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Abstract 

Global water security is a growing concern that poses unique challenges that stem from 

geopolitical arrangement, regional location, and local climate conditions. United States 

national defense relies on an uninterrupted water supply to sustain operations to carry out 

its readiness mission. Accurate water security assessments are necessary for adapting to 

climate factors and to provide essential information to meet the changing needs of human 

water demand. This research presents how different water metrics are applied at various 

United States Air Force locations to measure water scarcity. Geographical Information 

Systems (GIS) software is used to conduct spatial correlation across the United States to 

identify ranges between the metrics.  

Reported water condition data from 34 United States Air Force installation development 

plans was assessed for correlation with the selected water scarcity metrics, though no 

evidence suggesting a relationship between the developed water scarcity index and the 

installation development plan data was identified. The development of an index to 

accurately relay water scarcity conditions will improve the ability to overcome water 

planning and regional water management challenges and combat factors that contribute to 

water scarcity. Such measures are needed to ensure water security as United States water 

resources face challenges from climatic variation and the threat of cyber-attacks on water 

systems.  
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I.  Introduction 

1.1 Background 

Global tensions driven by uncertainty on the world’s geopolitical climate have 

caused the United States Military to place renewed emphasis on readiness and mission 

capability. Military leaders use training metrics as a measure to assess preparation levels 

in these two areas. This is a prime example of one way metrics are used in the United 

States military. Another tactic to apply metrics in the United States military would be 

using them to measure water security. While water considerations may dwarf in 

comparison to larger geopolitical issues, a reliable water supply is critical to national 

defense as water is essential to the function of all Department of Defense (DOD) in-

garrison mission-critical and support activities. Therefore, water security must remain a 

top priority1. Failing to adopt sound strategies aimed at mitigating water scarcity may 

force missions to delay, alter, or relocate carrying both steep fiscal costs and impeding 

the readiness interests of United States warfighting capability.  

A recent study on integrating uncertainty into water resource planning concluded 

that significant gaps exist in planning to address climate-related impacts2. Key findings of 

the analysis showed that: 
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• only four percent of states have a strategy for addressing variability and 

uncertainty 

• 70 percent of states lack any guidance on the impact of climate change 

• floodplain mapping data used by the Federal Emergency Management 

Association (FEMA) was deem chronically outdated 

Perhaps most concerning from a planners’ perspective was that across the United 

States, drought planning guidance allocation was 94 percent for emergency response and 

the remainder for mitigation and management2. Compounding these findings with the 

United States Air Force’s (USAF) increased reliance on local municipal organizations for 

water introduces risk by surrendering this responsibility. Though municipal suppliers are 

invested in meeting needs of their customer base, adding the volatility climate change 

introduces to weather patterns creates challenges for those tasked with water resource 

management decision making2. A question remains how water resource planners will 

develop sound plans to meet future water needs if their location is verified at-risk. 

Limitations of water resources could leave the United States Military, namely the 

USAF ascending to meet adversaries in a position of superiority on the contested 

platforms monitored today. It is vital that the DOD and the USAF dedicate resources to 

counter future water security risks to ensure complete mission capability to prevent 

falling behind near peer military adversaries. The following research offers understanding 

of water resource conditions at USAF installations, and highlights the under-valued 

concerns of current water security methods. 
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1.2 Problem Statement 

 United States Air Force installations receive water from ground, reservoir, and 

flowing river and stream sources. Resource competition from domestic, industrial and 

agricultural consumers will remain despite measurable reductions in withdrawals in every 

sector over the last 20 years (Figure 1)3.  

 

Figure 1: Water Withdrawal Data by Sector 1998 - 20173 

Obsolete data and the failure to implement accurate methods to measure water resource 

availability are issues the USAF and DOD must address to ensure water security for the 

future.  

1.3 Research Objective  

The DOD reported in January 2019 that military installations were at risk of 

having insufficient water resources to meet their mission needs1. The 2017 Annual 

Energy Management and Resilience Report published by the DOD’s Office of the 

Assistant Secretary of Defense for Energy, Installations, and Environment reported yearly 

reductions in DOD potable water consumption (Figure 2) while maintaining that military 

branches will continue to rely on water to carry out their missions1,4.  
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Figure 2: DOD Potable Water Consumption FY 2008 - FY 20174 

This research provides narrative on selected water scarcity indicators, which first were 

developed in the late 1980s when assessing water scarcity was recognized as a global 

issue5. Indicators assess water availability under given conditions and explanation is 

provided why particular ones were selected as the best choices to gauge water resources 

at the included USAF installations. Results from selected indicators are combined with 

local regional water use data to generate an index value as a measure of water scarcity 

particular to a location. Additionally, installation development plans (IDP) from each 

location were reviewed for content that refer to water scarcity. Appendix A.1 provides a 

summary of collected IDP data that are compared with the developed index results to 

assess for correlation. 
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1.4 Research Questions  

The objectives from the previous section are the initiatives this research proposes to 

address. A study published in 2020 stood on the idea that water will be the primary 

medium that climate change impacts will be felt, and therefore it is imperative that 

enhanced water security be an intricate part of climate change response6. While many 

factors contributed to water security, the solution must provide framework and 

motivation that advocates for a method to measure water security across USAF locations. 

The following research focuses primarily on collecting available resources reflective of 

water scarcity conditions with the purpose of determining how each may contribute to a 

greater overall understanding of water scarcity. Additionally, cyber-attacks on the water 

supply sector are a growing concern. A 2019 publication by the American Water Works 

Association cited that the Director of National Intelligence, the Federal Bureau of 

Investigation, and the Department of Homeland Security concur that cyber risk is a top 

threat to critical water infrastructure in the United States7,8. For this reason, cyber risks to 

entities that supply water to USAF installations must be considered in the overall 

discussion for water security. Primary questions this research aims to address are: 

1. Does a lack of water security leave USAF installations at risk from a perspective 

of mission readiness? 

2. Will lack of water security subject USAF installations to vulnerability in the 

future?  

3. What can enhance the USAF’s determining factors for water security from a long-

term planning perspective? 
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1.5 Motivation 

Recent publications authored by representatives of the USAF and the DOD recognize that 

climatic impacts demand greater consideration in future water security planning, and past 

methods that address at-risk installations may not have been leading practices1,9. The 

Government Accountability Office (GAO) specifically identified that no effort was made 

to identify future water availability nor was an account for all ground and surface water 

sources included1. Decisions to ensure improved research and corrective steps must be 

implemented or the status quo of data inadequate to deliver water security answers will 

continue to affect military installations. The United States Army found that using utility 

privatization to upgrade utility infrastructure reduces risk and liability by transferring 

asset responsibility to local utilities, thus providing them a water resilience benefit4. 

While these contracts offer tangible advantages, the relinquished control of signing over 

water responsibilities may indicate that installations could be removing themselves from 

the ability to shape water resource strategy and maintain internal cyber risk protection. 

Despite the motivation from these benefits and the potential of decreased burdens on 

USAF installation municipal technicians, privatization agreements could expose the 

USAF and the DOD to risks that could threaten future mission assurance. 

