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Abstract

Securing the critical infrastructure of the United States is of utmost importance in

ensuring the security of the nation. To secure this complex system a structured

approach such as the NIST Cybersecurity framework is used, but systems are only

as secure as the sum of their parts. Understanding the capabilities of the individual

devices that make up the system, developing tools to help detect misoperations, and

providing forensic evidence for incidence response are all essential to mitigating risk.

This thesis examines the SEL-3505 Real Time Automation Controller to demonstrate

the importance of existing security capabilities as well as creating new processes and

tools to support the National Institute of Standards Cybersecurity Framework of

Identify, Protect, Detect, Respond, and Recover.

The research examines the potential pitfalls of having small-form factor devices

in poorly secured and geographically disparate locations. Additionally, the research

builds a data-collection framework to provide a proof of concept anomaly detection

system for detecting network intrusions by recognizing the change in task time dis-

tribution. This framework uses Python to collect data from a modbus server on the

target device and perform statistical tests to distinguish between normal and anoma-

lous behaviour. The high true positive rates and low false positive rates show the

merit of such an anomaly detection system. Finally, the work presents a network

forensic process for recreating control logic from encrypted programming traffic.

iv



AFIT-ENG-MS-20-M-060

“In God we trust. All others must bring data.” - W. Edwards Denning
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ANOMALY DETECTION AND ENCRYPTED PROGRAMMING FORENSICS

FOR AUTOMATION CONTROLLERS

I. Introduction

1.1 Background and Motivation

Underpinning modern society are various infrastructures with processes and sys-

tems that ensure smooth operation. If these “assets, systems, and networks, whether

physical or virtual, are considered so vital to the United States that their incapaci-

tation or destruction would have a debilitating effect on security, national economic

security, national public health or safety, or any combination thereof” they are des-

ignated as Critical Infrastructure [1]. There are sixteen sectors designated by Pres-

idential Directive 21 [2] including such vital services such as the energy and water

sector. Many of these important sectors utilize Industrial Control System (ICS) which

includes Supervisory Control and Data Acquisition (SCADA) systems, Distributed

Control System (DCS), or standalone Programmable Logic Controllers (PLCs) [3].

The resilience of these ICSs against a wide range of intrusions and adverse operating

conditions is paramount to the security of the society that relies on them.

1.2 Problem Statement

Originally intended as standalone and isolated systems, many ICS devices were

not designed with security in mind. Additionally while typical Information Technol-

ogy (IT) networks have been the focus of cybersecurity professionals, Operational

Technology (OT) networks languished, relying on security through obscurity rather

1



than a robust set of security controls and processes. While IT networks benefit from

commodity hardware and ubiquitous protocols ICS has long relied on specialized

hardware and proprietary protocols that are long lived, ill documented, and difficult

to upgrade. Now as ICS is incorporating Internet Protocol (IP) solutions to improve

remote access and overall connection with corporate networks, the risk for adversarial

access has increased substantially [3].

The security of the system relies on overarching processes as well as the integrity

of individual devices. For this reason the U.S. has begun regulating from whom the

largely private owners of critical infrastructure procure their devices [4]. This fear of

a supply chain attack has recently been realized with the ongoing investigations into

the recent Solarwinds exploit [5]. This is the latest in a line of high profile attacks

against U.S. organizations such as the Russian targeting of the U.S energy sector in

2018 [6]. When a U.S. citizen reaches for the light switch, there is currently no doubt

in their mind that the lamp will turn on, but the resilience of this service may be

more precarious than perceived. Behind the power switch is a patchwork protection

and control devices. This research will examine the SEL-3505 Real Time Automation

Controller (RTAC), a flexible device representative of a family of power automation

controllers used in critical infrastructure sectors.

1.3 Research Objectives

The research objectives of this work are outlined below:

• Identify the operation and attack surfaces of Automation Controllers within

ICS.

• Explore available intrusion detection system (IDS) tools for Automation Con-

trollers and gaps for future development.

2



• Develop a process for forensic artifact retrieval for Automation Controllers.

• Implement a data-collection framework for Anomaly Detection System (ADS)

experimentation.

• Evaluate potential ADS algorithms to detect network intrusions using collected

data.

• Assess the developed ADS, identify shortcomings and future improvements of

the application.

The questions to be answered by this research in order to meet the aforementioned

objectives are as follows:

• Are Industrial Automation Controllers secure?

• Can an ADS detect network intrusions using available device characteristics?

• Can application control logic be reconstructed by an attacker, without decrypt-

ing the encrypted programming traffic?

1.4 Hypothesis

The hypothesis of this research is that Industrial Automation Controllers are

vulnerable to some forms of network intrusions, such as Denial of Service (DoS)

attacks or ARP Spoofing. These intrusions can be detected by measuring the changes

in device characteristics caused by the intrusions. Additionally, illicit access to the

device using compromised credentials can be detected.

1.5 Approach

This research was conducted by first performing a penetration test on the target

device using both manual and automated tools. With a strong grasp of the strengths

3



and limitations of the current security posture, recommendations are formed. These

findings informed the creation of the ADS. The ADS itself relies solely on the RTAC

itself and a Windows workstation capable of running python connected over a local

network. To perform some of the network intrusions, a third device is connected to

the network so that its Media Access Control (MAC) address can be resolved and

Address Resolution Protocol (ARP) spoofing conducted. Python is used for both the

data collection and the data analysis with the utilization of various readily available

packages.

1.6 Contributions

The contributions of this thesis to the field of ICS cybersecurity include the fol-

lowing:

• Physical Vulnerability: Demonstrated straightforward compromise of end

devices through physical access.

• Forensic Process: Developed and demonstrated a network forensic process

for reconstructing control logic from encrypted programming traffic.

• Data Collection Tools: Created a series of scripts to ease the setup of a data

collection framework to test and evaluate an ADS against numerous network

intrusion and project scenarios.

• Qualitative Analysis: Presented strong evidence that Task Time can be used

to detect the additional burden on end devices caused by network intrusions.

1.7 Organization

This thesis is organized as follows:

4



Chapter II introduces the ICS security and ADS concepts and nomenclature. The

NIST Cybersecurity Framework is discussed and its five functions are used to frame

the following sections. It defines the terminology utilized throughout this thesis as it

relates to an ADS. It provides an analysis of the device of interest for the research,

a SEL-3505 RTAC seeking to perform the Identify function of the NIST Framework.

The motivation for the included processes is discussed and related research is explored.

Chapter III focuses on the Protect function of the NIST framework. It demon-

strates the vulnerabilities of having physical access to a device and explains how an

attacker with physical access can do more than perform a DoS attack by bringing

the device offline. It provides several recommendations and best practices to mitigate

existing gaps in the ability to protect the RTAC

Chapter IV presents the creation of a forensic process for encrypted programming

traffic using the RTAC as a case study. It describes three different potential imple-

mentations to protect programming traffic while still allowing forensic auditing. This

process is part of the Respond function of the framework and is essential part of the

analysis of incident response.

Chapters V and VI build on existing security capabilities to bring a robust Detect

function to the RTAC. Chapter V begins by describing the developed ADS data

collection framework and establishing how candidate algorithms will be evaluated.

Chapter VI presents an analysis of the collected ADS data. It compares the

performance of several algorithms against the collected data set. It starts by using the

entire data set and then tests the efficacy of modifying the data set before providing

it to the algorithm. This includes exploring the effects of varying sample size as well

as the elimination of outliers by only providing certain percentiles to the algorithms.

Additionally, continuous evaluation vs discrete evaluation is compared.

Chapter VII concludes with a summary of the work presented and the contribu-

5



tions to the field. In addition, recommendations for those utilizing similar tools or

frameworks are presented. Areas for future work are highlighted.
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II. Background and Related Work

2.1 Overview

This chapter provides background information and knowledge about Industrial

Control System (ICS) security including an overview of the National Institute of Stan-

dards and Technology (NIST) Cybersecurity framework. It then provides contextual

information about the SEL-3505 as well as its manufacturer Schweitzer Engineering

Laboratories. Finally, it provides related work subsections for both network forensic

processes and Anomaly Detection Systems (ADSs).

2.2 NIST Cybersecurity Framework

Cybersecurity frameworks provide a defined process to manage and mitigate cy-

bersecurity risk. The NIST framework was developed in accordance with the Cy-

bersecurity Enhancement Act of 2014 to identify “a prioritized, flexible, repeatable,

performance based, and cost-effective approach, including information security mea-

sures and controls that may be voluntarily adopted by owners and operators of critical

infrastructure to help them identify, assess, and manage cyber risks” [7]. While tar-

geted at critical infrastructure, due to its flexibility, it can be employed in any sector.

The “Framework Core” consists of five cybersecurity functions, each of these is listed

below with the provided NIST definition [7]:

• Identify: “Develop the organizational understanding to manage cybersecurity

risk to systems, assets, data, and capabilities.”

• Protect: “Develop and implement the appropriate safeguards to ensure deliv-

ery of critical infrastructure services.”
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• Detect: “Develop and implement the appropriate activities to identify the

occurrence of a cybersecurity event.”

• Respond: “Develop and implement the appropriate activities to take action

regarding a detected cybersecurity event.”

• Recover: “Develop and implement the appropriate activities to maintain plans

for resilience and to restore any capabilities or services that were impaired due

to a cybersecurity event.”

