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Abstract 

This research develops a methodology using a greedy heuristic to solve Air 

Mobility Command's intratheater airlift scenario as a multiple knapsack problem. The 

objective is to maximize throughput in a theater given a vehicle mixture and assignment 

scheme. The model allows for a heterogeneous, user defined vehicle mix in a theater 

consisting of up to five bed down locations and up to seven forward operating locations. 

First, we preprocess routes, eliminating the large number of unattractive route choices in 

the problem. Then using a greedy heuristic, we select routes and assign them to aircraft 

located at any or all of the bed down locations. The model is tested by measuring the 

utilization rate of the vehicles as well as the maximum throughput of the scenario and the 

equality of distribution to the receiving bases. 



A GREEDY MULTIPLE-KNAPSACK HEURISTIC 

FOR SOLVING AIR MOBILITY COMMAND'S 

INTRATHEATER AIRLIFT PROBLEM 

I.   Background and Statement of the Problem 

Background 

A key Air Mobility Command (AMC) task is the effective assignment of 

intratheater airlift. The US Air Force cannot execute its combat mission effectively 

without the coordination of air traffic both to the location and within the location. Once 

the materials needed to support a commander's plan begin arriving in theater, the 

movement of supplies to exactly where they are needed begins. 

A wise and prudent strategy for moving assets within a theater is therefore 

necessary. Accurate and meaningful measurements of strategy effectiveness are also 

needed. More specifically, given a mixture of aircraft sent to the theater, how much 

cargo can be moved within some specified period of time? 

One of the most pressing political and financial questions posed is how many of 

which types of vehicles to procure. To this end, an accurate estimation of the capabilities 

of certain mixtures of vehicles is necessary to fill a part of the much bigger picture of 

procurement. 



Problem Statement 

During day-to-day operations, AMC schedules cargo shipments around the globe. 

In this sense, airlift is routine. However, when contingency operations are executed in a 

theater, questions arise as to the limitations of AMC's intra-theater abilities. Specifically, 

commanders want to know the maximum amount of cargo that can be moved from the 

aircraft bed down locations to the forward operating locations (FOLs), given some mix of 

cargo aircraft deployed in the theater. 

Analysts need a quick running tool to find good answers to commander's 

questions regarding intratheater airlift capabilities. This tool must be simple to use, find 

solutions quickly, but offer a relatively realistic view of theater capabilities. We develop 

such a tool in Excel for Windows® using Visual Basic for Applications (VBA) to extend 

Excel's capabilities. 

Vehicle and Theater Details 

Our problem is to maximize the total amount of throughput based on an elective 

mix of vehicles located within a specific theater. This theater is defined by 

characteristics such as location and number of bed down locations, location and number 

of FOLs, the costs of transporting cargo between them, and which routes are available 

between all locations. 

Common Vehicles 

AMC has a wide variety of vehicles for intratheater airlift. The C-17 Globemaster 

II can fly directly to the FOLs or deliver cargo to the bed-down locations for later 

distribution. The C-141B Starlifter has a limited role in intratheater airlift although AMC 
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often employs it in medical evacuation. Finally, the C-130 Hercules has undergone 

several modifications in its 45 year history. The latest upgrade, the C-130J, has superior 

range and speed compared to the earlier models and is held out as the latest in tactical 

airlift technology (AMC Website). 

Common Theater Attributes 

Unlike AMC's regular cargo shipments, intratheater airlift deals specifically with 

distributing cargo from bed down locations to FOLs within a limited radius. A bed down 

location, also known as the point of debarkation (POD), is a stationing point from which 

to orchestrate theater supply distribution. The first move for cargo is from a stateside 

location to one of these PODs. Once it arrives in theater, the cargo is distributed among 

the FOLs. Two important assumptions are that all cargo is delivered and there are no 

ceilings on the amount of cargo any of the FOLs can receive. 

Although we wish to solve the problem for any theater, it is instructive to 

recognize some of the characteristics of a typical theater. Two theaters specifically are 

available for observation, those of Southwest Asia and the Korean peninsula. In the 

Southwest Asia theater, there are generally five bed down locations and five FOLs. The 

usual distance from a bed down location to an FOL is about 200 miles. In Korea, the 

locations generally number the same but are normally 100 miles apart. 

Since theaters can differ greatly, our Excel model must accommodate theater 

specifics and estimate maximum throughput for a large variety of bed down location and 

FOL combinations in these various theaters. 



Flying Hours and Crew Numbers 

Regulations closely control the total amount of flying time allowed for a crew or a 

plane in times of both peace and war. These times include some time on the ground. The 

clock starts when the aircraft initially pushes back and taxis. The clock does not stop 

until the plane has come to a complete stop in the chalks at its destination. For this 

reason, fliers developed the concept of block speed, which takes into account this extra 

time on the ground. As an automotive analogy, consider the following: when travelling 

between two distant cities, if a motorist stops for lunch, stops to refuel the car a couple 

times, and makes a few rest stops, he does not actually achieve the 70 miles per hour 

(mph) he is driving while on the interstate. Indeed, it may take him six or seven hours to 

go 350 miles, rather than the five hours it would intuitively take if he was really doing 70 

mph the whole time. If it takes him 6.5 hours to travel the 350 miles, his average speed 

(or block speed) is actually about 54 mph. 

Similarly, the block speed of a plane is affected by the number of times it stops en 

route from its origin to its destination. Since these on-ground times are included as flying 

time, we determine an aircraft's total distance allowable during a time period in terms of 

its block speed. 

Furthermore, the total amount of flying allowed in a period of time is normally 

dictated in terms of hours. For modeling purposes, we translate this time period (using 

block speed) into approximate distance. We assume that a vehicle's maximum allowed 

mileage for a day is decreased by 100 miles for each FOL after the first FOL it visits. For 

example, if a vehicle can fly 3000 miles in one day, its allowable flight distance is 

calculated as only 2800 if it must stop at three FOLs during a route. 



We do not consider limits on crews for the plane to fly. This is a realistic 

assumption considering redundancy of crews and length of the crew duty day. 

Delivery Assumptions 

We attempt to deliver a somewhat even amount of cargo to each FOL over the 

scope of the entire model. From day-to-day and from flight-to-flight, the amount of 

cargo needed at each FOL varies. Furthermore, we do not have any minimum delivery 

requirements for any of the FOLs. In the face of this uncertainty, an even distribution 

assumption is reasonable. 

We further assume that aircraft deliver an even amount of cargo to each visited 

FOL. For example, if an aircraft visits four FOLs, each FOL receives % of the aircraft's 

total cargo load. Also, we will consider the amount of cargo carried on each tour to be 

the same for all vehicles of a particular type. This standardizes the use of units of cargo. 

An important assumption is the optimal use of theater vehicles. This means no 

vehicle down time and no halt in operations. Given this model's focus on daily delivery 

planning, this is reasonable. 

A further assumption about delivery is that an aircraft will deliver a percentage of 

its maximum cargo load depending on the number of FOLs it visits in a route, according 

to Table 1. One reason for this assumption is that it is not necessarily practical to deliver 

a full 100% load to a single FOL, and as the number of FOLs in the tour increases, there 

is more cargo needed to go around. Further reasons for making this assumption will 

become clear in the discussion of the heuristic in Chapter 3. 



Table 1: Percent Take-Off Load by Number of FOLs in Tour 

Number of FOLs 

in Tour 

Percent of Full 

Load Carried 

1 85% 

2 90% 

3 95% 

4 100% 

Scope 

The focus of this research is to determine the maximum amount of cargo 

deliverable in a defined theater. We want the characteristics of the theater user-defined. 

Further, we wish to apply the model to any existing or notional theater. 

To meet the above goals, we let the problem be defined by user inputs. The user 

specifies locations for bedding down the vehicles as well as the specific mixes of vehicles 

stationed at each location. The solution to the problem are the missions flown by the 

aircraft based on demands and capabilities pre-specified by the user. An example 

problem is defined in Figure 1. 



10 A's 
5    B's 10 A's 

5   C's 

5 A's 
10 C's 
5 D's 

Figure 1: Sample Theater with Vehicle Assignments 

Locations 1, 2, and 3 are the bed down locations, and locations a, b, c, d, and e are 

the FOLs. This example has 4 types of vehicles, A, B, C, and D. The boxes below each 

bed down location show specific vehicle allocations. Not shown, but crucial to the 

problem, are the distances between the bed down locations and FOLs. The task is to 

assign delivery routes to vehicles to maximize throughput for the scenario while 

balancing deliveries among the FOLs. 

This is a routing and assignment problem and can be viewed as a multiple 

knapsack problem. Knapsack problems have wide applicability in many industries. 

Heuristic solution methods run quickly and are quite effective on problems such as the 

knapsack problem. We discuss this further in Chapter 2. 

In Chapter 3, we spell out our methodology and the specific applications of 

knapsack heuristics in this problem. We also discuss the formulation and measurements 

used. In Chapter 4, we review our results, and draw our conclusions. Chapter 5 provides 

for suggestions for further study and model improvement. 



