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Abstract 

Modern fighter designs have been associated with lateral self-excited oscillations known as 

"Wing Rock". Simulations of wing rock by flow visualization utilities have been encouraged to 

develop a complete understanding of the fluid mechanism that drives the motion as well as for 

prediction purposes. Previous wind/water tunnel simulations have been limited to a single degree- 

of-freedom (DoF) in roll. Numerical simulations utilizing computational fluid dynamics (CFD) 

have also been limited to a single DoF in roll and applied to simple flying delta-wing 

configurations. The loss of simulation accuracy due to reducing the actual wing rock six DoF to a 

single roll-only DoF has not as yet been fully investigated. In this study, for the first time, wing 

rock is computationally simulated in three DoF: roll, sideslip, and vertical motion to study the 

effect of adding the sideslip and vertical motion. The results are for a generic fighter model 

consisting of a fore-body, a cropped delta wing, and a vertical fin. The effect of including the 

vertical fin is also studied. 

Computational simulation of wing rock in three DoF for a full generic fighter model is a 

multidisciplinary problem involving grid generation (which requires the utilization of the multi- 

overset mesh technique), aerodynamics, and rigid-body dynamics. The coupling of the flow 

governing equations and the rigid-body dynamics equations has been done utilizing an innovative 

sub-iterative scheme that works on the coupled set of equations. The advantage of implementing 

this sub-iterative scheme is to reduce the inherent time lag between the solutions of the 

aerodynamics and rigid-body dynamics. 

The interaction of aerodynamics and rigid-body dynamics during a single DoF wing rock for 

the wing-body configuration has been studied via snap shots of a cross-plane stagnation pressure 

distribution and tracing the instantaneous locations of vortex burst for an entire cycle of wing 

xv 



rock. An innovative explanation of the fluid mechanism that drives and sustains the motion has 

been introduced. 

The effect of adding the sideslip and vertical motion DoF to the simulations of the wing- 

body configuration was found to delay the onset and to reduce the amplitude of wing rock by 

about 50% with surprisingly no change in frequency. In an effort to correlate the variation of the 

rolling moment coefficient with the associated sideslip for a full cycle of wing rock, a pseudo 

dihedral derivative was found to have a clearly stable mean value (-0.0591 rad" ). 

The wing rock simulation in three DoF was repeated for the full generic fighter model with 

the fin included. The aerodynamic effect of the fin was found to significantly delay the vortex 

burst on the upper surface of the wing. The net effect of the fin was found to augment the 

damping of the oscillations with significant increase in frequency. 
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SIMULATION AND ANALYSIS OF WING ROCK PHYSICS 

FOR A GENERIC FIGHTER MODEL WITH 

THREE DEGREES-OF-FREEDOM 

Chapter 1- Introduction and Background 

1.1 Introduction 

Present-day fighters are tailored specifically to operate at high speeds and high angles of 

attack to meet the demands for air superiority. A configuration consisting of thin, low aspect 

ratio, highly swept-back or delta wing and a long slender fuselage has been adopted in most 

modern fighters. Also, aerodynamic features and control systems have been devised to provide a 

significant increase in the operational angle of attack range. The employing of these modern 

configurations led to a high reduction in drag, especially in the transonic and supersonic regions, 

and consequently a considerable increase of the maximum attainable speeds. The concentration of 

mass around the longitudinal axis has significantly reduced the rolling-axis moment of inertia, 

and thus augmented the maximum attainable roll rates. Two key-elements of air superiority, 

speed and maneuverability, have been dramatically improved in these modern configurations. 

However, on the downside, the low-speed aerodynamic characteristics have generally 

deteriorated. Flying these configurations at low speeds requires relatively high values of angle of 

attack, which promotes a typical three-dimensional vortical flow. Highly swept-back or delta 

wing configurations are known to have stronger directional stability compared with its lateral one. 

This reduction in lateral stability together with the reduction in the rolling inertia increases the 

susceptibility of modern configurations to rock under any lateral perturbations. Once a lateral 
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perturbation is triggered, the vortical flow starts to interact with the body leading to oscillations, 

primarily in roll, that vary in nature according to the value of angle of attack. At low angles of 

attack the resulting oscillations are damped, but at higher angles of attack the damping is reduced 

and a limit cycle may be reached. The limit cycle condition is commonly referred to as "Wing 

Rock", which has been investigated through intensive research in the past two decades. 

Lateral position precision is of prime importance for handling quality assurance of a 

modern fighter, and thus it's rating. Target tracking (Roll-and-Hold), air refueling (receiver), and 

landing in a crosswind condition are examples of maneuvers where stable lateral position control 

is vital. For example, in the takeoff/landing of the F-14A, at 28-deg angle of attack, the stall is 

characterized by divergent wing rock that can reach 90 degrees within 6 seconds if the stick is 

held back [2:876]. Moreover, high-frequency wing rock can lead to a phenomenon known as 

"Pilot-Induced Oscillations" or PIO, if the pilot's response to control (or suppress) the oscillations 

is slower than the motion. 

One of the research interests in the area of wing rock is simulation, which provides useful 

information in the preliminary design phases about limit cycle characteristics and the onset angle 

of attack. Moreover, simulation can be used in the analysis and study of the physical mechanism 

that drives the motion. Simulations of wing rock began experimentally in wind/water tunnels for 

a simple delta wing [24,31,43] with a single degree-of-freedom (DoF) in roll and later were 

extended to full-fighter models with a single DoF [4,42]. With the computer revolution of the 

80 s, numerical simulations of wing rock have been encouraged. Computational simulations have 

been shown to provide results that agree well with experimental data. The developments in the 

computational resources have led to considerable improvements in the accuracy of the 

computational simulations. Generally though, computational simulations have been limited to 

delta-wing configurations with a single DoF in roll. 