Each of these core functions contains numerous categories and subcategories along

with informative references to help stakeholders achieve the outcomes associated with

each function.

Implementing the entirety is a process that can take a cross-functional team,

thousands of man hours, and hundreds of pages of documentation. This research does

not seek to apply the entirety of the process but ensure that an individual device has

the necessary functionality to be successfully integrated into a complete system. The

framework itself is a living document and its guidance constantly evolves. Moreover,

the application of the framework is a continuous process to ensure the system of

interest continues to be in compliance with the evolving threat landscape.

2.3 The Power System

The device of interest in this research is typically thought of in a power system

perspective. This section answers the question ‘What is a power system?’.

A power system is “a network of components designed to efficiently transmit and

distribute the energy produced by generators to the locations where it is used” [8].

This network includes numerous components such as:

• Generators
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• Transformers

• Power Lines

• Loads

• Protective Devices

• Control Devices

• Measurement Devices

There are two main failure modes of a power system, overloads and faults. Overloads

occur when a component is supplying more electrical power than it is rated to safely

handle. Most electrical components can temporarily handle an overload condition

giving operators some time to correct the issue [8]. Fault conditions occur when

power lines are shorted to ground or another line. As electrical current is equal to

the difference in voltage divided by resistance and a short has very low resistance,

faults must be cleared immediately to prevent damage caused by the large currents.

Opposed to failures which are caused by external factors, misoperations are “The

failure of a Composite Protection System to operate as intended for protection pur-

poses.” The North American Electric Reliability Corporation gives 6 categories for

misoperations [9]:

• Failure to Trip - During Fault

• Failure to Trip - Other Than Fault

• Slow Trip - During Fault

• Slow Trip - Other Than Fault

• Unnecessary Trip - During Fault
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• Unnecessary Trip - Other Than Fault

The leading cause of these misoperations in the power system is due to incorrect logic

on the protective relays [10]. However, misoperations could be caused by cyberat-

tacks. DoS attacks may prevent devices from taking necessary actions or compromised

devices may cause unnecessary trips. An example of a misoperation of a power system

is the Aurora attack in which researchers were able to cause severe physical damage

to an electric power generator [11].

Instead of looking at power systems as a whole, this research focuses on examining

a specific device and ensuring that tools exist to conduct all functions. This process

begins with the Identify function, understanding the devices in the network.

2.4 Schweitzer Engineering Laboratories’ RTAC

Schweitzer Engineering Laboratories (SEL) is a United States based manufacturer

of power protection and automation equipment. As an employee owned company,

the number of devices they have sold and installed is not part of publicly available

information. However, viewing the success stories that the company publishes online

shows SEL devices protecting the power systems of the countries of Georgia and Grand

Cayman, controlling Microgrids at American Universities, mitigating arc-flashes for

North American Mining Companies, and managing the power for Oil Refineries [12].

Additionally, a Newton-Evans Research Company study of the worldwide Protective

Relay Marketplace has put SEL as the number one ranked relay in the North American

marketplace for the last decade [13]. Although an exact number is elusive, SEL devices

are clearly prevalent throughout critical infrastructures, including those of the United

States.

The device of interest for this research is the SEL-3505 RTAC. Marketed as a

substation controller, the RTAC combines physical I/O with flexible IEC-61331 logic
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along with numerous serial ports and dual Ethernet ports. In addition to its physical

capabilities SEL includes numerous communication libraries that allow the RTAC to

‘speak’ with countless devices. This allows the RTAC to be used as a data concentra-

tor, communicating with multiple legacy devices over serial protocols and converting

the data streams into Ethernet-based communication. This combination of features

makes the RTAC both a powerful tool for a system operator and a likely potential

target for network attackers as its compromise could cede control of all devices it

communicates with.

The RTAC consists of a embedded Linux host with several applications running

to act as a PLC. It runs a web server for configuration and management. From the

password protected web page, user accounts can be created and diagnostics can be

run. These diagnostics include checking logic status and performing factory resets

if necessary. The web interface uses a PostgreSQL backend that contains numerous

database functions. to download new control logic project files and make changes to

the device firewall.

Project files are created using a Windows-based engineering software called Ac-

SELerator RTAC. Control logic programming can be conducted in several of the

IEC-61131-3 programming languages including structured text and function block

diagrams. While undocumented, this software creates a compiled binary that is run

by a widely used PLC framework, CODESYS [14]. The CODESYS runtime is the

IEC-61331 logic engine and is what enables the Linux host to act as a generic PLC.

When viewed through the lens of the NIST Cybersecurity functions, the discovery

of these three key interfaces perform part of the Identify function. Understanding

the requirements of the web server, CODESYS runtime, and PostgreSQL database is

crucial to the security of the device and the network in which it resides. The omission

of the use of CODESYS in any RTAC documentation prevents product owners from
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fully understanding risks related to their devices.

The RTAC is designed with several robust security features. Among these features

are: an application whitelisting solution that “provides protection against rootkits”,

built-in Denial of Service (DoS) detection and system priority readjustment, and

functionality that allows all Sequence of Events configured data tags to be available

in a syslog client [15, 16]. While DoS detection is able to respond to brute force attacks

on the network stack and whitelisting prevents nonauthorized processes from running,

there is currently no detection strategy for the misuse or subtle exploitation of an

authorized application such as an unauthorized connection to the CODESYS runtime

or exploitation of the database. To fill the gap, this research proposes the addition

of an ADS for anomaly detection and a forensic process for encrypted programming

traffic. These processes could be employed across all generic PLCs providing end

device anomaly detection and incident response in any ICS network. The creation of

this ADS helps fulfill the Detect function of the framework and is explored in Chapter

V.

Additionally, the SEL-3505 has both an accelerometer and light sensor, these

features help detect intruders trying to gain physical access to the device. The dangers

of this are explored in Chapter III and recommendations therein help fulfill the Protect

function.

One category of the Respond function is Analysis. Within the category is the sub-

category, forensics. While the RTAC has secured its programming traffic by encrypt-

ing it, no current tool exists to recreate project files from the encrypted programming

traffic. If a device is rendered inoperable or is factory reset by an attacker or by

the system’s out-of-memory monitoring [15] there is no way to recover the offending

project file from the RTAC itself. Tools to reconstruct this logic are necessary for

both incident response and control logic auditing to ensure that the project being
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sent across the network is the same as the project present on the Engineering Work-

station. Chapter IV demonstrates a process developed for this purpose and to fulfill

the Respond function.

The Recovery function of the NIST framework is readily fulfilled by existing fea-

tures. The ability to factory reset the device from the web interface or from physical

jumpers provides sufficient capability as long as the device owner retains appropriate

archives of device settings such as IP address and the project file.

2.5 Related Work

This section presents work related to both the forensic process of Chapter IV and

the ADS design of Chapter V.

2.5.1 Forensic Tools

Performing forensic analysis on SCADA systems poses significant hurdles [17].

Due to the proprietary nature of ICS protocols, the development of reconstruction

tools is typically a manually intensive effort requiring intimate knowledge of either

the programming protocol itself for each device or the ability to reverse engineer

the binary format. Senthivel, Ahmed, and Roussev [18] reverse engineered the Pro-

grammable Controller Communication Commands (PCCC) protocol used to program

Allen-Bradley’s Micrologix 1400 to build a tool called Cutter, which is capable of ex-

tracting a low-level representation of the control logic as well as a human readable

representation of some PLC configuration files from network traffic. Senthivel et al.

[19] then extended Cutter to produce Laddis. Laddis was capable of decompiling

the low-level control logic representation back into a high-level representation that

is human readable and programmatically modifiable. This allows for a newly coined

exploit, denial of engineering operations, in which engineering software is rendered
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unresponsive due to a malformed network packet. With the creation of this tool, the

control logic that was sent over the network for one specific PLC could be recon-

structed.

While tools that can be used for singular devices are useful, a general tool that

can be applied to all devices has been the object of additional research. Keliris

and Maniatakos [20] built an extendable automated reverse engineering framework

called ICSREF. They then evaluated the framework against binaries compiled with

CODESYS v2.3, a development environment used for various manufacturers of PLCs.

Nochay (2019) provides a security analysis of the CODESYS runtime stating that the

official list specifies 350 devices that use CODESYS, with more being undocumented.

Instead of reverse engineering the compiled binaries, another approach to retrieve the

high-level representation is to utilize built-in decompilers of the proprietary engineer-

ing software. Qasim, Lopez, and Ahmed [21] followed this strategy in the creation

of Similo, a “Virtual PLC-framework”, that built a knowledge database of message

sent and received from engineering software in order use the engineering software to

recreate the high-level representations from network traffic. All of these tools can re-

construct their intended control logic for the current programming paradigm in which

the control logic is sent in plain text across the network. As ICS networks become

more secure, primarily by encrypting the network traffic, this paradigm will shift and

the reconstruction tools themselves or the process that archives network traffic will

need to adapt to handle this change. Chapter IV provides several implementation

alternatives and details the use of one of them to reconstruct the RTAC control logic.

2.5.2 Detection Systems for Industrial Controllers

One standard tool for detection in IT is an IDS. These systems monitor system

events to try and detect misuse or malicious activity [22]. There are two standard
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placements of an IDS, a Network-Based IDS and a Host-Based IDS. This placement

determines the type of data that the system can be used to detect intrusions [3].