II. Literature Review 

The Knapsack Problem 

Avid outdoorsmen and campers often face this situation: a weekend away in the 

mountains, a knapsack, a collection of supplies to take, and a limited amount of space in 

the knapsack. Our mountaineer wants to know which items to take and which items to 

leave behind. From a flashlight to a camera, each article has a value based on its utility, 

but each article also takes up kanpsack space. Certain cookware might be nice for 

breakfast in the morning, but are quite bulky, while the tiny compass is invaluable. The 

right balance of "bang for the space" is important to make his weekend enjoyable. This 

problem (the classical knapsack problem) is formulated mathematically as follows: 

i=n 

maximize 
1=1 

dmize ^ptxt (1) 
1=1 

subject to: ^c,x(. <5 (2) 
i=i 

x,e {0,1}, I=1,2,...,/I. (3) 

Here, pt represents the benefit (or profit) gained by including item i in the knapsack, c,- 

represents the cost (weight or volume) of the item, and s represents the total capacity of 

the knapsack. When the value of x, is 1, the item is included on the trip, and when x, is 0, 

it is not. There are n total items being considered here. 



This is a classic problem in operations research. A natural extension allows 

multiple copies of items in the knapsack. This adaptation is called the bounded knapsack 

problem. In the bounded knapsack problem, equation (3) is replaced by: 

0<Xi<bi,i= 1,2, ...,n, (4) 

and we also add: 

xte D,x,->0, /=l,2,...,/i. (5) 

Here, &,• represents the bound (highest number available) for resource i. Notice now that 

Xi can take on non-negative integer values rather than just binary, 0 or 1, values. 

This formulation can be further modified to describe an unbounded knapsack 

problem when some (or several) 6,- = +°°. 

When there are multiple campers or multiple knapsacks, the bounded multiple 

knapsack problem can be formulated as: 

i=n    7=m 

2 LP,*I <6> 
i=n    J=m 

maximize 
i=\    y=i 

subject to:  ^c.x.. < Sj, j = 1, 2,..., m, (7) 

j=m 

]>>,.<&,,/= 1,2,...,», (8) 

Xi/en,xy>0. (9) 

Now with the variables doubly subscripted, the i,j combination refers to placing 

item i in knapsacky. There are still n types of items, but they are now distributed among 

m knapsacks, each with capacity, sj. If (8) has a b,■ = ~ then the formulation is called the 

(unbounded multi-knapsack problem (Winston). A more thorough review of the 



knapsack problem and its relationship to problems such as the generalized assignment 

problem (GAP) and scheduling problems is found in Martello and Toth (1990), Pirkul 

(1987), and Pinedo (1995). 

Heuristic Approaches 

There are many ways to solve (6) through (9) to optimality. Specifically, 

specialists such as Bellman, with his dynamic programming method and Gomory's 

(1966) cutting-plane algorithm have contributed significantly to the field with successful 

results dating back to the 1950s and 1960s. Additionally, Kolesar advocated branch-and- 

bound algorithms in the late sixties which became the main focus of study through most 

of the next decade as well. Unfortunately, this problem can become very difficult to 

solve for large-scale instances. This led to many near-optimal algorithms such as 

Dantzig's (1957) relaxation approach to providing an upper bound. The multi-knapsack 

problem is described as NP-hard (Kan, et al.), so many realistic forms of the problem 

require an unwieldy amount of computing time to solve (Martello and Toth, 1990). 

Heuristics, while not solving to optimality, seek reasonable solutions in 

reasonable computing time. One of the earliest heuristics was the Senju and Toyoda 

greedy heuristic, which uses an "effective gradient" approach to solve a multi- 

dimensional knapsack problem. (Senju and Toyoda, 1968) This is a knapsack problem 

wherein we are constrained by more than one limitation. For example, our hiker might 

have a weight limit as well as a size limit for his knapsack. What Toyoda (1975) 

describes as the "primal effective gradient" method selects items, based on their relative 

benefit to the overall solution, filling the knapsack, always maintaining a feasible 

10 



solution, until the knapsack is full. While this is applied in a multi-dimensional knapsack 

heuristic, the concept has merit even in the example such as ours, where we have multiple 

single-dimensional knapsacks. This approach begins with empty knapsacks and adds 

items until any more items would cause an infeasible solution. 

Greedy Heuristic for the Knapsack Problem 

Generally, greedy heuristics are the simplest methods for solving optimization 

problems. The basic concept is to choose the most immediately attractive move from the 

current position, and continuously move in an improving direction. In this sense, it is a 

myopic approach, but sometimes can yield good results. In fact, there are some specific 

types of problems wherein a greedy algorithm will guarantee an optimal solution 

(Martello and Toth, 1990). 

In a bounded multiple knapsack problem, we can use a constructive algorithm 

treating each knapsack constraint independently. Our "bang for the buck" ratio is the 

ratio: 

r9=%-. (10) 
cv 

These ratios are ordered such that: 

nj > r2j > ... > rnj,j = 1, 2,..., m (11) 

We begin with a solution where xy = 0 for all i andy. Then we increase the values 

of the %ij in decreasing order according to equation (11). We increase xy until its bound or 

the knapsack bound is reached and then continue on to xi+ij. We continue in this fashion 

until we run out of room in each knapsack or run out of knapsacks. 

11 



With this understanding of the (unbounded multiple knapsack problem, we move 

on to our specific application which includes an additional constraint for the even 

distribution of jobs and the precise heuristic scheme for the problem at hand. 

12 



III. Methodology 

Solution Overview 

The user of this model seeks a maximal throughput given a certain vehicle mix for 

a specific theater. The model makes use of vehicle capacities and capabilities and assigns 

routes to the vehicles to maximize throughput. The problem is a multiple knapsack 

problem in which the model finds a solution by solving the route assignment for each 

vehicle at each location. The knapsack is the route capacity of each vehicle. 

Input 

First, the user inputs the theater definition. The user can specify up to five bed 

down locations and up to seven FOLs, making these choices according to their 

corresponding International Civil Aviation Organization (ICAO) listing. This is a four- 

character designator for every airfield in the world. 

Once the theater is defined, the user assigns vehicles to bed down locations. 

Given the large diversity of vehicles, we generalize vehicles requiring the user to define 

the vehicles simply in terms of maximum allowed flight distance and maximum allowed 

cargo load. This allows for changes in the capacities of current vehicles and also makes 

the model dynamic enough to allow for the use of other vehicles. 

The user may specify the maximum FOLs to visit in one tour. The default is that 

no pilot will stop at more than four FOLs in one tour. However, due to weather or other 

13 



factors, we may wish to limit this even further. A limit of four FOLs per tour means we 

only consider tours with four, three, two, or one (out-and-backs) stop. 

We also provide the option to even out distribution among FOLs. This departure 

from a traditional multiple knapsack problem adds the further restrictions to even out the 

amount of cargo delivered to each FOL. Non-even cargo distribution is useful to derive 

an upper-bound for throughput in a specific scenario. However, the practicality of this 

option is limited as it is normally not beneficial to allow great disparity between the 

amounts of cargo delivered to each FOL. 
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Figure 2: Screen Capture of Input 

Once the theater and vehicle mix is input, we are ready to calculate routes and 

find a solution. 

Output 

Model output is summarized as throughput, aircraft utilization, and FOL 

distribution parity. Specific output for each vehicle are the routes it is assigned to fly. 
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Utilization: 
H Mies Howl 

B Mies Possible 

H   Utilization 
■      Rate 

Shew Route Selection? 
Show/sil Selected Routes? 
Slav All FtesBe Routes? 
KtocFOs Visited Per Tour 
Include Even Distribution? 

(V/N) 
cm 

(Y7N) 
(14) 
(V/N) 

n 
:::n,. ,;. 

3 

KBUF :KBWI      ' KJFK KBOS     «WER : ::KIAD 

517.225 529,575 503.808 509,150 503,808 533.82 

1432% 14.66% 13.95% 14.10% 13.95% 14.78% 

Total 3,611,349 LBS 

Figure 3: Screen Capture of Output 

Model Procedure 

The model matches airplanes assigned to bed down locations to routes to 

maximize throughput. Each vehicle has a distance capacity, each route assigned to the 

vehicle uses up vehicle flying miles. The throughput is the primary benefit of the route. 

Two steps tie the input to the output and help to solve the problem. The first is to 

develop routes. This procedure constructs possible routes for our vehicles by 

preprocessing. The second step implements a constructive greedy heuristic to solve each 

knapsack problem assigning routes to vehicles. 

Route Development 

Considering all possible routes yields an unmanageable number of routes. Wise 

preprocessing reduces the considered routes to a manageable number. 

15 



Variable Definitions 

Part of the user input is the capabilities and quantities of each vehicle type. A 

vehicle's limitations can be used to remove routes from consideration when the route 

cannot be handled by the vehicle. 

Preprocessing of Routes 

Given the largest scenario, a dozen vehicles stationed at each of the five possible 

bed down locations, servicing all seven possible FOLs, yields a myriad of routes to 

consider. One airplane at one of the bed down locations has 13,699 possible routes to 

consider (see Table 2). When we look at a dozen vehicles at each of five bed down 

locations, the entire problem becomes choosing routes from a total of 13,699 x 12 x 5 = 

821,940. Preprocessing reduces this number. 

As a default, no pilot stops more than four times on one route. Therefore, routes 

with more than four stops are removed. 

