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A qualia exploitation of sensor technology (QUEST) motivated architecture using algorithm fusion and adaptive feedback loops
for face recognition for hyperspectral imagery (HSI) is presented. QUEST seeks to develop a general purpose computational
intelligence system that captures the beneficial engineering aspects of qualia-based solutions. Qualia-based approaches are
constructed from subjective representations and have the ability to detect, distinguish, and characterize entities in the environment
Adaptive feedback loops are implemented that enhance performance by reducing candidate subjects in the gallery and by injecting
additional probe images during the matching process. The architecture presented provides a framework for exploring more
advanced integration strategies beyond those presented. Algorithmic results and performance improvements are presented as
spatial, spectral, and temporal effects are utilized; additionally, a Matlab-based graphical user interface (GUI) is developed to aid
processing, track performance, and to display results.

1. Introduction

Social interaction depends heavily on the amazing face
recognition capability that humans possess, especially the
innate ability to process facial information. In a myriad
of environments and views, people are able to quickly
recognize and interpret visual cues from another person’s
face. With an increasing focus on personal protection and
identity verification in public environments and during
common interactions (e.g., air travel, financial transactions,
and building access), the performance capability of the
human system is now a desired requirement of our security
and surveillance systems. Face recognition is a crucial tool
being used in current operations in Iraq and Afghanistan by
allied forces to identify and track enemies [1] and effectively
distinguish friendlies and nonenemies [2]. The human
recognition process utilizes not only spatial information but
also important spectral and temporal aspects as well.

Utilizing only visual wavelengths for computer vision
solutions has significant downsides, where features evident
to humans are too subtle for a machine to capture. Prior

research has shown deficiencies in computer vision tech-
niques compared to human or animal vision when detecting
defects in parts [4] or biometric identification [5]. By
increasing the spectral sampling to include nonvisible wave-
lengths it might be possible to detect some of these subtle
features included in the facial data. However, incorporation
and handling of features in multispectral or hyperspectral
imagery have not been fully investigated or subsequently
extended to commercial applications [6].

The design of a biometric identification system should
possess certain attributes to make it an effective operational
system. These attributes include universality, distinctiveness,
permanence, collectability, performance, acceptability, and
circumvention [7]. Unfortunately, face recognition modality
suffers from weaknesses in the areas of uniqueness, perfor-
mance, and circumvention [8]. The ability to mitigate these
weaknesses and ultimately match or exceed the recognition
capability of a human is the performance benchmark for
computer-based face recognition applications. By incorpo-
rating additional information inherently present in HSI,
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Figure 1: Spectral layer example from a CMU HSI Face [3].

the vulnerabilities of uniqueness, performance, and circum-
vention can be mitigated.

The Carnegie Mellon University (CMU) hyperspectral
imagery (HSI) face database, graciously provided by Dr.
Takeo Kanade, was used for this research [3]. Figure 1 depicts
an example of this data over several sampled wavelengths.
The utilization of HSI and the contextual information con-
tained within these image cubes provide the tools to create
a hierarchal methodology to address the challenges face
recognition systems must overcome.

In this paper, various algorithms are used to exploit the
inherent material reflectance properties in HSI to detect, seg-
ment, and identify subjects. A closed loop fusion hierarchy is
applied to a suite of facial recognition algorithms to produce
a cumulative performance improvement over traditional
methods. A GUI tool is introduced which facilitates respon-
sive operation as pictorial, numerical, and graphical results
from the various algorithms are displayed. Experimental
results are presented and recommendations for further
research are suggested.

2. Face Recognition Architecture

There are three main focus areas for this research, the
application of facial recognition algorithms to HSI, the use
of feature and decision fusion for improved results, and
adaptive feedback to re-examine and confirm the most
difficult matches. This discussion starts with a review of the
dataset to understand the dimensionality of the data and
exploitation potential.

2.1. Database Description. Hyperspectral imagery involves
collecting narrow spectral band reflectances across a con-
tiguous portion of the electromagnetic spectrum. The CMU
database images contains 65 spectral bands covering the
visible and near infrared (NIR) from 450 nm to 1100 nm
with a 50 nm spectral sampling and a spatial resolution of
640× 480 pixels [3].