Additionally an IDS can either be signature based or anomaly based. In a signature

based system the IDS attempts to match patterns of data such as network traffic

with a database of known attacks. In an anomaly based system it will seek to find

differences between the present behaviour and known behaviour [23]. This style of

system will be referred to as an ADS to differentiate it from a signature based system.

An anomaly-based approach was chosen for this research for its ability to detect

unknown attacks.

At an abstract level, a Host-Based Anomaly Detection System can be distilled into

a Workload, System Outputs, Tuning Parameters, and a decision strategy working

with a data collector at the heart of the ADS. Each of these individual facets are

examined to build a framework upon which to examine the experimental system.

Figure 1 shows an overview of the components of an ADS.

Figure 1. Notional Anomaly Detection System
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2.5.2.1 Workload

The workload encompasses the actions the underlying hardware must complete on

a continual basis. The hardware completing these actions causes measurable responses

that can be used for anomaly detection. Some of these actions are mandated by the

manufacturer and are both invisible to and unchangeable by the end user. Other

actions are created by the end user to fulfill their process needs. The final category

of workload includes the burden placed on the hardware by the physical process it is

measuring and the network traffic it is receiving.

• Operating System Functions

While programmable logic controllers and other industrial devices may be ide-

ally portrayed as user logic running on bare metal, in practice there is an operat-

ing system that is handling the network stack and the communication necessary

for programming the PLC. These tasks compete for resources and can cause the

PLC tasks be executed more slowly even as the real time requirements are being

met. Popular operating systems include OS-9, VxWorks, and Linux. Modifica-

tions to the OS, either malicious or manufacturer mandated, can cause changes

to the workload. Some of these changes have been shown to be detectable by

currently available ADS methods [24, 25].

• Control Logic

The control logic is the user created functions that the PLC must continuously

complete to successfully monitor and control its assigned process. The user pro-

vided control logic in complex processes can represent the bulk of the workload

for the industrial device. The detection of malicious modification to this logic

is the subject of numerous research endeavors [24, 25].
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• Network Traffic

The number of packets that are sent and received place a burden on the de-

vice. Some devices act as communication gateways connecting numerous devices

with a single upstream device. Others simply translate the physical process in-

formation into a digital representation that can be displayed from the central

HMI. Engineering functions such as programming, performing diagnostics, and

retrieving system logs can also place an additional workload on the device’s

resources. The effect of this workload can be seen in the task time of devices

under duress from network scans [26].

• Physical I/O

PLC’s and related devices are responsible for monitoring and controlling phys-

ical processes using specialized sensors and actuators. In some devices the

processing of this data has been shown to cause no increase in task time [24]

as inputs vary. This may be attributed to the handling of I/O possibly being

offloaded to a secondary processor. In the RTAC there is an FPGA that may

handle the data conditioning of the Binary and Analog I/O to prevent the CPU

from needing to intervene. Due to the limitations of monitoring the FPGA, the

effect of physical I/O variations will not be explored in this research.

• Network Intrusions

Network intrusions represent one set of anomalous actions that an ADS is trying

to detect. They place additional burden on the device by sending additional

network traffic, running additional processes on the underlying operating sys-

tem, or attempting to exfiltrate data. An ADS must discern between the normal

workload and the burden of intrusions through careful selection of features and

analysis tools.
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2.5.2.2 System Outputs

The system outputs from an ADS are the algorithm decision and confidence level

associated with the decision. To be able to compare the performance of two differ-

ent anomaly detection systems a common set of performance statistics needs to be

computed. Historically there have been four measures to indicate performance of an

ADS [24, 23].

• True Positive Rate (TPR): The rate at which the ADS correctly identifies an

anomaly.

• True Negative Rate (TNR): the rate at which the ADS correctly identifies a

normally behaving system.

• False Positive Rate (FPR): the rate at which the ADS incorrectly detects a

normally behaving system as an anomaly.

• False Negative Rate (FNR): the rate at which the ADS fails to identify a network

intrusion.

The False Positive Rate is the type I error of the system. If this rate is too, high

alarms become nuisances and will quickly be disregarded even when a true anomaly is

occurring. The False Negative Rate represents the frequency at which anomalies are

undetected. Keeping this rate low is the main objective of an ADS designer. While

these have been the historical measures for a system there are additional factors to

consider.

2.5.2.3 Detection Latency

Although not as frequently used as a measure of system performance the Detection

Latency is another important aspect of the system. It measures the length of time
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required for the ADS to detect an anomaly. The infrequency of the inclusion of this

statistic can be attributed to the need for a more mature ADS than those typically

being explored in literature.

2.5.2.4 System Overhead

Industrial Devices are resource constrained and act in a hard real-time environ-

ment, therefore, a deployed ADS needs to be light-weight so as to not impact the

controlled process. This overhead can be measured as an increase in task time or the

increase in CPU burden percentage.

2.5.2.5 Tuning Parameters

Tuning parameters are properties of the ADS that can be changed in an attempt

to increase overall system performance.

• Selection of System Features to Collect

Depending on the user privileges of the ADS there are numerous available fea-

tures to consider. These include statistics such as task time, CPU burden, the

number of network packets sent and received, system RAM in use, and others.

Different features may lend themselves better to detecting specific attacks and

an ADS designer must carefully select, justify, and defend the chosen test statis-

tic. Previous research has used task time [24, 25]. This research seeks to extend

what intrusions can be discerned using the previously employed features.

• Data Collection Rate

How often data is collected can directly affect the sensitivity of an ADS. If

attacks are ephemeral, a polling rate that is too slow may miss the anomaly. If

data polling becomes too frequent, the burden on the device becomes too great

and the real-time requirements will not be met.
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• Number of Data Points Collected

The number of consecutive data points needed to make a decision in conjunc-

tion with the data collection rate determines the detection latency when the

processing time of the decision algorithm is neglected.

2.5.2.6 Decision Strategy

The decision strategy is the heart of the ADS and is paramount to the overall

success of the system. The decision strategy uses the collected data to make an

assessment on the operation of the underlying device. Various methods have been

employed in related research to detect anomalies. Depending on the data features

collected different strategies have been taken. Vargas et al. monitored RAM usage

using a Simple Moving Average [27]. Formby and Beyah used a Cumulative Sum

algorithm on task time to detect logic changes [25]. Dunlap et al. also looked at

task time but used the Permutation Test to discern changes [24]. Alves et al. used

a embedded machine learning IDS in conjunction with OpenPLC to detect network

anomalies by inspecting TCP headers [28]. In order to make a portable solution that

could be readily implemented in IEC-61131 logic this research focused on statistical

methods rather than machine learning.
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III. Protect: The Dangers of Physical Access

This section briefly provides an example of the importance of physical controls

preventing access to ICS devices as part of the Protect Function. Typical recommen-

dations for ICS security restrict physical access to devices through the use of locks,

card readers and guards [3]. These traditional methods work well when there is a large

amount of centralization in both logical control and device placement. However, the

SEL-3505 is not designed to be be deployed as a control center device. Its small form

factor, shown in Figure 3 and 2, and surface mount rather than rack mount design

allow it to be deployed in space-limited locations such as recloser enclosures, weather-

proof boxes that contain hardware for clearing momentary faults on distribution lines

that are placed throughout a power system. SEL markets this flexibility in location

for the power and even irrigation sectors [29, 30].

Figure 2. Back View of RTAC

This flexibility places these sensitive devices on power distribution poles through-

out a power system or in small remote enclosures and not just within the confines of

substations that have also been shown to be insecure [31]. This adds risks similar to

those seen in wind farm installations [32]. While physical access allows an attacker

to easily disrupt the functional control of devices downstream from the RTAC by

destroying the device or disconnecting power, more insidious attacks can occur if the
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Figure 3. Top View of RTAC

device is unknowingly compromised and remains on the network.

3.1 Disabling the Password

Located near the front of the RTAC lies a jumper block with five sets of pins that

can be connected by shunts or jumpers. Of the 5 pairs, two have documented uses [15].

Pair A can be used used to factory reset the RTAC by first powering off the device,

jumping the pair, and powering on the device. Pair C is used similarly but instead of

resetting the device, it simply disables the need for password authentication. It also

activates a default admin account so that even if all usernames have been forgotten

the device can be recovered. These functions act as conveniences for control engineers

and removes the need for network backdoors. However, the presence of these physical

bypasses for authentication in remote devices poses some risk.
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While the manufacturer recommends that the device be powered down before

connecting the password jumper pins, most likely to prevent electrical shorts while

performing the action, the password pin connection is tested continuously rather than

merely at startup. This can be verified by powering on the device with the top of its

case removed, accessing the web interface and monitoring the Sequence of Events as

the password jumper is added and removed. The password disabled state is logged

as a device level alarm by default. This gives a skilled and determined attacker the

ability disable the password and gain administrative access to the device. This in-

place intrusion avoids the difficulty of bringing the device offline, removing various

wiring and connections, removing the top cover, and then rewiring the device once

access had been gained and the top cover has been replaced. The ability to bypass

authentication of the device inplace greatly reduces to the time to exploit and may

decrease the ability for the system operator to send a response team. This places

both the data on the device and the process it controls at risk.

3.2 In-place Intrusion

To verify this possible attack vector, the intrusion tool shown in Figure 4 was

created using a bent paperclip.

