
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Theses and Dissertations Student Graduate Works

3-2021

Bayesian Augmentation of CNN-LSTM for Video Classification Bayesian Augmentation of CNN-LSTM for Video Classification

with Uncertainty Measures with Uncertainty Measures

Emmie K. Swize

Follow this and additional works at: https://scholar.afit.edu/etd

 Part of the Operational Research Commons

Recommended Citation Recommended Citation
Swize, Emmie K., "Bayesian Augmentation of CNN-LSTM for Video Classification with Uncertainty
Measures" (2021). Theses and Dissertations. 4934.
https://scholar.afit.edu/etd/4934

This Thesis is brought to you for free and open access by the Student Graduate Works at AFIT Scholar. It has been
accepted for inclusion in Theses and Dissertations by an authorized administrator of AFIT Scholar. For more
information, please contact richard.mansfield@afit.edu.

https://scholar.afit.edu/
https://scholar.afit.edu/etd
https://scholar.afit.edu/graduate_works
https://scholar.afit.edu/etd?utm_source=scholar.afit.edu%2Fetd%2F4934&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/308?utm_source=scholar.afit.edu%2Fetd%2F4934&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholar.afit.edu/etd/4934?utm_source=scholar.afit.edu%2Fetd%2F4934&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:richard.mansfield@afit.edu

Bayesian Augmentation of Convolutional Neural
Network - Long Short Term Memory for Video

Classification with Uncertainty Measures

THESIS

Emmie K. Swize, 2d Lt, USAF

AFIT-ENS-MS-21-M-186

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

The views expressed in this document are those of the author and do not reflect the
official policy or position of the United States Air Force, the United States Department
of Defense or the United States Government. This material is declared a work of the
U.S. Government and is not subject to copyright protection in the United States.

AFIT-ENS-MS-21-M-186

BAYESIAN AUGMENTATION OF CONVOLUTIONAL NEURAL NETWORK -

LONG SHORT TERM MEMORY FOR VIDEO CLASSIFICATION WITH

UNCERTAINTY MEASURES

THESIS

Presented to the Faculty

Department of Operational Sciences

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

in Partial Fulfillment of the Requirements for the

Degree of Master of Science of Operations Research

Emmie K. Swize, BS

2d Lt, USAF

March 25, 2021

DISTRIBUTION STATEMENT A
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

AFIT-ENS-MS-21-M-186

BAYESIAN AUGMENTATION OF CONVOLUTIONAL NEURAL NETWORK -

LONG SHORT TERM MEMORY FOR VIDEO CLASSIFICATION WITH

UNCERTAINTY MEASURES

THESIS

Emmie K. Swize, BS
2d Lt, USAF

Committee Membership:

Dr. Lance E. Champagne
Advisor

Dr. Bruce A. Cox
Co-Advisor

Dr. Trevor Bihl
Member

Capt Phillip R. Jenkins, PhD
Reader

AFIT-ENS-MS-21-M-186

Abstract

The success of Department of Defense missions relies heavily on intelligence,

surveillance, and reconnaissance capabilities, which supply information about the ac-

tivities and resources of an enemy or adversary. To secure this information, satellites

and unmanned aircraft systems collect video data to be classified by either humans

or machine learning networks. Traditional automated video classification methods

lack measures of uncertainty, meaning the network is unable to identify those cases in

which its predictions are made with significant uncertainty. This leads to misclassifi-

cation, as the traditional network classifies each observation with the same amount of

certainty, no matter what the observation is. Bayesian neural networks offer a remedy

to this issue by leveraging Bayesian inference to construct uncertainty measures for

each prediction. Because exact Bayesian inference is typically intractable due to the

large number of parameters in a neural network, Bayesian inference is approximated

by utilizing dropout in a convolutional neural network. This research compared a

traditional video classification neural network to its Bayesian equivalent based on

performance and capabilities. The Bayesian network achieves higher accuracy and is

able to produce uncertainty measures for each classification.

iv

For my mom and dad,

Who believed in me even when success felt ’inconceivable.’

v

Acknowledgements

I would first like to thank God, without whom nothing is possible.

I would like to thank my advisor, Dr. Lance Champagne, for his trust and guidance

throughout the past year.

And finally, thank you to my husband. Without your patience and computer, I

wouldn’t have been able to complete this research.

Emmie K. Swize

vi

Table of Contents

Page

Abstract . iv

Dedication . v

Acknowledgements . vi

List of Figures . ix

List of Tables . xi

I. Introduction . 1

1.1 Problem Statement . 1
1.2 Background and Motivation . 2
1.3 Organization of the Thesis . 2

II. Literature Review . 3

2.1 Artificial Neural Networks . 3
2.2 Convolutional Neural Networks . 5
2.3 Recurrent Neural Networks . 6
2.4 Bayesian Neural Networks . 8
2.5 Dropout as a Bayesian Approximation . 10

III. Modeling and Methodology . 13

3.1 Blend of Networks . 13
3.2 Data Description . 13
3.3 Model Architecture . 16
3.4 Model Parameter Tuning . 20
3.5 Uncertainty Thresholds . 20

3.5.1 Bayesian Model Uncertainty Thresholds . 21
3.5.2 Baseline Model Uncertainty Thresholds . 22

3.6 Model Evaluation . 23

IV. Results and Analysis . 24

4.1 Hardware and Software . 24
4.2 Parameter Tuning Results . 24

4.2.1 Front-end Network . 24
4.2.2 Back-end Network . 29
4.2.3 Summary . 30

4.3 Model Training . 31
4.4 Model Evaluation and Comparison . 33

vii

Page

4.4.1 Model Performance on Whole Test Set . 33
4.4.2 Non-Classified Threshold Sensitivity Analysis 34

4.5 Performance on Out of Scope Samples . 39
4.6 Model Performance on Modified Test Set . 41
4.7 Incongruity between the Two Front-end Networks 42

V. Conclusions and Recommendations . 45

5.1 Conclusions . 45
5.2 Recommendations . 45

Appendix . 47
Bibliography . 62

viii

List of Figures

Figure Page

1 Threshold Logic Unit (Géron, 2019)) . 4

2 Perceptron (Géron, 2019) . 4

3 Architecture of LeNet-5, a Convolutional Neural
Network, here for digits recognition. Each plane is a
feature map, i.e. a set of units whose weights are
constrained to be identical. (Lecun et al., 1998) . 6

4 RNN Layer Unrolled through Time (Géron, 2019) . 7

5 LSTM Cell (Géron, 2019) . 8

6 Input image with exemplary pixel values, filters, and
corresponding output with point estimates (left) and
probability distributions (right) over weights. (Shridhar
et al., 2019) . 9

7 Dropout Neural Net Model. Left: A standard neural
net with 2 hidden layers. Right: An example of a
thinned net produced by applying dropout to the
network on the left. Crossed units have been dropped.
(Srivastava et al., 2014) . 11

8 Sample frames of each of the 101 action classes in
UCF101. The color of each frame border corresponds to
the respective action type: Human-Object
Interaction, Body-Motion Only, Human-Human
Interaction, Playing Musical Instruments, and
Sports. (Soomro et al., 2012) . 15

9 Number of clips per class with clip duration illustrated
by color. (Soomro et al., 2012) . 16

10 Front-end BCNN Architecture: The dimensions of the
inputs and outputs of each layer are preceded by ’None,’
signifying that the network can receive any number of
images to classify at a time (hyperparameters are
discussed in the following chapter). 18

11 Back-end RNN Architecture . 19

ix

Figure Page

12 10 examples of augmented video frames belonging to
the class ‘Baby Crawling’ . 22

13 Front-end Model Training and Test Accuracy by Epoch 31

14 Front-end Model Training and Test Loss by Epoch 32

15 Back-end Model Training and Test Accuracy by Epoch 32

16 Back-end Model Training and Test Loss by Epoch 33

17 φ1 Cutoff Value Sensitivity Analysis for Baseline
network Uncertainty Threshold . 35

18 Standard Deviation Value (φ3) Sensitivity Analysis for
Bayesian network Uncertainty Threshold . 37

19 Cutoff Value φ1 Sensitivity Analysis for Bayesian
network Uncertainty Threshold . 38

20 Example of Randomly Generate Image as Out-of-scope
Sample . 40

21 Classified to non-classified ratio for each front-end
network . 41

22 Model performances on whole test set and on modified
test set. Here the entire bar represents the accuracy of a
model on the modified test set, while the shaded
portion of the bar represents the accuracy of a model on
the whole test set. 42

23 Video frame belonging to the class ’Bowling’ that was
non-classified by the Bayesian model and incorrectly
classified by the Baseline model . 43

24 MCD Predictions for all 101 classes for Bowling frame 43

25 MCD Predictions for top three classes for Bowling frame 44

x

List of Tables

Table Page

1 UCF101 Summary Statistics (Soomro et al., 2012) 14

2 Results of Front-end Network Epochs and Batch Size
Grid Search . 26

3 Results of Front-end Network Optimizer Grid Search 27

4 Results of Front-end Network Weight Initialization Grid
Search . 28

5 Results of Front-end Network Dense Layer Neurons
Grid Search . 28

6 Results of Back-end Network Batch Size Grid Search 29

7 Results of Back-end Network LSTM Layers Neurons
Grid Search . 29

8 Results of Back-end Network Dense Layer Neurons Grid
Search . 30

9 Results of Back-end Network Optimizer Grid Search 30

xi

BAYESIAN AUGMENTATION OF CONVOLUTIONAL NEURAL NETWORK -

LONG SHORT TERM MEMORY FOR VIDEO CLASSIFICATION WITH

UNCERTAINTY MEASURES

I. Introduction

Video classification allows for intelligence, surveillance, and reconnaissance (ISR)

platforms to detect and identify objects and activities in surveillance videos au-

tonomously. Image classification is one of the many functions of neural networks.

Convolutional neural networks (CNN) in particular are often used for image classi-

fication. Recurrent neural networks (RNN) are well equipped to handle time series

data, such as a video broken into a series of images. These two capabilities combined

allow for the classification of videos. The remainder of this chapter includes the prob-

lem statement, background, motivation for this research, and a brief outline of the

remainder of this thesis.

1.1 Problem Statement

The objective of this research is to develop a blend of neural networks for video

classification for the purpose of ISR. The blended network consists of a CNN at the

front end of a RNN, as well as an inserted Bayesian neural network (BNN) to update

the priors of the CNN.

1

1.2 Background and Motivation

ISR missions involve using artificial intelligence (AI) and machine learning (ML)

algorithms to identify objects and build a sensor-aware operating picture. However,

the current technology is not flexible enough in nature to handle novelty data. For

example, currently available classification algorithms are largely static in nature once

trained and context from recently observed data is not considered in making deci-

sions, meaning such algorithms are unequipped to handle uncertain and unexpected

situations. The remedy for this is to create classification algorithms that are aware

of their own uncertainty and therefore able to identify unexpected data. (Bihl and

Talbert, 2020)

1.3 Organization of the Thesis

Chapter 2 reviews past and current research into BNNs as well as video and

image classification using neural networks. Chapter 3 explains the methodology used

to develop the model as well as its evaluation criteria. Chapter 4 presents the results

of the analysis. Chapter 5 covers the conclusions and presents possible areas for future

research.