By taking advantage of fundamental properties of HSI
(different materials reflect different wavelengths of light
differently), skin, hair, and background materials are rel-
atively easy to detect. The advantages of using higher
dimensional data compared to grayscale or 3-band “true”
color image includes the ability to detect skin segments since
the spectral reflectance properties are well-understood [9].
The segmented portions of the image can be used to provide
context that aids traditional face recognition algorithms.

Leveraging the signatures available through HSI, features
such as skin and hair can be detected using a straightforward
method similar to the Normalized Difference Vegetation
Index (NDVI) used in remote sensing to detect live vegeta-
tion [9]. A Normalized Differential Skin Index (NDSI) can
be computed easily through the sum and difference of key
spectral bands [9]. Applying this technique and a variety
of edge detection methods, several contextual layers of an
individual’s face can be extracted automatically from an
HSI as seen in Figure 2 [10]. For individuals attempting to
conceal or alter their appearance, it is now possible to detect
inconsistencies such as make-up and prosthetic devices due
to the differing reflectance properties [11].

Denes et al. [3] noted that the prototype camera used for
the CMU data was subject to stray light leaks and optical
imperfections as he noted that, “better face recognition
clearly requires higher definition through a more sensitive,
low noise camera or through higher levels of illumination.”
Viewed from another perspective, this noisy data provided
an ideal environment for the development of an integration
strategy for real world applications. The findings from
these previous efforts provide a foundation to construct an
intelligent hierarchy to address challenges for recognition
systems using face recognition biometric as a test bed.

The portion of the CMU database examined herein
contains images for 54 different subjects, 36 of whom sat
for two sessions on different days. This database subset
comprises our gallery and probe sets (subjects to identify
and a gallery to search). Additionally, a subset of subjects
from the gallery and probe sets were available for multiple
sessions; 3 sessions (28 subjects), 4 sessions (22 subjects), or
5 sessions (16 subjects). These additional images are used in
the adaptive feedback process to analyze the ability to inject
additional images for confirmation of a subject match.

2.2. Previous Hyperspectral Face Recognition Research. Robila
[12] investigated using both the visible and NIR wavelengths,
as he explored the utility of spectral angles for comparison.
Other research investigating NIR and visible wavelength faces
include Klare and Jain [13], who examined matching NIR
faces to visible light faces. Bourlai et al. [14] presented an
initial study of combining NIR and shortwave IR (SWIR)
faces with visible for more complete face representation, in
addition to comparing cross-spectral matching (visible to
SWIR). Kong et al. [15] delivered an overview of advantages
and disadvantages of facial recognition methods with respect
to the image wavelengths. Chou and Bajcsy [16] used
hyperspectral images and experimented with segmenting
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Figure 2: Contextual layers of a hyperspectral image: skin, hair, edges, and combined representation.

Feature
extractionSensor Matching Sensor

Figure 3: Conventional biometric system components.

different tissue types in the human hand. Elbakary et al.
[17] used the K-means clustering algorithm to segment the
skin surface in hyperspectral images and then measured the
Mahalanobis distance between signatures to match subjects.
Pan has accomplished the most extensive research utilizing
spectral signatures of skin to identify individuals [18–20]
and in a subsequent effort [21] explored the benefit of
incorporating spatial measurements at various wavelengths.
These efforts all produced valuable insight but individually
these techniques did not provide the desired performance for
this challenging data set.

2.3. Recognition Algorithms. Traditional biometric systems
are often open loop, comprised of four basic components,
sensor, feature extraction, matching, and decision making,
illustrated by the block diagram in Figure 3 [22]. However,
such systems do not typically incorporate feedback from the
feature extraction, matching, or decision making processes.

The sensor module acquires the biometric data, in this
case a hyperspectral image, from the intended subject.
The feature extraction module processes the captured data
from the sensor and extracts features for detection. The
matching module compares the extracted features against
stored features saved in memory and generates comparisons
called match scores. Match scores are comparisons made in
a multidimensional comparison space and are a measure of
distance between two images. The decision-making module

takes these scores and determines the user’s identity by
selecting the stored features (identification) associated with
the smallest match score or by evaluating the obtained match
score against a threshold for the claimed identity’s features
(verification). Feature extraction algorithms, including hair
and face detection, are considered as part of preprocessing,
while matching algorithms (Table 1 lists specific algorithms
considered) are divided into spatial, spectral, and interest
point variants; since some functions calculate scores relative
to the entire gallery, those are annotated as well.