Figure 4. Intrusion Tool
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It was then used to connect the password jumper with the top cover removed to

ensure that a proper connection could be made with such a rudimentary tool. Figure

5 demonstrates the placement of the simple hook stretching over the front of the

device and contacting the correct pins. The password disabled alarm was observed

each time the paperclip was placed across the pins.

Figure 5. Password Jumper Connected Using Paper Clip

As the paperclip was shown to be a viable candidate the top cover was replaced

and the RTAC was powered on. A flat-head screwdriver was used to pry the cover

away from the body of the RTAC and the tool was inserted and then rotated to

properly align it with the jumper pins. This action is depicted in Figure 6. These

steps allowed for the bypass of authentication without any power cycling or removal

of any wiring and the web interface was able to be accessed. This methodology might

also be applicable to other devices in the RTAC family such as the SEL-3530 and SEL-

3555 or a device that appears to share the same hardware platform, the SEL-3622

Security Gateway.

This method is not without fear of detection. A mistaken connection between

the grounded case and other conductive material on the circuit board can cause an

electrical short and cause the RTAC to restart for the safety of its hardware. This

reboot incurs a three and a half minute wait while the device powers up before the
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Figure 6. Connecting Password Jumper Without Opening RTAC

intrusion can be attempted again.

3.3 Abusing Administrator Access

Once the password has been disabled, the attacker has full admin privileges to the

device. This can be used to add/remove/modify device accounts. This can restrict

system owner access without performing a factory reset or password deactivation

of their own. Additionally, the control logic program could be retrieved, allowing

upstream data to be modified according to the attacker’s desire, to create control

system misoperations. Similarly, downstream commands could be interrupted, or

maliciously generated, to produce selective disruptions of service.

If the attacker was then able to elevate their PostgreSQL user to a superuser on

the database, specific database functions necessary to the correct operation of the
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RTAC could be modified or completely removed. If this superuser status was used to

run system level commands pivoting throughout the network using the RTAC may

be possible. These actions should be limited by the RTAC’s whitelisting solution but

some system level commands such as pinging hosts to try and map out the rest of

the network are allowed. The database superuser could also retrieve the list of all

users present on the device and the hash of their passwords, providing an additional

reconnaissance option to the attacker.

3.4 Recommendations

Physical protections are not always able to perfectly protect all devices, especially

those that are distributed in close proximity to the processes they control. To help

bolster the Protect function of the NIST Framework for the RTAC the following

recommendations are made:

• Deactivate the front USB port unless remote maintenance is being conducted.

• Deactivate any unused Ethernet ports

• Place a non-conductive cover over the jumper pins preventing a connection

being made without its removal.

• Ensure that all device level alarms are transmitted to a central monitoring

system including:

– Password Disabled Jumper Status

– Ambient Light Detection Levels

– Accelerometer Values

• Designate a physical input to act as a cabinet door contact sensor
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• Have a response plan in place to investigate any alarms in person to prevent

device compromise.

These recommendations help create overlapping security controls that cover both

Protect and Detect functions. Having a response plan that considers the compromise

of end devices such as the RTAC is valuable to the security of the overall system.

These plans are the heart of the Respond and Recover functions of the NIST Frame-

work. Another aspect of a strong response plan is having capable forensic tools to

help analyze anomalies, misoperations, and network intrusions and the subject of

Chapter IV.
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IV. Respond: RTAC Forensic Process

This chapter focuses on the creation of a new tool for the Respond function of the

NIST framework to replace presently available forensic processes that rely on insecure

and unprotected communication protocols to create forensic artifacts.

4.1 Securing Programming Traffic

When programming a PLC, the control logic is created in one of the five high-level

IEC-61131 programming languages. Once the control engineer has finished creating

the control logic, the proprietary engineering software acts to transform it into the

correct format for the target device. This end product is specific to the target device

but can include formats such as an executable binary format that controls the specified

PLC or a series of commands to modify the program stored in PLC memory. This

product is then sent to the PLC over an Ethernet network or a local interface such as

USB or serial located on the PLC. If this programming data is sent over the network,

the packets containing the binary can be used as a valuable forensic artifact [33].

The binaries can be reverse engineered to determine the high-level source code or the

programming commands can be decompiled with a tool such as Similo [21].

While useful as an artifact for Forensic investigators, a passive network intruder

could also use the network traffic as a reconnaissance tool, inspecting the program-

ming traffic to gain insight into the physical process the PLC controls and obtaining

further information on the PLCs communication configuration. If instead the actor

wanted to change the PLC control logic, they could intercept the packets as they tra-

versed the network and modify their contents before they reach the end device. This

interception and modification would be an example of a Man-in-the-Middle (MITM)

attack as shown in Figure 7. It would also require the ability to reverse engineer
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the commands to understand the original intended logic. Another version of a con-

trol injection attack, Stuxnet attacked this programming chain on the Engineering

Workstation, modifying the programming logic during the compilation process before

it was sent over the network [34]. The ability to audit the programming logic and

compare it to what was created by the controls engineer is where the forensic artifact

derives its value.

Figure 7. Man-in-the-Middle Attack Modifying Programming Traffic

Network based MITM attacks are enabled by the use of protocols that send their

payloads in plaintext, which has been widely documented as a security vulnerability

in ICS protocols [35]. Even with this demonstrated need for payload protection,

the timing constraints in the process control, coupled with legacy hardware, make

applying encryption a non-trivial task [35]. In contrast, programming the devices

has no timing considerations, so encryption can and has been implemented on some

newer devices. Digital signing is a cryptographic method in which a private key is

used to “sign” the contents of a message. The signature is created by encrypting a

hash code of the message using the private key. Encrypting the hash instead of the

entire message is due to the relatively slow performance of asymmetric encryption.

Ideally this method achieves two security services. The integrity of the message is

ensured as the signature is based on its contents, and the identity of the message

sender is verified [36]. Digital signing is one alternative that allows for reconstruction
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tools to continue to function because the basic message is still sent in plain text

while the attached signature is generated from a hash of the message. Obviously, a

malicious network agent could also use these plain text messages to build knowledge

about the programming logic, making Digital Signing only a slightly more secure

method. Additionally, näıve implementations may simply distribute the private key

with the engineering software allowing an advanced threat to easily impersonate valid

programming traffic. Figure 8 shows the digital signing process for an individual

message sent between the Engineering Workstation and the PLC.

Figure 8. Digital Signatures Allows for the Validation of Network Messages

Asymmetric Cryptography uses a pair of keys, public and private, to encrypt and

decrypt messages that can be sent across a network. Created to solve the key distribu-

tion problems present in symmetric cryptography, asymmetric cryptography ensures

the integrity of the message and does not allow network intruders to inspect the con-
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tents of encrypted packets [36]. Figure 9 highlights the unavailability of encrypted

messages to an intruder on a sensitive network. Despite the encryption of the network

traffic, if correctly implemented, there are several ways to allow reconstruction tools

to have access to the data required to perform forensic analysis on the network traffic.

Figure 9. Asymmetric Encryption

One of the proposed approaches to solve the problem of decrypting the network

traffic is the use of a secure central database of private keys and the collection and

storage of network traffic between the engineering workstation and the end devices. In

this approach, when the network is commissioned and end devices receive their initial

configuration, the private key of the key pair for each end device is retained. Then,

when incident response is conducted, or for a routine audit, the private key vault is
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accessed to decrypt the stored network traffic. A notional diagram of this can be seen

in Figure 10. When a forensic investigator wants to inspect saved network traffic,

they retrieve the encrypted traffic and the private keys of the devices associated with

that session.

Figure 10. Private Key Database Implementation

In this approach, the security of the database storing the private keys is of utmost

importance in this process. If the device that stored the keys was connected to

the network and subsequently compromised, an attacker would gain access to the

network traffic that the encryption was intended to protect. Additionally, an attacker

with the private keys would be able to masquerade as one of the end devices of

their choosing, with potentially serious consequences. This implementation is only

successful for encryption techniques in which the shared secret can be determined from

external observation of the session handshake. Protocols that use methods such as the

Diffie-Hellman key exchange in which the key exchange is conducted over an assumed

insecure channel will be unencryptable by the auditing processes, despite access to the

private keys. These session-based protocols need a more involved decryption process.
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Another approach, perhaps more difficult to implement than the central private

key depository, would be a database containing each of the ephemeral session keys.

This implementation would require that at the conclusion of a secured session between

two devices, one of the devices would set up a secure connection with the central

repository in order to deposit the shared secret of the now completed sessions. These

session keys would be correlated with the network traffic based on the IP address,

TCP ports, and network time to allow for network forensics. Sending the shared secret

after the completion of the session would ensure the integrity and confidentiality of

the network traffic while it is active. Figure 11 shows the storage of all traffic in

an Encrypted Network Traffic Archive and the storage of session keys in a database.

When an investigator wants to see the contents of traffic they retrieve both the traffic

from the archive and the associated session key from the database. The security of

this session key repository would still be of great importance to prevent any network

traffic captured by malicious actors from being decrypted.

Another possible implementation would be to funnel network traffic of interest

that is encrypted through a proxy server that would act as a historian, as shown in

Figure 12. The proxy server would maintain two distinct encrypted network sessions,

one with Device A and one with Device B. The proxy server would decrypt the traffic

from device A, record the plain text network traffic, re-encrypt the network traffic, and

send it to device B. This would in effect be a sanctioned man-in-the-middle attack.