2

II. Literature Review

This chapter discusses past research into the use of neural networks for video

classification. It is partitioned by sections as appropriate to provide structure for

discussion of material being reviewed.

2.1 Artificial Neural Networks

Artificial neural networks (ANNs) are machine learning models loosely based on

the structure of the brain’s biological network, in which biological neurons pass in-

formation through connections when triggered (Géron, 2019). ANNs are versatile

machine learning tools that can handle large and complex tasks, including image

recognition. Furthermore, constructed appropriately, ANNs are a provably optimal

approach to learning patterns in data (Géron, 2019). The first ANN was designed

by McCulloch and Pitts in 1943. In their paper “A logical calculus of the ideas im-

manent in nervous activity,” McCulloch and Pitts present an artificial neuron that is

activated by binary inputs to produce a binary output (Mcculloch and Pitts, 1943).

By constructing a network of such artificial neurons, the authors show that ANNs

can perform logical computations.

In 1957, Frank Rosenblatt designed the Perceptron, an ANN composed of a single

layer of threshold logic units (TLU) (Géron, 2019). Like McCulloch and Pitts’ arti-

ficial neuron, TLUs are neurons activated by the inputs passed to them. However,

each TLU receives a numerical value as input and produces a numerical value as out-

put. Additionally, as demonstrated in Figure 1, the connections surrounding TLUs

are weighted, meaning each unit computes the weighted sum of the inputs passed to

it according to the connection weights. The output of each TLU is the result of a

step function applied to the weighted sum of the inputs. Figure 2 demonstrates the

3

structure of a Perceptron with two inputs and three TLUs. Werbos (1974) proposed

a new weight-training method called backpropagation, which lead to ANNs using

differentiable activation functions, such as the sigmoid activation function.

Figure 1. Threshold Logic Unit (Géron, 2019))

Figure 2. Perceptron (Géron, 2019)

The capabilities of such a model improve with depth, leading to a Multilayer

Perceptron (MLP), which is an ANN composed of multiple layers of TLUs (Géron,

2019). The middle layers are referred to as the hidden layers and the last layer is

referred to as the output layer. A Deep Neural Network (DNN) builds on the structure

of the MLP, consisting of a deep stack of hidden layers, typically three or more.

4

2.2 Convolutional Neural Networks

Recently, DNNs have led to developmental milestones in the capabilities of deep

learning, including the processing of images, video, and audio. These milestones al-

low for improved recognition and classification of objects and actions in both images

and video. CNNs are a variant of DNNs that are particularly useful in processing

and categorizing 2-dimensional visual data, such as images and handwriting (Géron,

2019). The earliest stage of the CNN, the Neocognitron, was proposed by Kunihiko

Fukushima in 1980 (Fukushima, 1980). The Neocognitron contains simple cell oper-

ations for the feature extraction of an image and complex cell operations that pool

the simple cell results to provide spatial invariance. This early stage CNN model

inspired the LeNet-4 model in 1995, which developed into the LeNet-5 model in 1998

(Lecun et al., 1998). The LeNet-5 model is considered a milestone because it intro-

duced convolutional layers and pooling layers, the backbones of the modern-day CNN.

Convolutional layers apply a learned filter, called the kernel, to the input arrays to

detect co-occurrences and spatial information in the input (Géron, 2019). In doing

so, small “neighborhoods” of the image are examined, revealing each neuron’s area of

influence based on its location. This lends well to image and video classification, in

which pixels closer together are typically more correlated than pixels farther apart.

Pooling layers create a summarized version of the features identified by the preced-

ing convolutional layer, reducing the dimensionality. With convolutional and pooling

layers, CNNs assemble simple features into increasingly more complex features with

each hidden layer (Géron, 2019).

Figure 3 demonstrates the layout of the LeNet-5 architecture. Each convolutional

layer outputs one feature map for each filter, each of which emphasizes the image

locations that activate the respective filter the most. By applying multiple filters to

the inputs, a convolutional layer is able to extract multiple features at each location.

5

The sub-sampling layers represent the pooling layers, which reduce the sensitivity of

the outputs to shifts and distortions in the image. This gives the CNN the powerful

capability of recognizing a learned pattern in any location in the image, not just where

the original pattern instance occurred (Lecun et al., 1998). As a final classifier, the

LeNet-5 architecture includes an MLP at the end consisting of fully connected layers

and an output layer.

Figure 3. Architecture of LeNet-5, a Convolutional Neural Network, here for digits
recognition. Each plane is a feature map, i.e. a set of units whose weights are con-
strained to be identical. (Lecun et al., 1998)

2.3 Recurrent Neural Networks

While CNNs are useful at processing and categorizing individual images, RNNs

are another variant of DNNs that can process sequential data, such as a video broken

into a series of images. RNNs possess a type of memory in the form of a hidden state,

which passes previous output information as additional inputs to future time steps

in the network (Géron, 2019). The Hopfield Network, proposed by John Hopfield in

1982, was the first DNN to incorporate a form of associative memory into the network

(Gal, 2016). In 1985, David Rumelhart expanded on this early form of the RNN by

incorporating Backpropagation Through Time (BPTT) (Gal, 2016). Backpropaga-

tion is a procedure that repeatedly updates a network’s connection weights according

to the error of the network’s output. BPTT is the application of backpropagation

6

to each time step of an RNN or RNN variant (Gal, 2016). Figure 4 demonstrates a

layer of recurrent neurons unrolled through time. At each step, the layer receives the

input xi and the output of the previous time step yt–1 as inputs.

Figure 4. RNN Layer Unrolled through Time (Géron, 2019)

Standard RNNs, although able to process sequential data, can suffer from short-

term memory, meaning the network’s memory is limited in the amount of past outputs

it can represent clearly. In 1997, Hochreiter and Schmidhuber presented an evolved

version of the standard RNN, the Long Short-Term Memory (LSTM) cell, as a solution

(Hochreiter and Schmidhuber, 1997). LSTM cells outperform standard RNNs by

converging more quickly and by detecting long-term dependencies in sequential data.

Figure 5 shows that LSTMs possess not only a hidden state, but a cell state as well.

The hidden state is similar to that of the standard RNN and represents the short-term

information, while the cell state represents the long-term information. LSTM cells

also utilize three gate controllers that are responsible for adding information to the

stored memory or erasing information from the stored memory (Géron, 2019). These

controllers are the forget gate (f(t)), the input gate (i(t)), and the output gate (o(t)),

as labeled in Figure 5. With the use of these gates, the LSTM cell is able to discern

which content should be stored in its memory and which content it should forget.

7

Figure 5. LSTM Cell (Géron, 2019)

2.4 Bayesian Neural Networks

Standard ANNs and DNNs learn point estimates for network weights and produce

point estimates for predictions. These networks do not have a measure of certainty or

confidence in the parameters and predictions, making the results potentially difficult

to trust. In other words, standard DNNs output point estimate predictions, but no

measure of respective uncertainty. Using Bayesian inference, a BNN incorporates

a measure of uncertainty by learning parameters as distributions instead of point

estimates (Gal, 2016). Bayesian inference is a type of statistical inference that uses

Bayes’ theorem, represented in Equation 1.

p(Θ|D) =
p(D|Θ)p(Θ)

p(D)
(1)

Here, p(θ) is the prior probability of model parameters θ before having seen the

evidence, or data, D. p(D|Θ) is the likelihood of the occurrence of evidence D

given the model parameters Θ. The theorem is used to update the inferred weight

distributions as more information becomes available to the network. Any kind of

8

network can become a BNN by treating the parameters in a Bayesian manner (Gal,

2016). Figure 6 presents a visual of the weight-learning difference between a standard

CNN (left) and BNN (right).

Figure 6. Input image with exemplary pixel values, filters, and corresponding output
with point estimates (left) and probability distributions (right) over weights. (Shridhar
et al., 2019)

Denker et al. (1987) proposed the first usage of a prior distribution for the weights

of a network. By integrating over the weights, Denker et al. obtained a marginal

probability for each outcome. Tishby et al. (1989). expanded upon this proposal

and conceptualized the first BNN. Tishby et al. defined a prior distribution over the

network weights and showed that with Bayes’ Theorem, Bayesian inference can be

performed to identify the optimal network architecture. Denker and LeCun (1990)

built on this concept by transforming the network outputs into probability distribu-

tions. The concept of the BNN is similar to that of the Probabilistic neural network

(PNN), which was proposed by Specht (1990). PNNs, another version of ANNs that

are derived from BNNs, utilize an exponential activation function to approximate

the Bayes optimal solution. Buntine and Weigend (1991) presented the concept of

Bayesian back-propagation, a Bayesian inference method that combines the concepts

of backpropagation and Bayes’ Theorem. In 1993, Neal (2012) showed that Bayesian

inference methods avoid overfitting and poor generalization using the first Markov

Chain Monte Carlo (MCMC) sampling algorithm, which relies on Bayesian inference.

9

Neal (1995) expanded his contribution to the growth of BNNs the following year

by establishing a link between BNNs and Gaussian processes, which are stochastic

processes in which every finite linear combination of random variables is normally

distributed. Neal showed that a single-layered network with infinitely many units and

Gaussian priors for the weights is equivalent to a Gaussian process. This equivalence

means that exact Bayesian inference can be conducted on infinite neural networks

by evaluating the corresponding Gaussian process. Although the Gaussian process

properties do not translate easily to finite neural networks, Bayesian inference can be

approximated for finite neural networks that have Gaussian priors for the weights.

As pointed out by Shridhar et al., even for a network with few parameters, per-

forming exact Bayesian inference to determine a network’s posterior is a lengthy and

difficult task (Shridhar et al., 2019). For this reason, Bayesian inference is often ap-

proximated using variational inference, a method that fits a Gaussian distribution

as closely as possible to the true posterior distribution (Gal, 2016). This is done by

minimizing the Kullback-Leibler (KL) divergence, a measure of how much informa-

tion is lost in the approximation. However, because variational inference significantly

increases the number of model parameters, it comes at a high computational cost.

2.5 Dropout as a Bayesian Approximation

A simple method of Bayesian inference approximation that does not sacrifice com-

putational complexity is dropout. In 2016, Gal and Ghahramani demonstrated that

applying dropout before every weighted layer in a network is mathematically equiva-

lent to a Bayesian approximation of a Gaussian process (Gal and Ghahramani, 2016).

Their work shows that the application of dropout minimizes the KL divergence be-

tween an approximate distribution and a Gaussian process posterior distribution.

Dropout, a popular regularization technique that prevents a model from overfit-

10

ting training data, is a process that randomly omits neurons and their associated

connections from the neural network according to a fixed probability p. In other

words, at each step, each neuron will be retained in the network at that step with

probability p. Figure 7, created by Srivastava et al., demonstrates the difference be-

tween standard neural network layers and neural network layers with dropout. This

technique essentially samples a thinned version of the full network for each training

case. For a neural network with n neurons, applying dropout to training amounts to

a collection of 2n possible networks (Srivastava et al., 2014). Additionally, dropout

prevents individual neurons from relying on other specific neurons to supplement their

contributions to the network (Hinton et al., 2012). This causes the contribution of

each neuron to become more helpful regarding correct network predictions.