The aircraft degrees-of-freedom are in general coupled; where the degree of coupling 

depends on the nature of the maneuver and flight conditions. One of the most useful studies in 
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flight dynamics is to determine for a particular maneuver, either theoretically or experimentally, 

the dominant degrees-of-freedom, or equivalently a reduced order model (ROM). The use of a 

ROM provides a very close response to the original model at lower computational or 

experimental efforts. In complex maneuvers, it is hard or even impossible to theoretically prove 

that the ROM is adequately representing the original model. So, for most of the complex 

maneuvers, experiments are used to prove the reliability of the ROM. In the latest reviews on 

wing rock, Katz [27] and Mabey [37] have reported (results of which will be presented in detail in 

Chapter-2 that previous simulations of wing rock have been conducted with only a single DoF in 

roll. Also, the delta wing has only been modeled to represent the aerodynamics of the full aircraft 

configuration. The reliability of the computational and experimental simulations based on this 

ROM has not as yet been fully investigated. 

In previous work by Liebst [33,34,35] on the F-15, the sideslip has been shown as the 

second major contributing DoF after roll. In a study by Saad and Liebst [48] on the F-15, the 

dihedral derivative, and hence the sideslip, has been shown as the major contributing derivative 

that controls the value of wing rock onset. 

In the present study, the accuracy of the prediction of the onset angle of attack and the 

limit cycle characteristics based on a simple delta-wing with a single DoF in roll will be analyzed. 

The simulations of the wing rock oscillations for a generic wing-body configuration modeled 

with a single DoF in roll will be compared and analyzed with that corresponding to three DoF 

modeled with roll, sideslip, and vertical motion. Also the simulations will be done for the wing- 

body with and without the vertical fin to study the effect of including the fin in the prediction 

studies. 
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1.2 Various Types of Wing Rock 

Vortical flow over highly swept-back or delta wings at high angles of attack is highly 

nonlinear due to vortex asymmetry, streamwise and cross-flow separation, and/or vortex 

breakdown. Due to the complexity of the interaction of one or more of these phenomena with the 

rigid-body motion, many studies have been conducted to thoroughly understand the physics of the 

phenomena. 

Previous research [4,9,11,13,14] shows that, the driving fluid mechanism of wing rock is not 

unique but rather is greatly dependent on the model geometry and configuration. In the following, 

the various sources of wing rock will be discussed based on the experimental and computational 

results provided in [4,7,22,29], and the analysis reported in [9,10,11,12,13,14,21,27,37]. 

1.2.1 Slender Wing Rock. This is the case of wing rock of highly swept-back delta wings 

and limited cases of blended wing-bodies. Slender wing rock is triggered at sufficiently large 

angle of attack by an asymmetric leading edge (L.E.) vortex shedding. Asymmetric vortex 

shedding could be the result of flying situations such as, the failure of the pilot to recognize 

minute incomplete wing leveling when he pulls up on the stick. Also, flying at large angle of 

attack in asymmetric flow conditions (typical landing in a cross-wind) or induced lateral 

oscillations due to unsteady flow over the wing and/or control surfaces could lead to the shedding 

of an asymmetric vortex. 

To completely understand the fluid mechanism of the motion, let us assume a slender 

delta wing (sweep angle > 76 degrees) in an asymmetric flow condition represented by a slight 

positive sideslip. As a result, the L.E. leeward vortex shifts outboard, and the L.E. windward 

vortex shifts inboard causing the wing to initially roll in the positive roll direction. The sudden 

roll movement causes the leeward vortex on the up-going wing to compress and the windward 

vortex on the down-going wing to stretch, which increase the initiated rolling moment. As the 

roll angle increases, the kinematic-coupling between the angle of attack and the sideslip causes 
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the effective angle of attack on the wing to decrease and the effective sideslip angle to increase. 

The increased sideslip on the wing during roll causes the windward vortex on the down-going 

wing to move inboard and toward the surface, and the leeward vortex on the up-going wing to 

move outboard and lifted off. The convective time lag associated with the motion of the lifted off 

vortex causes the right wing to continue dipping until the lifted vortex takes its final position. 

Then the lift on the down-going wing is increased, while that on the up-going wing is decreased. 

The previous effect of vortex lift-off together with the reduction of vortex strength due to the 

decrease of the effective angle of attack causes the wing to stop at a finite roll angle (the limit 

cycle amplitude), and then reverses its motion. As the wing reverses its motion, the effective 

angle of sideslip decreases and the lifted vortex starts to reattach. The convective time lag of the 

vortex motion helps the rolling moment to build up in the reversed direction until the vortex is 

completely reattached to the leeward side of the left wing. What remains to be explained is how 

the wing overshoots its initial equilibrium (bank zero). This is due to the hysteresis associated 

with the structure and location of the L.E. vortices over the two wing halves during the oscillation 

as shown in figure 1-1. 

STATIC 

Figure 1-1. Vortex structure at the trailing edge during rolling, generated by the 
Vortex-Lattice method [29]. 
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1.2.2 Conventional-Wing Rock. This is the wing rock associated with aircraft of straight 

or moderately swept wings, and moderate to high aspect ratio. In other words, the case in which 

the aerodynamics of the wing is dominated by the two dimensional streamwise flow, and wing 

rock is closely related to dynamic stall [11]. 