2.3.1. Preprocessing and Feature Extraction Algorithms. The
face recognition methodology presented employed a variety
of techniques and methods to preprocess and segment data.
Many applications use images accompanied by the manually
selected coordinates of the eyes that are subsequently used
for alignment and sizing. This upfront effort can be time
consuming and assumes the involvement of human recog-
nition and participation at the onset of the process. Typical
manual preprocessing techniques [23] include selecting eyes
coordinates, geometric normalization, and masking. For
the CMU dataset and the process presented, an automated
centroid detection based on hair or skin segmentation,
face elliptical mask cropping, and or subsequent histogram
equalization was employed. Following this process, two
separate algorithms were used to locate face and hair surfaces
through NDSI [9].
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Table 1: Algorithms Examined.

Algorithm name Underlying method Recognition type Score relative to gallery

Face Eigenface Spatial recognition Yes

Hair Eigenface Spatial recognition Yes

Skin Eigenface Spatial recognition Yes

Spectral hair
Spectral angle mapping using an average hair
signature

Spectral Recognition Yes

Spectral face
Spectral angle mapping using k-means on an
average face signature

Spectral recognition Yes

Spectral face
Matching

Spectral angle mapping using an average face
signature

Spectral recognition Yes

Soft
Mahalnobis distance for face area, eccentricity,
and major and minor axes

Spatial recognition Yes

Sift SIFT using an averaged true color face image Interest point recognition No

HF Sift SIFT using a hair and face composite image
Interest point and spatial
recognition

No

Face using HF Eigenface using shape of hair and skin segments Spatial and spectral recognition Yes

Face using HF pix
Eigenface using an image comprised of hair and
skin segments only

Spatial and spectral recognition Yes

Agent i

Agent j Agent k Agent l

Context

Context Context Context

Stimuli Stimuli Stimuli

Figure 4: Agents, information, and levels of abstraction.

2.3.2. Spatial Recognition Algorithms. Following the prepro-
cessing functions, the image data is ready for recognition
algorithms. The first area explored was the spatial domain
of the hyperspectral data in the form of grayscale face
images. The skin and hair segments were subsequently fed
to supporting algorithms of increasing detail for matching.
The first and most straightforward method was to use face
measurements such as size, length, width, and eccentricity to
create a string of parameters for comparison. These images
either can be the spatial face segments, hair segments, or
combined representations.

The method used for hair and face image matching
was the eigenface method devised by Turk and Pentland
[24]. Eigenface is a holistic approach developed as an
attempt to replicate the human recognition process and
also as an alternative to many feature-based methods that
utilized specific attributes but unfortunately discarded much
of the surrounding image and contextual information. An
important aspect of this algorithm is the creation of the
comparison space or face space. In the eigenface algorithm

all probes are projected into a face space for comparison,
eigenface then computes distances between faces in a face
space of the gallery of potential candidates [24]. The
composition of the gallery’s subjects has a direct impact
on the comparison scores and quality of the matches. The
creation and dimensionality of the face space are an active
area for research [25]. In the final architecture, the gallery
will be tailored based on the progression of matches and will
play a role in the adaptive selection of matches.

2.3.3. Spectral Recognition Algorithms. In addition to spatial
recognition algorithms, spectral recognition can be consid-
ered with data that includes multiple spectral dimensions,
such as the CMU dataset. For this analysis, spectral signatures
of the hair and face segments are compared using spectral
angle comparisons [12, 26]. Following methods used by
Robila [26], spectral matching capability was evaluated using
several variations. The first and most straightforward was
by simply using a comparison of the average spectral angle.
The variability of the spectral signatures, especially at the
sensor wavelength limits, did have an effect on the overall
performance. With that in mind, several of the wavelengths
at the end of the frequency span were iteratively removed
until maximum recognition performance was achieved.