Figure 7. Dropout Neural Net Model. Left: A standard neural net with 2 hidden
layers. Right: An example of a thinned net produced by applying dropout to the
network on the left. Crossed units have been dropped. (Srivastava et al., 2014)

A typical dropout procedure is only implemented during the training stage, caus-

ing predictions during the testing stage to be deterministic. Monte Carlo dropout

(MCD), proposed by Gal and Ghahramani in 2016, applies dropout to both the train-

ing and testing stages of a network. In statistics, Monte Carlo refers to algorithms

that utilize repeated random sampling to infer distributions for a numerical quantity.

Implementing dropout during the testing stage means that the model output can

11

be treated as a random sample generated from the posterior predictive distribution.

The model uncertainty can therefore be estimated with the distribution of repeated

predictions for an instance, constructing a distribution of probabilities for every class.

With this distribution of multiple predictions, the average and the variation can re-

veal the networks uncertainty in its predictions. Gal and Ghahramani show that not

only is this procedure simple in execution, but that it has no negative impact on

model performance (Gal and Ghahramani, 2016).

12

III. Modeling and Methodology

This chapter presents the methodology employed to build, train, and test the

desired blend of neural networks. First, the chapter details the contents, structure,

and preparation of the data set used for training and testing. Following the data

description, the model architecture and evaluation are covered.

3.1 Blend of Networks

This research explores the effects of utilizing a blend of the networks discussed

above to gain synergistic effaaAZects. The CNN is responsible for classifying individ-

ual frames of a video, which is then passed to the RNN as a sequence of frames for

classification of the video as a whole. The CNN parameters are treated in a Bayesian

manner, making it a BCNN. The front-end network is a BCNN and the back-end

network is an RNN. The goal of this network architecture is to classify videos and

provide a measure of uncertainty in each video’s frame predictions.

3.2 Data Description

The data set used in this research is the UCF101 Action Recognition Data Set

(Soomro et al., 2012). The University of Central Florida (UCF) introduced this

dataset in 2012 as the largest compilation of human action videos, comprising of

13,320 videos that span 101 classes in total. UCF101 offers a large amount of variety

regarding actions, camera motion and viewpoint, object pose and scale, background

appearance, and lighting conditions. The 101 action classes are divided into five

types: Human-Object Interaction, Body-Motion Only, Human-Human Interaction,

Playing Musical Instruments, and Sports.

Table 1 provides the summary statistics of the data set structure and Figures 8

13

and 9 provide visual representations of the data set. Figure 8 contains frames of an

example video from each of the 101 action classes along with corresponding class and

class type labels. Figure 9 offers a visual of the number of videos in each class, as

well as the distribution of video duration.

Each class is also subsequently divided into 25 groups based on common features,

such as background or viewpoint. For all classes, the 25 groups contain anywhere

from 4 to 7 videos each. Although the videos of roughly half of the action categories

also contain audio, this feature is not taken into consideration in this research. As

preparation for training and testing, each video is partitioned into individual frames

sized 224 x 224 pixels, with each pixel containing values for 3 color channels. The

images are converted to three-dimensional arrays, sized 224 x 224 x 3. These arrays

are normalized by dividing all values by 255 to have all pixel values range from 0 to

1.

Table 1. UCF101 Summary Statistics (Soomro et al., 2012)

Actions 101

Clips 13320

Groups per Action 25

Clips per Group 4-7

Mean Clip Length 7.21 sec

Total Duration 1600 mins

Min Clip Length 1.06 sec

Max Clip Length 71.04 sec

Frame Rate 25 fps

Resolution 320x240

Audio Yes (51 actions)

14

Figure 8. Sample frames of each of the 101 action classes in UCF101. The color of
each frame border corresponds to the respective action type: Human-Object Inter-
action, Body-Motion Only, Human-Human Interaction, Playing Musical Instruments,
and Sports. (Soomro et al., 2012)

15

Figure 9. Number of clips per class with clip duration illustrated by color. (Soomro
et al., 2012)

3.3 Model Architecture

The entire research model consists of two networks: a BCNN as the front-end

network that feeds into an RNN as the back-end network. Initially, the front-end

BCNN was intended to utilize the architecture of the VGG16 network, a CNN created

by the Visual Geometry Group from Oxford in 2014 (Simonyan and Zisserman, 2014).

This is because the VGG16 network achieves 92.7% top-5 accuracy on the ImageNet

data set, which contains over 14 million images that span 1,000 classes. This means

that the VGG16 model includes the correct class label in its five highest output values

with 92.7% accuracy. Although this would provide a good starting point for this

research, due to limited computational resources, the front-end BCNN is constructed

16

from a simpler CNN consisting of two weighted layers with dropout applied before

every weighted layer. This is following Gal’s finding that applying dropout before

every weighted layer is an approximate Bayesian inference. Both dropout layers

utilize an identical dropout rate of 0.5 according to the precedent set by Gal and

Ghahramani (2016). This reduction in the front-end model’s size does not impact

this research, as its aim is to show a proof of concept.

Figure 10 demonstrates the architecture of the front-end model. The fixed-size

input, a 224 x 224 RGB image, passes through two convolutional layers. Both convo-

lutional layers use 32 filters and a kernel with size 3 x 3, which is the smallest kernel

size that can capture the concept of left and right, up and down, and center. Each

convolutional layer uses a stride of 1 pixel, which is the amount by which the filter

shifts, and a zero-padding of 1 pixel around the edges of the input images, which

allows the original input size to be preserved at each layer. The next layer is a max-

pooling layer that uses a pool size of 3 x 3. Following this series of convolutional and

pooling layers, the model has two fully connected layers, one with 50 units and one

with 101 units, which is the number of classes in the UCF101 dataset. The activation

function of all the layers, aside from the final fully connected layer, is the rectified

linear unit activation function (ReLU), which is a piecewise linear function that out-

puts the input if it is positive and zero otherwise. The final fully connected layer

uses a softmax activation function, which converts the input to a vector of categor-

ical probabilities, each between 0 and 1, that sum to 1. However, as shown by Gal

and Ghahramani (2016), the output vector of probabilities from the softmax function

alone cannot be interpreted as model confidence or uncertainty.

17

Figure 10. Front-end BCNN Architecture: The dimensions of the inputs and outputs of
each layer are preceded by ’None,’ signifying that the network can receive any number
of images to classify at a time (hyperparameters are discussed in the following chapter).

The output of the BCNN is a list of matrices, one for each video that is classified

by the front-end network. Initially, each matrix contains as many rows as a video

has frames and as many columns as the data set has classes. Given a video index,

the matrix corresponding to that index in the list contains the MCD predicted prob-

18

abilities for each of the 101 classes for each frame of the video. However, the Keras

LSTM layers used to build the back-end network require that all sequences within

each batch have the same number of timesteps. To standardize the number of frames

across the data passed to the back-end network, all matrices in the list outputted by

the front-end network are padded with arrays of zeros to match the highest number

of frames that occurs in the data. Using zero padding allows for the list to preserve

the original content of the data. This list of matrices, the BCNN output, is fed into

an RNN consisting of two LSTM layers, each with 50 units and a softmax activation

function. These two LSTM layers are followed by two fully connected layers that con-

tain 50 units and 101 units, respectively. The architecture of the back-end network

is represented in Figure 11.

Figure 11. Back-end RNN Architecture

The performance and capabilities of this Bayesian model will be compared to a

19

non-Bayesian, baseline model consisting of the same front-end CNN and back-end

RNN structure, but with the dropout layers removed from the front-end network

during the testing phase. The Bayesian and baseline front-end networks are identical

other than the employment of dropout during the testing phase for the Bayesian

front-end network. The same back-end RNN is used after each of these front-end

networks.

3.4 Model Parameter Tuning

Because the performance and required training time of a model depend on the

specified hyperparameter values, it is important to tune the parameters to find their

optimal values. The model parameters include the batch size, epochs, optimizer,

weight initialization method, and size of hidden layers. The batch size is the number

of data observations that are shown to the network before updating the weights

(Géron, 2019). RNNs and CNNs are particularly sensitive to the batch size. The

number of epochs is the number of times that the entire training data set is shown to

the network during training (Géron, 2019). The optimizer is the algorithm used to

update the model weights in response to the loss function results (Géron, 2019). The

weight initialization method determines with which random distribution, if any, the

network weights are initialized, which heavily affects network training time (Géron,

2019). The size of a hidden layer refers to the number of neurons it contains, which

controls the representational capacity of the network at that layer (Géron, 2019).

3.5 Uncertainty Thresholds

The appeal of measuring the network’s uncertainty lies in the network’s ability to

know what it does not know. However, this ability is not useful unless the network

is also able to request clarification for those cases about which it is uncertain. To

20

address this, both front-end networks, baseline and Bayesian, will ’flag’ any image

and its associated video that corresponds to high uncertainty based on respective

network thresholds. This allows for a human to inspect and determine the correct

class of the flagged images and associated videos, thus avoiding misclassification.

This is particularly useful for situations in which ISR resources are identifying a

target that may require high certainty before proceeding. All flagged images and

their associated videos will be treated as ’non classified,’ as the networks will request

human intervention for these cases. In this sense, it is expected that the networks will

improve in classification accuracy by choosing to classify only the images and videos

about which they are more certain.

3.5.1 Bayesian Model Uncertainty Thresholds

For the Bayesian front-end network, the distribution of MCD predictions for an

image is used to determine whether the network will classify the image or leave it non-

classified. There are many ways to set the network uncertainty threshold for flagging

an image, some of which will suit certain data and situations more than others. For

the purposes of this research, the uncertainty thresholds are set as follows:

1. An image and its video are flagged if the maximum mean predicted class prob-

ability is less than a determined cutoff value, φ1.

2. An image and its video are flagged if there are two or more mean predicted class

probabilities greater than another determined value, φ2.

3. An image and its video are flagged if the maximum standard deviation for any

of the predicted class probabilities is greater than a determined value, φ3.

These values and their respective sensitivity analyses are specified in the following

chapter. These flag thresholds are chosen to ensure reasonable network certainty in

21

the unflagged images.

3.5.2 Baseline Model Uncertainty Thresholds

The baseline front-end network cannot provide the same distribution of predic-

tions that the Bayesian front-end network can. For this reason, in order to gain a

semblance of the baseline front-end network’s uncertainty, this research applies a fre-

quentist methodology, which treats uncertainty as a probability that is the limit of

the relative frequency of an event after many trials (Ambaum, 2012). To accomplish

this, augmented data is created from the images and used to construct a distribution

of correct predictions and incorrect predictions for each class (Cerliani, 2020). The

data is augmented using the Image Data Generator class in Keras (Chollet et al.,

2015). The baseline ‘non-classified’ threshold for each class is found using the same

determined value as mentioned in the first Bayesian threshold as a percentile cutoff

in the correct predictions distribution for that class. During the testing stage, if the

softmax output for the predicted class is below the threshold of that class, then the

image is rendered ‘non-classified.’