The fluid mechanism of this type of wing rock is best understood by considering the 

analysis of plunging oscillations of airfoils. This analysis is very similar to that of the well-known 

dynamic stall phenomenon associated with a nonzero pitching airfoil [14]. Simply, if an airfoil is 

perturbed in plunge when flying close to stall, the down-rolling wing-half will experience an 

upstream movement of the viscous wall effect, which promotes separation on its windward side, 

and hence reduces lift over the static one (figure 1-2-A). On the other hand the up-rolling wing 

half will experience a downstream movement of the wall effect, which will delay the separation 

on its leeward side, and hence increases lift over the static one (figure 1-2-B). This dynamic stall 

effect produces the driving rolling moment for the wing. As the rolling angle increases, the 

kinematic-coupling between angle of attack and angle of sideslip reduces the effective angle of 

attack. At a sufficient rolling angle, the value of the effective angle of attack goes below the stall 

angle of attack, which causes the flow to reattach on the windward side of the down-stroking 

airfoil. This generates the required restoring rolling moment, which stops the roll and turns it in 

the reverse direction. 

At high subsonic Mach numbers, the plunging effect makes little difference from the 

previously discussed case. The flow separation in this case is driven by the shock-boundary layer 

interaction. The boundary layer transition by itself causes divergent wing bending oscillations. 

The moving wall effect on the plunging airfoil of the bending wing will promote the transition on 

the topside during up stroke, and will delay the transition on the bottom side during down stroke, 

which results in a similar effect like the one previously discussed. 
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A- UPSTROKE 

B-DOWNSTROKE 

Figure 1-2. Wall effect on an airfoil undergoing plunging motion [14]. 

1.2.3 Wing-Body Rock. This type of wing rock is very important because, it is obviously 

the most consistent configuration encountered in real flying vehicles. Also, experimental results 

indicated that the wing rock induced by fore-body vortices is more violent than the one induced 

by the leading edge of a flying wing alone [4,13,21]. Typical results on a generic fighter model 

[4] show a build-up to 30-40 degrees of limit cycle amplitude over less than 3 cycles. This is very 

dangerous in the sense that it doesn't permit enough time for the pilot to recover before the 

development of the limit cycle. 

According to the flow visualization pictures taken during the wing rock, an asymmetry- 

switching mechanism of the fore-body vortices was encountered in the same fashion to that of the 

slender delta wing leading edge vortices [4,13]. 
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The following discussion on the effect of the fore-body cross-section geometry on the 

wing rock characteristic is referred to Brandon and Nguyen [4]. Different fore-body cross- 

sections (vertical ellipse, hemispherical, chine, circular, and horizontal ellipse) are mounted on a 

generic fighter model (a flat-plate trapezoidal wing of 26 degrees sweep, flat-plate horizontal and 

vertical tails, and fore-body of horizontal ellipse cross-section). The most violent oscillations 

were found for the horizontal ellipse (>30 degrees amplitude), the moderate oscillation (20-25 

degrees amplitude) for the hemispherical and circular, and surprisingly the mild oscillations (<10 

degrees amplitude) for the vertical ellipse and chine (see figure 1-3). 

35 

30 

(1) 
■8 25 
3 

20 

& 15 
Ü 

J  10 + 

i32!« 

SSSs 

WWß 

&2m 

■i 

• :.:•:* 

Klö. ... 

ft 

Jill mil * 

ä 

Vertical 
ellipse 

Hemispher- 
ical 

Chine Circular Horizontal 
ellipse 

Figure 1-3. Effect of various fore-body configurations on the limit cycle amplitude [4]. 

1.3 Overview 

The remainder of this study consists of six chapters. In Chapter-2, the previous research on 

wing rock simulations, experimentally and computationally, is reviewed and presented. In 

Chapter-3, the computational model and the methodology adopted in the solution are described in 

detail. Chapter-4 is devoted to the illustration of the model geometry and the grid generation 

process. The analysis and results are presented in Chapter-5, with the conclusions and 

recommendations presented separately in Chapter-6. Also, the study includes four appendices, 

appendix-A and B contain typical input and output for the PEGSUS 4.0 code [51]. A complete 



derivation for the Euler boundary conditions is found in appendix-C, and the derivation for the 

computation of the aerodynamic forces and moments is presented in appendix-D. 
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Chapter 2- Review of Previous Work 

This chapter is devoted to the review of previous work on the experimental and 

computational simulation of wing rock. The focus in the review is centered on the geometry and 

configuration of the tested models, the utilized degrees of freedom, and a summary of the 

concluding results. 

2.1 Experimental Simulations 

The earliest observations of the wing rock phenomena were reported in the late 40's, and 

since then numerous studies on wing rock have been conducted and reported in the literature. 

However, the understanding of the fundamental flow mechanisms that drive wing rock has 

remained limited. The advancements in wind tunnel testing techniques, flow visualization 

technology, and computational fluid dynamics (CFD) have made the 80's and 90's an era of 

recognized intensive experimental and computational research on wing rock. 

In an early effort to clearly understand the aerodynamic mechanism that causes slender delta 

wings to rock, the NASA Langley Research Center (LaRC) conducted a study authored by 

Nguyen, Yip, and Chambers in 1981 [42]. The study comprised experiments conducted in three 

low-speed wind-tunnel facilities to provide four kinds of testing, standard static-force, forced- 

oscillation, rotary, and free-to-roll tests. An 80°-sweep flat-plate delta wing, constructed of wood 

and sharply beveled at the leading edges was tested. An important feature of the model was that 

the roll-axis laid in the plane of symmetry parallel to the x-body axis but shifted below by 2 

inches. The research provided groundbreaking results for the slender delta-wing rock with single 

degree-of-freedom (DoF) in roll. The model started to rock at angle of attack (AOA) of 25 

degrees, while vortex bursting was not observed below 30 degrees. These early observations 

demonstrated that slender wing rock is usually triggered by leading-edge vortex asymmetry, 
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while vortex burst (if encountered) affects the value of the amplitude and frequency of the limit 

cycle. Static tests for various sideslip angles showed that the vortex burst location on the 

windward side moves toward the leading edge and the leeward vortex core is lifted-off the wing. 