1.6 Preview 

 Chapter 1 presents how water security across the DOD and USAF is an under-

valued national security component with insufficient data and practices to safeguard its 

protection. Content that motivates a response to the research objectives and water 

security considerations for the USAF is presented here. Chapter 2 is a literature review 
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that investigates different water security metrics, indicators, and indexes. Descriptions of 

each provide the value potential to developing quantifiable water security understanding 

at USAF installations for use in research and planning. Also discussed are government 

reports on past methods and future steps being considered to address growing water 

concerns, including failure to adopt industry leading water assessment practices and 

assessing risk1,9. Chapter 3 introduces the selection and development of inputs used to 

establish the index. Methods outline the paring down of large datasets into a scale that is 

both usable and applicable. Steps taken to extract IDP water resource information for use 

in conjunction with the developed water scarcity index are detailed. Individual water 

scarcity assessments assembled with selected IDP data is presented and examined in 

chapter 4. Chapter 4 also provides discussion to explain the relevance of the results and 

refers to visual aids to convey the significance of findings. Maps, tables, and plots display 

values in this chapter and in the appendix section to provide lasting interpretation for 

readers. Chapter 5 summarizes content of the research and offers motivation and 

recommendations for future water security. Additional consideration on the possibility of 

domestic terrorism threatening water security is also included.  
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II. Literature Review 

2.1 Chapter Overview 

The purpose of this chapter is to provide background of water scarcity indexes 

and the inputs that fit their primary applications. Each index bridges a gap in water 

resources research and meets a specific purpose of quantifying water availability. Not all 

indexes below are applicable to assessing water scarcity at USAF installations across the 

contiguous 48 states. Those not selected for development of the water scarcity index in 

this effort can still offer significance to the foundation of research. 

2.2 Considerations for Research 

Locations known to be at risk of a water uncertain future would be prudent to act 

in securing access to supplemental resources. Commonalities in regions of similar climate 

and geographic location exist, but water source-type, varying demand needs and 

influences of climate change are factors that introduce uncertainty to water awareness. 

These elements must be considered when selecting a scarcity indicator to represent 

location-specific water concerns. In planning to address water security challenges in the 

future, a precursor for execution is to first establish a mechanism to measure it6. This 

process is accomplished by selecting indicators that frame a location’s water supply and 

demand conditions, that through calculation will translate into a usable water index score.  

2.3 Water Scarcity Indicators, Indexes, Ratios and Assessments 

Selecting an index or indicator best suited to capture a locations’ water resource 

conditions should begin with understanding the differences between the two terms. First, 

an indicator is a grouping of variables, based on knowledge and scientific judgement, that 
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communicate information about the water resources system. Subsequently, an index 

represents an aggregation of indicators which are weighted to meet desired social 

preferences10. Figure 3 below lays out how research data can be pared to form indicators, 

and a collection of select indicators to form an index to shape policy for water resource 

planning10. 

 

Figure 3: Aggregation of information in water resource planning and management10 

Development of an accurate water security index is a tool that decision-makers can use to 

responsibly and effectively delegate resources to address the water needs of their region. 

There are a variety of indexes comprised of weighted indicators developed to 

capture the availability of water, classified by characteristics of water scarcity5. The main 

purpose of an index is to quantify what cannot be measured directly, and to also measure 

the changes. A suitable index must be an assembly of properly selected components, built 

on reliable and accurate sources of data, of a sound formula, and subjected to a 

determined time frame for basing calculations11. 

The following is a collection of tools used by the water research community 

aimed to quantify the water conditions throughout various parts of the world. Each 
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subsection includes descriptive information about the type, including its applicability to 

water resource planning for the USAF. Additional reasoning is provided for the decision 

to include the three indicators selected as components for the index in this research.  

2.3.1 Falkenmark Indicator 

The Falkenmark indicator is recognized in the water scarcity field as a 

cornerstone for framing many other water scarcity indicators and indexes. First published 

in 1989, the Falkenmark indicator sought to quantify the water critical perils that Africa’s 

semi-arid countries were facing, with particular regard to quality of life and food 

security12. In it, water scarcity is assessed by measuring per capita water availability from 

surface and subsurface resources (Eq. 1). Obtaining an accurate result requires the 

number of people living in a sector and the volume of water available for use within that 

domain5. Calculating yearly water availability per capita generates a number where trends 

predicting water shortages are easily observed over a selected time frame.  

 

𝑭𝒂𝒍𝒌𝒆𝒏𝒎𝒂𝒓𝒌 𝑰𝒏𝒅𝒊𝒄𝒂𝒕𝒐𝒓 =  
𝑾𝒂𝒕𝒆𝒓 𝑨𝒗𝒂𝒊𝒍𝒂𝒃𝒊𝒍𝒊𝒕𝒚 (𝒎𝟑/𝑷𝒆𝒓𝒔𝒐𝒏)

𝒀𝒆𝒂𝒓
 

Eq. 1 

The Falkenmark indicator could provide useful contribution for an index to 

highlight water stress levels of a location. The validity of the assessment is subject to the 

availability of the data input into Eq. 1. The Falkenmark indicator overlooks temporal 

characteristics and the primary drivers of demand related to economic growth, lifestyle, 

and technological developments5,13. Because of such omissions, the Falkenmark indicator 

is not a universal fit to capture variability of water scarcity demands at USAF locations. 
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2.3.2 Criticality Ratio / Water Use to Availability Ratio 

Criticality ratio measures water stress by calculating the ratio of water use to 

availability and is another widely recognized method to gauge water scarcity. This ratio 

measures the amount of water used and relates it to the available renewable water 

resources5,14. Water use refers to both water consumption and water withdrawals, which 

differ greatly in volume, so it is important to understand each. The water consumption 

measure is volume lost through evaporation to the atmosphere from rivers, lakes, and 

other groundwater sources5. Consumption is a fraction of withdrawal, and therefore the 

amounts minimally impact water scarcity15. Water withdrawal refers to the volume of 

water intentionally removed from rivers, lakes, and other groundwater sources for use5. 

Worth including in determining withdrawal amounts is that some removed portion is 

returned to the source after use and treatment. This return of measured flow that can be 

metered at treatment facility effluent points may suggest a fairer assessment of the stress 

on a water resource as the overall take is reduced noticeably by this replenishment.   

When the water use to availability ratio, an alternate name and more descriptive 

verbiage of criticality ratio, exceeds 40 percent withdrawal, this rate is considered high 

water stress14. Criticality ratio is a practical assessment tool for determining water 

scarcity. Commercial and public use water withdrawal, and treated return amounts are 

metered data that is stored and available for analysis. Flow volumes from water sources 

like streams and rivers are also monitored and can provide the water availability portion 

of the analysis. As previously mentioned, including the return flow calculation makes this 

assessment a more accurate measure when looking at the entire water scarcity picture. 

The criticality ratio is a direct assessment on the collective state of a region’s water 
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condition. Assuming that data input for the criticality ratio is accurate and encompassing, 

this assessment would be a strong choice to determine water conditions at a desired 

location. Limiting factors for using in this research is the ability to collect data for each 

region’s available water sources, but it could be a useful assessment for USAF 

application if this could be accomplished.  

2.3.3 Water Poverty Index 

The water poverty index (WPI) was designed to address water issues in less 

developed regions. Areas facing poor or non-existent water utility infrastructure, coupled 

with the burden of no resources to improve their circumstances are parameters the WPI 

was designed for. The five indicators in the WPI make-up are: water availability; access 

to water for human use; effectiveness of people’s ability to manage water; water use for 

different purposes; environmental integrity related to water and of ecosystem goods and 

services from aquatic habitats in the area16.  

The WPI formula generates a weighted average of the five components, with the 

final index being on the order of 0 to 100. High values indicate higher levels of water 

poverty5,17. The WPI is encompassing by including multiple aspects that could affect 

water access at a select location. While the broad considerations of the index could be 

viewed as a strength, accurately generating a value could pose challenging due to the 

five-component data collection requirement. Couple this with the WPI being designed 

primarily to indicate water conditions of regions faced with limited water resources and 

poor adaptive capacity suggest this would not be suitable to convey future water needs of 

current USAF installations. While not a fit for this research that focuses on established 
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regions, the WPI could provide a valuable outlook to the USAF and the DoD if 

occupation of an undeveloped austere location were directed. 