Figure 12. 10 examples of augmented video frames belonging to the class ‘Baby Crawl-
ing’

22

3.6 Model Evaluation

For both front-end networks, baseline and Bayesian, as well as for the back-end

RNN, the trained models with the lowest validation categorical cross-entropy (CE)

loss will be used for the test set. Categorical CE loss, used for multi-class classification,

trains the network to output a probability over the C classes for each image (Géron,

2019). CE loss, which is represented in Equation 2, is combined with the softmax

activation function, provided in Equation 3, to create categorical CE loss (Géron,

2019). Equation 4 shows the Categorical CE loss equation. In these equations, ti is

the vector of true classes and si is the network’s vector of predicted scores for each

class in C.

CE = −
∑
iεC

tilog(si) (2)

f(s)i =
esi∑
jεC e

sj
(3)

CategoricalCE = −
∑
iεC

tilog(f(s)i) (4)

The overall Bayesian model results will be compared to the baseline model based

on model performance metrics and model capabilities. The performance metrics

include test accuracy and out-of-scope sample predictions. The model capabilities

includes the model’s ability to provide uncertainty information regarding its predic-

tions. The baseline and Bayesian front-end networks will also be compared based on

the improvement in accuracy after being equipped with the ability to leave images

‘non-classified’ when the respective uncertainty thresholds are met. Both networks

will form their own modified versions on the test set consisting of the images that

they choose to classify, respectively.

23

IV. Results and Analysis

This chapter summarizes notable results from training the models, testing the

models, and evaluating model capabilities.

4.1 Hardware and Software

All model training and evaluation were conducted on a Windows 10 Professional

PC with an AMD Ryzen 5 5600X CPU, 32 GB RAM, and Sapphire Nitro+ RX

5700XT, as well as the Python 3.7 packages Tensorflow 2.1.0, Keras 2.3.1, and all

necessary dependencies.

4.2 Parameter Tuning Results

The Scikit-learn library includes the tool GridSearchCV, which uses k -fold cross

validation to exhaustively consider all parameter combinations from a specified grid

to determine the optimal parameter values for a model, with a default value of 3

for k (Pedregosa et al., 2011). K -fold cross validation is the process of splitting a

training set into k subsets, training the model k times on k-1 of the subsets, and

evaluating the model on the left out subset, each time selecting a different subset

for evaluation (Géron, 2019). GridSearchCV computes the mean model accuracy for

each combination of specified parameters (Pedregosa et al., 2011). Although only

one grid search could determine the optimal model parameters, breaking the process

down into multiple grid searches requires less time.

4.2.1 Front-end Network

The first grid search involves a grid of batch sizes ranging from 30 to 70 and epochs

ranging from 10 to 100. As a default, the grid search utilized the Adam optimizer,

24

50 neurons in the first dense layer, no weight initialization, and a test data set of

20% of the data. Table 2 contains the results of this grid search. Two different sets

of parameters achieves the best average model accuracy, 0.969744: the first with a

batch size of 30 and 100 epochs, and the second with a batch size of 50 and 100

epochs. These two sets of parameters have model accuracy standard deviations of

0.005003 and 0.004511, respectively. These standard deviation values represent the

average difference between that model’s accuracy and its mean accuracy, which is an

indication of its consistency. For this reason, the values 50 and 100 were selected for

the batch size and the epochs, respectively, for both the network training and for the

following grid searches.

25

Table 2. Results of Front-end Network Epochs and Batch Size Grid Search

Epochs Batch Size Mean Model Accuracy

10

30 0.9666

40 0.9620

50 0.9575

60 0.9065

70 0.9631

50

30 0.9672

40 0.9675

50 0.9691

60 0.9672

70 0.9657

100

30 0.9697

40 0.9654

50 0.9697

60 0.9670

70 0.9693

The second grid search explores the differences in model performance across seven

optimizers: SGD, AdaGrad, Adadelta, RMSprop, Adam, Adamax, and Nadam.

These optimizers utilize the network gradients at each step to update the network

weights in the correct direction and by the correct magnitude. A network gradient

measures the change in error respective to the change in network weights at each step.

The learning rate dictates the amount by which the network weights are updated in

response to the estimated error.

SGD, Stochastic Gradient Descent, calculates the error for a random instance in

26

the training data set and updates all the network weights with the same learning rate

at each step (Géron, 2019). AdaGrad, Adaptive Gradient Algorithm, is similar to

SGD but updates parameters using different learning rates that are tailored to each

parameter at each step based on the history of gradients (Géron, 2019). Adadelta

is a variant of AdaGrad that limits the amount of previous gradient history taken

into account at each step (Ruder, 2016). RMSprop, Root mean square prop, is a

variant of AdaGrad that addresses concerns about AdaGrad’s radically diminishing

learning rates (Géron, 2019). Adam, Adaptive moment estimation, is a combination

of AdaGrad and RMSprop that requires less memory and is more efficient (Géron,

2019). Adamax is a variant of Adam that provides less sensitivity to the choice of

hyperparameters (Ruder, 2016). Nadam, Nesterov and Adam optimizer, is an Adam

variant that updates gradients one step ahead of when Adam does (Géron, 2019).

Table 3 provides the results of this second grid search. Although all optimizers

perform well aside from Adadelta, Adamax proves to have the best mean model

accuracy. For this reason, the Adamax optimizer is used for the network training and

for the following grid searches.

Table 3. Results of Front-end Network Optimizer Grid Search

Optimizer Mean Model Accuracy

Adamax 0.9702

Adam 0.9666

RMSprop 0.9652

Adagrad 0.9627

Nadam 0.9620

SGD 0.9488

Adadelta 0.6588

27

The third grid search is concerned with the weight initialization distribution of the

network’s fully connected layers. The grid search includes eight various initialization

distributions: uniform, Glorot uniform, normal, He normal, Glorot normal, Lecun

uniform, zero, and He normal. As Table 4 shows, all distributions aside from ’He

normal’ led to good model performance. Using the uniform distribution to initialize

the weights of the fully-connected layers provides the best mean model accuracy.

Table 4. Results of Front-end Network Weight Initialization Grid Search

Initializer Mean Model Accuracy

Uniform 0.9702

Glorot Uniform 0.9691

Normal 0.9679

He Uniform 0.9670

Glorot Normal 0.9666

Lecun Uniform 0.9656

Zero 0.9652

He Normal 0.6724

The purpose of the final grid search for the front-end network is to determine the

number of neurons in the first fully-connected layer that would lead to the best model

performance. Out of the three options shown in Table 5, the network with 50 neurons

in the first fully-connected layer achieves the highest mean model accuracy.

Table 5. Results of Front-end Network Dense Layer Neurons Grid Search

Neurons Mean Model Accuracy

50 0.9702

100 0.9656

500 0.9679

28

4.2.2 Back-end Network

The back-end network requires a smaller set of grid searches as there are fewer

parameters to tune. Additionally, this network will train for 100 epochs to match

the front-end network. The first grid search for the back-end network evaluates its

change in performance with different batch sizes ranging from 30 to 70. Table 6,

which contains the grid search results, shows that a batch size of 50 leads to the best

performance.

Table 6. Results of Back-end Network Batch Size Grid Search

Batch Size Mean Model Accuracy

30 0.0050

40 0.0090

50 0.0120

60 0.0080

70 0.0090

The second grid search includes three values for the number of neurons in the

LSTM layers of the network ranging from 50 to 300. Table 7 indicates that for this

grid, 50 neurons in each LSTM layer leads to the best performance.

Table 7. Results of Back-end Network LSTM Layers Neurons Grid Search

Neurons Mean Model Accuracy

50 0.0060

100 0.0030

300 0.0040

The next grid search includes three values for the number of neurons in the dense

layers of the network ranging from 50 to 300. Table 8 shows that the best performance

29

occurred with 50 neurons in the dense layer, as well.

Table 8. Results of Back-end Network Dense Layer Neurons Grid Search

Neurons Mean Model Accuracy

50 0.0080

100 0.0070

300 0.0070

The final grid search for the back-end network includes three different optimizers,

RMSprop, Adadelta, and Adam. This is because these three optimizers have been

found to lead to better model performance with LSTMs (Ruder, 2016). For this final

grid, the optimizer Adam leads to the best mean model accuracy.

Table 9. Results of Back-end Network Optimizer Grid Search

Optimizer Mean Model Accuracy

Adam 0.0130

RMSprop 0.0120

Adadelta 0.0050

4.2.3 Summary

In summary, the front-end network will train for 100 epochs with the Adamax

optimizer, utilize a batch size of 50, and contain 50 neurons in the first dense layer

initialized with a uniform distribution. The back-end network will train for 100

epochs, as well, using the Adam optimizer, a batch size of 50, and 50 neurons in each

LSTM and dense layer, aside from the last dense layer.

30

4.3 Model Training

Figure 13 shows that for the front-end model, both the training accuracy and test

accuracy increase during training and level off towards the end of the 100 epochs.

However, the gap between the train accuracy and test accuracy curves is consistently

almost a 0.10 difference, indicating that overfitting is a possibility. Figure 14 shows

that for the front-end model, while the training loss decreases during training and

levels off, the test loss increases over the course of the 100 epochs. The steady increase

of the test loss confirms that the model is experiencing overfitting. This means that

the model is focusing on the noise of the training data, which improves its performance

on the training set but leaves it unable to generalize learned features to the test set

(Géron, 2019).

Figure 13. Front-end Model Training and Test Accuracy by Epoch

31

Figure 14. Front-end Model Training and Test Loss by Epoch

Figure 15 shows that for the back-end network, both the training accuracy and test

accuracy increase only during the initial steps of training and then level off quickly.

The gap between the train accuracy and test accuracy curves is consistently small,

indicating that overfitting is unlikely for the back-end network (Géron, 2019). Figure

16 shows that both the training loss and test loss decrease during the initial steps

of training and level off quickly. Both Figures 15 and 16 indicate that the back-end

network achieves very low performance in its classification tasks.

Figure 15. Back-end Model Training and Test Accuracy by Epoch

32

Figure 16. Back-end Model Training and Test Loss by Epoch

4.4 Model Evaluation and Comparison

First, the baseline model and Bayesian model are compared on their performance

in classifying the entire test set without the ability to leave images non-classified.

Next, both models are evaluated on the measures of uncertainty that they can each

provide for their predictions. This includes a sensitivity analysis on the non-classified

thresholds for each model. Finally, both models are evaluated on their performance

on the subsection of the test set they choose to classify based on the uncertainty

thresholds. The test set used for evaluation spans all 101 classes and contains 3,782

videos, which collectively contain 28,890 images.

4.4.1 Model Performance on Whole Test Set

The baseline front-end model achieves 25.2% accuracy on the whole test set. Feed-

ing the baseline front-end network’s predictions to the back-end network, the model

as a whole achieves 1.3% accuracy. The Bayesian front-end network achieves 20.9%

accuracy on the whole test set. With the Bayesian front-end network predictions as

input for the back-end network, the Bayesian model as a whole achieves 1.3% accu-

33

racy. Both front-end networks achieve an accuracy far below the average training

and test accuracy that occurred in the training phase, indicating that the model pa-

rameters are over-fit to the training data set. The results of the performances of the

back-end network align with the poor back-end training results presented in Figures

15 and 16.