Nunez’s [9] research provided a method with NDSI
to identify skin surfaces using only two wavelengths from
hyperspectral images. The technique and reduction offered
an attractive option to a more involved clustering method.
Unfortunately, NDSI looked for two key wavelengths
1080 nm and 1580 nm in order to calculate the index. The
CMU data only spanned the spectral range from 450 nm to
1090 nm. So only one of the key wavelengths was contained
in the data, and the one wavelength included was located
at the performance boundary of the Spectropolarimetric
camera.
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With the advice from Nunez, a less effective, but suitable,
alternative was devised that used a combination of indexes
designed to highlight the unique characteristics of the spec-
tral signature of human skin and eliminate common con-
fusers. By examining the available wavelengths in the data
as well as the quality of the information, an alternative
approach was designed to sum relevant wavelengths and
create indexes similar to NDSI that exploited the spectral
characteristics of skin. Seen below.

NDSI Substitute Approach

NDSI γi = ρ̂i(1080 nm)− ρ̂i(1580 nm)
ρ̂i(1080 nm) + ρ̂i(1580 nm)

,

γV i =
∑1080 nm

j=1050 nm ρ̂i
(

j
)

∑480 nm
k=450 nm ρ̂i(k)

, γW i =
∑910 nm

j=890 nm ρ̂i
(

j
)

∑990 nm
k=970 nm ρ̂i(k)

,

γXi =
∑1080 nm

j=1060 nm ρ̂i
(

j
)

∑990 nm
k=970 nm ρ̂i(k)

, γY i =
∑620 nm

600 nm ρ̂i
(

j
)

∑560 nm
540 nm ρ̂i(k)

(1)
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is the NDSI calculation and the alternative indices. Below the
NDSI equation are four indices used to highlight the increase
in reflectivity in the NIR wavelengths versus blue wavelengths
(γV i), highlighting the characteristic water absorption dip
at 980 nm (γW i, γXi) and a final check to remove potential
plant material that can act as a confuser (γY i). By combining
these indices that indicate the possibility of skin, when the
value is greater than one, the skin segment can be identified
rather efficiently compared to K means. The most effective
implementation of this approach relied on (γXi) and (γY i)
indicators to identify skin potential pixels. All pixels in
the hyperspectral image cube that fell near the calculated
average of the potential skin pixels were deemed a skin
surface.A similar approach was used for the identification
of hair segments in the image. This time using a NDVI
calculation, (2), and then fine tuning the selected segment
using Mahalanobis distance comparison for only the red
(650 nm), green (510 nm), blue (475 nm), NIR (1000 nm)
wavelengths and the hair segments, including facial hair, was
obtained.

NDVI Calculation

NDVI γi = ρ̂i(1000 nm)− ρ̂i(650 nm)
ρ̂i(1000 nm) + ρ̂i(650 nm)

. (2)

With the unique ability to segment the skin and hair
segments of the image, it was uncomplicated to include a
centroid calculation to accomplish the task of automati-
cally centering images for identification. These adjustments
include the centering of all face images, leveling in the case
of unintended rotation of the face, and resizing the image
for a consistent scale across individuals or the population.
Once this is accomplished, the removal of background clutter

is accomplished by the application of an elliptical mask.
Unfortunately, when this is accomplished, some important
information is removed from the image including the relative
shape of the head and a good portion of the hair on top of the
head. This same approach was initially attempted but as our
processing capability matured, we found this step crude in its
application.

2.3.4. Interest Point Recognition Algorithms. Finally, the face,
hair, and combined representation are feed to Lowe’s scale
and orientation robust scale invariant feature transform
(SIFT) method to compare matching interest points or SIFT
keys [27, 28]. SIFT extracts these features or key interest
points using a difference of gaussians function. The local
minimum and maximum of this function are used to create
a feature vectors that describe the orientation and gradient
based on neighboring pixels. These features are shown to
be invariant to image scaling, translation, and rotation. To
establish baseline performance, these methods are initially
used in isolation and then used in combination to evaluate
a range of fusion strategies.

3. Adaptive Facial Recognition

3.1. Qualia Exploitation of Sensor Technology (QUEST) Moti-
vated Methodology. Ultimately, the performance and com-
putational demands of working with high-dimensional data
required a strategy that utilized only the relevant information
in a more effective method. Intelligently handling high-
dimensional biometric data involves dealing with varying
levels of abstraction, learning, adaptation, organization, and
exploiting structural relationships in the data [29].