That is, sideslip is responsible for driving one of the two major aerodynamic mechanisms that 

control the wing rock motion. Dynamically speaking, one can say that wing rock is sustained by 

the dependence of the aerodynamic damping in roll on sideslip such that it is positive (unstable) 

for small sideslip during the onset of wing rock and negative (stable) for large sideslip during the 

fully-developed wing rock. This idea was actually the initial motivation for the present research 

to determine the significance of including the sideslip DoF on the limit cycle characteristics of 

wing rock. 

Subsequently in 1982, Levin and Katz [31] conducted a similar experiment. The model 

geometry was very much similar to Nguyen's model except for the roll axis, which coincided 

with the body axis. The shifting of the roll axis in the Nguyen's experiment was a source of 

slightly increased sideslip (one can easily prove that, Aß =pd/U„, where p is the roll rate, d is the 

shifted distance, and £/«, is the free-stream velocity). The authors were able to construct 

boundaries for the slender wing rock, which were correlated to the initial combination of AOA 

and sideslip [31:36]. 

In 1986 NASA LaRC sponsored research aimed at investigating the effect of forebody 

geometry on the static and dynamic stability of aircraft at high angles of attack. The research was 

conducted by Brandon and Nguyen [4], and the results were previously demonstrated in 

Subsection 1.2.3. 

In 1986 Hall and Del Frate [21] conducted a water-tunnel study on the interaction between 

the forebody and wing primary vortices. The authors selected three common fuselage cross- 

sections, circular, chine of 90°-included angle, and chine with 7.5°-included angle that produce 

weak, medium, and strong forebody vortex strengths respectively. This analysis of the effect of 
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three forebody cross-sections concluded that the stronger the forebody vortex, the more energy is 

imparted to the wing vortex system, and consequently the more resistance to vortex burst. The 

results for the three forebodies mounted on a 55°-sweep cropped delta wing model in zero 

sideslip showed a burst onset of 22.5° in AOA for the circular, 40° for the 90°-chine, and 45° for 

the 7.5°-chine. In sideslip, large differences in the burst locations between the windward and 

leeward wing sides were clearly distinguished, which in turn increases the asymmetry tendency 

in sideslip. 

Jun and Nelson [24] in 1987 conducted experiments on an 80°-sweep delta wing similar to 

the experiments found in [31,42]. With only slight differences in the model installation, which 

was mounted on a sting that permits free roll of the model about a bearing system located in the 

sting support. The experimental results confirmed the early results in [31,42] that the dynamic 

vortex trajectories differ from the static trajectories and depend on the direction of roll. 

Differences were also observed in the location of vortex breakdown between the static and 

dynamic cases. 

In 1993, Straka and Hemsch [50] conducted an experiment in the NASA LaRC water-tunnel 

to determine the effect of a circular-section forebody on the location and onset of vortex burst on 

a 69.3°-sweep delta wing. The variation in vortex burst location with angle of attack at zero 

sideslip was recorded for the wing alone, and the wing-fuselage combination. It was concluded 

that, adding the body to the delta wing adversely affected the onset and the chordwise 

progression of vortex burst on the wing. 

Preliminary prediction of aircraft stall, post-stall, and spin characteristics based on classical 

prediction methods or systematic wind tunnel testing are limited due to the complexity of the 

aerodynamics. The most reliable source of information about those critical maneuvers prior to 

actual flight tests is the unconstrained testing of a properly dynamically-scaled model. The 

principal techniques were the wind-tunnel free-flight technique for stall and departure, the spin- 
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tunnel technique for spin and recovery, and the radio-controlled drop-model technique (RCDMT) 

for stall and post-stall motions. In 1987 Fratello et al [15] conducted research at NASA LaRC to 

study the high-AOA characteristics for a 20% dynamically-scaled X-29A model, utilizing the 

unconstrained RCDMT. The wind-tunnel tests had predicted a 25-degrees angle of attack for the 

onset of wing rock. The results obtained from the RCDMT verified an earlier onset at 20°, and 

with further increase of angle of attack the wing rock motion grew rapidly, with the amplitude 

doubled in only one oscillation. At an average angle of attack of 32°, the motion diverged into a 

violent snap roll departure of peak roll rate over (130 deg/s). 

In summary, the previous experimental simulations on wing rock have been limited to a 

single DoF in roll. The bearing mounting and friction have affected the predicted limit cycle 

characteristics as was previously reported by Levin and Katz [31]. Only the RCDMT cm provide 

a realistic simulation; however it is still considered expensive and technically difficult, and hence 

of limited use. 

2.2 Computational Simulations 

The rapid developments in computer speed, architecture, and memory in the early 80's had a 

great impact on the improvement of aerodynamic numerical solutions. The improvements in the 

aerodynamic numerical solutions have been complemented by parallel progress in grid 

generation and flow visualization techniques. The whole package, the grid generation, flow 

solver, and flowfield visualization utilities, have become the computational tunnel for present- 

day aerodynamic research. Most of the developed computational codes have been successfully 

validated by comparison with numerous experimental data. 

Computational simulation of wing rock has been encouraged due to the difficulty of model 

installation for free motion in the tunnel, and for better flowfield visualization. In the following 

review, the computational work on wing rock simulation will be reviewed and presented. 
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In 1982 Levin D. and Katz J. [32] introduced a modified version of the classical Vortex 

Lattice method that is capable of solving both, the steady and unsteady aerodynamics as well, 

with an application for the simulation of leading edge vortices over delta wings at high AOA. 

Shortly afterwards Konstadinopoulos, Mook, and Nayfeh [29] coupled the unsteady vortex- 

lattice method with the rigid body dynamics in roll to numerically simulate the previous 

experiments for Nguyen [42] and Levin [31]. The results showed good agreement with the 

corresponding experimental data. 

