) indicates the highest performance when compared to like assets and zero 

(0) indicates the lowest performance compared to like assets. This equation provides a way 

to quantify asset performance based on asset condition and informed by service life and 

variance. A detailed description of this equation and example calculations can be found in 

the authors’ previous work (Brown et al. 2021). 

Query Weather Database & Calculating Cumulative Totals 

The AccuWeather database was first queried to match a local weather station with 

the latitude and longitude coordinates of the Air Force installation to calculate the 

cumulative climate exposure of each asset at each installation. The proprietary 

AccuWeather database contained weather data for 1,938 weather stations across the U.S. 

Each weather station had the coordinates, and these could be matched with the coordinates 
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for the 20 locations of interest. The average distance between the weather station and its 

corresponding Air Force installation was only 0.85 miles, so the climate data selected is 

indicative of the conditions experienced at the Air Force installation. Once the weather 

stations were linked with the Air Force installations, each location's data could be mined 

for the climate variables of interest: HDD, CDD, Solar Irradiance, and Humidity Days. 

This analysis matches each chiller and air handler unit with cumulative climate 

exposure between assessment dates. This methodology allows for a link to be made 

between each climate variable and the asset's performance. First, each asset’s installation 

date is marked as the first day of interest, and a counter begins that sums the number of 

days between the installation date and the asset's assessment date at which condition data 

was recorded. This exact timeframe (number of days) is found in the climate database, and 

the cumulative amount of climate exposure for each variable described above is totaled for 

that same period. For example, if a chiller was installed on January 10, 2005 and was first 

assessed on January 10, 2010, the counter would return 1,826 days. The weather variable 

database is then queried to find January 10, 2005 and records the variable of interest for 

that day. The program then sums the number of accumulated climate units, e.g., HDDs, 

until the assessment date on January 10, 2010 (1,826 total days). This cumulative approach 

is meant to account for asset exposure between condition assessments. This cumulative 

value is paired with the performance of the asset calculated at that point in time. This 

methodology is followed for each asset's assessment date at each installation for each 

climate variable of interest. 

Visualizations & Statistical Analysis 
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After calculating the cumulative climate exposure for each asset, scatterplots can 

be generated to inspect the relationship between asset performance and climate variables, 

as they enable easy visualization of trends. Scatterplots are generated for each asset 

(chillers and air handlers), each climate region (Arid, Temperate, and Cold), and each 

climate variable (HDD, CDD, Solar Irradiance, and Humidity Days). The cumulative 

climate exposure is shown on each scatterplot on the horizontal axis, and asset performance 

is shown on the vertical axis. Each point on the scatterplot represents an individual asset. 

Select scatterplots are shown in the following Results section, and all scatterplots are 

shown in the Appendix. In addition to scatterplots, a Pearson correlation coefficient (𝑟) is 

calculated to measure the linear correlation between cumulative climate exposure and asset 

performance. For this analysis, an absolute correlation value less than 0.1 indicates no 

relationship (0.1 >  |𝑟|), an absolute correlation value between 0.1 and 0.3 is considered 

a weak correlation  (0.1 ≤  |𝑟| < 0.3). A correlation coefficient between 0.3 and 0.5 is 

considered a moderate correlation (0.3 ≤  |𝑟| < 0.5), and a value greater than or equal to 

0.5 indicates a strong relationship (0.5 ≤  |𝑟|). These threshold values are general 

guidelines often cited in literature (Cohen 2013). Correlation coefficients are shown for 

each scatterplot as well as in Tables 3 and 4 of the following Results section. 

In addition to correlation analysis, an analysis of variance (ANOVA) was 

performed to determine if a statistically significant difference in the mean performance 

metric of assets between the different factor levels is present. This test is performed for 

chillers and air handlers, and different factor levels, i.e., climate zone, asset manufacturer, 

and asset location (indoor versus outdoor unit), are tested within each asset group. The 

ANOVA testing provides context to whether the different factor levels contribute to a 
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difference in the average performance metric. The ANOVA results are explored in-depth 

in the next section.  