2.3.4 Green-Blue Water Scarcity Indicator 

Other models boasting more sophisticated methods have been created in the 21st 

century with emphasis on the use of spatial analytical tools5. The green-blue water 

scarcity indicator accounts for green water which refers to soil moisture in the 

unsaturated zone recharged by precipitation, and blue water which is quantified as the 

total run-off of renewable freshwater on the earth’s surface or ground water5. 

Incorporation of both water types is rooted in the indicators’ primary purpose as a 

resource for agricultural production. Because of the emphasis on green water which is 

largely not considered a source for direct human consumption, this indicator would have 

limited application to directly address water scarcity at USAF locations. However, 

installations located in regions of moderate to heavy agricultural landscape could focus 

on the components and results of this indicator to assess what demands were being placed 

on each resource type. Such information could help shape where to focus effort to tap 

into water resources that have not yet been subjected to development. 

2.3.5 Water Footprint-Based Water Scarcity Assessment 

Water footprint-based water scarcity assessment measures the amount of water 

used to produce the goods and services humans use18. This assessment incorporates 

return flows back to resources that some other models fail to account for. Three 

components are considered to measure water use and availability: consumptive use of 

ground and surface water flows-i.e. the blue water footprint; the flows needed to sustain 
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critical ecological functions are subtracted from water availability; water use and 

availability are measured on a monthly rather than annual basis to account for seasonal 

water scarcity5. The result from this indicator provides where and when water level use is 

likely to cause shortages and ecological harm within identified river basins. Risks to 

ecological health and ecosystem services are recognized when the 20 percent removal 

level is surpassed. The environmental flow requirements (EFR) counted as the remaining 

80 percent is a broad approach that fails to consider specific river flow amounts or 

regional withdrawal needs as all river basins were considered in this number5,19. Many 

studies found that appropriate levels of EFR vary across the river regimes considerably, 

which further refutes the EFR value of 8020. The complexity of required components for 

this indicator may post greater challenges due the greater burden of collecting more data 

points. However, the analysis is comprehensive and the component of measuring on a 

monthly scale would provide the USAF a detailed foundation of results to use in planning 

decisions. This assessment would be a strong choice for the USAF if input data could be 

gathered to complete the calculations. 

2.3.6 Cumulative Abstraction to Demand Ratio 

Water availability is seasonally variable across many regions, with resources 

exceeding demand in some months and falling short in others5. The cumulative 

abstraction to demand (CAD) ratio is an indicator that applies global hydrological model 

results that simulate river flow volumes and water removal at a daily time step. The 

calculated values are expressed as a ratio of cumulative daily water abstraction from 

rivers to the cumulated daily potential water demand made up of agricultural, industrial, 
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and domestic uses for a selected year5,21. Due to the input components of the CAD, it 

would be most applicable in regions where a vast majority of water withdrawals come 

from surface water. Because the results reflect seasonal variations of water scarcity 

brought on by drought conditions, selecting CAD as an assessment would exemplify the 

influences of climate variation. Using this ratio as an indicator would provide a strong 

collection of water scarcity information in surface flow dominant regions if the high 

quantity of data computations could be overcome5. This would be an appropriate method 

for the USAF to assess water scarcity conditions if a significant portion of an areas’ water 

supply were extracted from surface water resources.  

2.3.7 Blue Water Stress Indicator 

 Blue water refers to liquid water in rivers, lakes, wetlands and aquifers 22. A panel 

of heads of state from around the world in September of 2015 adopted the 2030 Agenda 

for Sustainable Development that consisted of 17 Sustainable Development Goals 

(SDGs)23. One of the SDG indicators selected to monitor water scarcity was the blue 

water stress indicator. The blue water stress indicator is practically identical to the water 

footprint-based water scarcity assessment detailed above, with both measuring for ground 

and surface water flows5. Blue water scarcity is a collective ratio of total freshwater 

withdrawn by all sectors to the total water availability in a designated region, the 

equation for which is shown below (Eq. 2)23. The water stress (WS) percentage is 

achieved by dividing the total freshwater withdrawn (WW) by the total renewable water 

resources (TRWR), less the environmental flow requirements (EFR). 

𝑾𝑺(%) =
𝑾𝑾

𝑻𝑹𝑾𝑹 − 𝑬𝑭𝑹
× 𝟏𝟎𝟎 
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Eq. 2 

 

The subtraction of the environmental flow rate (EFR) from the total renewable freshwater 

resources (TRWR) accounts for the gross water abstractions that are returned, accounting 

for the consumed portion23. Approximately 10 percent of the domestic take of gross water 

abstraction is lost to consumptive uses24. The direct connection to a region’s water 

availability and use characterized by the blue water stress indicator represents an ideal 

tool for USAF water assessment. The practical and direct approach combined with an 

available data source were reasons the blue water stress indicator was included for index 

development in this research. 

2.3.8 Baseline Water Stress Indicator 

Baseline water stress measures the total annual withdrawals of municipal, 

industrial and agricultural consumers from the total available blue water resources in a 

region25–28. Higher values indicate more competition among users, so demand increase 

from any of the three sectors would drive an escalation. The calculation for this indicator 

(BWS) divides water withdrawals (WD) by mean available blue water (BWA-avg), 

shown here in Eq. 3.  

𝑩𝑾𝑺 =  
𝑾𝑫

𝑩𝑾𝑨 − 𝒂𝒗𝒈
 

Eq. 3 

The output is a direct quantifier of the risk to a region due to the collective strain 

expressed on its blue water. While inputs for the calculation are shared with other 

measurement options referenced in this section, this method is another that offers 
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relevance and useability to provide an assessment of water conditions at USAF 

installations. The baseline water stress indicator was selected at a component of the index 

developed to add robustness by emphasizing blue water as a key indicator of water 

scarcity.  

2.3.9 Groundwater Stress Indicator 

Groundwater stress (GWS) measures the ratio of groundwater withdrawal relative 

to its recharge rate over a given aquifer29. This indicator also called the groundwater 

footprint (GF) is a water balance between aquifer inflows and outflows show below in 

Eq. 4. The area-averaged annual abstraction of groundwater is denoted by C, the recharge 

rate by R, and the groundwater contribution to environmental streamflow by E. Any areal 

extent where C, R and E can be defined is denoted as A, measured in units of length 

squared. 

𝑮𝑭 =  𝑨[
𝑪

𝑹 −  𝑬
] 

Eq. 4 

An aquifer is still considered part of the blue water footprint as they contain or 

transmit groundwater accessible to withdrawal. Including this measure of another 

primary water source in this research index facilitates representation of water conditions 

at locations with low or no available surface water resources. Limited availability of 

surface water resources does not necessarily equate to an area being water scarce, so by 

including a GWS indicator this potential gap to complete a water scarcity assessment is 

filled. For GWS, regional values that have a raw score above one suggests that excess 

consumption could be detrimental to sustainable groundwater availability, namely where 
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the ecosystem is groundwater-dependent30. This indicator would be useful to the USAF 

to gather water scarcity data from regions with multiple water resources. 

2.3.10 Summary Table 

 Table 1 below provides a summary of the above water indicators by name, a brief 

description and the source(s).  