In 1989 Katz J. [26] introduced a new application for the Unsteady Vortex Lattice method 

by computing the conical rotary loads on a standard dynamic model. The author was able to 

demonstrate excellent agreement with the experimental data, at low Mach number (M = .15) and 

moderate angles of attack (AOA < 15 degrees), with extremely low computational cost. 

The limited capabilities of the early supercomputers nudged the first CFD simulations of 

wing rock to less-costly computational solutions such as the Conical Euler and Euler schemes. 

One of the earliest works utilizing these schemes was due to Lee and Batina [30] in 1991 from 

NASA LaRC. The simulation has been done for a slender delta-wing configuration (leading edge 

sweep of 75°) at Mach number 1.2. The supersonic freestream Mach number allowed the 

implementation of the conical flow similarity, and hence reduced the problem from three 

dimensions to two dimensions, which considerably reduced the computational cost. The authors 

utilized the cell-centered finite-volume algorithm for solving on an unstructured grid made up of 

triangles. An explicit artificial dissipation of second and fourth order was added to prevent 

oscillations near shock waves and damp out high-frequency uncoupled error modes. The rigid- 

body roll equation has been explicitly coupled with the flow governing equations. The time 

derivatives in the rigid body equation were approximated by a 2nd-order accurate backward finite- 

difference. The number of elements used in this study was 8299, which had a total of 4226 

nodes, with refinement on the leeward side of the wing where the dominant flow features were 
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expected to occur. The wing rock was excited by an initial roll rate at angle of attack of 30°, and 

a limit cycle of amplitude 38° was observed, which agreed well with the earlier experiments. 

In 1992, Kandil and Salman [25] took a step forward by coupling the unsteady Euler 

equations with the rigid body dynamics in roll. They simulated the wing rock oscillations and 

divergence for an 80°-sweep delta wing at 30° AOA and Mach number of 0.3. The unsteady 

Euler equations was used to simulate the fluid dynamics, while the four-stage Runge-Kutta 

scheme was used to solve the rigid-body dynamic equations. The flow governing equations were 

solved in the moving frame of reference, which adds an extra computational cost for the source 

terms. However, the use of this approach saves regenerating the grid and recalculating the values 

of the transformation metrics after each time step. The implicit, approximately-factored, 

centrally-differenced, finite-volume scheme was employed, with 2nd and 4th-order explicit 

dissipation terms. Implicit 2nd-order dissipation terms were also added to enhance the scheme 

stability. The grid consisted of 32x32x48 grid points in the axial, normal, and wrap-around 

directions. 

In 1993 Chaderjian and Schiff [6] presented an early application of a generalized full 

Navier-Stokes based-code. They conducted static tests to investigate the nonlinear variation of 

the rolling moment coefficient with angle of attack for a 65°-sweep delta wing at 30° AOA, 

3.67xl06 Reynolds number, and a Mach number of 0.27. The three-dimensional, Reynolds- 

averaged, Navier-Stokes (RANS) equations were used to model the viscous flow. The relatively 

high Reynolds number used in this study allowed the application of thin-layer approximation. 

The perfect gas law, Sutherland's viscosity law, and a turbulence model were used to complete 

the RANS system of equations. The governing equations were transformed to body-fitted 

curvilinear coordinates using general coordinate transformation. The numerical procedure 

comprised of the implicit Beam and Warming algorithm [3], approximately-factored, and 

centrally-differenced. A three-dimensional hyperbolic grid generator was used to generate 
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67x49x208 nodes in the axial, normal, and circumferential directions, a total of about 700,000 

nodes. The run of this code for one static roll angle was reported to require 48 hours on the C-90 

computer to reach a steady state. 

In an effort to validate the code developed in [6] for dynamic testing, Chaderjian [5] in 1994 

simulated the forced large-amplitude, high frequency roll oscillations. The RANS equations were 

written in the inertial frame of reference and transformed to the body-fitted curvilinear frame of 

reference via the generalized time-dependant coordinate transformation. The comparison of the 

results with the corresponding experimental data showed a very good quantitative agreement. 

The computational cost of the developed code to advance one time step on the Cray Y-MP is 18 

(is/grid-point/time-step. One cycle of oscillations took 15,000 time steps, which requires 50 hours 

of CPU-time for a total of 700,000 grid points. Later in 1996, Chaderjian and Schiff [7] coupled 

the rigid-body dynamic equations in roll with the RANS equations and simulated the free roll 

motion of wing rock for the same previous model. The resulted computational free roll motions 

were reported to damp out more rapidly compared with the experimental simulations, but the 

computed and experimented frequencies were in good agreement. 

In 1993, Gordnier and Visbal [19] presented an application for the fdl3di code, which has 

gone through a similar validation procedure from static to forced roll tests. The code is very 

similar to the one developed by Chaderjian and Schiff [6], except for a few differences. Unlike 

the previous code, which utilizes the thin-layer version of the Navier-Stokes equations, the fdl3di 

utilizes the unsteady, three-dimensional, full mass-averaged Navier-Stokes equations, which 

extends its application to low Reynolds numbers as well. An additional feature in the fdUdi code 

is the implementation of the sub-iteration algorithm to reduce the various errors due to the 

factorization, the lag in applying the boundary conditions, and the inherent lag in the solution of 

the coupled equations. The sub-iteration algorithm has greatly improved the stability and 

accuracy of the computational scheme. The code has been validated by experimental data of two 
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previous experiments, for the 80° and 65° delta wing models. Both, static and forced-roll 

simulations, were conducted to demonstrate the variations in the vortex structure and strength 

due to the dynamic interaction during a constant roll rate motion. A useful discussion on the 

vortex dynamics has been introduced to explain the reduction in the restoring moment in the 

dynamic case (the presented analysis on slender wing rock in subsection 1.2.1 is mostly referred 

to this paper). Gordnier [16] has analyzed the effect of roll rate and initial acceleration on the 

vortex dynamics during a forced-roll maneuver for the 80°-sweep delta wing model. In 1997, 

Gordnier [18] presented static roll tests for the same model used by Chaderjian [5,6,7] but at 

lower Reynolds and Mach numbers to demonstrate the ability of the code to simulate complex 

viscous flows. Also, Gordnier [17] has demonstrated the ability of the/<ÄM-code to simulate the 

spiral vortex breakdown and the transition from spiral to bubble-type breakdown with very good 

qualitative agreement with the experimental data. 