Results 

 After calculating the cumulative climate exposure for the time period between 

assessments for assets, the data could be visualized in scatter plots. These scatterplots show 

the cumulative climate exposure on the horizontal axis and the zero (0) to one (1) 

performance metric values on the vertical axis. These figures provide a visual of any 

relationships that exist between the variables. On each scatter plot, each point represents a 

unique asset. Plots are color-coded by the manufacturer of the asset. Alongside each scatter 

plot, the correlation coefficient is shown for each manufacturer. As expected, most 

correlation values are negative, likely due to the climate variable's inherent time 

component. As time passes, the total for each climate variable increases, and it is implied 

that more time is passing is connected to assets aging. However, variation in the correlation 

value between manufacturers suggests that each climate variable and performance 

combination is different. Most relationships are weak to moderate, though some climate 

variables have a strong correlation to asset performance. All scatterplots are shown in the 

Appendix. Chiller units in the Cold climate zone (Fig. 9) are shown here to highlight strong 

correlations and assets with minimal dispersion between asset performance and cumulative 

climate exposure. These scatterplots show a negative linear trend in the data. Manufacturer 

A shows a strong correlation between all climate variables and asset performance. 

Manufacturer B has a moderate correlation between CDD and asset performance and a 

strong relationship between HDD, Solar Irradiance, and Humidity Days. The tight 
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dispersion shows the low variability that exists between cumulative climate exposure and 

asset performance for this climate zone. 

 

 

Figure 9. Correlation Analysis for Chillers in Cold Zone 

 

Air Handlers in the Temperate climate zone (Fig. 10) are shown to highlight results 

with more dispersion. The greater dispersion for these plots indicates that there is a high 

degree of variability within the data. These results show negative linear trends for the 

manufacturers across all the climate variables. Manufacturer A shows a weak correlation 

for HDD and moderate correlation for CDD, Solar Irradiance, and Humidity Days. 

Manufacturer B shows a weak correlation for HDD and a strong correlation for CDD, Solar 

Irradiance, and Humidity Days. Manufacturer C shows a moderate relationship for HDD 

and shows weak relationships for CDD, Solar Irradiance, and Humidity Days.  
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Figure 10. Correlation Analysis for Air Handlers in Temperate Zone 

 

The selected scatterplots and correlation coefficients generalize the statistical 

relationships between cumulative climate exposure and asset performance for the three 

climate zones of study for chillers and air handlers. By further grouping assets by their 

location in relation to the facility they service–either indoor or outdoor units–further 

investigation can be performed to see if the asset's location plays a role in linking asset 

performance and cumulative climate exposure. Tables 3 and 4 below provide an overview 

of this level of analysis. These tables show each asset's correlation coefficient, in each 

climate zone, for each manufacturer, by location. These tables also contain the correlation 

coefficients shown previously in Figure 9 and 10. The correlation coefficients in the tables 

are color-coded to correspond to correlation strength. A gray color indicates no relationship 
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(0.1 >  |𝑟|), a light orange indicates a week correlation (0.1 ≤  |𝑟| < 0.3). A light green 

color indicates a moderate correlation (0.3 ≤  |𝑟| < 0.5), and a dark green color indicates 

a strong correlation coefficient (0.5 ≤  |𝑟|). The bold type shows the major grouping of 

the assets by manufacturer before grouping by indoor or outdoor units. Additionally, 

calculating the 𝑝-value for each correlation provides context to whether the correlation 

coefficient is statistically significant. Asterisks denote the statistical significance following 

each correlation value. 