Next, we consider those routes that are simply mirror images, or reversals, of each 

other. For example, route 4-5-6 = 6-5-4, and 4-5 = 5-4. We can make this statement 

because we are assuming that we have symmetry in our distance matrix and that external 

conditions have little impact on the time it takes to fly a route. Our reasoning in making 

this assertion is that working in theater, the distances are normally short enough that 

considerations like winds, which might make a significant difference on longer routes, 

have little affect on our calculations. 
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Table 2: Number of Possible Routes; 1 Vehicle, 1 Bed Down Location, 7 FOLs 

Number of FOLs Visited: Possible Route Combinations: 

1 7 = 7 

2 7 x 6 = 42 

3 7x6x5 = 210 

4 7x6x5x4 = 840 

5 7x6x5x4x3 = 2520 

6 7x6x5x4x3x2 = 5040 

7 7x6x5x4x3x2x1 = 5040 

Total 13,699 

Further, routes that are merely permutations of each other can be replaced with 

the shortest of all permutations. Table 3 gives such an example. Each route delivers the 

same amount of cargo to the same FOLs. Therefore, it is redundant to consider all of 

them when selecting routes in our heuristic. 

Table 3: Permutation of Three FOLs 

Order of FOL Visit Mirror Image 

A-B-C C-B-A 

B-C-A A-C-B 

C-A-B B-A-C 
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Table 4 shows the results of these reductions. The problem now chooses between 

98 x 12 x 5 = 5880 possible routes. These selections do not account for infeasibilities 

based on the vehicle constraints specific to the problem. 

Table 4: Number of Possible Routes; 1 Vehicle, 1 Bed Down Location, 4 FOLs 

Number of FOLs Visited: Possible Route Combinations: 

1 7 = 7 

2 
2 

= 21 

3 f7' = 35 

4 
4 

V.    J 

= 35 

Total 98 

We further narrow the number of routes by accounting for repetition in terms of 

vehicle type. At each bed down location, we allow up to a dozen vehicles. In reality, 

there might only be two or three different types of vehicles stationed there. In this sense, 

we only need to consider vehicle types. 

We assume that there may be a total of five different types of vehicles at each of 

the bed down locations. We can have any number of total vehicles stationed anywhere as 

long as they fall into these five categories. This further reduction yields a possible total 

of 98 x 5 x 5 = 2450 routes from which to choose. Any solution we find can easily be 
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extrapolated by using a two-tier view of the routes. First, we generate the routes 

available to each vehicle type at each bed down location. Then we multiply the routes 

assigned to one vehicle "type" by the number ofthat type of vehicle at the bed down 

location in question. 

Benefit Definition 

The solution heuristic uses the benefit-to-cost ratio for each route where the cost 

of each route is its length. The route benefit, however, is not as easily defined. The goal 

of the model is to maximize total throughput. However, any vehicles of the same type 

provides the same amount of benefit to total throughput. This could lead to a situation 

where the routes selected favor those FOLs nearest a bed down location. Therefore, we 

add the condition that each FOL receive a similar amount of cargo as all others FOLs. 

To achieve this, we use a weighting scheme based on the amount delivered to 

encourage routes that visit neglected FOLs. For each route, we define an FOL benefit 

vector indicating the amount delivered to each FOL. Figure 4 shows the distribution of 

75 units of cargo to FOL 3, FOL 4, and FOL 5. 

0 0 25 25 25 0 0 

Figure 4: Sample FOL Benefit Vector 

We transform this route benefit vector into one value via a dot product with a 

weight vector. 

To equalize cargo delivery between the FOLs, it makes sense to account for how 

much has been delivered so far in the weight vector used to determine the quality of a 

route. If more has been delivered to certain FOLs, we want to de-value routes that visit 
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those FOLs. To start, we want the weight vector to be equal to a unit vector shown in 

Figure 5: 

1 1 1 1 1 1 1 

Figure 5: Beginning Weight Vector 

When we begin, the needs of all FOLs are weighted equally. However, we want the 

weight vector to shrink in size as its corresponding FOL receives more cargo, thereby 

reducing the benefit of certain routes. 

We assign a formula to each element of the weight vector that starts at 1 and 

decreases as the amount delivered to an FOL is increased. We use the formula: 

1 
(12) 

where 

d^   =t0taldeHvered^,FOL=l,2,...,7. "■FOL (13) 
100,000 

The 100,000 constant in equation (13) is used to keep the denominator of equation 

(12) from growing too quickly. This is based on a normal cargo load of the vehicles for 

this model being in the range of about 30,000 pounds. In different circumstances, it may 

be appropriate for us to use a different constant, keeping it at about V3 of a total cargo 

load for the average vehicle. 

This weighting vector ensures nearly uniform distribution to all FOLs in the 

model. The dot product of this vector with each route's individual FOL benefit vector is 

the assigned weighted benefit for each tour. This benefit is divided by the length of the 

tour to determine the benefit-to-cost ratio. 
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Greedy Heuristic Application 

In Section 2.2.1, we discussed the use of the greedy heuristic for selecting 

elements in a knapsack. In our model, the knapsacks are the vehicles assigned to the 

theater. The limiting factor for our vehicles is the total miles they are allowed to fly per 

day. We use up these miles by choosing routes but also enjoy a benefit for taking cargo 

to FOLs. We maximize the benefits received while not exceeding each vehicle's limited 

resources. 

Since we have attributed a single benefit to each route (rather than one for each 

FOL for each route), the greedy heuristic has application here, where we begin with no 

routes chosen and then add routes until a plane has used up its allowable miles for the 

day. We need not completely exhaust the total miles allowed to one vehicle, however, 

before moving on to the next. 

Here we see another reason for the assumption that we made in Chapter 1 

regarding take-offloads for our vehicles. Due to the greedy nature of our heuristic, we 

naturally select out-and-back routes more often. This is because the heuristic would 

always naturally choose an out-and-back due to its shorter length in spite of any 

imbalance in terms of cargo delivered to any FOL so far. The benefit of travelling to 

more than one FOL does not outweigh the cost. When the cargo delivered so far to the 

FOLs is relatively even, there is no incentive to travel farther than the shortest route, and 

when there is a significant difference, the heuristic will tend to deliver to the FOL that is 

lacking cargo. The shortest route to that FOL is naturally an out-and-back. However, 

delivering slightly less to an out-and-back FOL is a way to alleviate this problem. 

Therefore, we make the assumptions in Table 1. 
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Each vehicle is solved separately, although not necessarily sequentially. In fact, 

the vehicles are effectively solved simultaneously. This simultaneous process facilitates 

the bookkeeping associated with the benefit calculations as we update the deliveries to 

each FOL. 

Finally, we report the results in a user-friendly format showing the total 

throughput, which is a reflection of his vehicle mix, and the performance measures of the 

heuristic. 

The entire code is published in Appendix B. Figure 6 shows a flow-chart of the 

procedure logic. 

I— Initialize Vectors & Values 

Figure Routes 

For Each Bed Dovm Location 

For Each Aircraft Type 
Figure Feasible Routes 

1,2,3, and 4OT^Lengfh Toun 

Preprocess Permutations 
Pick Shortest 

Figure Shortest Routes Per Bed Down Location 

z 
Figure All Benefits 

Pick Best Benefit / Cost Ratio 

y of these vehicles? 

'N 

GoToNext-Best 

>Y__^<^^MughMi5\Y. 
Available? 

Update Vectors 
and Values 

Choose This 
Route 

Display Results 

Figure 6: Greedy Heuristic Flowchart 
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IV. Results and Performance 

Performance Measures 

The performance of this model can be measured in many ways. Four of them are: 

throughput, homogeneity of delivery, mileage usage and cargo usage. Each tells a 

slightly different story and measures a different aspect of the solution. 

Throughput 

The user is looking to maximize throughput. Total throughput measures the 

quality of the choice for vehicle assignments. Having the right vehicles in the right 

places leads to a highly-attractive throughput value. Throughput, therefore, is interpreted 

as a measure of the amounts and types of vehicles and their placement at the bed down 

locations. 

Departure from Even Delivery 

Departure from even delivery refers to the difference between total cargo 

delivered to any of the FOLs. We want to ensure each FOL is kept "in the loop" and not 

neglected in terms of cargo. Ideally, each FOL receives the same percentage of the total 

cargo delivered within the theater. We wish to have a low percentage deviation from its 

fair share of cargo delivered for each FOL. 
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Mileage Utilization 

Given a type of vehicle and the total number ofthat type assigned to the bed down 

location, we know how many miles could possibly be flown throughout the scenario. 

This is simply the product of the number of this type of vehicle and the total number of 

miles available per day for that type. The total miles for the scenario is the sum of all 

miles over each vehicle type. 

We define the performance measure of mileage utilization as the percentage of 

total miles available that were actually flown. This is similar to figuring the percentage 

of the total space left in our knapsacks once we have filled them. 

This is one measure of the effectiveness of our heuristic. Clearly, the closer to 

100 percent we are, the more resources we were able to effectively use. 

Cargo Utilization 

Similar to mileage utilization, cargo utilization is a percentage of the cargo that 

can be delivered. This number is based on a "least delivered" baseline scenario wherein 

each vehicle assigned to the theater makes only one out-and-back trip and drops off its 

entire load at the one FOL it visits. Cargo utilization is the percentage increase over the 

baseline figures. 