The traffic sent through the proxy server should be selected carefully as to avoid

adding delay to time sensitive messages and to not increase the amount of data being

archived to an undue amount. Any compromise to the proxy server could modify

the traffic while it is in plain text. The proxy server should also maintain a record

of its shared secrets for its encrypted sessions so that the upstream and downstream

encrypted traffic could be compared to ensure that no changes have been made to
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Figure 11. Session Key Database for Forensic Investigation

the payloads.

4.2 Network Forensic Process

The ability to recreate logic settings from network traffic is an important artifact

for incidence response and enables the auditing of control settings that are actually

sent to devices and not only what is present on the engineering workstation. When en-

crypted traffic is used to transport settings one of the previously explored approaches

needs to be implemented.

For the RTAC, the current capabilities built into the device allow for the preshared

private key paradigm to be employed. Figure 13 shows the necessary steps to perform

forensics on the RTAC programming process. From the web interface, an externally
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Figure 12. Proxy Server for Saving High Interest Traffic

generated private and public key pair can be uploaded to replace the self-signed

certificate. To perform this demonstration a new X.509 Certificate was generated

and uploaded to the RTAC. The private key was retained and added to Wireshark’s

RSA keys list for Transport Layer Security. Then Wireshark was used to capture the

network traffic on the Engineering Workstations ethernet interface as the engineering

software uploaded a new project file to the RTAC. At this point it can be shown

that Wireshark is able to decrypt the programming network traffic sent to port 5432.

Figure 14 shows the encrypted TLS segment data and Figure 15 shows the Decrypted

TLS Data with the PGSQL commands clearly in plain text.

Figure 13. Network Forensic Process for SEL RTAC
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Figure 14. Encrypted TLS Data

Figure 15. Decrypted TLS Data

With the network traffic decrypted, a reconstruction tool could then recreate the

programming logic that was sent to the device. An automated tool does not yet

exist for the RTAC so a manual reconstruction must be conducted. When the RTAC

is programmed, three files are sent: a compressed project archive containing the

CODESYS .project file, a .APP file containing the compiled executable code, and a

.CRC file containing a checksum for the .APP file. These files are sent by calling a

PGSQL function, load schema.write generic file, and then passing the byte contents

of the file. Figure 16 shows the beginning of a TLS payload in which a file is written.

The TLS segment data must then be decoded; it contains a mix of octal encoded

numerals, escaped special characters and some plaintext ascii characters. This was
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Figure 16. Create File PGSQL Function Call

achieved using the python code in Figure 17, which created the hex-encoded file

contents.

Figure 17. Python Decoding Script

Once the file has been reconstructed, the next step is to either perform a differ-

ential analysis between what was sent over the network and what was expected to be

sent, or to save it as a baseline file to detect any later changes. RTAC AcSELerator

does not provide the functionality to compare CODESYS .project files natively.

However, when the engineering software prepares to send the RTAC programming

logic it places the CODESYS .project file in an accessible temporary directory.

This file can be retrieved and opened in the CODESYS development environment to

use the provided compare function against the reconstructed file to find any differ-

ences in either logic or configuration. CODESYS can also be used to create the .APP

file from the retrieved .project file to find any differences to the compiled binaries

that were sent across the network.
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4.2.1 Forensic Process Results

This process was employed successfully against the programming of an SEL-

RTAC. Figure 11 shows the first several bytes of the encoded .project file that

was extracted from the network traffic. The entirety of the encoded file was decoded

with the python script to retrieve the sent .project. The header for this file is shown

in Figure 12. Note the first two bytes, “PK”, indicating that it is a zip file and the

plaintext “baseline.project” referring to the name of the application being run on the

RTAC. This reconstructed .project file was then successfully opened in CODESYS

to ensure that there was no corruption and compared against the original .project

file with no differences found.

Figure 18. Encoded .project File

Figure 19. Decoded .project File

This process is able to reconstruct any arbitrary project sent over the network

from the network traffic. This provides a valuable service to determine what logic

was present on the RTAC at a specific time. The RTAC does not maintain a history

of previous control logic, and there are no available reconstruction tools that were

designed to reconstruct encrypted control logic. This process could also supplement

the lack of subversion tools present on the engineering software. Subversion is an
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application that is used for maintaining historical versions of coding projects and

allows for changes to be documented and easily reverted. This process allows for the

data mining of stored network traffic to recover the project as sent even if the version

present on the engineering workstation has been updated.

4.3 Summary and Future Implementations

This chapter detailed the move from plaintext protocols to more secure encrypted

versions and the need to maintain the current capabilities to create forensic artifacts

for incident response. The described implementation of this process relies on the

use of TLS 1.1 to encrypt the PGSQL commands. If SEL moves to a more recent

implementation of TLS, it will employ session-based keys which cannot be calculated

from the TLS handshake. This will make network traffic unencryptable unless SEL

makes the ephemeral session keys that are typically only in RAM available for network

forensics. To make the traffic available for reconstruction, one of the more involved

decryption implementations would need to be pursued, either the proxy server or

the session key database. The proxy server implementation would mimic the Qasim,

Lopez and Ahmed’s Similo Virtual PLC-framework as it would act as an intermediary

to build the knowledge database but with the addition of encryption handling [21].

Forensic tools are used in response to detected anomalies and misoperations of ICS.

Detecting these anomalous activities for the RTAC is the subject area of Chapter V.
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V. Detect: Anomaly Detection System Design

Chapter II provided the general components of an ADS, this Chapter details the

specific implementation of an ADS and the related framework to collect the needed

data and test its performance. This system is created to supplement the existing

RTAC security features helping detect network intrusions without the addition of any

supplementary devices to existing installations. The goal of the system is to detect

intrusions before an attacker can cause misoperations or create persistent footholds.

5.1 Experimental Design

The data collection framework uses a combination of functions native to the RTAC

and supplementary functions implemented in python that could be integrated by the

manufacturer into the device’s firmware for future releases or implemented in the

logic engine by an operator. An experimental treatment or set of controlled factors

for each trial consisted of a firmware revision, a control logic file, and the use of a

specific network intrusion. Table 1 shows the possible factors. Selecting one factor

from each column for each treatment gives 24 different combinations. These variations

sought to capture the effectiveness of an ADS across varying workloads and various

intrusions. 10 trials were conducted for each experimental treatment leading to 240

total trials. The order in which each trial was conducted was selected by creating a

list of all trials and randomizing their order. This randomization was to reduce the

effect of uncontrollable environmental factors such as operating temperature or power

supply voltage. The devices were on a closed network so no outside network traffic

was present.

40



Table 1. Experimental Factors

Firmware Project Type Network Intrusion
R145 Low Task Time Baseline
R146 High Task Time ARP Spoofing
R147 PostgreSQL Queries

CODESYS Connection

5.1.1 Factors

5.1.1.1 Firmware Revisions

Previous research had shown that monitoring task times in PLCs can identify

modifications to firmware [24, 25]. To verify that this research can be generalized

to the RTAC, three firmware revisions released by SEL are used: R145, R146, and

R147.

5.1.1.2 RTAC Project Files

Two RTAC Project Files were used for the experiment. Project 1 was a limited

functionality project with an average task time of approximately 1300 microseconds.

It contained only the necessary logic for the RTAC operation with addition of a single

Modbus server for data collection. While the deployment of such a project is unlikely

to be done in an operational environment, as even a data concentrator would have

additional network connections and data mapping logic, this project provides the

lowest possible task time while still providing the necessary data for the ADS.

Project 2 is a much more complex project, designed for an average task time of

approximately 9000 microseconds. It achieves this long task time by performing

numerous complex mathematical operations that use both pseudo-random inputs

provided by the RTAC’s SELRand library and time varying inputs such as the number

of bytes sent and received by the ethernet ports. These two projects represent both

ends of the spectrum of possible project task times. Future work beyond the scope
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of this thesis will examine the use of branching projects whose complexity can vary

based on the current state of the process it is monitoring.

5.1.1.3 Network Intrusions

In order to assess the viability of using task time as a data feature for intrusion

detection, a variety of feasible network intrusions or attacks needed to be developed.

Hence, implementation details of the RTAC were carefully explored in order to under-

stand features that malicious attackers could exploit. Successful exploits would result

in arguably detectable footholds; detecting the footholds and the mechanisms that

create these footholds is the purpose of the ADS. The following intrusion mechanisms

were used in the experiment for their demonstrated viability as an attack vector or

as the manifestation of a created foothold.

• Baseline

The baseline treatment only uses the network traffic necessary to harvest the

ADS data. This provides an experimental backdrop from which to detect the

network intrusions. Repeated baseline trials are tested against each other to

determine the FPR for each algorithm.

• ARP Spoofing

ARP spoofing is a standard mechanism for the performance of MITM attacks

and extensively used in research to demonstrate the vulnerability of ICS de-

vices and networks [37, 38, 32, 39]. The exploit takes advantage of the lack of

authentication in the Address Resolution Protocol (ARP) to send unsolicited

resolution responses containing false information about the topology of the net-

work. If undetected, this fake link layer information causes network traffic to

be misdirected to a network attacker.

Encrypted traffic severely limits an attacker’s ability to collect information or
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inject packets. Widely used industry protocols, however, still rely on legacy im-

plementations and are largely sent in plain text. This lack of security allows for

a range of modification attacks against widely used protocols such as Modbus

and DNP3 [37, 39]. The lack of encryption within the configuration protocols

of various devices also pose security risks to ICS networks in regards to ARP

spoofing [40, 19].