Table 3. Correlation Coefficient Table for Chillers 

Climate 

Zone 
Manufacturer 

Indoor / 

Outdoor 

Unit 

Sample 

Size 
HDD  CDD  

Solar 

Irradiance  
Humidity 

All 

Climate 

Zones 

Manufacturer 

A 

Both 721 -0.30** -0.34** -0.42** -0.24** 

Indoor 243 -0.32** -0.28** -0.36** -0.27** 

Outdoor 478 -0.29** -0.38** -0.46** -0.23** 

Manufacturer 

B 

Both 287 -0.25** -0.35** -0.40** -0.30** 

Indoor 200 -0.17** -0.37** -0.41** -0.27** 

Outdoor 87 -0.28** -0.33** -0.39** -0.32** 

Arid 

Manufacturer 

A 

Both 162 -0.25** -0.43** -0.45**      -0.11   

Indoor 40 -0.46** -0.34** -0.37**      -0.14   

Outdoor 122 -0.23** -0.47** -0.49**  -0.10** 

Manufacturer 

B 

Both 170 -0.35** -0.44** -0.46** -0.36** 

Indoor 58 -0.31** -0.50** -0.53** -0.48** 

Outdoor 112 -0.36** -0.39** -0.42** -0.30** 

Cold 

Manufacturer 

A 

Both 211 -0.54** -0.54** -0.61** -0.61** 

Indoor 66 -0.60** -0.58** -0.68** -0.67** 

Outdoor 145 -0.51** -0.52** -0.58** -0.58** 

Manufacturer 

B 

Both 40 -0.57** -0.43** -0.54** -0.55** 

Indoor 11 -0.55** -0.49   -0.59** -0.62** 

Outdoor 29 -0.65** -0.41** -0.55** -0.57** 

Temperate 

Manufacturer 

A 

Both 348 -0.24** -0.30** -0.28** -0.30** 

Indoor 137 -0.20** -0.31** -0.24** -0.28** 

Outdoor 211 -0.29** -0.30** -0.34** -0.34** 

Both 77 -0.10** -0.37** -0.32** -0.31** 
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Manufacturer 

B 

Indoor 18 -0.20**  -0.29    -0.29     -0.31 

Outdoor 59 -0.06   -0.42** -0.35** -0.33** 

*Correlation is significant at the 0.10 level 

 **Correlation is significant at the 0.05 level 

 

Table 3 shows all the correlation coefficient values for chiller units and the 

statistical significance of each value. Overall, there are many moderate and strong 

correlation values between asset performance metric and cumulative climate exposure 

within the different climate regions. This table also highlights that in some cases, grouping 

assets by their location in relation to the facility they serve (indoor or outdoor unit) 

strengthens the relationship. For example, the statistical significance of humidity and asset 

performance of Manufacturer B assets increase when comparing indoor and outdoor units, 

as opposed to all units combined for Cold climate zone. Across all climate variables and 

for both manufacturers, the Cold climate zone shows moderate to strong relationships 

between the climate variables and asset performance. This result shows that asset 

performance is highly influenced by cumulative climate exposure within the Cold climate 

zone. In the Arid climate zone, both manufacturers show a moderate correlation between 

CDD and Solar Irradiance, showing that hot temperatures and sun exposure influence asset 

performance. For the Temperate climate zone, CDD and Humidity show moderate 

correlation levels to asset performance, indicating that hot temperatures and humid 

environments influence assets in the Temperate region. 
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Table 4. Correlation Coefficient Table for Air Handlers 