Results 

Runs and Design 

We set up experimental runs with two scenarios: a large-scale and a small-scale 

scenario. The large-scale scenario has all five bed down locations and all seven FOLs. 
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Twelve of a random combination of three types of vehicles are assigned to each of the 

bed down locations. 

We remove two of the bed down locations and two of the FOLs to form the small 

scenario, and again randomly assign a combination of three types of vehicles, twelve 

total, to each of the bed down locations. 

The three vehicle types are determined by their maximum daily range and their 

maximum cargo load as shown in Table 5. 

Table 5: Vehicle Type Characteristics 

Vehicle Type Maximum Daily Range Maximum Cargo Load 

1 2,800 32,500 

2 2,250 30,000 

3 2,500 31,000 

Twenty runs are executed with random vehicle assignments for each of the two 

scenarios. The maximum number of FOLs visited in one route is set at three by 

convention and we run the entire experiment within the heuristic once with the evening 

considerations and once without to produce a bound on a lesser-constrained problem. 

Then we also run the same lesser-constrained scenarios through an LP to create an 

optimal upper bound. 

The upper bounds must be considered carefully in these scenarios. The first 

consideration is the even distribution of cargo. This condition is waived to find an upper 

bound, but it is not practical in real-world situations. Furthermore, in the LP optimal 
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solution, we allow for some rather creative uses of our vehicles. First, we allow 

fractional routes. Secondly, we also allow for some infeasibilities in terms of maximum 

mileage. When solving the LP, we allow ourselves to group all like vehicles at a bed 

down location into one vehicle, with one constraint for maximum mileage. This may 

lead to infeasible results in scenarios such as the following: Consider three vehicles of 

the same type stationed at one bed down location. Each has a 2000 mile limit. Together, 

there is a limit of 6000 miles. However, a solution that chooses to travel a 3000 mile 

route twice would be infeasible for our more constrained problem. 

Results 

Table 6 displays the averages of the runs. A comprehensive list of results can be 

found in Appendix A. Note that although there is a higher throughput on the lesser- 

constrained scenarios, the departure from even is unacceptable. In most cases, all the 

cargo is delivered to only two FOLs. 

Table 6: Experimental Results 

Run Size Throughput 
(lbs) 

Departure from Even 

Small 1,415,904 1.3% 

Small 
(Loose) 

1,555,861 24% 

Small 
(LP Opt) 

2,026,622 24% 

Big 3,601,503 0.3% 

Big 
(Loose) 

5,226,104 19.47% 

Big 
(LP Opt) 

5,923,229 19.22% 
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The throughput for the small scenario is 70% of the optimal for the lesser- 

constrained problem, and for the big scenario, the figure is 61%. 

Clearly, however, the solutions for both the heuristic and LP lesser-constrained 

problems are not acceptable by virtue of the graphs in Figure 7, which show the 

distribution of cargo for all scenarios. 

Large Scenario 

60.00% 

50.00% 

40.00% 

30.00% 

20.00% 

10.00% 

0.00% 

f      I With Evening Constraints 
| W/O Evening Constraints 

[ 1 LP Optimal 

ÜL J 
FCLl   FCL2  FCL3   FX4  FCL5  FGL6  FCL7 

Small Scenario 

I      I With Evening Constraints 
I W/O Evening Constraints 

| 1 LP Optimal 

FOL1  FOL2  FOL3  FOL4  FOL5 

Figure 7: Distributions to FOLs for Scenarios 
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The mileage and cargo utilization for our heuristic runs are shown in Table 7. 

The results suggest that although cargo utilization increases when there are no evening 

constraints, the mileage utilization is slightly lower. 

Table 7: Mileage and Cargo Utilization 

Run Size Mileage Utilization Cargo Utilization 

Big (w/ Evening) 85.13% 190.11% 

Big (w/o Evening) 84.07% 275.86% 

Small (w/ Evening) 82.75% 124.51% 

Small (w/o Evening) 76.13% 136.86% 

It is intuitive that without the evening constraints, the heuristic would ultimately 

deliver more cargo. This is simply due to its greedy nature. However, the higher mileage 

utilization when not using the constraints is a result of forcing the heuristic to take longer 

routes in order to evenly distribute the cargo. 

Conclusions 

As a quick-look tool, our heuristic offers a fast answer to the question of 

maximum throughput. Although not necessarily optimal, we observe results that keep 

our crews and aircraft gainfully employed for over 80% of their day and deliver a near 

even amount of cargo to our FOLs. 

The heuristic employed gives a sufficient estimate of the throughput and mileage 

utilization for the aircraft in the scenarios. Its employment of an evening function in 
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terms of a weighting vector ensure that each FOL receives nearly identical amounts of 

cargo throughout the run of the model. 

The easy-to-use format of Excel spreadsheets and already-existing ICAO and 

distance calculation information makes it very user-friendly. Its use of VBA as a 

platform aids in upgrade potential. This program can readily be changed to accommodate 

many new variables and conditions. 

Unfortunately, there is not yet a way to deliver different amounts to FOLs on the 

same trip. Also the assumption that we made in Table 1 could be improved upon, and it 

may be possible to address the block speed in a more elegant fashion. 
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V. Further Research 

Recommendations 

Although our model allows for much flexibility and breadth in the scenarios we 

choose, there are still some areas where future research might make the model more 

accurately reflect the real-world scenarios in which AMC finds itself. 

One of these suggestions is to allow more freedom in exactly how the cargo is 

delivered. Now, we deliver the same amount of cargo to each of the FOLs visited in a 

route. An improvement here could allow for heterogeneous delivery within one trip. 

Another useful improvement would be to allow a more flexible use of the block- 

speed in the model. Although the distances within a theater are small, the differences in 

length of day as an effect of block speed can be dramatic. In our model, we build the 

block-speed into the preprocessing of routes in a stringent fashion. A variable treatment 

of block-speed, and for that matter the distances themselves (given weather and winds), 

might be another fruitful area for further research. 

Real-world scenarios have randomness. The introduction of variability and 

randomness is an interesting and useful avenue of research. Clearly, ground can be 

gained here in using this as a part of a perhaps bigger stochastic model. 

The final avenue suggested is to expand the model to not only assign routes but to 

allocate aircraft to bed down locations. In other words, answer the question: "How 

should we mix our vehicles in this theater?" 
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Appendix A: Run Results 

Small Loose 
Run Fhroughpu Mileage Ut Cargo Ute FOL1       FOL2       FOL3       FOL4       FOL5       Dev 

1 1464550 73.35% 129.43% 34.24% 65.76% 0.00% 0.00% 0.00% 0.24 

2 1526175 80.37% 136.94% 38.71% 61.29% 0.00% 0.00% 0.00% 0.24 

3 1453925 71.33% 127.87% 32.62% 67.38% 0.00% 0.00% 0.00% 0.24 

4 1638800 75.19% 141.64% 40.15% 59.85% 0.00% 0.00% 0.00% 0.24 

5 1524050 76.08% 134.87% 36.98% 63.02% 0.00% 0.00% 0.00% 0.24 

6 1431400 74.39% 128.03% 33.49% 66.51% 0.00% 0.00% 0.00% 0.24 

7 1587800 76.31% 138.79% 39.88% 60.12% 0.00% 0.00% 0.00% 0.24 

8 1575475 75.53% 138.02% 38.31% 61.69% 0.00% 0.00% 0.00% 0.24 

9 1583975 76.96% 138.88% 39.98% 60.02% 0.00% 0.00% 0.00% 0.24 

10 1513425 77.72% 135.01% 37.41% 62.59% 0.00% 0.00% 0.00% 0.24 

11 1566550 79.27% 139.25% 38.63% 61.37% 0.00% 0.00% 0.00% 0.24 

12 1631575 75.66% 141.38% 39.39% 60.61% 0.00% 0.00% 0.00% 0.24 

13 1523200 77.94% 135.82% 37.17% 62.83% 0.00% 0.00% 0.00% 0.24 

14 1618400 78.85% 142.34% 40.65% 59.35% 0.00% 0.00% 0.00% 0.24 

15 1612025 78.60% 141.78% 40.97% 59.03% 0.00% 0.00% 0.00% 0.24 

16 1568250 75.77% 137.57% 38.16% 61.84% 0.00% 0.00% 0.00% 0.24 

17 1491750 75.61% 132.42% 36.30% 63.70% 0.00% 0.00% 0.00% 0.24 

18 1622650 72.90% 139.34% 38.71% 61.29% 0.00% 0.00% 0.00% 0.24 

19 1544025 74.35% 135.32% 36.66% 63.34% 0.00% 0.00% 0.00% 0.24 

20 1639225 76.44% 142.54% 40.45% 59.55% 0.00% 0.00% 0.00% 0.24 

1555861      76.13%    136.86%     37.94%     62.06%       0.00%       0.00%       0.00% 0.24 

Small Tight 
Run Throughpu 

1    1311625 
1216950 
1379525 
1539625 
1344350 

6 1355250 
7 1383350 
8 1528850 
9 1353850 
10 1310100 
11 1386575 
12 1453700 
13 1372800 
14 1496500 
15 1433400 
16 1469550 
17 1313675 
18 1603950 
19 1445250 
20 1619200 