Improper configuration of the RTAC can also pose additional risks to ARP

spoofing. The RTAC generates a self-signed certificate upon the installation

of a new firmware revision. This certificate is used for encrypting the HTTPS

connection for initial configuration and for encrypting PostgreSQL traffic. If

this certificate is not replaced, an adversary could perform a MITM attack and

impersonate the RTAC using a previously compromised certificate. This would

allow an attacker to harvest credentials from the supposed secure connection

and inject arbitrary modifications into the system configuration or programming

traffic.

• PostgreSQL Queries

The RTAC uses a PostgreSQL database to manage the control logic on the

device and act as an interface with the underlying operating system. Engi-

neering functions are programmed as SQL queries that are callable from the

web interface. These functions include changing the Internet Protocol address,

testing network connectivity by pinging other devices, and reading system di-

agnostic information. As an open source database, PostgreSQL vulnerabilities

are typically discovered and patched relatively quickly as compared to PLC

manufacturer patching responses. However, there is still a burden placed on

the manufacturer to incorporate the most up-to-date database version in the

device firmware and for end users to patch their own devices.
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If the PostgreSQL database is exploited or database credentials are compro-

mised an attacker is free to perform DoS attacks, as the RTAC can be restarted

by a database query. A system restart is an easily detectable anomaly but sub-

tler attacks are also possible. The PostgreSQL queries employed for foothold

emulation during this experiment were reads of the control logic project from

the RTAC. The exfiltration of this control logic represents a major reconnais-

sance tool for an attacker as it provides in-depth knowledge of both the process

the RTAC is controlling and the various devices it is communicating with.

• CODESYS Connection

The codesys runtime application executing on the RTAC is responsible for the

industry protocol communication and the control logic operation. It has a

well known network port, 1217, that allows for various engineering functions.

These functions include uploading/downloading control logic programs, moni-

toring real-time logic values, forcing logic values for debugging purposes, and

stopping/starting the control logic execution. If enabled, the connection also

allows access to the device’s file system. Vulnerabilities related to the use of the

codesys runtime as a PLC framework have been previously documented [14] and

exploited for the decompilation of control logic [20]. While codesys has recently

implemented authentication features to create a connection with the runtime,

the RTAC has not activated this feature and does not require credentials on the

port itself. Instead, TCP connections to the port are blocked by default and

the port can be opened and closed by accessing the PostgreSQL database.

The file system access is a significant concern on the RTAC due to its use of

TLS 1.1 for PostgreSQL traffic and use as a web server for configuration. The

private server key that is used for encryption can be exfiltrated from the RTAC

using a codesys connection and then used to decrypt any communication and
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extract information such as username and password. Additionally, attackers

could insert or modify files on the device that may enable further exploitation.

To emulate this network intrusion, a passive codesys connection was active

during the data collection. This passive connection would be the minimum

workload generated by a codesys connection with no files being read from the

RTAC and no process values being changed from the engineering workstation.

5.1.2 Data Set Collection

For each trial, 30,000 task time samples were collected. This data was collected by

creating a modbus server on the RTAC and polling the server using a modbus client

implemented in python using the pymodbus module. After receiving a response from

the server, the client waited 1 ms before polling again. Task time was used as the

data feature due to its ability to detect logic and firmware changes, and sensitivity to

changes in network traffic as seen in previous research [25, 24, 26]. Each data set was

saved as a .csv file for future analysis using the selected decision methods. Figure 20

shows a notional data flow for the data collection process as well as the experimental

factors being tested. The steps for each trial are as follows:

1. Install the selected firmware version for the current trial.

2. Upload the selected RTAC project file to the device. This step ensures that the

correct firmware has been installed as each project file is firmware specific.

3. The data collection script is started, waiting 1 minute for the device to reach

steady state.

4. The associated network intrusion for the trial begins.

5. 30,000 data points are collected.
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6. The data is saved in a .csv

The data as collected is then used as inputs for various tests to discriminate

between baseline trials and data sets containing network intrusions.

Figure 20. Experimental Data Collection System

5.1.3 Selecting a Discriminator

Pilot studies confirmed previous research indicating that the task time was not

normally distributed [24, 26]. Figure 21 shows a scatter plot of the sampled task

times from a pilot study with no network intrusions. There are three visually distinct

clusters in task time and no apparent correlation between when the sample is taken

and the associated task time. These three clusters can be seen in greater detail when

the data is viewed as the kernel density estimation plot that is shown in Figure 22.

Because the task time population is non-normal, three non-parametric statisti-

cal tests were chosen from literature. The efficacy of algorithms to detect network

intrusions from task time is then analyzed.

• Permutation Test

The permutation test is a re-sampling test that investigates the probability that

two sample populations are from the same distribution. This test can be done

without making assumptions about the distribution of the samples [41]. This

test has been used previously to detect logic and firmware changes [24]. To

perform this test the mlxtend python module was used [42].
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Figure 21. Scatter Plot of Task Time Distribution

Figure 22. Kernel Density Estimation of Task Time

• Mann-Whitney U Test

The Mann-Whitney U test is a non-parametric test that explores the null hy-

pothesis that one population is stochastically larger than the other [43, 44].
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While typically used in behavioral sciences, the Mann-Whitney has been em-

ployed to test for statistical differences in sampled and forecasted network traf-

fic [45, 46]. This test was conducted on the task time data in python using the

scipy.stats.mannwhitneyu function [47].

• Kolmogorov-Smirnov Test

The Kolmogorov-Smirnov Test (KS Test) is a non-parametric goodness-of-fit

test that probes the hypothesis that two independent samples are drawn from

the same distribution. This test has the advantage of considering the entirety of

a distribution function rather than just the difference in a test statistic. For this

test to be valid, the task time distribution is assumed to be continuous. The KS

Test statistic is the maximum absolute difference between the two distribution

functions [43] and was used by Formby and Beyah to detect logic changes [25].

For this work, the test was conducted in python using the scipy.stats.kstest

function [47].

Figure 23 shows the Kernel Density estimation for the combined data sets of all

trials for the high task time project with firmware rev 145. Visually, clear differences

can be seen in the number, height and location of the distribution peaks. Each of these

tests is an algorithmic way to try and detect these differences and other unperceived

differences.

5.1.4 System Evaluator

To test each discriminator, the data sets are separated by both firmware and

project type. This reduces the buoying effect of testing a low task time data set

against a high task time data set inflating the true positive rate. Then each intrusion-

free data set is tested against all other data sets in its firmware/project subset. Figure

24 shows the steps of the analysis process.
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Figure 23. Distribution Comparison of Combined Data Sets

The results of these tests are used to calculate the true positive and false positive

rate for each decision algorithm. This process can be repeated, varying the deci-

sion threshold to generate a Receiver Operating Characteristic (ROC) curve for each

algorithm. This curve helps explore the tradeoff between True and False positive

rates [24]. Additionally, the Area Under the Curve (AUC) can help compare the

performance of multiple classifiers [48].
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Figure 24. Experimental Analysis System
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VI. Analysis and Results

6.1 Overview

This chapter presents the observations, results, and analysis from the experimental

activities described in Chapters V. It focuses on the ability of the ADS to perform

the Detect Function of the NIST Framework.

6.1.1 Anomaly Detection Rates

The body of this section focuses on the compiled results from the 240 experimental

trials. First, ROC Curves were created for each of the decision algorithms, these

curves can be found in Figure 25. The area under each curve was calculated and is

displayed on the figures. The Mann-Whitney U test had the highest AUC with a

value of 0.89 with the KS test being slightly lower at 0.88, and the Permutation test

had a value of 0.80. An ideal classifier would have an AUC of 1.0. Using these curves

a decision threshold for each algorithm was selected to showcase their representative

performance. Each test having an area greater than that of the random guessing

line’s .5, lends credibility to the the claim that task time is a good data feature to

try and detect the network intrusions examined by this research.

Table 2 has the results of the permutation test, Table 4 has the results for the

KS test, and Table 3 has the results of the Mann-Whitney U Test. Values shown

in bold do not meet the desired performance threshold of less than 0.1 for the FPR

or greater than 0.9 for the combined TPR. The desired performance thresholds are

based on previous research in anomaly detection systems [24]. Each firmware-project

pair is shown to better understand if an algorithm did poorly overall or if specific

test cases were more difficult to detect. The Permutation test failed to meet any of

the FPR thresholds but performed well detecting the network intrusions with two

51



(a) (b)
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Figure 25. Algorithm ROC Curves

firmware/project pairs coming close but not meeting the 0.9 cutoff. The Mann-

Whitney U test did well on FPR overall but failed to have sufficient TPR in half of

the test cases. The KS test had a TPR of 1.0 across all test cases but struggled with

FPR, failing to meet the desired threshold in 4 of the 6 firmware/project pairs. The

strength of the KS test is an extremely promising result.