Climate 

Zone 
Manufacturer 

Indoor / 

Outdoor 

Unit 

Sample 

Size 
HDD  CDD  

Solar 

Irradiance  
Humidity  

All 

Climate 

Zones 

Manufacturer 

A 

Both 1517 -0.19** -0.35** -0.40** -0.34** 

Indoor 1449 -0.18** -0.34** -0.38** -0.33** 

Outdoor 68 -0.39** -0.64** -0.63** -0.50** 

Manufacturer 

B 

Both 527 -0.14** -0.55** -0.52** -0.19** 

Indoor 498 -0.14** -0.53** -0.50** -0.22** 

Outdoor 29  -0.18   -0.84** -0.78** -0.32** 

Manufacturer 

C 

Both 530 -0.21** -0.24** -0.29** -0.28** 

Indoor 494 -0.22** -0.22** -0.28** -0.30** 

Outdoor 36  -0.03   -0.61** -0.51** -0.23** 

Arid 

Manufacturer 

A 

Both 293 -0.25** -0.63** -0.60** -0.24** 

Indoor 266 -0.23** -0.60** -0.59** -0.25** 

Outdoor 27 -0.39** -0.94** -0.76**     -0.28 

Manufacturer 

B 

Both 168 -0.19** -0.48** -0.46** -0.08** 

Indoor 146 -0.19** -0.45** -0.43** -0.07** 

Outdoor 22 -0.13** -0.90** -0.82** -0.37** 

Manufacturer 

C 

Both 122 -0.07** -0.51** -0.34** -0.21** 

Indoor 115 -0.06** -0.47** -0.31** -0.24** 

Outdoor 7 -0.03** -0.97** -0.96** -0.78** 

Cold 

Manufacturer 

A 

Both 437 -0.18** -0.37** -0.34** -0.30** 

Indoor 426 -0.18** -0.37** -0.34** -0.30** 

Outdoor 11  -0.38  -0.35    -0.43       -0.43   

Manufacturer 

B 

Both 104 -0.40** -0.49** -0.48** -0.47** 

Indoor 100 -0.41** -0.50** -0.49** -0.47** 

Outdoor 4 -0.71   -0.59      -0.65       -0.69   

Manufacturer 

C 

Both 205 -0.40** -0.27** -0.38** -0.36** 

Indoor 179 -0.40** -0.28** -0.38** -0.37** 

Outdoor 26 -0.38** -0.03**    -0.13       -0.14   

Temperate 

Manufacturer 

A 

Both 787 -0.15** -0.39** -0.34** -0.35** 

Indoor 757 -0.13** -0.38** -0.33** -0.34** 

Outdoor 30 -0.41** -0.56** -0.56** -0.56** 

Manufacturer 

B 

Both 255 -0.27** -0.64** -0.55** -0.55** 

Indoor 252 -0.27** -0.64** -0.55** -0.55** 

Outdoor 3 -0.74  -0.97      -0.89       -0.91   

Manufacturer 

C 

Both 203 -0.31** -0.23** -0.27** -0.28** 

Indoor 200 -0.31** -0.24** -0.28** -0.29** 
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Outdoor 3 -0.67** -0.76** -0.75** -0.79** 

*Correlation is significant at the 0.10 level 

 **Correlation is significant at the 0.05 level 

 

Table 4 shows the correlation coefficient values and statistical significance for the 

air handlers in the analysis. There are many moderate and many strong correlation values 

across all the climate zones, indicating that cumulative climate exposure influences asset 

performance. The Temperate region shows the most strong correlation values that might 

indicate that the Temperate region's asset performance is highly influenced by cumulative 

climate exposure. Within the Temperate climate zone, CDD, Solar Irradiance, and 

Humidity appear to have the strongest correlation values across the three manufacturers 

meaning that asset performance in the Temperate zone is most affected by the cooling 

demand, exposure to the sun, and humidity. In the Arid climate zone, asset performance is 

most affected by CDD and Solar Irradiance, showing the highest correlation values, 

meaning that hot temperatures and exposure to the sun influence asset performance. Most 

correlation values are weak and moderate for the Cold climate zone, except for 

Manufacturer B, which shows strong correlation values for some outdoor units. These 

results show that, on average, the Cold climate zone's asset performance is not highly 

affected by cumulative climate exposure, except for Manufacturer B. 