4.4.2 Non-Classified Threshold Sensitivity Analysis

In order to keep the results of the two different front-end networks comparable,

the final cutoff for the predicted class probability value, φ1, will be the same for both

networks. Note that this value means different things to each of the networks. For

the Bayesian front-end network, the cutoff value φ1 represents the the minimum value

of certainty in the predicted most likely class in order for an image to be classified;

if the cutoff value is not met, then the image is left non-classified. For the baseline

front-end network, the cutoff value φ1 represents the percentile of the distribution

of correctly classified augmented data from which to form the predicted probability

threshold. For example, with a φ1 value of 0.1, each baseline prediction must meet

the 10th percentile of correctly predicted augmented data values for the predicted

class in order to be classified rather than non-classified.

This sensitivity analysis explores the effects of changing the cutoff value φ1, which

affects both front-end networks, as well as the effects of changing the other two

uncertainty thresholds, φ2 and φ3, of the Bayesian front-end network. The analyzed

φ1 values range from 0.1 to 0.9.

Baseline Model

Figure 17 depicts the results of the φ1 cutoff value sensitivity analysis regarding

the baseline front-end model. As φ1 increases, the maximum threshold for the 101

34

classes increases quickly and approaches 1, while the mean threshold and minimum

threshold both steadily increase. The blue line in Figure 17 represents the percentage

of the test set images that the baseline front-end network classifies when given the

option to classify or not. This percentage of classified images steadily decreases as

φ1 increases. This is because as φ1 grows larger, the thresholds become consistently

stricter for all 101 classes, leading the baseline front-end network to leave more images

non-classified. The green line in Figure 17 represents the accuracy of the baseline

front-end network on the modified test set, which consists of all the test set images

that meet the threshold to be classified. Whereas the blue line indicates that the size

of this modified test set decreases with an increasing cutoff value φ1, the green line

shows that the baseline network accuracy increases with the cutoff value. This is due

to the thresholds being more and more selective as φ1 increases, allowing the model

to only classify those images of test set about which it is very certain.

Figure 17. φ1 Cutoff Value Sensitivity Analysis for Baseline network Uncertainty
Threshold

35

For the baseline front-end network to classify at least half of the test set images,

which is at least 14,445 images, the φ1 cutoff value must be at most 0.57. The thresh-

olds obtained at a percentile of the correctly predicted augmented data probabilities

higher than φ1 = 0.57 are too strict for the baseline network to classify even half of

the test set.

Note that the frequentist thresholds used to create a semblance of certainty for

the baseline network do not provide an exact measure of uncertainty for the network

((Ambaum, 2012)). Instead, each threshold provides the minimum probability associ-

ated with the cutoff value percentile with which the baseline network most frequently

predicts the correct class.

Bayesian Model

The three threshold criteria that renders an image non-classified by the Bayesian

front-end network, as mentioned in the previous chapter, are as follows:

1. An image and its video are flagged if the maximum mean predicted class prob-

ability is less than a determined cutoff value φ1.

2. An image and its video are flagged if there are two or more mean predicted class

probabilities greater than a determined value φ2.

3. An image and its video are flagged if the maximum standard deviation for any

of the predicted class probabilities is greater than a determined value φ3.

The images that do not meet any of these three criteria form the modified test

set and are classified by the network. Changes in the φ1 cutoff value do not affect

the modified test set size or the Bayesian network’s accuracy on it while the standard

deviation threshold φ3 is less than 0.1. The same is true for changes in φ2: changes

in the percent value for this threshold do not affect the modified test set or the

36

network’s accuracy while the standard deviation threshold φ3 is less than 0.1. This

indicates that the certainty of the Bayesian front-end network in its predictions relies

most heavily on the value of the standard deviation threshold, φ3. With φ1 and φ2

held constant, increasing the standard deviation threshold φ3 increases the size of

the modified test set and decreases the network’s accuracy on the modified test set.

Once the standard deviation threshold φ3 exceeds 0.1, increasing the cutoff value φ1

steadily decreases the size of the modified test set and steadily increases the Bayesian

network’s accuracy on the modified test set. Once the standard deviation threshold

φ3 exceeds 0.1, increasing φ2 steadily increases the size of the modified test set and

steadily decreases the Bayesian network’s accuracy on the modified test set.

Figure 18 shows the influence of the standard deviation threshold value φ3 on the

modified test set size and network accuracy while all other threshold values are held

constant. As the standard deviation threshold value exceeds 0.3, the influence of this

threshold on the modified test set and network accuracy diminishes and levels off.

Figure 18. Standard Deviation Value (φ3) Sensitivity Analysis for Bayesian network
Uncertainty Threshold

37

To focus on the influence of changes in the cutoff value φ1, Figure 19 holds the

standard deviation threshold φ3 at a constant 0.4. This shows that past the bound-

aries of the modified test set that are determined by the standard deviation threshold,

increasing the cutoff value for the mean predicted class probability reduces the size

of the modified test set while increasing the Bayesian network’s accuracy on it.

Figure 19. Cutoff Value φ1 Sensitivity Analysis for Bayesian network Uncertainty
Threshold

In order for the Bayesian front-end network to classify at least half of the test

set images, which means at least 14,445 images, the standard deviation threshold φ3

must be greater than 0.32. At any standard deviation threshold value less than 0.32,

the other two threshold values do not allow the network to classify even half of the

test set, no matter how lenient. In fact, even with a standard deviation threshold of

0.32, the Bayesian network only classifies half of the test set with a cutoff value φ1

of 0.10 and a value of 0.5 for φ2. With these values, the Bayesian network classifies

all images that have maximum mean predicted class probability greater than 0.10,

no more than one class with a mean predicted probability greater than 0.50 (which

could not occur regardless), and with no standard deviations greater than 0.32 for

the predicted class probabilities.

38

For research purposes, the final thresholds for all three Bayesian uncertainty

thresholds and for the baseline uncertainty threshold are chosen to enable the Bayesian

front-end network to classify at least 20% of the whole test set, which means at least

5,778 images. This will enable a more thorough analysis of the network’s capabilities.

To accomplish this, the cutoff value φ1 for both the Bayesian and baseline model

is 0.6, the φ2 value for Bayesian uncertainty is 0.25, and the Bayesian standard de-

viation threshold φ3 value is 0.4. For the baseline network, this means that for an

image to be classified, the softmax output for the predicted class must be at least

the value of the 60th percentile of that class’s correctly predicted augmented data

softmax probabilities. For the Bayesian network, this means that the mean predicted

class probability must be at least 0.6, no more than one mean class probability can

be over 0.25, and no standard deviation of the class probabilities can exceed 0.4.

4.5 Performance on Out of Scope Samples

Out-of-scope samples are data that do not belong to the data set being used to

train and test a model. Presenting out-of-scope samples to each of the front-end

networks for classification will test their ability to wield their uncertainty thresholds

in a new situation ((Sterbak, 2020)). Because out-of-scope samples do not belong

to any class in the data set, each front-end network should ideally leave them as

non-classified. Additionally, should one or both of the front-end networks classify a

large number of out-of-scope samples as one of the 101 classes, it would indicate that

the model does not understand the concept of that class. To evaluate the ability of

both front-end networks to identify out-of-scope samples, 1,000 randomly-generated

images are presented to the networks for classification. Figure 20 provides an example

of a randomly generated image used as an out-of-scope sample.

39

Figure 20. Example of Randomly Generate Image as Out-of-scope Sample

Out of the 1,000 randomly-generated images, the baseline network leaves 959 of

the images non-classified, while the Bayesian network leaves 984 images non-classified.

In this evaluation, both models are able to identify the vast majority of out-of-scope

samples and leave them non-classified. This shows that each model is not confident

enough about these ‘trick questions’ to classify them. However, when forced to classify

all 1,000 images, the results are revealing about the model insufficiencies. The baseline

network, when forced to classify all images, classifies 88.9% of the images as ‘Throw

Discus,’ 10.7% of the images as ‘Hammering,’ and 0.4% of the images as ‘Swing.’

Similarly, when forced to classify all images, the Bayesian network classifies 81.9% of

the images as ‘Throw Discus’ and 18.1% of the images as ‘Hammering.’ These results

indicate that neither front-end model understands the concept of the classes ‘Throw

Discus’ or ‘Hammering.’ Additionally, the baseline network does not understand the

concept of the class ‘Swing’ either. This could be due to too much variation in the

data for each of these classes, meaning that the videos and their frames are too widely

varied in terms of camera angle, lighting, movement, etc and the model is unable to

learn concrete features that associate with these classes.

40

4.6 Model Performance on Modified Test Set

Figure 21 shows the ratio of classified to non-classified for both images and videos

for the networks with the chosen threshold values. The baseline network classifies

significantly more images and videos than the Bayesian network.

Figure 21. Classified to non-classified ratio for each front-end network

On the modified test set, the baseline front-end network achieves 38.2% accuracy,

which is an increase of 13 percentage points. The baseline model as a whole achieves

1.40% accuracy on the modified test set of videos, which is roughly the same as the

baseline model performance on the entire test set of videos. On the modified test

set, the Bayesian front-end network achieves 61.0% accuracy, which is an increase

of 40.1 percentage points. The Bayesian model as a whole achieves 0% accuracy

on the modified test set of videos, which is roughly 1.3 percentage points less than

the Bayesian model performance on the entire test set of videos. Figure 22 provides

a visual of the difference between whole test set performances and modified test

set performances. As specified in Figure 22, the baseline front-end and back-end

experienced a 52% and 8% increase in accuracy, respectively. The Bayesian front-end

experienced a 192% increase in accuracy, while the Bayesian back-end had a 100%

41

decrease in accuracy.

Figure 22. Model performances on whole test set and on modified test set. Here the
entire bar represents the accuracy of a model on the modified test set, while the shaded
portion of the bar represents the accuracy of a model on the whole test set.

4.7 Incongruity between the Two Front-end Networks

Of the 23,107 images left non-classified by the Bayesian front-end network, 8,610 of

them were classified incorrectly by the baseline network. The 8,610 images account

for roughly 30% of the whole test set. Figure 23 provides an example of one of

these images, a video frame belonging to the class ‘Bowling.’ Figure 24 contains a

visual representation of the distribution of MC predicted probabilities for the image

in Figure 23. In Figure 24, each of the 101 classes of the data set are represented by

a horizontal bar. For every one of the MCD predictions, the probabilities are plotted

on the bars, creating a color gradient that represents a class’s predicted probability

variation for the image. The bolded, black bars represent the mean of the MCD

42

predicted probabilities.

Figure 23. Video frame belonging to the class ’Bowling’ that was non-classified by the
Bayesian model and incorrectly classified by the Baseline model

Figure 24. MCD Predictions for all 101 classes for Bowling frame

While Figure 24 provides an overview of the MCD predicted probabilities for

every class in the data set, displaying the wide range of predictions and variations.