Mileage Ut 
78.93% 
78.34% 
80.41% 
84.16% 
80.60% 
83.61% 
80.20% 
86.87% 
80.02% 
81.56% 
83.79% 
80.53% 
83.31% 
86.19% 
84.11% 
84.42% 
80.67% 
85.40% 
82.72% 
89.17% 

Cargo Ute 
115.92% 
109.19% 
121.33% 
133.07% 
118.97% 
121.22% 
120.92% 
133.93% 
118.71% 
116.87% 
123.25% 
125.97% 
122.41% 
131.62% 
126.07% 
128.91% 
116.62% 
137.74% 
126.67% 
140.80% 

FOL1 
20.67% 
20.12% 
21.35% 
21.53% 
20.26% 
21.73% 
21.97% 
21.54% 
22.45% 
20.92% 
20.90% 
20.73% 
21.67% 
22.15% 
25.05% 
20.53% 
20.87% 
22.39% 
20.64% 
22.18% 

FOL2 
20.38% 
21.44% 
21.63% 
21.20% 
21.91% 
21.51% 
21.38% 
21.24% 
19.90% 
20.44% 
21.12% 
20.82% 
21.52% 
21.44% 
18.68% 
22.01% 
20.38% 
20.67% 
20.79% 
21.76% 

FOL3 
20.47% 
20.56% 
19.67% 
19.79% 
19.97% 
19.71% 
19.62% 
20.59% 
19.93% 
20.32% 
19.46% 
19.86% 
21.49% 
21.00% 
18.87% 
20.50% 
20.38% 
19.08% 
20.80% 
19.58% 

FOL4 
18.02% 
17.32% 
17.68% 
17.69% 
17.89% 
17.34% 
17.42% 
16.04% 
17.80% 
18.00% 
19.06% 
18.74% 
13.84% 
14.40% 
18.53% 
16.46% 
17.99% 
18.79% 
16.97% 
16.90% 

FOL5 
20.47% 
20.56% 
19.67% 
19.79% 
19.97% 
19.71% 
19.62% 
20.59% 
19.93% 
20.32% 
19.46% 
19.86% 
21.49% 
21.00% 
18.87% 
20.50% 
20.38% 
19.08% 
20.80% 
19.58% 

Dev 
0.007937 
0.010712 
0.011907 
0.010925 
0.008691 
0.012979 
0.013398 
0.015841 
0.009781 
0.007983 
0.00809 

0.006176 
0.024646 
0.022406 
0.020216 
0.014177 
0.008049 
0.012231 
0.012129 
0.015753 

1415904     82.75%    124.51%     21.48%      21.01%      20.08%      17.34%      20.08%   0.012701 
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Snail LP Optimal 
Run TTvuput    FOL1       FOL2      FOL3      FOL4      FOL5      Dev 

1 1956056 34.14% 65.86% 0.00% 0.00% 0.00% 24.00% 

2 1869976 38.48% 61.52% 0.00% 0.00% 0.00% 24.00% 

3 2020597 32.68% 67.32% 0.00% 0.00% 0.00% 24.00% 

4 2152203 36.43% 63.57% 0.00% 0.00% 0.00% 24.00% 

5 1983169 35.91% 64.09% 0.00% 0.00% 0.00% 24.00% 

6 1911997 35.58% 64.42% 0.00% 0.00% 0.00% 24.00% 

7 2032599 38.70% 61.30% 0.00% 0.00% 0.00% 24.00% 

8 2088737 36.83% 63.17% 0.00% 0.00% 0.00% 24.00% 

9 2013237 39.07% 60.93% 0.00% 0.00% 0.00% 24.00% 

10 1929892 37.42% 62.53% 0.00% 0.00% 0.00% 24.00% 

11 1953706 34.67% 65.33% 0.00% 0.00% 0.00% 24.00% 

12 2129298 34.02% 65.98% 0.00% 0.00% 0.00% 24.00% 

13 1967465 36.71% 63.29% 0.00% 0.00% 0.00% 24.00% 

14 2048334 38.28% 61.72% 0.00% 0.00% 0.00% 24.00% 

15 2023734 39.23% 60.77% 0.00% 0.00% 0.00% 24.00% 

16 2060928 36.36% 63.64% 0.00% 0.00% 0.00% 24.00% 

17 1947686 37.21% 62.79% 0.00% 0.00% 0.00% 24.00% 

18 2197790 34.89% 65.11% 0.00% 0.00% 0.00% 24.00% 

19 2071005 34.87% 65.13% 0.00% 0.00% 0.00% 24.00% 

20 2174042 36.98% 63.02% 0.00% 0.00% 0.00% 24.00% 

2026622    36.42%    63.58%      0.00%      0.00%      0.00%    24.00% 
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Big Loose 
Run Throughpu Mileage Ut Cargo Ute FOL1       FOL2       FOL3       FOL4       FOL5       FOL6 

1 5602100 85.34% 292.54% 55.84% 3.03% 0.00% 0.00% 0.00% 41.13% 
2 5197325 87.56% 276.45% 52.09% 3.16% 0.00% 0.00% 0.00% 44.75% 
3 5395350 85.63% 285.39% 61.39% 3.04% 0.00% 0.00% 0.00% 35.56% 
4 5077575 83.46% 270.08% 60.13% 3.41% 0.00% 0.00% 0.00% 36.46% 
5 5602200 85.17% 293.39% 55.80% 3.05% 0.00% 0.00% 0.00% 41.15% 
6 5730250 89.66% 300.01% 56.66% 2.87% 0.00% 0.00% 0.00% 40.47% 
7 5415725 85.97% 281.63% 51.23% 3.24% 0.00% 0.00% 0.00% 45.53% 
8 5332950 83.86% 281.05% 53.04% 3.24% 0.00% 0.00% 0.00% 43.72% 
9 5167550 85.77% 273.05% 55.74% 3.33% 0.00% 0.00% 0.00% 40.93% 

10 5153500 82.57% 270.88% 57.99% 3.41% 0.00% 0.00% 0.00% 38.60% 
11 5291225 87.66% 281.00% 55.90% 3.10% 0.00% 0.00% 0.00% 40.99% 
12 4897850 81.07% 262.62% 53.54% 3.39% 0.00% 0.00% 0.00% 43.08% 
13 5387250 84.08% 282.05% 54.83% 3.26% 0.00% 0.00% 0.00% 41.91% 
14 5118875 83.00% 271.06% 54.76% 3.39% 0.00% 0.00% 0.00% 41.84% 
15 4756400 79.21% 253.27% 57.99% 3.66% 0.00% 0.00% 0.00% 38.35% 
16 4858525 83.24% 258.91% 59.20% 3.53% 0.00% 0.00% 0.00% 37.27% 
17 5254150 84.46% 277.70% 58.68% 3.25% 0.00% 0.00% 0.00% 38.07% 
18 5076875 81.01% 269.33% 60.21% 3.43% 0.00% 0.00% 0.00% 36.36% 
19 5003475 80.55% 263.34% 57.08% 3.51% 0.00% 0.00% 0.00% 39.41% 
20 5203650 82.06% 273.44% 58.95% 3.37% 0.00% 0.00% 0.00% 37.68% 

5226140     84.07%   275.86%     56.55%       3.28%       0.00%       0.00%       0.00%     40.16% 

Big Tight 
Run Fhroughpu Mileage Ut Cargo Ute FOL1       FOL2       FOL3       FOL4       FOL5       FOL6 

1 3821000 86.10% 199.53% 14.40% 14.37% 14.13% 13.61% 14.13% 14.95% 
2 3570850 86.32% 189.94% 14.87% 14.62% 14.23% 12.87% 14.23% 14.84% 
3 3708200 87.30% 196.15% 14.77% 14.67% 14.16% 13.09% 14.16% 14.73% 
4 3422625 83.34% 182.05% 14.22% 14.53% 14.27% 14.01% 14.24% 14.60% 
5 3831650 ,86.40% 200.66% 14.29% 14.76% 14.09% 13.52% 14.09% 14.82% 
6 3852125 88.07% 201.68% 14.95% 14.51% 14.45% 12.80% 14.45% 14.57% 
7 3746425 85.03% 194.82% 14.41% 14.61% 14.13% 13.84% 14.13% 14.57% 
8 3671775 84.64% 193.51% 14.65% 14.83% 14.04% 13.33% 14.04% 14.83% 
9 3606325 85.65% 190.56% 14.85% 14.56% 14.27% 13.35% 14.27% 14.53% 

10 3487450 82.48% 183.31% 14.05% 14.73% 14.16% 13.83% 14.16% 14.61% 
11 3648525 87.28% 193.76% 14.70% 14.68% 14.45% 12.59% 14.45% 14.67% 
12 3510775 86.35% 188.25% 14.36% 14.74% 14.39% 12.90% 14.39% 14.77% 
13 3662300 84.83% 191.74% 14.11% 14.45% 14.23% 14.05% 14.23% 14.45% 
14 3496225 83.34% 185.13% 14.61% 14.74% 13.96% 13.83% 13.96% 14.70% 
15 3355775 82.69% 178.69% 14.37% 14.39% 14.14% 13.46% 14.14% 15.05% 
16 3366100 84.18% 179.38% 14.29% 14.59% 14.16% 13.41% 14.16% 14.62% 
17 3591575 85.28% 189.83% 14.40% 14.51% 14.34% 13.57% 14.28% 14.64% 
18 3470700 83.59% 184.12% 14.20% 14.75% 14.07% 13.85% 14.01% 14.77% 
19 3598300 85.41% 189.38% 14.30% 14.47% 14.10% 14.13% 14.04% 14.55% 
20 3611350 84.23% 189.77% 14.32% 14.66% 13.95% 14.10% 13.95% 14.78% 