Turning to the qualia exploitation of sensor technology
(QUEST) methodology, we attempt to develop a general-
purpose computational intelligence system that captures the
advantages of qualia-like representations [30]. Qualia can
be defined as a representation of the physical environment
or a facet included in ones intrinsically available internal
representation of the world around them [31]. It is our
goal to combine different qualia into a metarepresentation,
so sensory inputs can be integrated into a model that is
adaptable and efficiently functional and can be deliberated
repeatedly. A guiding principle of QUEST highlights the
use of qualia that map sensory input to more useful and
efficient states that complement the reflexive intuition level
of processing. The functional requirement for a QUEST
system is to possess the ability to detect, distinguish, and
characterize entities in the environment [32].

In order to build a QUEST system for our task, it is
important to develop and understand the concept of an agent
[31]. An agent takes a subset of stimuli from the environment
and processes this into relevant information. Information
is defined as the reduction of uncertainty in that agent’s
internal representation. An agent has knowledge of other
agents and of their environmental representation, akin to
a theory of mind with insight into their needs. The agent
transmits selected aspects of its information representation
to neighboring or “aligned” agents. Agents transmit stimuli
upward in higher levels of abstraction and can also transmit
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Figure 8: HSI facial recognition graphical user interface (with unity weighting).

information downward providing details and context that
can influence lower level agents (Figure 4). An entity uses
various sets of these agents and their collective knowledge to
create an internal representation of its environment.

The relevant information or context is compromised of
biometric characteristics and cues across the electromagnetic
spectrum. Rogers et al. [32] states that the concept of an
agent is to synthesize aspects of its qualia that are provided
to it by an “aligned” agent, such that an agent reduces
the uncertainty in its internal representation by processing
data into information. An agent communicates this context
to other agents that use this information to improve their
internal representation and reduce their uncertainty. Context
can only be transmitted between agents that are aligned
as each agent contains a representation of the other’s
environment. The combination of fiducial features and
higher level abstracted characteristics creates this context.
In the human recognition system, the mind stores data not
so much as sensory numbers but as relative comparisons
to prior experiences that can change over time. For a face
recognition system, the relative comparisons should serve
an equally important role in refining the solution space and
guiding the search process. The connections or links in our
fusion hierarchy provide the context of the face. There are
many links that can connect the internal and external facial
features that have proved so important in human recognition
research [33]. The links chosen can help incorporate higher
levels of abstraction such as important soft biometric [34]
cues or can be the connection between spatial and spectral
information.

Figure 5 illustrates the links and various identification
algorithms employed in our HSI face recognition system.
The concept in Figure 5 can be considered as an extension of
the general face recognition concept from Figure 3 to incor-
porate multiple feature extractions, matching algorithms
with a fusion decided identity declaration. A combination
of score and rank fusion strategies will be evaluated to
obtain the best method to synthesize the results of the agent
information.

3.2. Fusion Hierarchy. From the field of automatic target
recognition, Ando [35] provides a useful hierarchy for

processing the hyperspectral face images. At the lowest
level, processing includes smoothing and segmenting the
image. During mid-level processing, cues such as shading,
texture, reflectance, and illumination are integrated. Lastly,
high-level processing integrates information that is invariant
across different viewpoints for final identification. Using
this guide, the initial face recognition hierarchy could
be achieved though incrementally applying segmentation,
processing, and identification steps. However, a more effi-
cient means involve parallel processing and score fusion
of the segmentation, processing, and identification steps,
utilizing not only information from the spatial dimension
of the image but spectral elements to help assist in the
tasks of segmenting, processing, and identification. Figure 6
illustrates the combined and incremental approach, wherein
the algorithmic scores are normalized and then fused across
algorithms applied through score fusion.

The straightforward fusion approach presented in
Figure 6 did not provide the desired performance during ini-
tial testing. Subsequent adjustments, such as the implemen-
tation of feedback loops would eventually prove necessary,
but the general approach of progressing from easily pro-
cessed general characteristics to more specific and more com-
putationally intensive characteristics would remain apparent
through design of the final processing architecture.