Across the analyses for both chillers and air handlers, some sample sizes are small 

when assets are grouped by location. Sourcing additional data could provide more strength 

to the correlation coefficients and make some relationships stronger and more statistically 

significant. 
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The chiller ANOVA test results (Table 5) show that only the interaction element 

between climate zone and manufacturer produces different average performance metrics. 

This factor level where the 𝑝-value is lower than the critical 𝑝-value, 0.05 for this analysis, 

provides statistical evidence of a difference in means. This result suggests that 

Manufacturer A assets perform differently in the Arid climate zone from those in the 

Temperate climate zone and those in the Cold climate zone. The same is true of 

Manufacturer B; assets perform differently in each climate zone. Overall, these results 

show that there are differences in asset performance across the different climate zones and 

between the two manufacturers.  

 

Table 5. ANOVA Test Results for Chillers 

Factor Source 
Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Squares 
F-Statistic 𝒑-value 

Climate Zone 0.0109 2 0.00546 0.21 0.8076 

Location of Asset 

(Indoor/Outdoor) 
0.0118 1 0.01175 0.46 0.4979 

Manufacturer 0.0007 1 0.00070 0.03 0.8681 

Interaction between Climate Zone 

& Location of Asset 

(Indoor/Outdoor) 

0.0181 2 0.00907 0.35 0.7014 

Interaction between Climate Zone 

& Manufacturer 
0.4705 2 0.23527 9.21 0.0001 

Interaction between Location of 

Asset (Indoor/Outdoor) & 

Manufacturer 

0.0397 1 0.03973 1.55 0.2127 

Error 25.5048 998 0.02556   

Total 26.2396 1007    

 

The same result is shown for air handlers (Table 6). This ANOVA test shows that 

the interaction element between climate zone and manufacturer impacts the asset 

performance metrics. The 𝑝-value for this factor is lower than the critical 𝑝-value of 0.05, 

which provides the statistical evidence. These air handler results show that each 
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manufacturer performs differently in each climate zone, e.g., Manufacturer A assets 

perform differently in the Arid climate zone than those in the Temperate climate zone and 

differently from those in the Cold climate zone.  

Table 6. ANOVA Test Results for Air Handlers 

Factor Source 
Sum of 

Squares 

Degrees of 

Freedom 

Mean 

Squares 
F-Statistic 𝒑-value 

Climate Zone 0.0415 2 0.02073 0.88 0.4149 

Location of Asset 

(Indoor/Outdoor) 
0.0516 1 0.05161 2.19 0.1390 

Manufacturer 0.0333 2 0.01666 0.71 0.4931 

Interaction between Climate Zone 

& Location of Asset 

(Indoor/Outdoor) 

0.0401 2 0.02004 0.85 0.4270 

Interaction between Climate Zone 

& Manufacturer 
1.3181 4 0.32952 13.99 0.0000 

Interaction between Location of 

Asset (Indoor/Outdoor) & 

Manufacturer 

0.0054 2 0.00268 0.11 0.8924 

Error 60.2655 2558 0.02356   

Total 62.0485 2571    

 

 The ANOVA testing (Table 5 and 6) highlights that the interaction element between 

climate zone and asset manufacturer are influential on asset performance, but that other 

variables are not influential. Alone, climate zone does not create performance differences 

amongst assets. Location of assets (indoor or outdoor units) does not create performance 

differences, and by itself, asset manufacturer does not create performance differences. 

Nevertheless, when investigating different manufacturers in different climate zones, 

performance differences are apparent. These results suggest which factor levels are 

influential in creating asset performance differences and which are not. 
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Discussion 

 The statistical analysis performed and detailed in the previous Results section 

indicates that there is a moderate level of influence that environmental factors play in asset 

performance across both space and time. Many of the different groupings of assets showed 

moderate and strong correlation values. The ANOVA results show that climate zone and 

manufacturer of assets affect asset performance such that each manufacturer performs 

differently in each climate zone. These results are illustrated when cumulative climate 

exposure is plotted against asset performance, and correlation coefficient values show 

moderate associations between the variables. The results can help facility managers see 

which asset manufacturer provides the best performance for the climate zones in which 

their assets operate. By choosing the manufacturer that exhibits the best performance when 

faced with the most influential climate variables for their region, they can ensure they 

employ high performing assets that may ultimately lead to a lower total cost when factored 

into TCO models. 