3601503     85.13%   190.11%     14.46%     14.61%     14.18%     13.51%     14.17%     14.70% 
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Big LP Optimal 
Run rnruput    FOL1      FOL2      FOL3      FOL4      FOL5      FOL6      FOL7      Dev 

1 6235015 55.72% 3.84% 0.00% 0.00% 0.00% 40.45% 0.00% 19.31% 

2 5763408 53.14% 3.68% 0.00% 0.00% 0.00% 43.18% 0.00% 19.36% 

3 6126879 58.65% 3.91% 0.00% 0.00% 0.00% 37.44% 0.00% 19.29% 

4 5971749 55.56% 3.93% 0.00% 0.00% 0.00% 40.51% 0.00% 19.29% 

5 6233974 55.50% 3.91% 0.00% 0.00% 0.00% 40.58% 0.00% 19.29% 

6 6210653 57.05% 3.39% 0.00% 0.00% 0.00% 39.56% 0.00% 19.44% 

7 6029721 51.86% 4.44% 0.00% 0.00% 0.00% 43.69% 0.00% 19.14% 

8 5989292 53.76% 4.23% 0.00% 0.00% 0.00% 42.01% 0.00% 19.20% 

9 5822569 54.13% 4.29% 0.00% 0.00% 0.00% 41.58% 0.00% 19.18% 

10 5893025 55.85% 4.55% 0.00% 0.00% 0.00% 39.61% 0.00% 19.11% 

11 5868115 55.39% 3.58% 0.00% 0.00% 0.00% 41.03% 0.00% 19.38% 

12 5673602 54.06% 3.86% 0.00% 0.00% 0.00% 42.08% 0.00% 19.30% 

13 6033695 55.13% 4.44% 0.00% 0.00% 0.00% 40.42% 0.00% 19.14% 

14 5815295 54.32% 4.45% 0.00% 0.00% 0.00% 41.23% 0.00% 19.14% 

15 5630048 56.05% 4.64% 0.00% 0.00% 0.00% 39.31% 0.00% 19.08% 

16 5580796 57.13% 4.43% 0.00% 0.00% 0.00% 38.44% 0.00% 19.14% 

17 5911743 57.75% 4.14% 0.00% 0.00% 0.00% 38.11% 0.00% 19.22% 

18 5849518 58.16% 4.48% 0.00% 0.00% 0.00% 37.35% 0.00% 19.13% 

19 5845448 54.53% 4.58% 0.00% 0.00% 0.00% 40.89% 0.00% 19.10% 

20 5980038 56.45% 4.48% 0.00% 0.00% 0.00% 39.06% 0.00% 19.13% 

5923229    55.51%     4.16%      0.00%      0.00%      0.00%    40.33%      0.00%    19.22% 
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Appendix B: VBA Code 

Visual Basic Code for 
AMC Intratheater Airlift Model 
ILt N.J. Zeisler, AFIT 2000 

This code performs a heuristic to search for a maximal routing assignment 
of vehicles within a user-specified theater. 

Variable Definitions: 
Dim maxMiles, maxTons, total, shortLength, totalmilesflown As Double 
Dim Route, veh, shortest, numSelected As Integer 
Dimvehmatrix(10,10), vehmatrixa(10,10), milesleftmatrix(10,10), selectedRoutes(1000,2) As Variant 
Dim routelist(2500,20) As Variant 
Dim GlobalVector(lO), weight(7), shortVector(5), delivered(7) As Variant 
Dim even As Boolean 
This function performs a dot-product on two passed vectors. 
Function doproduct(vl, v2) 
total= 0 
Fori=lTo7 

total = (total + ((vl (i)) * (v2(i)))) 
Next i 

doproduct = total 
End Function 
Function findShortest(BDL) 
'This function selects the shortest route from a passed Bed Down Location 
'It searches from all routes in the routelist 

shortLength =100000 
shortest = 0 
a=l 
Do Until routelist(a, 0) = BDL + 10 Or a = Route 

a = a+l 
Loop 
Do While routelist(a, 0) = BDL + 10 And a < Route + 1 

If routelist(a, 5) < shortLength Then 
shortLength = routelist(a, 5) 
shortest = a 

End If 
a = a+l 

Loop 
findShortest = shortLength 
End Function 
Sub FigureBenefit(FOLS, TotCargo) 
This subroutine figures the benefit to each FOL for a tour 
'It assigns all seven benefits (one associated with each FOL) 
'to the routelist array 

For ab = 1 To 7 
For fab = 1 To 7 

If routelist(Route, ab) = fab Then 
routelist(Route, fab + 5) = (TotCargo / FOLS) 

End If 
Next fab 

Next ab 
End Sub 
Sub shift(n) 
This subroutine helps to calculate all permutations of routes 

Dim x As Variant 

x = GlobalVector(l) 
Fori=lTo(n-l) 

GlobalVector(i) = GlobalVector(i + 1) 
Nexti 
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GlobalVector(n) = x 
End Sub 
SubDefVehMatO 

' Initialize vehicle matrix: 
For ell = 1 To 10 

Forcl2 = lTolO 
vehmatrix(cll,cl2) = 0 

Next cl2 
Next ell 

' Assign vehicle matrix elements from Interface sheet 
Forr=lTo6 

vehmatrix(r, 1) = Sheets("Interface").Cells(r + 3,3) 'BDL 1 
vehmatrix(r, 2) = Sheets("Interface").Cells(r + 3,10) 'BDL 2 
vehmatrix(r, 3) = Sheets("Interface").Cells(r + 3,17) 'BDL 3 
vehmatrix(r, 4) = Sheets("Interface").Cells(r + 3,24) 'BDL 4 
vehmatrix(r, 5) = Sheets("Interface").Cells(r+ 3,31) 'BDL 5 
vehmatrixa(r, 1) = Sheets("Interface").Cells(r + 3,3) 'BDL 1 
vehmatrixa(r, 2) = Sheets("Interface").Cells(r + 3, 10) 'BDL 2 
vehmatrixa(r, 3) = Sheets("Interface").Cells(r + 3, 17) 'BDL 3 
vehmatrixa(r, 4) = Sheets("Interface").Cells(r + 3,24) BDL 4 
vehmatrixa(r, 5) = Sheets("Interface").Cells(r + 3, 31) BDL 5 

Nextr 

' Add in vehicle properties 
For s = 2 To 6 

vehmatrix(s, 6) = Sheets("Interface").Cells(s + 3, 38) 'Veh max dist 
vehmatrix(s, 7) = Sheets("Interface").Cells(s + 3,45) 'Veh max load 

Nexts 

' Define Miles Left Matrix 
Forr = 2To6 

For s = 1 To 5 
milesleftmatrix(r, s) = vehmatrix(r, 6) 

Nexts 
Nextr 
End Sub 
Function FigureDist(PossRoute) 
Dim dist As Double 

distMatrix = Sheets("DISTANCE").Range("B2:P16") 

test = True 
dist = 0 
k = 0 

While test = True 

k = k+l 
dist = dist + distMatrix(PossRoute(k -1), PossRoute(k)) 
If PossRoute(k + 1) = 0 Then test = False 

Wend 

' Add the distance back to the origin. 
dist = dist + distMatrix(PossRoute(k), PossRoute(0)) 
FigureDist = dist 

End Function 
Sub nicholas(x) 

' Declare variables: 
Dim Index(lO) As Variant 'Specific Considered Route 
Dim presentDist, TourLength As Double 

' Get Distance Matrix from Distance Sheet 
distMatrix = Sheets("DISTANCE").Range("B2:P16") 
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' Set bed down location as "zero" element of route 
Index(O) = x 

' Initialize vectors 
For i = 1 To 9 

Index(i) = 0 
GlobalVector(i) = 0 

Nexti 

' One FOL tours: 
bob = 0.85 * maxTons 
For i = 1 To 7 

Index(l) = i 
TourLength = FigureDist(Index) 
If TourLength < maxMiles Then 

Route = Route + 1 
Forr = 0Tol 

routelist(Route, r) = Ihdex(r) 
Nextr 
routelist(Route, 5) = TourLength 
FigureBenefit 1, bob 
routelist(Route, 13) = veh 
routelist(Route, 15) = Route 

End If 
Nexti 

' Two FOL tours: 
If Sheets("Interface").Cells(28, 11) > 1 Then 
bob = 0.9 * maxTons 
For i = 1 To 7 

Index(l) = i 
ForJ = (i + l)To7 

Index(2) = J 
TourLength = FigureDist(Index) 
If TourLength < (maxMiles - 100) Then 

Route = Route + 1 
Forr = 0To2 

routelist(Route, r) = Index(r) 
Nextr 
routelist(Route, 5) = TourLength 
FigureBenefit 2, bob 
routelist(Route, 13) = veh 
routelist(Route, 15) = Route 

End If 
NextJ 

Nexti 
End If 

'Three FOL tours: 
If Sheets("Interface").Cells(28, 11) > 2 Then 
bob = 0.95 * maxTons 
For i = 1 To 5 