Table 1. Table of Water Scarcity Indicators 

 

Water Scarcity Measurement Description Source 

Falkenmark Indicator water availability per 
person per year  5,12 

Criticality Ratio ratio of water use to 
availability  5 

Water Poverty Index 
five component formula 
designed for use in less 
developed regions  5 

Green-Blue Water Scarcity 
Indicator 

measures green and blue 
water for use in agricultural 
application  5 

Water Footprint-Based Water 
Scarcity Assessment 

measured at a monthly 
rate, incorporates return 
flows and indicates 
shortages  5,18 

Cumulative Abstraction to 
Demand Ratio 

ratio of daily abstraction 
from rivers to demands of 
agricultural, industrial and 
domestic uses  5 

Bluewater Stress Indicator 
ratio of total freshwater 
withdrawn to a region's 
total water availability  23 

Baseline Water Stress Indicator 

measure of collective 
withdrawal from the total 
available blue water 
resources 25–29  

Groundwater Stress Indicator 

groundwater footprint is 
regional measure of 
groundwater extracted to 
the recharge rate 25,29 
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2.4 Installation Development Plan Review 

 Installation development plans (IDP) are USAF reports that provide a 

comprehensive look into a bases’ strategic vision. Aiming to help decision makers 

prepare for the future are sections labeled: strategic vision alignment, installation setting, 

planning constraints, installation capacity opportunities, sustainability development 

indicators, future development planning and plan implementation. Separate sustainability 

development indicators focusing on water quantity, quality and intensity provide 

conditions specific to potable water at each USAF installation, including the 

characteristics of unique cases. The climatic vulnerability section provides a table of 

potential threats from the natural environment, each with a current assigned value to 

reflect the potential magnitude at the installation. The fundamental water conditions in 

conjunction with the climatic vulnerability measures provide information that reveal 

where stronger water planning actions may be needed. These records aide in closing the 

gap that must be filled to achieve water security at vulnerable USAF locations.  

2.5 Summary 

 Content from the 2020 publication Air Force Civil Engineer Severe 

Weather/Climate Hazard Screening and Risk Assessment Playbook and the 2019 United 

States Government Accountability Office report to the United States Senate on water 

scarcity strongly indicate that insufficient planning and action measures have been in 

place to address for potential water insecurity at USAF locations. The GAO found that 

leading industry practices to identify and analyze water scarcity to shape a reliable 

assessment of water availability were not part of the roadmap to address realized 
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concerns1. By also considering the current information being supplied in the IDPs, this 

research intends to highlight any shortfalls that can be fulfilled by adopting better 

methods to assess water supply risks. The nexus of leading scientific methods with local 

base affiliates will empower those tasked with directing water management responsibility 

to be leaders for promoting measurable change. 
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III.  Methodology  

3.1 Chapter Overview 

The following introduces the steps used to select USAF installation locations, 

how metrics and indicators were chosen to represent water scarcity conditions and the 

methods followed to generate results. ArcMap™ GIS software was the designated 

platform to project parameters and join selected indicators for data sets and visuals. 

Tables in the appendix section list the installations selected for analysis and a map 

(Figure 4) of their locations is provided below in this section. The progression of 

searching the selected base IDPs to collect information relevant to the current 

understanding of water security is separately discussed. Explanation of the ordered 

ranking of bases by each indicator is provided. Lastly, steps of how the final index score 

was created by averaging the rank value of each indicator is summarized.  

3.2 Data Collection 

3.2.1 Selection of USAF Installations 

Research findings of publications in the field of water research in the United 

States revealed that water scarcity data and general research for Hawaii and Alaska was 

more limited than for the lower 48 states. Gathering data for the states separated from the 

contiguous 48 would have required a disproportionate amount of effort. For these 

reasons, this research did not consider USAF installations or water scarcity in Hawaii or 

Alaska. Of the remaining 48 states chosen to study, 34 USAF installations were selected 

from all major commands (MAJCOMS) with the primary objectives being diversified 

climate and geographic location. Installations with moderate proximity to another that 
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may not have offered a diverse climatic and geographic characteristic were excluded 

from analysis. Figure 4 shows a map for the 34 chosen installations, sorted and projected 

from a United States Military installation shapefile31. 

 

Figure 4: USAF Installations Selected for Analysis Across MAJCOMS 

3.2.2 Selection of Indicators 

The four components chosen to generate the index represent an approach to 

installation water scarcity. Each indicator denotes a useful contribution to capture a 

different understanding of a water availability characteristic. The blue water scarcity 

component represents the ratio of blue water footprint in each river basin to the blue 

water available18,32. This component accounted directly for scarcity of available water in 

surface and ground water sources, and is important as blue water is the primary term for 

what is available for human use33. Baseline water stress (BWS) measures the total annual 

water withdrawals, expressed as a percentage of the total annual available blue water26–28. 
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Including BWS accounts for withdrawal strain that is put on a location’s blue water 

resources. Groundwater stress measures the ratio of groundwater withdrawal relative to 

recharge rate. Selecting GWS represents the demand placed on a region’s sub-surface 

water resources. The generated indicator of overall water consumption per capita per year 

represents the fourth component to round out a location’s water scarcity condition. 

Combining these different measures of available water resources accounts for potential 

variability at each location. 

The value ranges of each component vary to different degrees, shown by the 

standard deviations of each in Appendix A.2. Each index component was first ranked 

from 1 to 34 with the highest measure of water stress or consumption being assigned the 

number one ranking. Any equal values were ranked the same and the next increase 

assigned the value in the progressive numeric sequence. These rankings from each of the 

four indicators were combined by averaging at shared base locations. This average was 

ranked one final time to order the selected installations from 1 to 34, one equating to the 

most water stressed installation. 

The intersection of the base locations projected onto the HUC8 basins with 

associated GWS data in some cases provided no output as a value in the database was not 

available. For these occurrences, a GWS score from a basin adjacent to one containing 

the USAF installation was substituted. Selection for a substitute GWS value from an 

adjacent basin was predicated on that basin possessing the most similarity in other water 

scarcity measures common to both. 
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3.2.3 Developing the Water Use Per Capita Component 

The United States census database contains 2010 population shapefiles used to 

develop surface water availability per capita values34. ArcMap™ feature class tools 

removed demographic-specific quantifications from the dataset, as only total population 

quantities were considered. Hydrologic unit code data at the 8-digit basin level (HUC8) 

supplied the water use portion to adjoin with the population and establish the water 

availability per capita indicator35. The regional water use data in acre feet per year (AFY) 

was converted to cubic meters per year (m3/yr). Use values from regions within each 

states’ boundaries were summed to calculate the total water consumed by the total state 

population. A map projecting state-scaled water use per capita pushed the development of 

a more localized resource availability projection. The decision to create a water use per 

capita value was made in part as a measure of similarity to the Falkenmark indicator. The 

difference is that a Falkenmark result provides water availability and here the result is a 

measure of water consumption. 

3.3 Data Synthesis 

Shapefiles of the three existing indicators were projected onto a map of the 

contiguous 48 states. ArcMap’s™ geospatial intersect tool extracted the desired value 

from each region where a USAF installation is located. Bases were ranked in each 

category by the extracted score from 1 to 34 in descending order of severity. Likewise, 

the water use per capita component was ordered with the most severe values assigned the 

lowest numeric ranking. Any ties in rankings were assigned the same number, and the 

next ranking level above a tie resumed the normal chronological progression. Production 



25 

of a final value came by averaging the base rank scores of the four contributing 

indicators. Scores were sorted by raw value to develop order, but then exchanged for the 

more cerebral chronological rank. This was adopted to prevent raw-value scores at 

uneven scales from dominating the result. The value of the final analysis displays an 

index of bases ranked from 1 to 34, with one representing the most water scarce.  

3.4 Data Visualization 

3.4.1 State-scale Water Use per Capita 

 The results of water use per capita at the state level were projected onto a heat 

map (Figure 5) of the lower 48 states. The visual outputs from this extensive-scale 

projection seemed broad to accurately reflect water conditions at designated region 

occupied by a USAF installation. Recognizing the need for more spatially accurate 

representation drove development of water use per capita at the HUC8 basin level.  

3.4.2 Basin-scale Water Use per Capita 

Creating a more spatially appropriate projection began with overlaying population 

density with an 8-digit Hydrologic Unit Code (HUC8) for regional boundaries35,36. Every 

state’s county area from the census tract shapefile was divided by 1,000,000 to convert 

square meters to square kilometers, and this result filled a new column in the data table. 