43

Figure 25 contains only the classes with the three highest mean MCD predicted

probabilities, ‘Mopping Floor,’ ‘Head Massage,’ and ‘Lunges.’ Figure 25 indicates

that the Bayesian front-end network most consistently predicted high probabilities

for the class ‘Mopping Floor’ for the ‘Bowling’ video frame in Figure 23. The color

gradients of the ‘Head Massage’ and ‘Lunges’ bars indicate that the network MCD

predictions vary more widely for these classes for this image. If the Bayesian front-

end network were forced to classify this image, it would defer to the highest mean

MCD predicted probability, ‘Mopping Floor,’ which would incorrect. The Bayesian

network was right to leave the image non-classified because it would have been a

misclassification. The baseline network, on the other hand, chose to classify the

‘Bowling’ video frame and predicted the class ‘Mopping Floor.’ This is a prime

example of the value of accurate uncertainty measures. In this situation and 8,609

others of the test set, both models landed on the same misclassification, ‘Mopping

Floor,’ but only one of the models was able to use its high uncertainty in the prediction

to decide not to classify the image at all.

Figure 25. MCD Predictions for top three classes for Bowling frame

44

V. Conclusions and Recommendations

5.1 Conclusions

This research aims to explores the results of utilizing a blend of neural networks

to classify videos and images. This blend consists of a CNN for image classification,

an RNN for sequences of images (video) classification, and a BNN to equip the model

with the ability to measure its uncertainty in each prediction. While this model’s

regular performance on a given test set do not outperform its non-Bayesian equivalent,

when it is allowed to use uncertainty thresholds to discern which images and videos

about which it is confident enough to classify or not, this model increases its accuracy

by almost 200%.

5.2 Recommendations

The purpose of this research is to provide a proof of concept and so has been

conducted on a small scale. Should the available resources and data be scaled up, the

advantages provided by a measure of a model’s uncertainty incorporated with each

prediction would likely grow, as well. For this reason, expanding the size of the model

could prove beneficial.

In future work, the back-end RNN should be left out of the blend of models. Not

only does the back-end network perform poorly on the data, the front-end network,

Bayesian or not, is sufficient in accounting for the subject of a video. This is due

to the fact that frequently, any given frame of a video from the UCF101 data set is

representative of the rest of the frames of that video. For this reason, it could be

unnecessary to classify a video as a sequence of all of its frames using an RNN. If it

is the goal to retain the RNN in the network blend, then a different data set should

be sought.

45

Future work should also test a wider variety of uncertainty thresholds for the

Bayesian model in its construction of a modified test set to classify.

46

Appendix: Code

import keras

from keras.models import Model, Sequential

from keras.layers import Dense, Dropout, Flatten

from keras.layers import Conv2D, Input, LSTM

from keras.layers import MaxPooling2D as MaxPool2D

from tqdm import tqdm

import matplotlib.pyplot as plt

import numpy as np

import csv

import pandas as pd

from keras.preprocessing import image

from sklearn.model_selection import train_test_split

import cv2

from glob import glob

import os

os.environ[’TF_CPP_MIN_LOG_LEVEL’] = ’2’

import math

import seaborn as sns

from sklearn.metrics import accuracy_score

from keras.utils.vis_utils import plot_model

sns.set()

(Sterbak (2020))

def get_dropout(input_tensor,

p=0.5,

mc = False):

if mc:

return Dropout(p)(input_tensor, training=True)

else:

return Dropout(p)(input_tensor)

def build_frontend(num_classes,

dropout,

input_shape = (224, 224, 3),

mc = False):

inp = Input(input_shape)

x = Conv2D(32, (3, 3), input_shape = input_shape,

activation=’relu’)(inp)

x = Conv2D(32, (3, 3), activation = ’relu’)(x)

x = MaxPool2D(pool_size=(3, 3))(x)

x = Flatten()(x)

x = get_dropout(x, p=dropout, mc=mc)

47

x = Dense(units = 500, activation = ’relu’)(x)

x = get_dropout(x, p = dropout, mc = mc)

out = Dense(units=num_classes,

activation="softmax")(x)

model = Model(inputs=inp, outputs=out)

model.compile(loss=keras.losses.categorical_crossentropy,

optimizer=keras.optimizers.Adamax(),

metrics=[’accuracy’])

return model

def get_frontend_data_setup(training_file_name =

’train_new.csv’):

train = pd.read_csv(training_file_name)

num_classes = train[’class’].nunique()

class_labels = train[’class’].unique().tolist()

train_image = []

input_shape = (224, 224, 3)

for i in tqdm(range(train.shape[0])):

img = image.load_img(’train_1/’+train[’image’][i],

target_size = input_shape)

converting it to array

img = image.img_to_array(img)

normalizing the pixel value

img = img/255.0

appending the image to the train_image list

train_image.append(img)

X = np.array(train_image)

del train_image

y = train[’class’]

del train

X_train, X_test, y_train, y_test = train_test_split(X,

y,

random_state=42,

test_size=0.2, stratify = y)

del X

y_train = pd.get_dummies(y_train)

y_test = pd.get_dummies(y_test)

return num_classes, class_labels, input_shape,

X_train, X_test, y_train, y_test

def get_class_labels(training_file_name = ’train_new.csv’):

train = pd.read_csv(training_file_name)

class_labels = train[’class’].unique().tolist()

return class_labels

def get_backend_data_setup2(file_name = ’trainlist01.txt’):

48

f = open(file_name, "r")

temp = f.read()

videos = temp.split(’\n’)

creating a dataframe having video names

train = pd.DataFrame()

train[’video_name’] = videos

train = train[:-1]

get rid of the weird number at the end

for i in range(train.shape[0]):

train[’video_name’][i] =

train[’video_name’][i].split(’ ’)[0]

video_names = train[’video_name’]

return video_names

def get_back_input2(video_names,

mc_model,

num_classes,

n_iter = 500,

batch_size = 50,

mc_preds = False):

frames = []

frame_labels = []

frame_mc_preds = []

belongs_to_video = []

output = []

output_labels = []

for i in tqdm(range(video_names.shape[0])):

if i != 341:

count = 0

videoFile = video_names[i]

cap = cv2.VideoCapture(’./Videos/’+

videoFile.split(’ ’)[0])

frameRate = cap.get(5) #frame rate

files = glob(’temp/*’)

for f in files:

os.remove(f)

while(cap.isOpened()):

frameId = cap.get(1) #current frame number

ret, frame = cap.read()

if (ret != True):

break

if (frameId % math.floor(frameRate) == 0):

filename =’temp/’ + "_frame%d.jpg" %

count;count+=1

49

cv2.imwrite(filename, frame)

cap.release()

images = glob("temp/*.jpg")

the_images = []

for j in range(len(images)):

img = image.load_img(images[j],

target_size=(224,224,3))

img = image.img_to_array(img)

img = img/255

the_images.append(img)

frames.append(img)

belongs_to_video.append(i)

frame_labels.append(videoFile

.split(’/’)[1].split(’_’)[1])

the_images = np.array(the_images)

print(str(i) + ": " + str(the_images.shape))

video_frames_predictions = []

for j in range(n_iter):

y_p = mc_model.predict(the_images,

batch_size=batch_size)

video_frames_predictions.append(y_p)

mean_video_frames_predictions = np.mean

(video_frames_predictions,

axis = 0)

output.append(mean_video_frames_predictions)

output_labels.append(videoFile

.split(’/’)[1].split(’_’)[1])

frames = np.array(frames)

frame_labels = pd.DataFrame(frame_labels,

columns=[’class’])

frame_labels = pd.get_dummies(frame_labels)

output = standardize_matrix_size(output,

num_classes)

if mc_preds:

frame_mc_preds = get_mc_predictions(

mc_model, frames, n_iter)

return output, output_labels,

frames, frame_labels,

belongs_to_video, frame_mc_preds

else:

return output, output_labels, frames,

frame_labels, belongs_to_video

(Sterbak (2020))

50

def get_mc_predictions(mc_model,

test_set_images,

n_iter = 500):

mc_predictions = []

for i in tqdm(range(n_iter)):

y_p = mc_model.predict(test_set_images,

batch_size=50)

mc_predictions.append(y_p)

make model predictions on the test set 500 times

return mc_predictions

def get_flag1(p0, cutoff, stdev):

flag = False

if ((p0.mean(axis=0).max() < cutoff) or

(len([i for i in p0.mean(axis=0)

if i > 0.25]) >= 2) or

(p0.std(axis=0).max() > stdev)):

flag = True

return flag

def get_most_uncertain_images(test_set_images,

mc_predictions, stdev):

max_means = []

max_vars = []

class_preds = []

flags = []

for idx in range(test_set_images.shape[0]):

px = np.array([p[idx] for

p in mc_predictions])

class_preds.append(px.mean(axis=0).argmax())

max_means.append(px.mean(axis=0).max())

max_vars.append(px.std(axis=0)

[px.mean(axis=0).argmax()])

flags.append(get_flag1(px, 0.6, stdev))

test_uncertainties = pd.DataFrame(

{’max_means’:max_means,

’max_vars’: max_vars,

’class_pred’: class_preds,

’flagged’: flags})

top_by_prob = test_uncertainties

.sort_values(by = [’max_means’])

top_by_prob = top_by_prob.reset_index()

top_by_var = test_uncertainties

.sort_values(by = [’max_vars’],

ascending = False)

51

top_by_var = top_by_var.reset_index()

return top_by_prob, top_by_var

(Sterbak (2020))

def check_for_model_misunderstanding(mc_model,

num_classes,

class_labels,stdev,

input_shape = (224, 224, 3),

num_random_images = 100):

posterior_counts = [0 for x in range(num_classes)]

top_class_probs = np.empty(num_random_images)

top_class_vars = np.empty(num_random_images)

num_flags = 0

for j in tqdm(range(num_random_images)):

random_img = np.random.random(input_shape)

random_predictions = []

for i in range(100):

y_p = mc_model.predict(np.array([random_img]))

random_predictions.append(y_p)

p0 = np.array([p[0] for p in random_predictions])

index = p0.mean(axis=0).argmax()

posterior_counts[index] = posterior_counts[index]+1

top_class_probs[j] = p0.mean(axis=0)[index]

top_class_vars[j] = p0.std(axis=0)[index]

if get_flag1(p0, 0.6. stdev):

num_flags = num_flags+1

above_zero = []

def baseline_check_for_model_misunderstanding(model,

num_classes,

class_labels,

thresh,

input_shape = (224, 224, 3),

num_random_images = 100):

posterior_counts = [0 for x in range(num_classes)]

num_flags = 0

for j in tqdm(range(num_random_images)):

random_img = np.random.random(input_shape)

y_p = model.predict(np.array([random_img]))

index = y_p.argmax()

posterior_counts[index] = posterior_counts[index]+1

if y_p.max() < thresh[int(index)]:

num_flags = num_flags+1

print()