In an effort to model the nonlinear, unsteady aerodynamics for the rolling 65° delta wing, 

Tromp [52] has simulated the constant-rate conical motion, constant-roll rate, and the barrel-roll 

maneuver. The numerical simulation has been done using thefdl3di-code for zero and 30 degrees 

AOA. The numerically computed loads have shown an excellent agreement with the 

experimental data. 

In summary, it has been shown in the previous review that the computational wing rock 

simulations were commonly conducted for a single DoF in roll and applied to either flying delta 

wing or blended wing-body (without fore-body) configurations. 
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Chapter 3 - Computational Model 

3.1 Flow Aerodynamics 

All the computational experiments in this study are conducted at a Mach number of 0.4 and 

pressure altitude of 2000 meters. The corresponding Reynolds number for this flight regime, 

based on the root chord length, is significantly high (Re„= 2.472xl09), which motivated the use 

of the Euler equations to reduce the computational cost. The Euler equations have been used 

widely to simulate vortical flow aerodynamics on highly swept-back or delta-wing configurations 

at moderate-to-high values of Reynolds number [1,25,30,38,47]. The Advisory Group for 

Aerospace Research & Development (AGARD) [1:162] in its review on computational 

aerodynamics based on the Euler equations has reported that the Euler solutions have the ability 

to adequately simulate vortical flow aerodynamics and leading edge vortex breakdown on delta- 

wing configurations. Also, Yu et al [55] have reported excellent agreement with experimental 

data for the Euler solution of a complete commercial transporter in transonic flow conditions and 

sideslip. A modified version of the fdl3di code, provided by the Air Force Research Laboratory 

(AFRL), Wright-Patterson Air Force Base, Ohio, has been utilized to provide the finite difference 

modeling and solution of the Euler flow governing equations. 

3.1.1 Flow Governing Equations. The unsteady three-dimensional compressible Euler 

equations in strong conservation form have been used. The equations have been written in a fixed 

inertial frame of reference and transformed to the computational domain using a generalized 

time-dependant transformation (£, 77, £,?)• The flow variables are nondimensionalized as follows: 

U      =   U/Uoe 

v = v/t/» 

w = w/U„ 

P* = P/(p„Uj) 
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p = p/p~ 

T* = 7/r„ 

e = e/Uj 

All coordinate lengths have been normalized by the root chord-length of the delta wing, Cr. 

x = x/Cr 

y* = y/Cr 

Z* = Z/Cr 

Where x = y - z - 0 is at the nose. 

The final form of the transformed nondimensionalized equations in strong conservation form can 

be written as follows: 

dQ dF dG dH 

dt dt, dr] d( 
(3-1) 

Where: 

The vector of dependent variables is given by: 

Q = 

* 
p 

1 
* * 

p u 
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p  w 
*     * 
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The vector fluxes are given by: 
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V =rlt +rlxU    +TlyV    +T1Z
W 

w=c,+cy+cyv*+cy 

* *        1 /    *2 #2 *2 
e t = e + — \u    + v    + w 

The Jacobian of the transformation, /, is given by: 

d{x ,y ,z) xAynh-yzzn)-xnVzh-y^hnxz\yszn-ynh) 

The perfect gas equation closes the system of equations (3-1) as follows: 

P*=^V (3-2) 

3.1.2 Boundary Conditions.   The following boundary conditions are applied to the flow 

governing equations: 

Characteristic boundary conditions [54] are applied at the far-field and upstream boundaries. 

-     The values of the flow variables at the exit boundary are extrapolated from the interior by 

first-order extrapolation. 

Periodic boundary conditions have been applied for the points of symmetry in the wrap- 

around direction. 

On the body surface the classical Euler boundary conditions have been applied: 

Un=Ub-n 

dP _    _ 
— = -pab-n 
an 
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Where U„ is the flow velocity component in the direction normal to the body surface. Ub and ab 

are the velocity and acceleration at the surface grid point location rb, given by: 

Üb=Ücg+a>x(rb-fcg) 

ä" = ä(:s + "^x fe ~ ^)+ ö X [S X fe ~ ^ )1 
3.1.3 Numerical Solution of the Flow Governing Equations. The governing 

equations are solved numerically using the implicit, approximately-factorized finite difference 

scheme of Beam and Warming [3] in the diagonalized form of Pulliam and Chaussee [46]. The 

equations are differenced using second-order accurate differencing for temporal and spatial 

derivatives. A blend of nonlinear second and fourth order spectral damping derivatives is 

employed. The boundary conditions are explicitly applied, and a sub-iteration algorithm is 

employed to reduce the effect of the inherent time lag in applying the boundary conditions and 

reduce the factorization error. 

The numerical implementation of the boundary conditions on the body surface is derived and 

explained in detail in Appendix-C. Also, the numerical computation of the aerodynamics forces 

and moments on the body surface is presented in Appendix-D. 

3.2 Rigid Body Dynamics 

The relevant degrees of freedom in this study are the roll, sideslip, and vertical motion. The 

rolling equation is written in the body-axes frame of reference to keep the roll-axis moment of 

inertia constant throughout the entire motion, while the sideslip and vertical motion equations are 

written in the inertial frame of reference. 