A column for population density was added and filled by dividing the population by the 

area of the corresponding census tract to output the number of people per square 

kilometer. Using the geoprocessing clip tool and the HUC 8 boundaries as the clip 

feature, segments of states with their assigned population density values were grouped by 

a shared HUC identifier, aptly named HUCID. The shapefile data table was transferred to 
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Microsoft Excel for further calculations. The areas from the basin clips of state segments 

were multiplied by their individual population densities to produce a population for each. 

These populations were summed by associated HUCID, and a new population for each 

HUC 8 basin was generated. Assigning population by HUC 8 basin permitted for 

intersecting blue water scarcity, baseline water stress and ground water stress indicators 

assigned to the same HUCID. Overlaying a shapefile of USAF installations selected for 

this study allowed pinpointing of the indicator results at each location31.  

3.4.3 Data Extraction from Installation Development Plans 

Combining the analysis extracted from the IDPs with the generated water scarcity 

index results provides an opportunity to compare current water scarcity evaluation 

measures at USAF installations. Key word searches in each IDP document produced hits 

for the phrases ‘climate change’ and ‘water security’ with results provided in Appendix 

A.1. The section from each IDP relating to sustainability development indicators 

contained a narrative of values for: privatized water systems, mission expansion 

capabilities, assigned drought rating value, installation water availability during peak 

demand, water supply headroom during peak demand, water source type and climatic 

vulnerability ratings for other sustainability development indicators. Assembling these 

values into tables allows for comparative analysis with the generated water scarcity index 

and the measures currently being considered in installation water planning. 

3.5 Methods Summary 

 The preceding steps show the processes taken to gather, sort, pare down and 

present the data. The culminated result of these efforts will be represented in the 
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following section in the forms of visually useful figures, tables and graphs. The results 

are analyzed and their contribution opportunity for shaping the water security domain is 

considered. 
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IV.   Results and Discussion 

4.1 Chapter Overview 

The analysis below considers the relevance and ranking of the indicators chosen 

to highlight existing water scarcity conditions at the selected USAF installations. The 

importance of data presented at the correct spatial scale to meet needs specific to local 

population is relevant to the integrated study of water, as different disciplines favor 

different scales of analysis37. Maps shown in Figure 5 and Figure 6 and values in 

Appendix A.4 reveal the measurable differences in value of the two options considered. 

Indicator scores for each installation are averaged and an ordered final index serves as a 

platform to reveal how water scarcity can be used in planning. Installations whose final 

index rank indicate a water scarce condition are examined in conjunction with findings 

collected from the IDPs. Adopting a plan to ensure mission readiness for the USAF from 

a water security perspective must be predicated on an effective measure to identify water 

scarce locations. Only then can steps be taken to mitigate against the detrimental sources. 

The numerous uses that USAF installations rely on water resources for are included to 

bring recognition to the importance of long-term water security to national defense. 

Identifying external factors and influences beyond an index to reveal water 

security will be vital moving forward. Water resource sustainability development 

indicators and other reported data captured from IDPs were found to provide limited 

contribution to assessing water security. While not a primary objective of this research, 

climate change is a dynamic factor that must be considered when ascertaining future 

water security plans. Finally, the lack of in-place water security measures aimed at 
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protecting water resources from cyber threats is considered as an area for future action as 

the USAF may be failing to designate proper attention to this growing risk. The DOD’s 

2017 Annual Energy Management and Resilience Report stated that cyber security and 

mission assurance policy are applicable in reducing costs of operating and maintaining 

infrastructure, summarizing that disruptions caused by system deficiencies or adversarial 

attacks are usually costly impacts38. Failure to address water security now has the 

potential for high fiscal and operational impacts in the future. 

4.2 Measuring Water Scarcity Key to Plan Development   

In its 2019 report on water scarcity, the GAO confirmed that the DOD did not 

have assurance regarding the data being used to inform which installations were at risk 

for water scarcity. Six assessments on installations vulnerable to water scarcity evaluated 

by the Office of the Secretary of Defense (OSD) and military departments were found to 

have very different results which raised questions to the GAO about what sources of 

information were being trusted to make their determinations1. The report regarding the 

integration of uncertainty into United States water resource planning referenced in the 

publication’s introduction section suggests that data limitations are a persistent problem1. 

The assurance of correct data is key to executing a calculated and steady response to meet 

growing water needs. In the long-term this will promote an economically feasible 

advantage versus reactive measures to address already developed problems. 

Developing a plan to increase water security requires first establishing a method 

to measure it6. Understanding the inputs and implementing the combination of selected 

indicators to create a decipherable output are keys to realizing progress from an initial 
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baseline. A useful output will be formulated by environmental data entered into an 

appropriate indicator that decision-makers will use to develop an index for their water 

scarcity policy10. Some variability both on the initial collection and subsequent 

measurements should be expected as input data carries inherit uncertainty. 

The analysis summarized in Appendix A.1 highlight the overall lack of 

measurables being reported at the base level. Information useful to the direct measure of 

water scarcity was not revealed in current IDPs. Only IDPs from Tyndall AFB and Joint 

Base McGuire-Dix-Lakehurst of the 34 reviewed mentioned water security, and in both 

cases the reference was for bolstering infrastructure rather than confronting the potential 

for water shortages. This is one example of an indication from the IDPs that allude how 

water security considerations have been undervalued at the base level. 

The GAO water scarcity report identified five leading practices aimed at 

identifying and analyzing water scarcity risks. These five were selected from the 

Department of Energy and the United States Environmental Protection Agency list of 14 

best management practices and principles1,39. The five leading practices are: 

1. identify current water availability 

2. identify future water availability 

3. take into account all sources of water 

4. precisely identify locations (of water) 

5. comprehensively include all locations (of water) 

The current reporting from IDPs focuses primarily on base demands and availability as 

calculated by headroom. Broader scope understanding of current and future water 

availability for the area is not considered. To aide in the measure of water scarcity, the 
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water quality and quantity sections within the IDPs should align more with the focus the 

GAO recommends for the DOD to implement. 

4.2.1 State-scale Water Scarcity 

The first water scarcity map developed in Figure 5 represents values of water use 

per capita at the state level. The state of Nebraska along with four others fall into the 

category representing values of highest water consumption per capita. When considering 

the percentage of collected water used for crop irrigation in an agriculturally productive 

state versus for domestic purposes, the rating of this calculation is better understood40. 

Even so, as populations are not distributed evenly across states, getting to a spatial scale 

that serves the distribution appropriately is a prime reason for implementing a finer 

resolution. As with a clearer understanding of the influential factors contributing to states 

like Nebraska, greater understanding of water scarcity conditions can be attained to 

improve water scarcity forecasting at USAF installations. While these results provide 

value as a step to forming an understanding for the full picture of water scarcity, the level 

of detail presented to construct regionally appropriate action plans fails to meet these 

requirements. A more precise representation of water use data is introduced in the next 

section. 
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Figure 5: Contiguous State Water Consumption Per Capita Per Year 

4.2.2 Using HUC 8 Basin Level Data for Localized Water Analysis 

 Many studies are carried out at a national or sub-national level. While useful, 

water security assessments at these levels can mask significant variations in water 

availability at the local scale6,41. Recognizing the limitations of a state-level water 

availability assessment led to developing a per capita usage at the HUC8 basin-level. The 

map in Figure 6 projects boundaries that are no longer state borders but HUC8 basins. In 

direction comparison to the state-scale in Figure 5, the visual outlook from Figure 6 

suggests that water consumption per capita is best approached by local region rather than 

at the state level. A side-by-side comparison of calculated water consumption per capita 

results of both scales in Appendix A.4 shows that approximately 80 percent of the state-

scale values at shared base locations are higher. This supports that developing a 
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regionally appropriate scale is an important tool to shape the water scarcity component 

for use in planning. 