Previous work concluded that there was not sufficient evidence to support 

manufacturer selection decisions at an enterprise level for the Air Force. Using the 

technical performance metric for assets enabled installations to make the manufacturer 

selection best for their specific location, but there was no clear decision at the enterprise 

level. Grouping Air Force installations by climate region shows that assets within the same 

climate zone react to climatic variables similarly. This climatic analysis provides further 

support that making manufacturer selection decisions at local installation-levels may make 

the most sense instead of enterprise-wide solutions. 
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These investigatory results show that asset performance is not the same across all 

manufacturers of assets. Making manufacturer selection decisions based on a technical 

performance metric can be useful to a facility manager. The results may help guide 

operational decisions a facility manager needs to make throughout an asset's life cycle. The 

influence of climate variables may impact these decisions, like what is the effect on asset 

degradation. If a facility manager in a particular climate zone anticipates a specific 

degradation profile for their assets, based on the long-term averages of weather variables, 

and then the climate zone experiences extremes for these averages, a facility manager may 

be able to predict potential changes to their asset’s degradation profiles. 

Additionally, the climate zones and climate variables drive asset performance, and 

as such degradation predictions could be partially informed with a climate-based 

assessment model. As the average climate changes for some areas around the United States, 

and more extreme weather events occur more often and with greater intensity, the effect 

on asset performance could be predicted by relying on the relationships calculated here. 

Moreover, as climate change effects become more prevalent in some areas, understanding 

the link between climate and asset performance may strengthen. 

One limitation of this study is the limited scope of climate variables investigated. 

The decision to include HDD, CDD, Solar Irradiance, and Humidity Days as the variables 

of interest was based on the operational effects these variables have on chillers and air 

handlers; however, these four variables are not the only climatic factors that may affect 

chillers and air handlers. Future research could be focused on expanding the scope of 

variables included to fully understand all climatic factors that may affect assets' technical 

performance. 
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This research also highlights the analysis capabilities that are available when 

organizations track and manage built infrastructure data. The USAF has more than ten 

years of condition assessment data available. Statistical analyses can be performed to show 

the relationship that exists between asset performance and climatic variables. 

Organizations that manage facilities and the accompanying assets on any level, whether it 

is a small organization that owns a few facilities or a large organization similar to the USAF 

that has a multitude of facilities geographically spread out, built infrastructure data can be 

leveraged to perform statistical analysis to help make data-driven decisions for their 

organization. Accurate data management policies can help organizations know and 

understand their assets to make the best decisions for their asset portfolios. This research 

also exposes the potential limitations that exist from incomplete data records. A large 

portion of the original data points had to be excluded from the analysis because there was 

missing data regarding the manufacturer of the asset. By implementing robust data 

management procedures, organizations can increase the amount of data available to them 

for analysis. 

Conclusion 

 This research set out to examine the role that four climate variables, HDD, CDD, 

Solar Irradiance, and Humidity Days, might play in asset performance when assessed via 

a technical performance metric. This analysis showed that all of these climate variables 

impacted chillers and air handler units in some way through the many different 

combinations of analyses that were targeted. In most cases, asset performance was 

negatively linked to the climate variables studies, which implies that climate variables 
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influence asset performance such that it decreases the performance of assets. By comparing 

results by one of the three Kӧppen-Geiger climate zones (Arid, Temperate, Cold) that exist 

for the 20 Air Force installations of interest, the climate variables' role on asset performance 

could be observed. Additionally, by looking at the asset's location in relation to the facility 

it serves (indoor versus outdoor unit), an understanding could be made to see if asset 

placement plays a role in asset performance, which it does. 