3.2.1 Rigid Body Dynamic Equations. The rolling equation is a second-order 

autonomous ordinary differential equation in time. 
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0 = ^ (3-3) 
h 

Where Lb is the body-axis rolling moment, and Ix is the moment of inertia about the body-fixed x- 

axis. 

The sideslip and vertical equations are written in the inertial frame of reference since there is no 

need to be solved in the body-axes frame of reference. The equations are second-order 

autonomous ordinary differential equations in time. 

ycs = ^ (3-4) 
m 

Zcg=^--g (3-5) 
m 

Where Fy and Fz are the side and vertical force components computed in the y and z inertial 

directions respectively. 

A first order state-space representation of (3-3), (3-4), and (3-5) is given by: 

(j) = p (3-6-a) 

p = — (3-6-b) 

ycs = vCT (3-6-c) 

(3-6-d) 

(3-6-e) 

(3-6-0 

*cg m 

i* = Wcg 

K m 
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Introduce the non-dimensional forms of the roll rate, time, rolling moment of inertia, mass, and 

gravity acceleration respectively as follows: 

pb 
P   = 

£/ 

*     tU„ 

Cr 

/   =■ 

2/ 

m  = 

pscy 

2 m 

g 

The first-order system (equation 3-6) is given in non-dimensional form as follows: 

d(p     (C^ 

dt* Kb J 

3P* _ Ch, 
dt        I 

dt* eg 

K 
dt* 

dZcS 

dt* 

c. 
m 

w,. 

(3-7-a) 

(3-7-b) 

(3-7-c) 

(3-7-d) 

(3-7-e) 

1W„ 

dt* 
* 

m 
(3-7-f) 
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3.2.2 Numerical Solution of the Rigid Body Dynamic Equations. The non- 

dimensional first-order system (3-7) has been differenced in time using second-order accurate 

backward difference. Thus, the finite difference solution at time level (n) is given as follows: 

*(«)     1 'iC^Al^ *(«-2) *(n-l) 
p        +4p 

<pw = 

,*(«) _ * 

Kb j 

*(«) At   p v   -0("^+40 ,(«-!) 

^Ci^'Af*^ 
m 

*(«-2) -vr;--+4vfS 

:
(«-D 

2")=^[2Ar'v2")-^-2)+4^"-1)] 

(3-8-a) 

(3-8-b) 

(3-8-c) 

(3-8-d) 

w ■(«) 
^(cf^-mgW^ 

m 

Zcr=ik^-r+c)] *(«) 

(3-8-e) 

(3-8-f) 

Where the superscripts between brackets denote the corresponding time level. 

3.3 Coupling the Flow Governing Equations and the Rigid Body Dynamic Equations 

The rigid body equations are coupled explicitly with the flow governing equations. As seen 

in equations (3-8-a, c, and e), the aerodynamic forces and moments are computed at a time level 

(n-1). This inherent lag in the solution of the coupled equations has been addressed through a sub- 

iteration algorithm. The original fdBdi code already employed a Newton-like sub-iteration 

algorithm on the flow governing equations, which was extended to operate on the coupled set of 

equations. Figure 3-1 depicts a simple flowchart demonstrating the application of the sub- 

iteration approach on the coupled set of equations. 
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3.4 Implementation of the Body Motion 

The flowfield interactions due to the body dynamics are implemented in the modified fdBcli- 

code as follows: 

After solving the rigid-body equations the new position of the individual grids, in the inertial 

coordinate system, is computed by the following transformation: 

10 0 0   0 

0   cos0(n)    -sin0(n)    1    0 

0   sin0(n)     cos0(,,)     0    1 

Where, the superscript (0) denotes the initial grid position at time level (n = 0), which 

corresponds to the initial states ((|>(0) = 0, yce*(0) = 0, and zcg*(0) = 0). 

Compute the new values of the space and time metrics of the generalized coordinate 

transformation. 

-     Compute the velocities and accelerations on the body surface grid points, which are needed 

for the application of boundary conditions. 

3.5 Computer Resources 

All the computational simulations presented in this study has been run on the CRAY T-94 

supercomputer at the Ohio Supercomputer Center (OSC), Columbus, Ohio, as part of the granted 

CPU-Hours for project number PIS198. 

The CRAY T-94 computer system at the OSC is a powerful general-purpose supercomputer 

that features 4 high-speed (450 MHz) processors, each with a peak performance of approximately 

2 billion floating point operations per second (2 GFLOPS). 
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Figure 3-1. Flowchart demonstrating the sub-iteration process. 
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Chapter 4 - Grid Generation 

4.1 The Model 

The tested model in this study is a 5% dynamically-scaled model for a generic fighter 

consisting of fore-body, blended wing-body, and vertical tail (see figures 4-1 and 4-2). The fore- 

body cross section is a chine of 90°-included angle with a sharp nose of 15° apex-half angle. The 

wing is a thin flat plate cropped delta wing of 65° sweep with the leading and trailing edges 

beveled at 45°. The vertical tail has a trapezoidal plane-form with beveled edges, and a finite 

thickness. The geometry of the body, wing, and tail is chosen for simplicity, but in fact is adopted 

from realistic present-day fighters such as the Dassault-Breguet Mirage [23]. 

T 
10    e 

— A SECTION A-A 

" All dimensions are in cm, unless otherwise stated. 

Figure 4-1. Three-view drawing of the generic fighter model. 
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Figure 4-2. Three-dimensional view of the model. 

Originally, the model mass was to be estimated from the mass of the Mirage 2000 [23], 

(7440.3 Kg, empty). Due to the unavailability of the values of the moment of inertia for the 

Mirage, the mass and longitudinal moment of inertia for the model were estimated instead from 

that of the A-4 fighter, which has a similar size and shape to the Mirage. The inertia properties of 

the A-4 fighter [40:405] are given by: 

m = 7910 [Kg], and Ix = 10968 [kg-m2]. 