 

Figure 6: HUC 8 Basin Level Water Consumption Per Capita Per Year 

4.3 Calculating the Water Scarcity Index 

 Water scarcity has become a major constraint to socio-economic development and 

a threat to livelihood in increasing parts of the world. Since the late 1980s, water scarcity 

research has attracted political and public attention. This research reviewed a variety of 

measurement tools developed to capture different characteristics of water scarcity. 

Population, water availability, and water use are the key elements of these indicators. A 

recent study on water scarcity assessments in the past, present, and future pointed out that 

most of the progress made in the last few decades has been on the quantification of water 

availability and use by applying spatially explicit models. Though, challenges remain on 

appropriately incorporating green water (soil moisture), water quality, environmental 
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flow requirements, globalization, and virtual water trade into water scarcity assessment. 

Meanwhile, inter- and intra-annual variability of water availability and use requires 

concerted efforts of hydrologists, economists, social scientists, and environmental 

scientists to develop integrated approaches to capture the multi-sided nature of water 

scarcity5. 

4.4 Calculated Result 

The four components chosen to create the index are: blue water scarcity, baseline 

water stress, groundwater stress, and HUC8 basin water consumption per capita values. 

As covered previously in the background section, the blue water scarcity component 

represents a measure of total run-off of renewable freshwater on the surface of a given 

river basin5. The baseline water stress contribution focuses more on the availability of 

groundwater reserves from multiple contribution sources. The ground water stress 

indicator component highlights locations where the potential for drawing on groundwater 

resources may be limited due to unavailability. Finally, the basin scale water use per 

capita index component represents a value to compare availability at the selected 

installations. 

 In Appendix A.2 values for the basin scale water use per capita component at 

Wright-Patterson AFB and Columbus AFB appear to be outliers. The water use per capita 

values are unreasonably low as compared to the 32 other installations. While one could 

guess that errors in the original database are the root cause, the bigger take is that 

uncertainty exists in the data that is used in this analysis, and presumably others. The 
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element of uncertainty fuels the need to push for more consistent data and invest in 

research to quantify and understand water scarcity conditions at USAF installations.  

4.5 Review of Recordings from Installation Development Plans 

4.5.1 Installation Development Plan Data 

Data from the IDPs was collected and summarized to provide analysis to better 

understand what current information could help shape the water scarcity picture. The 

table in Appendix A.1 shows the information gathered from the 34 USAF installations. A 

reference to climate change was only found in 7 of 34 IDPs. Results indicate an increase 

in the trend for privatization as nearly one third of the installations have or were actively 

pursuing to relinquish direct control of their water supply. The ability to accept more 

tenants or expand missions was confirmed for 28 of the 34 installations. This approval for 

expansion constituted having the water volume capacity to grow but failed to include 

analysis of water infrastructure age, which could contribute to the collective fiscal bottom 

line of the overall decision. Having adequate water supply positions installations with a 

competitive advantage for expansion opportunities, so this is an important component to 

their longevity. Of the 19 IDPs that included a drought score, 16 reported an index rating 

at the severe or extreme level of susceptibility. Headroom at peak demand is a measure of 

installation water availability, and most closely resembles one of the five leading 

practices identified in the GAO water scarcity report. Headroom at peak demand is a 

percentage measure of water supply available to an installation above their highest level 

of demand volume. Higher values represent greater reserve capacities. Though no 

threshold for a level of concern was given, 8 of 34 installations reported a headroom with 
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peak demand values of 25 percent or less. Yet only 4 of those 8 landed in the top 10 of 

the final ranking of most water scarce installations. 

4.5.2 Comparative Analysis of Index and IDP data 

 To meet one of the objectives set in this research, a scatter plot was created 

between the final averages of the developed index and the IDP element that most closely 

aligned with a measure of water scarcity, headroom at peak demand. The result below in 

Figure 7 reveals essentially no relationship between a measure of water scarcity and the 

actual availability of water resources represented by headroom. This result suggests a 

need to adopt a method to accurately measure water scarcity, as apparent supply is not a 

reliable representation. 

 

Figure 7: Water Scarcity Rank vs. Headroom at Peak Demand 
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4.6 Water Scarcity Index and OSD Assessment Results 

 Despite the findings from the GAO that the DOD did not have assurance in the 

practices used to confirm water scarcity, three OSD assessments considered eight USAF 

installations at risk for water scarcity1. These eight installations are shown in Error! 

Reference source not found. below.  

Table 2: DOD Active-Duty USAF Installations Identified in the Office of the 

Secretary of Defense Assessments as Being at Risk of Water Scarcity1 

 

 

Six of the installations identified by the OSD for being at risk for water scarcity also 

ranked in the top 10 of the index developed for this research identifying the most water 

scarce locations. Error! Reference source not found. below provides these top 10 

installations and their index average. A complete ranking and index average of all 34 

installations is shown in Appendix A.3. Though methods of assessment differ, 

commonalities of some installations being at risk for water scarcity from both sources 

may indicate a need for prompt mitigation action. 

USAF Installation State Located

F.E. Warren Air Force Base Wyoming

Joint Base Langley-Eustis Virginia

Joint Base San Antonio Texas

Luke Air Force Base Arizona

McConnell Air Force Base Kansas

Moody Air Force Base Georgia

Mountain Home Air Force Base Idaho

Vandenberg Air Force Base California
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Table 3: Top 10 Indexed Water Scarce USAF Bases 

 

 

4.7 Considerations for USAF Water Scarcity 

4.7.1 Protecting Water Resources 

Assessing water resources across the United States today requires consideration of 

multiple factors. Considering only a narrow framework would be detrimental as multiple 

stressors integrate to affect water security37. Installations presented with opportunities to 

adopt new missions must consider the security of a long-term water supply before 

agreeing to expansion. Competition from industrial, agricultural, and other domestic 

users will continue to put pressure on water resources despite downward trends in water 

usage3. Figure 8 below from the 2019 United States Government Accountability Office 

shows the areas that water is imperative for in the military. All category listings are no-

fail status, so a loss of water supply would be detrimental to national defense. 

Index Rank USAF Base Index Average
1 F E Warren AFB 3.75

2 Luke AFB 4.50

3 Ellsworth AFB 5.25

4 Mountain Home AFB 6.00

5 McConnell AFB 6.75

6 Peterson AFB 7.00

6 Vandenberg AFB 7.00

8 Lackland AFB 7.25

9 Kirtland AFB 7.50

10 Tinker AFB 8.00
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Figure 8: Categories and Examples of Installation Activities That Require Water to 

Conduct and Support Military Missions1 

The USAF’s decision at some installations to surrender responsibility for water 

supply to the hands of local municipal providers brings up concern for mission readiness. 

This may solve fiscal problems in the short-term, but a major downside from relinquished 

control is the inability to influence policy ensuring future water resources. Accounting for 

these factors poses a great challenge to those responsible for developing long-term water 

resource strategy to meet future projected demands. The DOD on behalf of the USAF 

must pursue action plans that consider the full breadth of factors when planning for a 

water supply capable of sustaining long-term needs. 

4.7.2 The Impacts of Climate Change 

 The definition the DOD recognizes for climate change states, variations in 

average weather conditions that persist over multiple decades or longer that encompass 

increases and decreases in temperature, shifts in precipitation, and changing risk of 

certain types of severe weather events9,42. A report from 2012 regarding climate impacts 
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on national security suggest that energy decisions and defense infrastructure are among 

the sectors that are already threatened by climate change. The report concludes that over 

the next few years the risk of “major societal disruption from weather and climate-related 

extreme events can be expected to increase”43. Past records of data and models projecting 

future climate change impacts on water scarcity must be an integral part in determining 

water security planning. 