ForJ = (i+l)To6 
Fork = (J+l)To7 

'abc 
GlobalVector(O) = x 
GlobalVector(l) = i 
GlobalVector(2) = J 
GlobalVector(3) = k 
GlobalVector(4) = 0 
TourLength = FigureDist(GlobalVector) 
presentDist = TourLength 
Forw = 0To9 

Ihdex(w) = GlobalVector(w) 
Nextw 
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'Shift this tour 
For v = 1 To 2 

shift (3) 
TourLength = FigureDist(GlobalVector) 
If TourLength < presentDist Then 

presentDist = TourLength 
For w = 0 To 9 

Ihdex(w) = GlobalVector(w) 
Next w 

End If 
Next v 

'acb 
GlobalVector(O) = x 
GlobalVector(l) = i 
GlobalVector(2) = k 
GlobalVector(3) = J 
GlobalVector(4) = 0 
TourLength = FigureDist(GlobalVector) 
If TourLength < presentDist Then 

presentDist = TourLength 
Forw = 0To9 

Index(w) = GlobalVector(w) 
Nextw 

End If 

'Shift this tour 
For v = 1 To 2 

shift (3) 
TourLength = FigureDist(GlobalVector) 
If TourLength < presentDist Then 

presentDist = TourLength 
Forw = 0To9 

Index(w) = GlobalVector(w) 
Nextw 

End If 
Next v 
If TourLength < (maxMiles - 200) Then 

Route = Route + 1 
Forr = 0To3 

routelist(Route, r) = Index(r) 
Next r 
routelist(Route, 5) = TourLength 
FigureBenefit 3, bob 
routelist(Route, 13) = veh 
routelist(Route, 15) = Route 

End If 
Nextk 

NextJ 
Nexti 
End If 

'Four FOL tours: 
If Sheets("Interface").Cells(28, 11)> 3 Then 
bob = maxTons 
Fori=lTo4 

ForJ = (i + l)To5 
Fork = (J+l)To6 

Forl = (k + l)To7 
'abed 
GlobalVector(0) = x 
GlobalVector(l) = i 
GlobalVector(2) = J 
GlobalVector(3) = k 
GlobalVector(4) = 1 
GlobalVector(5) = 0 
TourLength = FigureDist(GlobalVector) 
presentDist = TourLength 
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Forw=0To9 
Index(w) = GlobalVector(w) 

Nextw 

' Shift this tour 
Forv=l To3 

shift (4) 
TourLength = FigureDist(GlobalVector) 
If TourLength < presentDist Then 

presentDist = TourLength 
Forw = 0To9 

lndex(w) = GlobalVector(w) 
Nextw 

End If 
Next v 

'acbd 
GlobalVector(0) = x 
GlobalVector(l) = i 
GlobalVector(2) = k 
GlobalVector(3) = J 
GlobalVector(4) = 1 
GlobalVector(5) = 0 
TourLength = FigureDist(GlobalVector) 

If TourLength < presentDist Then 
presentDist = TourLength 
Forw = 0To9 

Index(w) = GlobalVector(w) 
Nextw 

End If 

'Shift this tour 
For v = 1 To 3 

shift (4) 
TourLength = FigureDist(GlobalVector) 
If TourLength < presentDist Then 

presentDist = TourLength 
Forw = 0To9 

Index(w) = GlobalVector(w) 
Nextw 

End If 
Next v 

'abdc 
GlobalVector(0) = x 
GlobalVector(l) = i 
GlobalVector(2) = J 
GlobalVector(3) = l 
GlobalVector(4) = k 
GlobalVector(5) = 0 
TourLength = FigureDist(GlobalVector) 
If TourLength < presentDist Then 

presentDist = TourLength 
Forw = 0To9 

Index(w) = GlobalVector(w) 
Nextw 

End If 

' Shift this tour 
Forv=lTo3 

shift (4) 
TourLength = FigureDist(GlobalVector) 
If TourLength < presentDist Then 

presentDist = TourLength 
Forw = 0To9 

Index(w) = GlobalVector(w) 
Nextw 

End If 
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Next v 
If TourLength < (maxMiles - 300) Then 

Route = Route + 1 
Forr = 0To4 

routelist(Route, r) = Index(r) 
Nextr 
routelist(Route, 5) = TourLength 
FigureBenefit 4, bob 
routelist(Route, 13) = veh 
routelist(Route, 15) = Route 

End If 
Nextl 

Nextk 
NextJ 

Next i 
End If 
End Sub 
Sub FigureAllBenefitsO 
Dim eachFOL(7), ones(7) As Variant 
Dim RouteBenefit As Double 
'This subroutine applies the doproduct function to figure the actual 
'benefit for each route based on the total amount of cargo delivered 
'to each FOL so far. 

Forv=lTo7 
ones(v) = 1 

Nextv 

For i = 1 To Route 
RouteBenefit = 0 
ForJ=lTo7 

eachFOLCJ) = routelist(i, J + 5) 
NextJ 

If even = True Then 
RouteBenefit = doproduct(eachFOL, weight) 

Else 
RouteBenefit = doproduct(eachFOL, ones) 

End If 
cost = routelist(i, 5) 
routelist(i, 14) = RouteBenefit / cost 

Next i 
End Sub 
Sub GetRoutesO 

' Start with weights of one 
For i = 1 To 7 

weight(i) = 1 
Nexti 

' Initialize variables 
Route = 0 
veh = 0 
maxMiles = 0 
maxTons = 0 

' Initialize route list 
For i = 0 To 2500 

ForJ = 0To5 
routelist(i, J) = Null 

NextJ 
Fork = 6Tol2 

route!ist(i, k) = 0 
Nextk 

Nexti 

' Get vehicle matrix from Interface sheet 
DefVehMat 
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' Define Route List: 
ForBDL=lTo5 

If vehmatrix(l, BDL) o "" Then 
veh = 0 
For acType = 1 To 5 
veh = acType 

If vehmatrix(acType + 1, BDL) o 0 Then 
maxMiles = vehmatrix(acType +1,6) 
maxTons = vehmatrix(acType + 1,7) 
nicholas(BDL+10) 

End If 
Next acType 

End If 
Next BDL 
For i = 1 To 5 

shortVector(i) = findShortest(i) 
Next i 

Figure AllBenefits 

End Sub ; 

Function CheckFeas(rNura) 
'This function checks the feasibility of a route. 
'This feasibility is determined by the existence of vehicles of the type in 
'question as well as (if there are vehicles) the amount of miles left available 
'to that vehicle at the bed down location in question. 

feas = True 
ac = routelist(rNum, 13) 
place = routelist(rNum, 0) -10 
routelength = routelist(rNum, 5) 
If vehmatrix(ac + 1, place) = 0 Then feas = False Else 
If routelength >= milesleftmatrix(ac + 1, place) Then feas = False 
CheckFeas = feas 
End Function 
Sub PickBestO 
'This subroutine selects the best beneift out of all of those that are feasible. 

HighestBenefit = 0 
pick = 0 
Fora=l To Route 

If routelist(a, 14) > HighestBenefit Then 
check = CheckFeas(a) 
If check = True Then 

pick = a 
HighestBenefit = routelist(pick, 14) 

End If 
End If 

Next a 
numSelected = numSelected + 1 
totalmilesflown = totalmilesflown + routelist(pick, 5) 
selectedRoutes(numSelected, 1) = pick 
vehicletype = routelist(pick, 13) 
vehicleplace = routelist(pick, 0) -10 
selectedRoutes(numSelected, 2) = (1 - vehmatrix(vehicletype + 1, vehicleplace) + vehmatrixa(vehicletype + 1, 

vehicleplace)) 
reFigure (pick) 
End Sub 
Sub reFigure(chosen) 
'This subroutine refigures the benefits of all routes based on the 
'amount of cargo delivered so far to each FOL. 