52

print(’Percentage of randomly generated images flagged: ’)

print(str(100* num_flags/num_random_images) + ’%’)

print()

above_zero = []

for index in range(len(posterior_counts)):

if posterior_counts[index] > 0:

above_zero.append(index)

def build_backend(num_classes):

backend = Sequential()

backend.add(LSTM(50,

return_sequences = True,

input_shape = (None, num_classes)))

backend.add(LSTM(50))

backend.add(Dense(50,

activation = ’relu’))

backend.add(Dense(num_classes))

backend.compile(loss=keras.losses.categorical_crossentropy,

optimizer=’adam’,

metrics=[’categorical_accuracy’, ’accuracy’])

return backend

def standardize_matrix_size(data,

num_classes):

longest_size = 0

for video in data:

if video.shape[0] > longest_size:

longest_size = video.shape[0]

for video in range(len(data)):

padded_matrix = np.zeros((longest_size, num_classes))

padded_matrix[:data[video].shape[0],

:data[video].shape[1]] = data[video]

data[video] = padded_matrix

return data

(ZOU (2019))

def plot_prediction_TEST(idx,

images,

labels,

mc_predictions,

class_labels,

num_classes):

labels = labels.to_numpy()

p0 = np.array([p[idx] for p in mc_predictions])

p0_avg = p0.mean(axis=0)

53

fig, axes = plt.subplots(1, 2, figsize=(30,12))

###

df = pd.DataFrame(p0_avg, columns = [’col1’])

df[’col2’] = np.arange(num_classes)

df = df.sort_values(by = ’col1’, ascending = False)

df = df.reset_index(drop = True)

contenders = df[’col1’][df[’col1’]>0.05].count()

###

second plot

sns.barplot(orient = ’h’)

for dist in p0:

sns.barplot(y =np.arange(contenders),

x = dist[df[’col2’]][0:contenders],

alpha = 0.1,

ax = axes[1], orient = ’h’)

axes[1].set_xlim([0,1])

third plot

sns.barplot(y = np.arange(contenders),

x = p0_avg[df[’col2’]][0:contenders],

ax = axes[1],

linewidth=2.5, facecolor=(1, 1, 1, 0),

edgecolor=".2", orient = ’h’)

new_labels = []

for i in range(contenders):

new_labels.append(class_labels[df[’col2’][i]])

return p0, p0_avg, df

def get_image_distribution(idx,

mc_predictions,

num_classes,

class_labels):

p0 = np.array([p[idx] for p in mc_predictions])

fig, axes = plt.subplots(1, 1, figsize=(12,12))

for i in range(num_classes):

sns.distplot(p0[:,i], kde = False,

hist_kws=dict(alpha=0.7))

axes.set_xlim = [0,1]

axes.set(xlabel=’Probability’, ylabel=’Count’)

plt.legend(class_labels)

def get_image_breakdown(idx,

test_set_images,

test_set_labels,

mc_predictions,

class_labels, cutoff, stdev):

54

p0 = np.array([p[idx] for p in mc_predictions])

test_set_labels = test_set_labels.to_numpy()

print("posterior mean: {}".format(

p0.mean(axis=0).argmax()) + ’, ’ + class_labels[p0.mean(axis=0).argmax()])

print("true label: {}"

.format(test_set_labels[idx].argmax())+ ’, ’ + class_labels[test_set_labels[idx].argmax()])

print()

(ZOU (2019))

def plot_prediction(idx,

images,

labels,

mc_predictions,

class_labels,

num_classes):

labels = labels.to_numpy()

p0 = np.array([p[idx] for p in mc_predictions])

p0_avg = p0.mean(axis=0)

###

df = pd.DataFrame(p0_avg, columns = [’col1’])

df[’col2’] = np.arange(num_classes)

df[’col3’] = p0.std(axis = 0)

df = df.sort_values(by = ’col1’, ascending = False)

df = df.reset_index(drop = True)

contenders = df[’col1’][df[’col3’]>0.01].count()

###

plt.figure(figsize = (12, 12))

second plot

sns.barplot(orient = ’h’)

for dist in p0:

sns.barplot(y =np.arange(num_classes), x = dist,

alpha = 0.1, orient = ’h’)

plt.xlim([0,1])

#plt.title(’Posterior Samples’)

third plot

plt.ylabel(’Class’, fontsize = 22)

plt.xlabel(’Probability’, fontsize = 22)

plt.yticks(ticks = None, labels = None, color = ’w’)

plt.xticks(fontsize = 22)

sns.barplot(y = np.arange(num_classes), x = p0_avg,

linewidth=2.5, facecolor=(1, 1, 1, 0),

edgecolor=".2", orient = ’h’)

def plot_epoch_accuracy(history):

55

plt.plot(history.history[’accuracy’])

plt.plot(history.history[’val_accuracy’])

plt.title(’Model Accuracy’)

plt.ylabel(’accuracy’)

plt.xlabel(’epoch’)

plt.legend([’train’, ’test’], loc=’upper left’)

plt.show()

def plot_epoch_loss(history):

plt.plot(history.history[’loss’])

plt.plot(history.history[’val_loss’])

plt.title(’Model Loss’)

plt.ylabel(’loss’)

plt.xlabel(’epoch’)

plt.legend([’train’, ’test’], loc=’upper left’)

plt.show()

def model_to_png(model, filename):

plot_model(model, to_file=filename, show_shapes=True,

show_layer_names=True)

def get_flagged_images_and_videos(mc_preds, belongs_to_video,

cutoff, stdev):

flagged_image_indices = []

flagged_image_booleans = []

flagged_video_indices = []

not_flagged_images = []

not_flagged_videos = []

for idx in range(mc_preds[0].shape[0]):

px = np.array([p[idx] for p in mc_preds])

flagged_image_booleans.append(get_flag1(px,

cutoff, stdev))

if get_flag1(px, cutoff, stdev) == True:

flagged_image_indices.append(idx)

else:

not_flagged_images.append(idx)

for idx in range(len(flagged_image_booleans)):

if flagged_image_booleans[idx] == True:

flagged_video_indices

.append(belongs_to_video[idx])

flagged_video_indices = list(set(flagged_video_indices))

for idx in range(len(np.unique(belongs_to_video))):

if idx not in flagged_video_indices:

not_flagged_videos.append(idx)

return flagged_image_indices, flagged_video_indices,

not_flagged_images, not_flagged_videos

56

def get_baseline_nonflags(frames,

thresh,

non_mc_model,

belongs_to_video):

baseline_not_flagged_images = []

baseline_not_flagged_videos = []

baseline_booleans = []

for idx in tqdm(range(frames.shape[0])):

probabilities = non_mc_model.predict(

frames[idx].reshape((1,) + frames[idx].shape))

prediction = np.argmax(probabilities, axis=1)

if np.max(probabilities) < thresh[int(prediction)]:

baseline_booleans.append(True)

else:

baseline_booleans.append(False)

baseline_not_flagged_images.append(idx)

for idx in range(len(baseline_booleans)):

if baseline_booleans[idx] == False:

baseline_not_flagged_videos

.append(belongs_to_video[idx])

baseline_not_flagged_videos = list(set(

baseline_not_flagged_videos))

return baseline_not_flagged_images,

baseline_not_flagged_videos

import matplotlib.pyplot as plt

import numpy as np

from Functionsss import *

class_labels = get_class_labels()

dropout = 0.5

num_classes = 101

input_shape = (224, 224, 3)

frontend = build_frontend(num_classes = num_classes,

dropout = dropout,

input_shape = input_shape,

mc = True)

frontend.load_weights(’frontend_weights_tuned.hdf5’)

non_mc_model = build_frontend(num_classes = num_classes,

dropout = dropout,

input_shape = input_shape,

mc = False)

non_mc_model.load_weights(’frontend_weights_tuned.hdf5’)

backend = build_backend(num_classes)

backend.load_weights(’backend_weights.hdf5’)

57

video_names = get_backend_data_setup2(

file_name = ’testlist01.txt’)

output, output_labels, frames, frame_labels,

belongs_to_video,

mc_preds = get_back_input2(video_names,

frontend, num_classes,

n_iter = 100, batch_size = 50,

mc_preds = True) s

output_labels = pd.get_dummies(output_labels)

output = np.array(output)

baseline_preds = non_mc_model.predict(frames,

batch_size = 50)

belongs_to_video_array = np.asarray(belongs_to_video)

baseline_output = [baseline_preds[belongs_to_video_array==k]

for k in np.unique(belongs_to_video)]

baseline_output = standardize_matrix_size(

baseline_output, num_classes)

baseline_output = np.array(baseline_output)

.reshape(output.shape)

mc_ensemble_pred = np.array(mc_preds).mean(axis=0)

.argmax(axis=1)

ensemble_acc = accuracy_score(

pd.DataFrame.to_numpy(frame_labels)

.argmax(axis=1),

mc_ensemble_pred)

bayes_eval1 = frontend.evaluate(frames, frame_labels)

base_eval1 = non_mc_model.evaluate(frames, frame_labels)

bayes_back_eval1 = backend.evaluate(output, output_labels)

base_back_eval1 = backend.evaluate(baseline_output,

output_labels)

from tensorflow.keras.preprocessing.image import

ImageDataGenerator, array_to_img, img_to_array,

load_img

from sklearn.metrics import classification_report,

accuracy_score, confusion_matrix

from PIL import Image

(Cerliani (2020))

datagen = ImageDataGenerator(

rotation_range=20,

width_shift_range=0.1,

height_shift_range=0.1,

shear_range=0.1,

58

zoom_range=0.1,

horizontal_flip=True,

fill_mode=’nearest’)

reps = 10

create augmented images by class

for c in tqdm(range(num_classes)):

make folder for augmented images for that class

createFolder(’./augmented/’ + str(c) + ’/’)

load image and reshape it for datagen

x = frames[frame_labels.iloc[:,c]==1]

#x = x.reshape((1,) + x.shape)

augment it 100 times

i = 0

for batch in datagen.flow(x, batch_size = 1,

save_to_dir =

’./augmented/’ + str(c),

save_prefix = "",

save_format = ’jpeg’):

i += 1

if i == reps*x.shape[0]:

break

diz_prob = {}

diz_prob_correct = {}

diz_prob_mistake = {}

for i in range(num_classes):

diz_prob[i] = []

diz_prob_correct[i] = []

diz_prob_mistake[i] = []

for c in tqdm(range(num_classes)):

count = 0 # how many images are in the class

augmented_images = []

for filename in glob(’./augmented/’+ str(c) + ’/*.jpeg’):

im = Image.open(filename)

x = img_to_array(im)

augmented_images.append(x/255.)

count += 1

augmented_images = np.reshape(augmented_images,

(count, 224, 224, 3))

true_labels = [c] * count

pred_prob = non_mc_model.predict(augmented_images)

pred = np.argmax(pred_prob, axis=1)

for j, prob in zip(pred, pred_prob):

diz_prob[c].append(prob[j])