Ultimately, this research builds on extensive research that already exists in the field 

for using TCO models to describe all costs of ownership for built infrastructure assets. By 

employing a technical performance metric that describes an asset's performance based on 

condition, age, and variation in condition, an economic consideration can be factored into 

TCO models to account for this technical performance. A climatic analysis helps facility 

managers further understand their assets' technical performance, specific to their climate 

zone. This analysis further links the impact of climate on built infrastructure assets and can 

provide another criterion for facility managers to use when making manufacturer selection 

decisions. This analysis also highlights the evaluation capabilities that are available when 

organizations employ rigorous data management programs to track and manage their 

infrastructure assets. 
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V.  Conclusions and Recommendations 

Research Conclusions 

This thesis focused on the research to investigate the viability of manufacturer 

selection for organizations, specifically the USAF. In alignment with this focus, three 

research objectives were defined: 

1. Investigating whether the Air Force Enterprise has sufficient data available to 

make and validate manufacturer selection decisions. 

2. Develop a technical performance metric to quantify the operational 

performance of built infrastructure assets. 

3. Explore potential climatic influences on the technical performance of built 

infrastructure assets. 

First, a background of BUILDER SMS was presented that provided context to the 

data and case study utilized in this research. BUILDER is the EAM used by the entirety of 

the DoD, and its numerous functions and capabilities offered the perfect solution to address 

the research objectives. In Chapter 3, a technical performance metric was created to 

quantify the operating performance of built infrastructure assets and achieve the second 

research objective. Capitalizing on BUILDER's USAF data, a case study was created to 

evaluate the feasibility of making and validating manufacturer selection decisions. Overall, 

the case study showed that the USAF does have sufficient data available and can make 

manufacturer selection decisions at local installations. However, based on the analysis data, 

manufacturer selection decisions should not be mandated at the enterprise level. However, 
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tools were developed to help manufacturer decisions be validated at an enterprise level; 

these results achieved research objective one. 

Through the investigating of climate data in Chapter 4, research objective three was 

realized. An analysis of the relationship between four climate variables and asset 

performance was examined across three climate zones. Overall, there was sufficient 

evidence that there is a link between climatic variables and asset performance. These 

results can help inform decision-makers about how their assets may perform in each 

environment depending on the presence of different climate variables. In total, this thesis 

accomplished all stated research objectives and provided novel research to contribute to 

the body of knowledge. 

Research Significance 

For organizations operating in resource-scarce environments, facility managers are 

often tasked to decide when and how to replace assets or procure new assets to meet their 

mission needs. Relying on data provides evidence as to what is the best asset to provide 

the best performance. This research provided the method to utilize data in order to make 

these decisions. A novel approach was used to fill a gap in the current body of knowledge 

and provide a data-driven solution to one aspect of facility management.  

Research Contributions 

This research demonstrated the applicability of using BUILDER data to make data-

driven decisions, which is often the goal of any facility management program. The 

importance of collecting quality data was shown and what can be done if quality data is 

collected. This research provided a novel approach to quantifying the technical 
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performance of built infrastructure assets, which has previously been identified as a 

literature gap. This research also investigated the exogenous factors that may affect asset 

performance and provided facility managers with an understanding of the effects of 

climatic variables on asset performance. Finally, this research provided a flexible 

framework to calculate technical asset performance, which can seamlessly be implemented 

into Total Cost of Ownership models.  

Recommendations for Future Research 

This research highlighted the ability to utilize available built infrastructure data to 

create a quantified technical performance metric for built infrastructure assets. With only 

five different data fields, asset performance was calculated, which provides facility 

managers a metric to use when making decisions throughout an asset’s life cycle. In this 

case, during initial procurement decisions, asset performance could inform manufacturer 

selection decisions. This framework highlights the power of data and the potential it holds 

for facility managers. Additionally, data quality and availability are also important; 

organizations should employ robust data management practices to capture and record all 

valuable data during the facility management process. It is recommended that organizations 

who manage asset portfolios, regardless of size, invest in data management practices that 

enable them to capitalize on data to calculate the technical performance of assets and any 

other metrics that are of importance for their organizations.  