4.8 Summary 

 The methods to develop an index at USAF installations was one approach to 

generating a measure of water scarcity. No evidence of correlation between the water 

scarcity index values and the IDP data was concluded in the comparison. Comparing the 

index with data collected from IDPs drive the fact that reported measures beyond what is 

currently being asked from installation water managers must be expanded.  

 Nearly every operation on USAF installations holds a common link of reliance on 

a viable water source. For reasons of maintaining mission readiness to ensure national 

defense, water security must be a top consideration moving forward. Failure to attain 

water security may leave some capabilities vulnerable to meeting their complete force 

capability if restricted by lack of available water resources. USAF leadership must first 

be informed of the significant impacts that failing to achieve water security would have. 

Then a push toward adopting proven scientific measures to design and execute methods 

to ensure water security will be accelerated. Doing so is key to maintaining readiness and 

strengthening capabilities to deter enemy threats on the global stage.  
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V.  Conclusions  

5.1 Chapter Overview 

This section provides summary of the research findings. Recommendations for 

future research and action based on results from the previous section are provided as 

considerations to shape future water security planning. Understanding current water 

scarcity conditions is crucial to planning to meet the future water needs of the USAF. 

Enhanced data collection and addressing concerns over physical and cyber-attacks will 

also be vital components to a water secure future.  

5.2 Significance of Research 

As the GAO water scarcity report found, industry leading methods that correctly 

assess water scarcity levels are not currently practiced. The recommended five industry 

leading practices to assess water scarcity risk align with the research effort presented 

here. Adopting these recommendations begins with collecting and analyzing data that can 

properly identify current and future water availability. To effectively carry this out 

requires accounting for all sources of ground and surface water, then pinpointing their 

locations and being inclusive of all in the availability calculations. As the progress of this 

research discovered, applying measures at a fine-grain analysis will more accurately 

capture the spatial and other factor variations of water security37. The installations 

identified in this research as being the most water scarce were determined in part by 

indicators using data from the past. Water scarcity indicators applied in the future at 

desired USAF locations should be climate informed to account for changes in conditions 
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which will primarily influence variations in the availability of ground and surface water 

sources.  

5.3 Limitations of Research 

 The water consumption per capita value used census data and water use data for 

only a single year. In order to more accurately capture water use trends it would be 

appropriate to assess water consumption on a yearly basis over time with a population 

estimate. There are unknown influences of water scarcity that are also not discussed in 

this research to include temperature values and precipitation amounts. Consideration of 

changing factors over time could be represented by a variability score to account for 

yearly fluctuations.  

5.4 Recommendations for Future Research and Action 

The depth of analysis provided in each IDP provides little beyond basic reporting 

of current potable water resources and a user designated drought score. The lack of 

correlation between an installation’s calculated water scarcity index value and the 

measure of its reserve water resources data suggest that what is captured in current IDP 

reporting does not relate to the variability of the water scarcity metrics. While all data 

may be subjective to some degree from the individuals making final determinations, it 

would be prudent of the USAF to expand water and climate condition reporting in IDPs 

to enable a metric that better reveals water scarcity at installations. Possible categories 

that could be realistically filled in future IDPs to enhance the content to aid in 

understanding current and future water resources by base engineering personnel are: 

• yearly water consumption by housing 
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• yearly water consumption from base operations  

• yearly regional water consumption values  

• yearly regional blue-water availability 

Additional climate related categories could be recorded and tracked as well, but the 

aforementioned categories could be directly applied to a water scarcity indicator like the 

ones selected for the index in this research. Collected data not used directly for 

calculations would still be useful in assessing weather condition trends over time to aide 

in the water scarcity assessment. Procedures for collection methods and data input should 

be provided to ensure the highest levels of consistency and continuity to build a useful 

database and help shape the water security outlook the USAF needs in the future.  

5.5 Alternate Planning Considerations 

Enhanced security is a continual concern for the USAF. Prior to increasing 

privatization agreements at other installations, water providers should be able to 

demonstrate cyber security measures that adequately protect the water resources that their 

USAF customers depend on. Failure to require a high level of cyber protection will 

increase the vulnerability of water resources, inviting risks that could hamper USAF 

mission capabilities. Another potential source of risk could be the cyber security 

measures of utility companies that provide water outside of a privatization contract. The 

IDP review showed that 22 of 34 installations receive all or some of their water from a 

source other than a private well on the installation. In these situations, from the position 

of a traditional customer standpoint, the ability to influence cyber defense is minimal. 

The USAF would be prudent to have contingency plans in place should water supply 
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become compromised from an external attack. At minimum this would consist of a clean 

drinking water supply to meet the needs of an essential crew to maintain installation 

operations, or at the highest level a standby treatment facility that potable inflow can be 

diverted through to extract contaminates before they reach the distribution network. 

Preparing for all threats to water security at USAF locations is a process that cannot be 

compromised. 
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Appendix 

APPENDIX A.   

A.1 Data Summary of Installation Development Plans 

Installation 

Yr. 
of 
Rpt. 

Climate 
Change 

Water 
Security 

Privatized 
Water 
System 

Mission 
Expansion 

Drought 
Rating/Score 

Water 
avail. 
during 
Peak Dmd 
(Demand 
in M gpd) 

Headroom 
at peak 
dmd (%) Source 

Wright 
Patterson 2014  X X X D2 5.77 66 Well 

Tyndall 2015  X X X None 1.44 25 
County 
Utility 

Peterson 2014  X  X D3 2.21 47 City Utility 

Maxwell 2015    X D1 2.47 84 City Utility 

Macdill 2017 X X X X NA 3.3 8 City Utility 

Luke 2014  X  X D2 2.87 25 Well 

Vandenberg 2019   X  D2 2.2 -12 

County 
Utility +well 
to 
supplement 

Tinker 2017   X  D2-D4 3.4 22 

City Utility + 
Wells to 
supplement 

Seymour 
Johnson 2018    X NA 1.85 73 City Utility 

Scott 2015   X X D2 3.07 29 City Utility 

McConnell 2019 X   X Med-High 1 50 City Utility 

Moody 2015    X None 1.4 9 Well 

McGuire 
AFB 2015 X X  X None 1.4 28 Well 

Whiteman 
AFB 2015    X D2 1.6 36 Well 

Robins AFB 2015 X   X D4 1.8 47 Well 

Patrick AFB 2017   X X NP 1.9 62 City Utility 

Andrews 
AFB 2015 X  X X D1 0.9 43 City Utility 

Barksdale 
AFB 2015    X D1 1.2 26 City Utility 

Beale AFB 2015 X   X D4 4.3 125 Well 

Charleston 
AFB 2017     NP 1.2 51 City Utility 

Columbus 
AFB 2017     D1-D4 1.3 12 City Utility 

Dover AFB 2016   X X None 2.1 33 Well 
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Ellsworth 
AFB 2017    X None 2.8 23 City Utility 

F E Warren 
AFB 2017    X D3 2 93 

City Utility + 
Well 

Fairchild 
AFB 2014    X None 6.1 45 Well 

Grand Forks 
AFB 2017    X None 1.4 26 City Utility 

Hanscom 
AFB 2017    X D2 0.3 86 City Utility 

Joint Base 
Lewis-
McChord          

Kirtland AFB 2016    X D2 2.6 28 
Well + City 
Utility 

Lackland 
AFB 2018 X   X NA 4 44 Well 

Langley 
AFB 2017    X None 2.2 60 City Utility 

Little Rock 
AFB 2016   X X D3 0.5 86 City Utility 

Mountain 
Home AFB 2017    X D2 2.7 72 Well 

Offutt AFB 2018     None 2.3 74 City Utility 

*An IDP was unavailable for Joint Base Lewis-McChord 
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A.2 Values of Scarcity Indicators for Final Index 