One Experimental treatment that may be a potential outlier in the data is Firmware

revision 146 with High Project Task time. The performance of all tests have markedly

different FPRs than the rest of the body of data. This could be due to some unknown

behaviour in the firmware version or in the automated conversion process for an RTAC
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Table 2. Permutation Test Results

Permutation Test: Decision Threshold 0.0001

Firmware Project Task Time FPR
TPR

Combined CODESYS ARP Spoof PostgreSQL
145 Low 0.46 0.94 0.96 0.86 0.99
146 Low 0.22 0.97 1 1 0.92
147 Low 0.40 0.873333 0.81 0.91 0.9
145 High 0.20 1.00 1.00 1.00 1.00
146 High 0.69 0.90 0.92 0.92 0.85
147 High 0.17 0.98 0.98 1.00 0.95

Table 3. Mann-Whitney U Test Results

Mann-Whitney U Test: Decision Threshold 1 ∗ 10−14

Firmware Project Task Time FPR
TPR

Combined CODESYS ARP Spoof PostgreSQL
145 Low 0.089 0.96 0.99 0.97 0.91
146 Low 0 0.96 1.00 0.90 0.99
147 Low 0.080 0.81 0.81 0.81 0.81
145 High 0 0.97 1.00 0.92 1.00
146 High 0.67 0.70 0.70 0.73 0.67
147 High 0 0.78 0.74 0.75 0.86

Table 4. KS Test Results

Kolmogorov-Smirnov Test: Decision Threshold 1 ∗ 10−17

Firmware Project Task Time FPR
TPR

Combined CODESYS ARP Spoof PostgreSQL
145 Low 0.11 1.00 1.00 1.00 1.00
146 Low 0.00 1.00 1.00 1.00 1.00
147 Low 0.16 1.00 1.00 1.00 1.00
145 High 0.22 1.00 1.00 1.00 1.00
146 High 0.91 1.00 1.00 1.00 1.00
147 High 0.00 1.00 1.00 1.00 1.00

AcSELerator project to be made compatible with a new firmware version. Figure 26

shows the ROC curves for each algorithm with this outlier’s data removed, boost-

ing the AUC of the KS test to 0.97 and the AUC of the Mann-Whitney U test to

0.94. The Permutation test showed a lesser improvement to 0.83. All further analysis

completed in this chapter still includes the data from this potential outlier.
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Figure 26. Algorithm ROC Curves Without Rev 146 Data

6.1.2 Testing Percentiles

While this analysis focused on testing the entire data set, previous research has

performed some treatments on the data before testing to improve the performance of

the system under test [24]. These data treatments seek to remove data points that

are either spurious or outliers by only testing regions of the data distribution. To

conduct this analysis each data set was sorted and then a range of percentiles was

used for the analysis each statistical test. The results of these tests can be seen Table

5. As showing the TPR and FPR for each experimental treatment would be come
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cumbersome for the number of percentile combinations used the results have been

reduced to just the overall AUC for each test combining all firmware versions and

project files results. The highest value for each test is shown in bold.

The best results stem from the tests in which the entire data set was used. This

high performance without removing alleged outliers supports the supposition that

the statistically detectable differences between the baseline and network intrusion

data sets lie in the extremes at either end of the distribution. Further bolstering this

hypothesis, there is a marked difference between the results of tests looking at the first

10% of the data set and the tests only looking at the data between the 2nd to 10th

percentile. Even as the upper bound increases there is actually a slight depression in

performance and then it buoys back up as the top percentiles are incorporated. This

analysis supports that the data set should not be treated before being fed into the

ADS decision algorithm. Modifying the percentile also changes the number of data

points being tested.The effect of varying sample size also needs to be analyzed.

6.1.3 Effect of Sample Size

A major contributor to detection latency is the amount of time it takes to collect

the representative sample. If the sample size can be reduced without having an

adverse effect on detection rates the ADS will be more responsive and be able to

better mitigate the effects of the intrusion. A device with an average task cycle time

of 10 ms and sampled every task cycle would take 5 minutes to collect 30000 samples.

If that task cycle time was instead 100 ms it would be 50 minutes for the same data

set size. Table 6 shows the results of varying sample size by only testing the first X

samples in each data set. Performance for each statistical test increases as sample

size grows until an inflection point is reached. For the Mann-Whitney U Test and

the Kolmogorov-Smirnov test peak performance is reached with 8000 samples. The
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Table 5. Effect of Varying Percentile Range on Area Under Curve

Percentile Tested AUC
Lower Bound Upper Bound Mann-Whitney KS Test Permutation

0 10 0.86 0.84 0.73
0 20 0.84 0.85 0.67
0 25 0.83 0.84 0.67
0 50 0.83 0.83 0.70
0 75 0.85 0.86 0.70
0 95 0.86 0.87 0.71
0 100 0.89 0.88 0.80
50 60 0.63 0.68 0.56
50 75 0.73 0.77 0.59
50 95 0.79 0.79 0.67
50 98 0.81 0.81 0.68
2 10 0.77 0.79 0.62
2 20 0.79 0.82 0.65
2 25 0.79 0.82 0.65
2 50 0.82 0.82 0.65
2 75 0.83 0.86 0.68
2 95 0.86 0.87 0.75
2 98 0.87 0.87 0.76

permutation test’s best AUC is reached with 16000 samples.

The decrease in performance as sample size gets too large may be attributable

to the test detecting minute differences in baseline data sets and causing the FPR

to rise while the TPR remains high. An example of this negative effect is seen in

the Kolmogorov-Smirnov Test (KS Test) with both the 8000 and 16000 data sample

having a 1.0 TPR but the 8000 sample test has a FPR of 0.044 while the 16000 sample

test has an FPR of 0.11.

6.1.4 Performance of Continual Monitoring

In order to further reduce detection latency the discrete data sets could be aban-

doned for the use of a sliding window of data. This change in collection strategy

necessitates a change in decision strategy. Without the ability to amortize the cost

56



Table 6. Effect of Sample Size on Area Under Curve

AUC
Sample Size Mann-Whitney KS Test Permutation

100 0.654 0.736 0.602
200 0.697 0.773 0.648
500 0.714 0.848 0.631
1000 0.770 0.904 0.659
2000 0.813 0.923 0.697
4000 0.874 0.937 0.758
8000 0.919 0.953 0.780
16000 0.912 0.924 0.829
28000 0.881 0.883 0.795

of each statistical test as data is collected the decision engine would quickly fall be-

hind. To perform such an evaluation scheme a more light weight algorithm is needed.

Example of these continuous monitoring schemes includes the cumulative sum or

CUSUM [49]. The CUSUM algorithm was used by Formby et al. for logic change

detection to great success being able to detect small logic changes within minutes

with zero false positives [25]. When the CUSUM is implemented it is assumed that

the distribution is normally distributed [50], this assumption does not hold true for

the collected RTAC data but the performance of the algorithm will still be explored.

The algorithm as described by Formby et al is shown in Algorithm 1.

This algorithm omits the allowance or slack value that is traditionally part of

the CUSUM algorithm [50]. This value typically is chosen to be halfway between

the target mean and the “out-of-control” value. Its omission causes the accumulated

error to slew much more rapidly as any difference from the mean causes a change

but allows for very minute, consistent changes to be detected. The ten baseline trials

for each firmware were used as inputs to the algorithm to generate firmware/project

pair unique thresholds to detect the network intrusions. Because these thresholds

were empirically derived from the baseline cases they allow for the quickest possi-

ble detection times without any false positives, possibly at the expense of the TPR.
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Algorithm 1 General Anomaly Detection Algorithm

1: procedure CUSUM . Cumulative Sum Algorithm [25]
2: Sn ← 0
3: Sp ← 0
4: m← population mean
5: Tn ← negative change threshold
6: Tp ← positive change threshold
7: while True do . Collect Samples Forever
8: x← new task time sample
9: Sn ← min(0, Sn + x−m)

10: Sp ← max(0, Sp + x−m)
11: if Sn ≤ Tn then
12: Negative Change Alarm
13: end if
14: if Sp ≥ Tp then
15: Positive Change Alarm
16: end if
17: end while
18: end procedure

Table 7 shows the results of the CUSUM algorithm using the derived thresholds.

Each firmware/project pair performed extremely well detecting the network intru-

sions. The TPR for the high task time project on rev 146 was the lowest failing

to detect intrusions in 6 of the 30 data sets. The number of samples to the detec-

tion were quite high requiring on average over 14000 samples to reach the detection

threshold. Revision 145 with the high task time performed the best, detecting each

network intrusion and requiring only an average of 3732 samples to reach the detec-

tion threshold. This strong TPR coupled with its low detection time and lightweight

computational requirements make the CUSUM method an obvious choice for future

research.

6.1.5 Improving Detection Rates and Future Work

With both a compiled data set and a data collection framework in place further

discrimination strategies may be employed. The use of multi-dimensionality will add
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Table 7. Cumulative Sum Performance

Cumulative Sum Algorithm Results
Firmware Project Task Time Average Number of Samples To Detection TPR

145 Low 10577 0.97
146 Low 4035 1
147 Low 8069 0.9
145 High 3732 1
146 High 14230 0.8
147 High 7345 0.97

computational complexity and should be weighed against the added performance.

Additional continuous monitoring schemes can also be tested such as the Simple

Moving Average supported by Vargas et al. [27] or more advanced methods such as

the Exponentially Weighted Moving Average [50].