In coordination with organizations collecting more data, this facility management 

data can be combined with workplace management data like NexGen IT data that captures 

additional data parameters. These parameters may include preventative maintenance 
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requirements and schedules, service calls related to specific asset failures, or funding 

information related to asset operation activities. Combining condition-based facility 

management data with workplace management data could provide insights to the 

interaction between the different data parameters. 

In order to expand on the climate analysis performed in this research, additional 

climate variables could be analyzed to investigate their influence on asset performance. In 

addition to the four variables included in this analysis, parameters to consider precipitation 

amount and type (rainfall, snowfall, hail, etc.) could be included. A wind velocity 

parameter could be added which may account for high wind velocity effect on some 

outdoor units. Lastly, a composite corrosion parameter could be included to quantify the 

corrosive effects of an environment on an asset, like excessive salinity in the air. In addition 

to increasing the number of climate variables included in the analysis, the model created to 

link environmental climates and asset performance could be used in a forecast mode. 

Utilizing the model in a forecast mode could highlight the effects of future climate 

predictions on asset performance. Representative Concentration Pathways (RCP) could be 

used to show the effect on asset performance as climate changes in accordance with 

greenhouse gas concentration trajectories. 

The technical performance of assets was investigated in this research to quantify 

how assets in operation are performing compared to similar assets. This research provides 

one aspect that can be used to evaluate the Total Cost of Ownership (TCO) of assets, but 

the technical performance of assets is not the only factor. Integrating assets' technical 

performance into a TCO framework can provide facility managers and decision-makers a 

holistic picture of all costs incurred over an asset’s life cycle. In addition to technical 
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performance, costs related to purchasing, maintaining, servicing, outfitting with spare 

parts, and disposing of assets should be evaluated to offer a robust analysis of total costs. 

This research should be expanded to calculate all costs related to owning and operating 

assets. In addition to investigating additional costs, research should be conducted to 

understand the influence of some aspects of owning an asset on their performance. These 

additional considerations could be the availability of spare parts or bench stock as they may 

influence worker productivity. If the number and diversity of spare parts kept on hand are 

reduced, what effects may this have on worker productivity that in turn may influence asset 

performance? 

Finally, the concept of manufacturer selection was investigated in this research, and 

a solution to quantify asset performance was calculated to help facility managers choose 

the right brand to employ in their asset portfolios. Manufacturer selection uses a criterion 

to select an asset during the initial procurement process instead of the current status quo of 

having no criteria to help make procurement decisions. Manufacturer selection should 

continue to be investigated and researched to arm facility managers with the right tools to 

help them build the best asset portfolio to help them achieve their missions. These tools 

must include indicators to help facility managers not only decide what is the right decision, 

but when to make that decision. The trigger point to indicate when a change to an asset 

inventory must be made is as important as what asset to use. Whether facility managers 

replace assets with the right manufacturer through attrition, or if the replacement is 

condition- or age-based, the decision point as to when is the optimal time to replace assets 

according to these manufacturer selection decisions should be researched. 
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Appendix: Climate Scatterplots 

  

Figure A. Correlation Analysis for Chillers in Arid Zone

Figure B. Correlation Analysis for Chillers in Temperate Zone 
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Figure C. Correlation Analysis for Chillers in Cold Zone 

 

 

Figure D. Correlation Analysis for Air Handlers in Arid Zone 
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Figure E. Correlation Analysis for Air Handlers in Temperate Zone 

 

 

 

Figure F. Correlation Analysis for Air Handlers in Cold Zone 
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