 

 

Base 

Rank USAF Base Name

Blue WS Yearly 

Avg Value Base Rank USAF Base

Baseline Water 

Stress Base Rank USAF Base

Ground Water 

Stress Raw Value Base Rank USAF Base

Region Water 

Consumed/cap

ita Value

Avg 

Rank

15 Andrews AFB 0.729543984 17 Andrews AFB 2.645669654 33 Andrews AFB 0.649 21 Andrews AFB 109.6045074 21.5

24 Barksdale AFB 0.232421994 34 Barksdale AFB 0 33 Barksdale AFB 0.649 26 Barksdale AFB 66.96430969 29.25

13 Beale AFB 1.221590042 22 Beale AFB 2.066361807 10 Beale AFB 6.377 3 Beale AFB 4238.758789 12

26 Charleston AFB 0.097453199 19 Charleston AFB 2.567337477 33 Charleston AFB 0.649 12 Charleston AFB 213.8909302 22.5

27 Columbus AFB 0.088000298 34 Columbus AFB 0 33 Columbus AFB 0.649 33 Columbus AFB 4.437716484 31.75

17 Dover AFB 0.54507 13 Dover AFB 3.041149697 33 Dover AFB 0.649 19 Dover AFB 118.9471207 20.5

8 Ellsworth AFB 2.64805007 1 Ellsworth AFB 5 2 Ellsworth AFB 9.04 10 Ellsworth AFB 228.7050018 5.25

6 F E Warren AFB 4.812389851 1 F E Warren AFB 5 2 F E Warren AFB 9.04 6 F E Warren AFB 509.2087097 3.75

30 Fairchild AFB 0.0504396 20 Fairchild AFB 2.411557571 33 Fairchild AFB 0.649 29 Fairchild AFB 50.30548477 28

20 Grand Forks AFB 0.331312001 26 Grand Forks AFB 1.183394259 33 Grand Forks AFB 0.649 4 Grand Forks AFB 2921.554199 20.75

21 Hanscom AFB 0.289324999 21 Hanscom AFB 2.380891814 33 Hanscom AFB 0.649 31 Hanscom AFB 40.78009033 26.5

22 Joint Base Lewis-Mcchord0.280277014 34 Joint Base Lewis-Mcchord 0 34 Joint Base Lewis-Mcchord 0.134 24 Joint Base Lewis-Mcchord 91.51333618 28.5

4 Kirtland AFB 5.564939976 1 Kirtland AFB 5 11 Kirtland AFB 2.543 14 Kirtland AFB 197.564743 7.5

1 Lackland AFB 6.75676012 9 Lackland AFB 4.112264778 8 Lackland AFB 8.57 11 Lackland AFB 227.1968079 7.25

32 Langley AFB 0.016371 15 Langley AFB 2.97177735 33 Langley AFB 0.649 28 Langley AFB 53.23056793 27

14 Little Rock AFB 1.019649982 25 Little Rock AFB 1.212644296 33 Little Rock AFB 0.649 2 Little Rock AFB 5439.180176 18.5

1 Luke AFB 6.75676012 8 Luke AFB 4.660237549 1 Luke AFB 26.562 8 Luke AFB 461.1740112 4.5

7 Macdill AFB 3.009085 11 Macdill AFB 3.165851539 33 Macdill AFB 0.649 23 Macdill AFB 96.38340759 18.5

34 Maxwell AFB 0.0135446 34 Maxwell AFB 0 33 Maxwell AFB 0.649 16 Maxwell AFB 170.2934418 29.25

9 McConnell AFB 2.463570118 7 McConnell AFB 4.86617605 2 McConnell AFB 9.04 9 McConnell AFB 295.6471863 6.75

31 McGuire AFB 0.034072898 12 McGuire AFB 3.145631481 33 McGuire AFB 0.649 17 McGuire AFB 161.552063 23.25

25 Moody AFB 0.132514998 24 Moody AFB 1.26225553 33 Moody AFB 0.649 32 Moody AFB 28.8466568 28.5

10 Mountain Home AFB1.799419999 1 Mountain Home AFB 5 12 Mountain Home AFB 2.155 1 Mountain Home AFB 6332.382813 6

16 Offutt AFB 0.571920991 14 Offutt AFB 3.032913698 2 Offutt AFB 9.04 30 Offutt AFB 47.60227966 15.5

12 Patrick AFB 1.252740026 16 Patrick AFB 2.71995682 33 Patrick AFB 0.649 27 Patrick AFB 53.26809311 22

5 Peterson AFB 5.067560196 1 Peterson AFB 5 2 Peterson AFB 9.04 20 Peterson AFB 114.9708252 7

19 Robins AFB 0.369067013 23 Robins AFB 2.0140275 33 Robins AFB 0.649 7 Robins AFB 478.8753967 20.5

23 Scott AFB 0.234795004 34 Scott AFB 0 33 Scott AFB 0.649 15 Scott AFB 178.8892517 26.25

29 Seymour Johnson AFB0.071055099 18 Seymour Johnson AFB2.617754697 33 Seymour Johnson AFB 0.649 25 Seymour Johnson AFB 87.5154953 26.25

11 Tinker AFB 1.429949999 6 Tinker AFB 4.897303906 2 Tinker AFB 9.04 13 Tinker AFB 207.3850098 8

33 Tyndall AFB 0.0144285 27 Tyndall AFB 0.072063575 33 Tyndall AFB 0.649 22 Tyndall AFB 102.7765503 28.75

3 Vandenberg AFB 6.756757 10 Vandenberg AFB 3.33763386 10 Vandenberg AFB 6.377 5 Vandenberg AFB 2219.532227 7

28 Whiteman AFB 0.0812563 34 Whiteman AFB 0 33 Whiteman AFB 0.649 18 Whiteman AFB 130.9430695 28.25

18 Wright-Patterson AFB0.544588029 28 Wright-Patterson AFB 0.052951277 33 Wright-Patterson AFB 0.649 34 Wright-Patterson AFB 0.03942908 28.25

Standard Deviation 2.204745901 Standard Deviation 1.801155985 Standard Deviation 5.345452832 Standard Deviation 1585.294132
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A.3 Final Base Index Rank Compiled from Scarcity Indicator Average 

 

 

Index Rank USAF Base Index Average
1 F E Warren AFB 3.75

2 Luke AFB 4.50

3 Ellsworth AFB 5.25

4 Mountain Home AFB 6.00

5 McConnell AFB 6.75

6 Peterson AFB 7.00

6 Vandenberg AFB 7.00

8 Lackland AFB 7.25

9 Kirtland AFB 7.50

10 Tinker AFB 8.00

11 Beale AFB 12.00

12 Offutt AFB 15.50

13 Little Rock AFB 18.50

13 Macdill AFB 18.50

15 Dover AFB 20.50

15 Robins AFB 20.50

17 Grand Forks AFB 20.75

18 Andrews AFB 21.50

19 Patrick AFB 22.00

20 Charleston AFB 22.50

21 McGuire AFB 23.25

22 Scott AFB 26.25

22 Seymour Johnson AFB 26.25

24 Hanscom AFB 26.50

25 Langley AFB 27.00

26 Fairchild AFB 28.00

27 Whiteman AFB 28.25

27 Wright-Patterson AFB 28.25

29 Joint Base Lewis-Mcchord 28.50

29 Moody AFB 28.50

31 Tyndall AFB 28.75

32 Barksdale AFB 29.25

33 Maxwell AFB 29.25

34 Columbus AFB 31.75
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A.4 Water Consumption Comparison Basin v. State 
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