For i = 1 To 7 
delivered® = delivered(i) + routelist(chosen, i + 5) 

Next i 

vehicle = routelist(chosen, 13) 
place = routelist(chosen, 0) -10 
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thistourlength = routelist(chosen, 5) 

' Update milesleftmatrix 
milesleftmatrix(vehicle + 1, place) = milesleftmatrix(vehicle + 1, place) - thistourlength 

' Check to see if this leaves too few miles for this vehicle 
If milesleftmatrix(vehicle + 1, place) < shortVector(place) Then 

vehmatrix(vehicle + 1, place) = vehmatrix(vehicle + 1, place) -1 
milesleftmatrix(vehicle + 1, place) = vehmatrix( vehicle +1,6) 

End If 

' Update weight vector 
For i = 1 To 7 

weight© = (1 / (Exp(delivered(i) / 100000))) 
Nexti 

' Refigure benefits 
FigureAllBenefits 
End Sub 
Function anyvehiclesleftO 
Dim totalsum As Integer 

' Check to see if we should go on 
' I.e., if there are any vehicles left 
totalsum = 0 
For ii = 1 To 5 

For jj = 1 To 5 
totalsum = totalsum + vehmatrix(ii + 1, J) 

Nextjj 
Next ii 
If totalsum = 0 Then 

anyvehiclesleft = False 
End If 
End Function 
Sub superSubO 

ow = Time 

' Initialize values and vectors 
numSelected = 0 
totalmilesflown = 0 
For i = 1 To 7 

delivered(i) = 0 
Nexti 
ForJ=lTol000 

Forv=lTo2 
selectedRoutes(J, v) = 0 

Next v 
Next J 

'Check if user wants to use the evening constraints 
If Sheets("Interface").Cells(29) 11) = "y" Or Sheets("Interface").Cells(29,11) = "Y" Then 
even = True 
Else: even = False 
End If 

' Figure Routes 
GetRoutes 

' Select Routes while there are vehicles left 
Do 

PickBest 
totalsum = 0 
For ii = 1 To 5 

For jj = 1 To 5 
totalsum = totalsum + vehmatrix(ii + 1, jj) 

Nextjj 
Next ii 
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Loop While totalsum > 0 

ow = Time - ow 
clear All 
displayResults 

Sheets("Interface").Cells(l, l) = ow 

End Sub 
Sub displayResultsO 

'Display amount delivered to each FOL 
Ford=lTo7 

Sheets("Interface").Cells(34, ((d -1) * 7 + 2)) = delivered(d) 
Nextd 

'Display total miles flown: 
Sheets("lnterface").Cells(18, 6) = totalmilesflown 

'Display selected routes 
If Sheets("Interface").Cells(26, 11) = "y" Or Sheets("Interface").Cells(26,11) = "Y" Then 

displaySelectedRoutes 
End If 

'Display all routes 
If Sheets("Interface").Cells(27, 11) = "y" Or Sheets("Interface").Cells(27, 11) = "Y" Then 

displayAHRoutes 
End If 

'Display selected routes by bed down location and order them 
If Sheets("Interface").Cells(25, 11) = "y" Or Sheets("Interface").Cells(25,11) = "Y" Then 

displayByBDL 
End If 

End Sub 
Sub displayAHRoutesO 
ClearRoutesPage 
For i = 1 To Route 

Forq = 0Tol9 
Sheets("Routes").Cells(i + 1, q + 1) = routelist(i, q) 

Nextq 
Nexti 
End Sub 
Sub displayByBDLO 

ClearBedDownLocationsPages 
For i = 1 To numSelected 

fromselected = selectedRoutes(i, 1) 
vehnumber = selectedRoutes(i, 2) 
If routelist(fromselected, 0) = 11 Then 

hrow = hrow + 1 
Sheets("BDL 1, 2, &3").Cells(hrow+ 1, l) = routelist(fromselected, 13) 
ForJ=lTo4 

Sheets("BDL 1, 2, & 3").Cells(hrow + 1, J + 2) = routelist(fromselected, J) 
NextJ 
Sheets("BDL 1, 2, & 3").Cells(hrow +1,7) = routelist(fromselected, 5) 
Sheets("BDL 1, 2, & 3").Cells(hrow +1,2) = vehnumber 

End If 
Nexti 
hrow = 0 
For k = 1 To numSelected 

fromselected = selectedRoutes(k, 1) 
vehnumber = selectedRoutes(k, 2) 
If routelist(fromselected, 0) = 12 Then 

hrow = hrow + 1 
Sheets("BDL 1, 2, & 3").Cells(hrow+ 1,9) = routelist(fromselected, 13) 
Forl = lTo4 
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Sheets("BDL 1,2, & 3").Cells(hrow +1,1 + 10) = routelist(fromselected, 1) 
Nextl 
Sheets("BDL 1, 2, & 3").Cells(hrow +1,15) = routelist(fromselected, 5) 
Sheets("BDL 1,2, & 3").Cells(hrow +1,10) = vehnumber 

End If 
Nextk 
hrow = 0 
For ra = 1 To nuraSelected 

fromselected = selectedRoutes(m, 1) 
vehnumber = selectedRoutes(m, 2) 
If routelist(fromselected, 0) = 13 Then 

hrow = hrow + 1 
Sheets("BDL 1,2, & 3").Cells(hrow +1,17) = routelist(fromselected, 13) 
Forn=lTo4 

Sheets("BDL 1,2, & 3").Cells(hrow + 1, n + 18) = routelist(froraselected, n) 
Nextn 
Sheets("BDL 1, 2, & 3").Cells(hrow + 1,23) = routelist(fromselected, 5) 
Sheets("BDL 1,2, & 3").Cells(hrow + 1,18) = vehnumber 

End If 
Nextm 
hrow = 0 
For i = 1 To numSelected 

fromselected = selectedRoutes(i, 1) 
vehnumber = selectedRoutes(i, 2) 
If routelist(fromselected, 0) = 14 Then 

hrow = hrow + 1 
Sheets("BDL 4 & 5").Cells(hrow +1,1) = routelist(fromselected, 13) 
ForJ=lTo4 

Sheets("BDL 4 & 5").Cells(hrow + 1, J + 2) = routelist(fromselected, J) 
NextJ 
Sheets("BDL 4 & 5").Cells(hrow +1,7) = routelist(fromselected, 5) 
Sheets("BDL 4 & 5").Cells(hrow +1,2) = vehnumber 

End If 
Next i 
hrow = 0 
For k = 1 To numSelected 

fromselected = selectedRoutes(k, 1) 
vehnumber = selectedRoutes(k, 2) 
If routelist(fromselected, 0) = 15 Then 

hrow = hrow + 1 
Sheets("BDL 4 & 5").Cells(hrow +1,9) = routelist(fromselected, 13) 
Forl=lTo4 

Sheets("BDL 4 & 5").Cells(hrow +1,1+10) = routelist(fromselected, 1) 
Nextl 
SheetsfBDL 4 & 5").Cells(hrow +1,15) = routelist(fromselected, 5) 
Sheetsf'BDL 4 & 5").Cells(hrow +1,10) = vehnumber 

End If 
Nextk 
OrderRouteDisplay 
End Sub 

Sub displaySelectedRoutesO 
ClearChosenRoutesPage 
For howbout = 1 To numSelected 

thisroute = selectedRoutes(howbout, 1) 
Fortem = 0To20 

Sheets("Selected Routes").Cells(howbout + 1, tem + 1) = routelist(thisroute, tern) 
Next tem 

Next howbout 
End Sub 

Sub ClearlnterfacePageO 
Sheets("Interface").Cells(18, 6) = 0 
Fori=lTo7 

Sheets("Interface").Cells(34, 7 * (i -1) + 2) = 0 
Next i 
End Sub 
Sub ClearBedDownLocationsPagesO 
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Sheets("BDL 1, 2, & 3").Range("A2:G1000").Clear 
Sheets("BDL 1, 2, & 3").Range("I2:O1000").Clear 
Sheets("BDL 1, 2, & 3").Range("Q2:W1000").Clear 
Sheets("BDL 4 & 5").Range("A2:G1000").Clear 
Sheets("BDL4 & 5").Range("I2:O1000").Clear 
End Sub 
Sub ClearChosenRoutesPageO 
Sheets("SelectedRoutes").Range("A2:P2500").Clear 
End Sub 
Sub ClearRoutesPageO 
Sheets("Routes").Range("A2:P2500").Clear 
End Sub 
Sub OrderRouteDisplayO 
'This subroutine reorders the display of the routes chosen by bed down location 

Sheets("BDL 1,2, & 3").Select 
Columns("A:G").Select 
Selection.Sort Keyl :=Range("A2"), Orderl -xlAscending, Key2:=Range("B2") _ 

, Order2:=xlAscending, Key3:=Range("C2"), Order3:=xlAscending, Header— 
xlGuess, OrderCustom:=l, MatchCase:=False, Orientation:=xlTopToBottom 

Columns("I:0").Select 
SelectioaSort Keyl :=Range("I2"), Orderl :=xlAscending, Key2:=Range("J2") _ 

, Order2:=xlAscending, Key3:=Range("K2"), Order3:=xlAscending, Header— 
xlGuess, OrderCustom—1, MatchCase—False, Orientation—xlTopToBottom 

Colurnns("Q:W").Select 
SelectioaSort Keyl :=Range("Q2"), Orderl :=xlAscending, Key2:=Range("R2") _ 

, Order2:=xlAscending, Key3:=Range("S2"), Order3 —xlAscending, Header— 
xlGuess, OrderCustom—1, MatchCase:=False, Orientation:=xlTopToBottom 

Range("A2").Select 
Sheets("BDL 4 & 5").Select 
CoIumns("A:G").Select 
SelectioaSort Keyl :=Range("A2"), Orderl -xlAscending, Key2:=Range("B2") _ 

, Order2~xlAscending, Key3:=Range("C2"), Order3 —xlAscending, Header:= 
xlGuess, OrderCustom:=l, MatchCase:=False, Orientation:=xlTopToBottom 

Columns ("I:0").Select 
Selection.Sort Keyl :=Range("I2"), Orderl :=xlAscending, Key2:=Range("J2") _ 

, Order2:=xlAscending, Key3:=Range("K2"), Order3:=xlAscending, Header— 
xlGuess, OrderCustom—1, MatchCase—False, Orientation—xlTopToBottom 

Range("A2").Select 
Sheets("Interface").Select 

End Sub 

Sub clearAHO 
ClearRoutesPage 
ClearlnterfacePage 
ClearChosenRoutesPage 
ClearBedDownLocationsPages 
End Sub 
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