As candidate algorithms are vetted they should be implemented in the CODESYS

environment for deployment to the RTAC. By moving the detection from a central

system to the RTAC itself the burden of network traffic will be removed and the

potential for malicious tampering while the data is in transit will be reduced. This

will also allow for integration with preexisting capabilities such as syslog to allow for a

single point of security auditing for the RTAC. Additionally, with multiple detection

tests being implemented in discrete function blocks, voting schemes can be used and

tuned. The CUSUM algorithm may be the most promising as its implementation

could be rapidly placed on the RTAC has been previously used to detect logic and

firmware changes by Formby et al. and has been shown to rapidly detect the network

intrusions under test in this research.

6.2 Summary

This chapter discussed the experimental results of the created data collection

framework and selected detection tests. It provides strong evidence that task time
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can be used to detect network intrusions in addition to the logic and firmware

changes demonstrated by previous research. Both statistical and continuous mon-

itoring strategies were explored along with the effect of data treatments and varying

sample sizes. Future work will seek to build on these promising results placing the

detection algorithms on the device itself to remove the network burden related to

data collection.
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VII. Conclusion

7.1 Overview

This chapter summarizes the work performed for this research including a demon-

stration of physical access risks, the creation of a forensic process for encrypted pro-

gramming traffic, and the design of a data-collection framework for the development

and evaluation of an ADS. It reiterates contributions of the work and summarizes the

observations and analysis of the tested scenarios. Recommendations and future work

are also discussed.

7.2 Summary

This research focused on the cybersecurity of the SEL-3505 RTAC using the five

functions of the NIST Cybersecurity framework as a lens to inform necessary security

controllers. Its specific contributions to the fields are as follows:

• Physical Vulnerability: Demonstration of the ability to compromise end

devices when physical access is given.

• Forensic Process: A network forensic process for reconstructing control logic

from encrypted programming traffic was developed and demonstrated.

• Data Collection Tools: A series of scripts to ease the setup of a data collection

framework to test and evaluate an ADS against numerous network intrusion and

project scenarios.

• Qualitative Analysis: Strong evidence that Task Time can be used to detect

the additional burden on end devices caused by network intrusions.
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Chapter III highlighted the Protect function and detailed the shortcomings of

physical backdoors in remote devices. Several recommendations were made to help

mitigate the risks of inadequate physical protections and ensure a compromised device

does not remain on the network to create misoperations.

Chapter IV discussed the creation of a forensic process for encrypted programming

traffic and additional implementations to maintain present analytical capabilities as

ICS communications move away from plaintext and use more secure methods.

Chapters V and VI described the creation and evaluation of an ADS for an SEL-

3505 RTAC using task time as the data feature. It explored the ability to detect net-

work intrusions using this data by employing three separate statistical tests. While

used previously to detect logic and firmware changes, the Permutation test as pre-

sented was found to be unable to discriminate between normal variation in device

behavior and the burden created by network intrusions having an unacceptably high

FPR overall. The Mann-Whitney U Test and Kolmogorov-Smirnov show potential,

failing to meet the desired performance thresholds on only a few experimental treat-

ments. The KS test was able to detect the network intrusions in all trials and when

the performance associated with the Rev 146 High Task Time trials was removed,

the KS test had only 44 false positives out of 450 baseline to baseline comparisons,

a strong showing for a proof of concept test. A continuous monitoring scheme based

on the CUSUM was evaluated using the same collected data sets. With compara-

ble detection rates, lower computational requirements, and lower detection latency

the CUSUM is an extremely viable candidate to be employed in numerous system

scenarios.

The RTAC has several security features, but is not currently designed to detect

the feasible network intrusions that were tested in this research. ARP spoofing in

the absence of a network-based IDS will go undetected, and leaves the potential for
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damaging effects. While the ADS approach is not the only alternative, the use of

task time as a data feature for an ADS shows significant promise to be able to detect

network intrusions. This system can be implemented on existing installations without

the addition of any new devices by being deployed in PLC function blocks. In systems

were a network based IDS already exists the host based IDS can be use as part of a

defense-in-depth strategy providing overlapping security controls.

7.3 Future Work

Further research should be conducted to help find vulnerabilities and mitigations

for the RTAC and additional SEL protective equipment. Finding should be used

to examine devices that share the same hardware platform such as the SEL-3622

Security Gateway. The encapsulation of the intrusion detection algorithms and sub-

sequent deployment on the RTAC allows for further research against different classes

of intrusions such as processes that are able to bypass the white listing solution or

the unauthorized access of modbus servers.

7.4 Conclusion

Individual devices should not be below the examination of security professionals.

Dispelling the obscurity of devices that underpin the Critical Infrastructure of our

nation should be championed. Critical Infrastructure will continue to be a target

for our adversaries and we must rise to the occasion to ensure the prosperity of our

country.
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Appendix A. RTAC Firmware Update Batch Script

1 @ECHO OFF
2
3 Echo Start: %date% %time%
4 REM Start the RTAC AcSELerator Process
5 acrtaccmd start
6
7
8 ECHO logging into database: %date% %time%
9 acrtaccmd login DatabaseUser -p Password

10
11 REM Unlocking the project ensures that it is able to send the

project
12 acrtaccmd unlock TaskTimer_Complex_R146
13
14 ECHO Upgrading Firmware: %date% %time%
15 acrtaccmd upgradefirmware -p Password 192.168.2.2 RTACuser C:\

XXXX\XXXXX\XXXXX\XXXX\SEL -3505-3-R146 -V0 -Z000002 -D20200224.
upg

16
17 ECHO Connecting: %date% %time%
18 acrtaccmd connect 192.168.2.2 RTACuser -p RTACPassword -n

TaskTimer_Complex_R146 -s
19
20 REM Cleanup the processes and disconnect the codesys

connection
21 acrtaccmd disconnect
22 acrtaccmd close
23 acrtaccmd stop
24
25 ECHO Starting Data Collection: %date% %time%
26 REM Launch the data collection script passing in the

neccessary naming arguement
27 python DataCollection.py %1
28 ECHO Finished: %date% %time%
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Appendix B. Data Collection Python Script

1 from pymodbus.client.sync import ModbusTcpClient as MC
2 import pandas as pd
3 import time
4 from datetime import datetime
5 import argparse
6
7
8 #Parse out the sent arguements
9 parser = argparse.ArgumentParser ()

10 parser.add_argument(’revision ’, type=str , nargs =1, metavar=’c
’)

11 args=parser.parse_args ()
12
13 #Create a data frame to store the collected data
14 df = pd.DataFrame(columns =[’received ’, ’transmitted ’, ’

ports_active ’, ’connections ’, ’bytes_received ’, ’bytes_sent
’, ’average ’, ’cpu burden ’, ’cpu burden average ’, ’system
time’])

15
16 #Wait 60 seconds for device to reach steady state
17 time.sleep (60)
18
19 for i in range (0 ,30000):
20 try :
21 #Connect to Modbus Server
22 client = MC(’192.168.2.2 ’)
23 #Read Input Registers From Server
24 result = client.read_input_registers (0,24)
25 #Close Connection
26 client.close ()
27
28 #Bit shift modbus registers to be proper magnitude
29 received = (result.getRegister (0) << 16) + result.

getRegister (1)
30 transmitted = (result.getRegister (2) << 16) + result.

getRegister (3)
31 ports_active = (result.getRegister (4) << 16) + result.

getRegister (5)
32 connections = (result.getRegister (6) << 16) + result.

getRegister (7)
33 bytes_received = (result.getRegister (8) << 16) +

result.getRegister (9)
34 bytes_sent = (result.getRegister (10) << 16) + result.

getRegister (11)
35 last_tasktime = (result.getRegister (12) << 16) +

result.getRegister (13)
36 average_tasktime = (result.getRegister (14) << 16) +

result.getRegister (15)
37 memory_in_use = (result.getRegister (16) << 16) +

result.getRegister (17)
38 flash_used = (result.getRegister (18) << 16) + result.

getRegister (19)
39 cpuburden = (result.getRegister (20) << 16) + result.

getRegister (21)
40 cpuaverage = (result.getRegister (22) << 16) + result.

getRegister (23)
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41
42 #Add Data to Data Frame
43 d = {’received ’ : received , ’transmitted ’ :

transmitted , ’ports_active ’ : ports_active , \
44 ’connections ’ : connections , ’bytes_received ’ :

bytes_received , ’bytes_sent ’ : bytes_sent , \
45 ’last tasktime ’ : last_tasktime , ’average ’ :

average_tasktime , ’memory in use’ :
memory_in_use ,\

46 ’flash in use’ : flash_used , ’cpu burden ’ :
cpuburden , ’cpu burden average ’ : cpuaverage ,
\

47 ’system time’ : datetime.now() }
48
49 df = df.append(d, ignore_index=True)
50
51 except:
52 #Error handling for network transmission errors
53 d ={’received ’ : -1, ’transmitted ’ : -1, ’ports_active

’ : -1, \
54 ’connections ’ : -1, ’bytes_received ’ : -1, ’

bytes_sent ’ : -1, \
55 ’last tasktime ’ : -1, ’average ’ : -1, ’memory in

use’ : -1,\
56 ’flash in use’ : -1, ’cpu burden ’ : -1, ’cpu

burden average ’ : -1, \
57 ’system time’ : datetime.now() }
58 print("No response")
59
60 #Wait 1 ms before requesting again
61 time.sleep (.001)
62
63
64 #Create .csv with all of collected data using passed in trial

argument as file name
65 file_name = args.revision [0] +".csv"
66 print(file_name)
67 df.to_csv(file_name)
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