59

diz_prob

if c == j:

diz_prob_correct[j].append(prob[c])

else:

diz_prob_mistake

diz_prob_mistake[j].append(prob[j])

cutoff = 0.6

thresh = {}

for i in range(len(class_labels)):

thresh[i] = np.quantile(diz_prob[i], cutoff)

for c in range(num_classes):

plt.hist(diz_prob_correct[c], alpha=0.3,

label=’correct’)

plt.hist(diz_prob_mistake[c], alpha=0.3,

label=’mistake’)

plt.axvline(thresh[c], color=’red’,

linestyle=’--’)

plt.legend(); plt.xlabel(’probability’);

plt.ylabel(’count’);

plt.title(class_labels[c])

plt.show()

baseline_not_flagged_images,

baseline_not_flagged_videos =

get_baseline_nonflags(frames,

thresh, non_mc_model, belongs_to_video)

discrepancies = []

for i in tqdm(range(len(flagged_images))):

idx = flagged_images[i]

if idx in baseline_not_flagged_images:

base_pred = non_mc_model.predict(

frames[idx].reshape((1,)+frames[idx].shape))

if frame_labels.iloc[idx][base_pred.argmax()] == 0:

then I’m interested in it

discrepancies.append(idx)

idx = discrepancies[1088]

plt.imshow(frames[idx][:,:,0])

plot_prediction(idx, frames, frame_labels, mc_preds,

class_labels, num_classes)

get_image_breakdown(idx, frames, frame_labels,

mc_preds, class_labels, 0.6, 0.4)

p0, p0_avg, df = plot_prediction_TEST(idx,

frames, frame_labels, mc_preds, class_labels, num_classes)

non_mc_model.predict(frames[idx]

60

.reshape((1,)+ frames[idx].shape)).argmax()

check_for_model_misunderstanding(frontend,

num_classes, class_labels, num_random_images = 1000)

baseline_check_for_model_misunderstanding(

non_mc_model, num_classes, class_labels,

thresh, num_random_images = 1000)

bayes_eval2 = frontend.evaluate(

frames[not_flagged_images],

pd.DataFrame(frame_labels).iloc[not_flagged_images])

bayes_back_eval2 = backend.evaluate(

output[not_flagged_videos],

pd.DataFrame(output_labels).iloc[not_flagged_videos])

base_eval2 = non_mc_model.evaluate(

frames[baseline_not_flagged_images],

pd.DataFrame(

frame_labels).iloc[baseline_not_flagged_images])

del baseline_not_flagged_videos[-1]

base_back_eval2 = backend.evaluate(

baseline_output[baseline_not_flagged_videos],

pd.DataFrame(

output_labels)

.iloc[baseline_not_flagged_videos])

61

Bibliography

Ambaum, M. H. P. (2012), ‘Frequentist vs bayesian statistics - a non-statisticians
view’.

Bihl, T. and Talbert, M. (2020), Analytics for autonomous C4ISR within e-
government: a research agenda, in ‘53rd Hawaii International Conference on Sys-
tem Sciences, HICSS 2020, Maui, Hawaii, USA, January 7-10, 2020’, ScholarSpace,
pp. 1–10.
URL: http://hdl.handle.net/10125/64012

Buntine, W. L. and Weigend, A. (1991), ‘Bayesian back-propagation’, Complex Syst.
5.

Cerliani, M. (2020), ‘When your neural net doesn’t know: a bayesian approach with
keras’. Accessed on 09 Feb 2021.
URL: https://towardsdatascience.com/when-your-neural-net-doesnt-know-a-
bayesian-approach-with-keras-4782c0818624

Chollet, F. et al. (2015), ‘Keras’. Accessed on 09 Feb 2021.
URL: https://github.com/fchollet/keras

Denker, J. S. and LeCun, Y. (1990), Transforming neural-net output levels to proba-
bility distributions, in ‘Proceedings of the 3rd International Conference on Neural
Information Processing Systems’, NIPS’90, Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, p. 853–859.

Denker, J., Schwartz, D., Wittner, B., Solla, S., Howard, R., Jackel, L. and Hopfield,
J. (1987), ‘Large automatic learning, rule extraction, and generalization’, Complex
Syst. 1.

Fukushima, K. (1980), ‘Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position’, Biological Cyber-
netics 36, 193–202.

Gal, Y. (2016), Uncertainty in Deep Learning, PhD thesis, University of Cambridge.

Gal, Y. and Ghahramani, Z. (2016), ‘Dropout as a bayesian approximation: Repre-
senting model uncertainty in deep learning’.

Géron, A. (2019), Hands-On Machine Learning with Scikit-Learn, Keras, and Ten-
sorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, O’Reilly
Media.
URL: https://books.google.com/books?id=HnetDwAAQBAJ

62

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.
(2012), ‘Improving neural networks by preventing co-adaptation of feature detec-
tors’, CoRR abs/1207.0580. Accessed on 09 Feb 2021.
URL: http://arxiv.org/abs/1207.0580

Hochreiter, S. and Schmidhuber, J. (1997), ‘Long short-term memory’, Neural Com-
putation 9(8), 1735–1780. Accessed on 09 Feb 2021.

Lecun, Y., Bottou, L., Bengio, Y. and Haffner, P. (1998), Gradient-based learning
applied to document recognition, in ‘Proceedings of the IEEE’, pp. 2278–2324.

Mcculloch, W. and Pitts, W. (1943), ‘A logical calculus of ideas immanent in nervous
activity’, Bulletin of Mathematical Biophysics 5, 127–147.

Neal, R. M. (1995), Bayesian Learning for Neural Networks, PhD thesis, CAN.
AAINN02676.

Neal, R. M. (2012), Bayesian learning for neural networks, Vol. 118, Springer Science
& Business Media.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M. and Duchesnay, E. (2011), ‘Scikit-learn:
Machine learning in Python’, Journal of Machine Learning Research 12, 2825–2830.

Ruder, S. (2016), ‘An overview of gradient descent optimization algorithms’, CoRR
abs/1609.04747. Accessed on 09 Feb 2021.
URL: http://arxiv.org/abs/1609.04747

Shridhar, K., Laumann, F. and Liwicki, M. (2019), ‘A comprehensive guide to
bayesian convolutional neural network with variational inference’.

Simonyan, K. and Zisserman, A. (2014), ‘Very deep convolutional networks for large-
scale image recognition’.

Soomro, K., Zamir, A. R. and Shah, M. (2012), ‘UCF101: A dataset of 101 human
actions classes from videos in the wild’, CoRR abs/1212.0402. Accessed on 09
Feb 2021.
URL: http://arxiv.org/abs/1212.0402

Specht, D. F. (1990), ‘Probabilistic neural networks’, Neural Networks 3(1), 109–118.
URL: https://www.sciencedirect.com/science/article/pii/089360809090049Q

Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R.
(2014), ‘Dropout: a simple way to prevent neural networks from overfitting.’, Jour-
nal of Machine Learning Research 15(1), 1929–1958. Accessed on 09 Feb 2021.
URL: http://www.cs.toronto.edu/ rsalakhu/papers/srivastava14a.pdf

63

Sterbak, T. (2020), ‘Model uncertainty in deep learning with monte carlo dropout in
keras’. Accessed on 09 Feb 2021.
URL: https://www.depends-on-the-definition.com/model-uncertainty-in-deep-
learning-with-monte-carlo-dropout/load-the-mnist-data

Tishby, Levin and Solla (1989), Consistent inference of probabilities in layered net-
works: predictions and generalizations, in ‘International 1989 Joint Conference on
Neural Networks’, pp. 403–409 vol.2.

Werbos, P. J. (1974), Beyond Regression: New Tools for Prediction and Analysis in
the Behavioral Sciences, PhD thesis, Harvard University.

ZOU, L. (2019), ‘Bayesian cnn model on mnist data using tensorflow-probability
(compared to cnn)’. Accessed on 09 Feb 2021.
URL: https://medium.com/python-experiments/bayesian-cnn-model-on-mnist-
data-using-tensorflow-probability-compared-to-cnn-82d56a298f45

64

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including
suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway,
Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection
of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD–MM–YYYY) 2. REPORT TYPE 3. DATES COVERED (From — To)

4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

6. AUTHOR(S)

8. PERFORMING ORGANIZATION REPORT
NUMBER

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF:

a. REPORT b. ABSTRACT c. THIS PAGE

17. LIMITATION OF
ABSTRACT

18. NUMBER
OF
PAGES

19a. NAME OF RESPONSIBLE PERSON

19b. TELEPHONE NUMBER (include area code)

Standard Form 298 (Rev. 8/98)
Prescribed by ANSI Std. Z39.18

25–03–2021 Master’s Thesis August 2019 — March 2021

Bayesian Augmentation of Convolutional Neural Network - Long Short
Term Memory for Video Classification with Uncertainty Measures

Swize, Emmie K., 2d Lt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/ENS)
2950 Hobson Way
WPAFB OH 45433-7765

AFIT-ENS-MS-21-M-186

Air Force Research Laboratory
Dr. Trevor Bihl
1864 4th St
Wright-Patterson AFB, OH 45433
trevor.bihl.2@us.af.mil

AFRL

Distribution Statement A: Approval for public release; distribution is unlimited.

Success of Department of Defense (DoD) missions rely heavily on intelligence, surveillance, and reconnaissance (ISR)
capabilities, which supply information about the activities and resources of an enemy or adversary. To secure this
information, satellites and unmanned aircraft systems collect video data to be classified by either humans or machine
learning networks. Traditional automated video classification methods lack measures of uncertainty, meaning the network
is unable to identify those cases in which it predictions are made with significant uncertainty. This leads to
misclassification, as the traditional network classifies each observation with same amount of certainty, no matter what the
observation is. Bayesian neural networks offer a remedy to this issue by leveraging Bayesian inference to construct
uncertainty measures for each prediction. Because exact Bayesian inference is typically intractable due to the large
number of parameters in a neural network, Bayesian inference is approximated by utilizing dropout in a convolutional
neural network.

machine learning, neural network, Bayesian inference, video classification

U U U UU 77
Dr. Lance E. Champagne, AFIT/ENS

9372553636 x 4646; lance.champagne@afit.edu

This work is declared a work of the U.S. Government and is not subject to copyright protection in the United States.

	Bayesian Augmentation of CNN-LSTM for Video Classification with Uncertainty Measures
	Recommended Citation

	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Problem Statement
	Background and Motivation
	Organization of the Thesis

	Literature Review
	Artificial Neural Networks
	Convolutional Neural Networks
	Recurrent Neural Networks
	Bayesian Neural Networks
	Dropout as a Bayesian Approximation

	Modeling and Methodology
	Blend of Networks
	Data Description
	Model Architecture
	Model Parameter Tuning
	Uncertainty Thresholds
	Bayesian Model Uncertainty Thresholds
	Baseline Model Uncertainty Thresholds

	Model Evaluation

	Results and Analysis
	Hardware and Software
	Parameter Tuning Results
	Front-end Network
	Back-end Network
	Summary

	Model Training
	Model Evaluation and Comparison
	Model Performance on Whole Test Set
	Non-Classified Threshold Sensitivity Analysis

	Performance on Out of Scope Samples
	Model Performance on Modified Test Set
	Incongruity between the Two Front-end Networks

	Conclusions and Recommendations
	Conclusions
	Recommendations

	Appendix
	Bibliography