3.3. Adaptive Feedback. As alluded to earlier, algorithms
used herein, such as the eigenface algorithm, derive scores
for a set of faces that remain constant within a static
comparison space derived from the gallery of candidates for
a situation. Our implementation of the eigenface method
counter balances this consistency with an adaptive training
set wherein identified poor matches are removed. Eigenface
is then rerun with a different training set, resulting in a
different set of eigenfaces (principal components of the set
of faces) for the next iteration. Additionally, for score fusion,
each set of algorithmic scores must be normalized so the
set of algorithms employ consistent and fusible scales. The
adaptive feedback strategy employed leverages the changing
eigenface space and the normalized scores passed to the
fusion algorithms, tailored during the matching process by
removing the lowest scoring subjects.
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Figure 9: Testing results of select algorithms on CMU database.
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Figure 10: Cumulative match score results including score fusion for eigenface methods: whole gallery and reduced gallery.
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Figure 11: Cumulative match score results including score fusion for eigenface, spectral, and spatial recognition: whole gallery and reduced
gallery.

To incorporate the ability to make relative comparisons
over time, adaptive feedback loops were added to the
established facial recognition hierarchy (Figure 3), but within
the adaptive fusion framework this approach is depicted in
Figure 7. Closed loop systems compare the measurement of
the feedback with the desired output [36]. By incorporating
feedback of decision making results, refining the decision-
making accuracy is possible.

For the biometric system presented, there are two feed-
back loops. The first feedback loop is included to examine
the improvement potential of changing the dimensionality
of the candidate gallery, thus changing the relative scores

of some algorithms. This procedure involves reducing the
gallery size by removing the lowest scoring subjects. This
process is applied only for subject matching scores that fall
below a user-specified threshold. The second feedback loop
incorporates multi-look functionality, adding the capability
to test additional probe images if and when they become
available. This facet represents a temporal dimension that
comes with multiple probe images or with hyperspectral
video that obtains a series of face images over time.

Both feedback loops can be active or applied individually.
Finally, there are several control variables for the selection
and weighting of the agents used in the fusion process.
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Figure 12: Cumulative match score results including score fusion.

Research by Chawla and Bowye [25] and Kuncheva [37] has
highlighted the importance of randomness and diversity in
the creation of classifier ensembles, so the controlled and
random selection of these active agents is a current area of
research.

At any stage of the hierarchy presented earlier in Figure 6,
a Libet level answer similar to intuition is created and is
integrated at the higher or metarepresentation levels of the
hierarchy. The incorporation of qualia occurs as deliberation

is made over the combined evidence from prior agents. The
qualia-based Cartesian theater that is created through the
fusion representation provides an engineering advantage in
the confidence assessment.

4. Graphical User Interface Tool

To facilitate interpretation of data analysis and assist with
the visualization of results, a Matlab-based GUI tool was
designed to operate and test the facial recognition software.
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The GUI tool, pictured in Figure 8, is a direct parallel to
the architecture presented in Figure 7. A user can select
the active agents, enable feedback loops, and select from
either a score or rank fusion approach while simultaneously
analyzing results.

The GUI displays the probe to be matched and the best
current match is directly opposite. Below these displays, the
top ten matches are displayed in thumbnail depiction along
with their relative rankings and scores. Viewing the results
of each algorithm is permitted by selecting the algorithm
of interest in the “Results to Display” drop down menu. If
feedback loops are employed, a user can select which result
set to view, accompanied by the dimensionality of the gallery,
in the “Gallery Set Results to View” menu. The pictorial
results can be viewed in either grayscale or color images.

A box plot is displayed for each probe under consid-
eration to provide continuous score distribution feedback
when viewing results for each face and method. Additionally,
gallery matches for each probe are scrollable to enable the
visual evaluation of results for the entire score distribution.
To review the quantitative results, the user can choose
from cumulative match score plots, box plots, or histogram
depiction of the relative scores and statistics.

For processing purposes, Matlab’s multiple processor
pooling was employed on a dual quad core computer with
16 GB of RAM. The processing requirements of the hyper-
spectral data along with the chosen methods benefit from the
use of parallel processing. However, for computational ease,
an additional utility tool allows the user to view saved results
of any prior run by simply loading a results file. This file will
display the algorithms used, type of feedback loops used, and
weighting schemes and permit a user to view all results and
face matches. The user is notified if the selected computer
can support running the complete suite of software tools by
viewing the status bar.

5. Performance Assessment

5.1. Algorithm and Fusion Performance. During the initial
testing of the CMU data, many of the same algorithms
were utilized from previous HSI research [12, 17, 18, 21].

The results confirmed some of the challenges present in
the CMU data. The difference being the quality between
the CMU data and the grayscale AT & T data [37] or
the more recent CAL HSI data [18] obtained with more
modern equipment. Although the performance level of these
algorithms were not replicated, the value of the various
techniques is not diminished. A comparison of the previously
published performance versus that obtained through our
initial testing is shown in Figure 9, to establish a preliminary
performance threshold.

Data processing starts with common but now automated
preprocessing step, followed by the extraction of basic face
features and then a matching step where face features and
characteristics are compared for subject matching. Average
computation time for the preprocessing of each face is
14 seconds. Face matching algorithms take an additional
average of 13 seconds to process each face against the
gallery of 36 subjects for an algorithm suite consisting of
6 algorithms including SIFT, eigenface, various geometric
comparisons, and NDSI. Processing time can vary depending
on the number of algorithms or agents activated by the user.

Findings from this initial round of testing reinforce the
need for a fusion framework that combines complimentary
aspects of these algorithms to enhance the performance
capability regardless of data quality or environmental setting.
Taking into account the processing time of some algo-
rithms, a method to accomplish effective data reduction
and processing should also be considered to reduce overall
computational time. The next section will briefly describe the
results of integrating the separate algorithms into a hierarchy
for a robust face recognition system.

5.2. QUEST Hierarchy Results and Findings. A combination
of score and rank fusion strategies were tested with the
most effective being a weighted score fusion strategy, wherein
the overall matching score is a combination of weighted
individual matching scores. Figure 10 illustrates a cumulative
match score result using three eigenface-based methods
(“hair,” “face,” and “skin”) and unity weighting; the right-
hand figure illustrates the changes to the comparison space
through dropping the two lowest performing faces from
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the gallery and reexamining only the lowest scoring half of
the probe set. The cumulative match score plots depict the
number of correct matches for the rank along the horizontal
access. The scores of “1” in the following figures indicate the
ability to correctly identify all images during the first attempt.
These figures should not be confused with ROC curves or a
summation of match scores.

Figure 10 displays score fusion improving the cumulative
results over any one method. The reduced gallery included
15 probes to identify against a gallery of 34. Of particular
interest is the rank at which the fused results reach 1
indicating that through the reduced gallery method; all
subjects are identified within 30 matches improving over 31
matches for the full gallery.

Figure 11 incorporates spectral and spatial recognition
to the algorithms presented in Figure 10, the improvement
is seen through reaching a cumulative match of “1” by 24
matches. The reduced scores converge to “1” slower than
the full gallery (26 versus 24 matches); however this is for
a gallery space of the 17 most difficult subjects to identify for
this algorithm set. Both results show a distinct improvement
over fusion for only the eigenface method in Figure 10.

Continuing the fusion methodology to incorporate inter-
est point matching produces Figure 12, which depicts cumu-
lative match score results obtained using unity weighting
for all agents compared to double weighting for the SIFT
algorithms using either 6 agents or 7 agents. While the
SIFT algorithm contributes a majority of the contribution,
it is only through the inclusion of other identification
methodologies, and inherent segmentation capability, that
the overall identification accuracy is increased to 100%.

Enhancing this fusion strategy with the addition of
the adaptive gallery feedback loop and the multi-look
functionality allows us to continually process the results until
a chosen threshold or confidence level is achieved. Figure 13
depicts an example, using the “6 Agent” framework with
unity weighting from Figure 12, where the poorest scoring
match distribution is shown after initial matching and then
after four feedback repetitions, during which the gallery
size was reduced by 10 percent, and a new probe image
was injected each time. Through this repetitive process,
matches with the lowest matching scores are rechecked as
poor candidates are removed from the gallery, and additional
probe images are inserted into the process to confirm the
correct identification.

6. Conclusion

Even with the distinctiveness that comes with every human
being, no single metric or feature has demonstrated the
ability to identify all individuals in both controlled and
uncontrolled environments across large populations using a
single modality. This challenge frequently leads to solutions
that incorporate multiple modalities that require close prox-
imity and permission that accompany the selected biometrics
not to mention the additional equipment and complexity. An
alternative to this challenge may be to fuse contextual or
complimentary spatial, spectral, and temporal information
in an efficient architecture that enhances effectiveness and

efficiency. The use of hyperspectral imagery and a fusion
hierarchy similar to the one presented in this paper offers
many opportunities for the improvement of current face
recognition systems and can be applied to a wider array of
object recognition problems.
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