So, the non-dimensional inertia parameters of the model (refer to subsection 3.2.1) are given as 

follows: 

m*= 35.3, and /,* = 0.684 

4.2 Meshing the Model 

The accuracy of a CFD-simulation is in general governed by both, the quality of the mesh 

that resolves the relevant model geometry and physics, and the time/spatial accuracy of the 

computational scheme. This emphasizes the role of the grid generation process in order to get 

high quality simulations. Before starting the grid generation process, four key elements should be 

carefully selected: 
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• The grid structure (structured vs. unstructured). 

• The grid generation technique (Single vs. Multi-overset mesh techniques). 

• The grid topology for each individual mesh (H-O, H-H, or C-O...). 

• The domain dimensions. 

In the remaining part of this section, the author's choice for these elements is discussed and 

justified. 

The utilized code in this study to solve the flow governing equations is the fdl3di-code, 

which is written for structured grids, leaving no choice for grid structure. 

In order to justify the selection for the meshing technique, one needs to differentiate among 

the available alternatives. Three alternatives are possible: either a single O or H-grid, or multi- 

overset grids. Two factors were taken into consideration in this investigation, the total number of 

grid points, and the quality of the generated mesh. In the case of a single O-grid, the number of 

grid points must be increased in the wrap-around direction at the location of the vertical fin to 

resolve its geometry. This increase of grid points must be made all the way along the axial 

direction, resulting in unnecessary augmentation of the total number of grid points. Moreover, the 

generation of a single O-structured grid for the whole model including the tail was found to be 

difficult if not impossible. For the case of a single H-grid, the clustering of grid lines to resolve 

the model geometry will propagate all over the computational domain, resulting in a significant 

increase in the total number of grid points (possibly greater than that for the case of a single O- 

grid). The quality of the resulting mesh in the case of a single H-grid may exceed the one 

obtained by the O-grid. However, the cut in the H-grid made by the solid body surface requires 

modifying the computational stencils at these points to be one-sided everywhere in the code. On 

the other hand, the utilization of the multi-overset mesh technique allows independent meshing of 

the sub-domains of interest, which are overset and mutually communicate across the boundaries. 

In addition to the flexibility obtained by the utilization of the multi-overset technique, the overall 
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number of grid points is highly reduced compared with that for the case of a single mesh. For all 

the previous reasons, the multi-overset mesh technique was found to be best suited for our 

particular model. The model is subdivided into two meshes, one for the wing-body and the other 

for the vertical fin. The fin mesh is embedded in the wing-body mesh, and a final composite mesh 

is created. 

4.2.1 The Wing-Body Mesh. The axi-symmetric geometry of the wing-body and the 

conical shape of the fore-body motivate the utilization of a C-0 topology for this mesh. Also, it 

becomes relatively easier to apply the boundary conditions on the body surface in case of a C-0 

grid. The C-0 topology has been extensively used in the literature to mesh blended wing-body 

configurations [5,6,7,18,25,52]. A structured mesh has been generated using Gridgen ver. 13 

[44]; an initial grid is generated for a quarter of the domain using polar transfinite interpolation. 

An elliptic partial differential equation (EPDE) solver was run to improve the quality of the 

grid, and control the grid lines near/on the body surface. A Thomas-Middlecoff control function 

[44] was applied to map the clustering of the grid points on the boundary to the interior domain. 

A Steger-Sorenson control function [44] was applied on the body surface to keep the 

orthogonality, and hence simplifies the application of boundary conditions. Due to the axi- 

symmetric geometry of the wing-body section, only a quarter of the domain is generated by 

Gridgen, and the other three quarters are generated by reflection using a FORTRAN routine. The 

advantage of doing this is to enforce an exact symmetry on the distribution of mesh points, which 

may be slightly violated if the PDE solver has been run for the whole domain. Three grids of 

different dimensions have been generated (Table 4-1). 

The domain consists of a circular cylinder connected to a hemisphere (figure 4-4). The 

length of the circular cylinder is three characteristic lengths (wing root chord length Cr), and has a 

radius of 1.5 characteristic lengths (figure 4-4). The domain shape and dimensions have been 

previously utilized in most meshes of C-0 topology [18,25]. 
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Figure 4-3. Section in the wing-body mesh (coarse) demonstrates the topology. 

Table 4-1. Dimensions of the grids. 

Grid Type 

Dimensions Total 
No. of 
Points 2, (axial) r\ (normal) C, (wrap-around) 

Coarse 79 35 65 179,725 

Medium 117 53 97 601,497 

Fine 120 70 105 882,000 
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4.2.2 The Vertical Fin Mesh. The vertical fin mesh consists of the fin and part of the 

fuselage in order to resolve the area at the fin-fuselage connection (see figure 4-5). An H-H grid 

is applied for the fin mesh to avoid the inherent singularities of the O-topology. One-half of the 

domain is meshed using Gridgen, and the other half was generated using a FORTRAN routine by 

reflection along the x-z plane. In the same manner discussed for the wing-body mesh, the EPDE 

solver has been run, applying the same control functions on the interior and the fin/body surfaces. 

A base line grid of dimensions 43x36x34, in the axial, normal, and bi-normal directions 

respectively is generated. 

*Cr is the Root Wing-Chord Length. 

Figure 4-4. Outer domain dimensions 

4.2.3 The Composite Mesh. In this subsection PEGSUS [51], the code which implements 

the Chimera (Overset) technique [49], is briefly discussed, then the process of the creation of the 

composite mesh will be presented. Figure 4-6 depicts a block diagram for the grid generation 

process, starting from the model geometry and ending up with the composite mesh. For more 

information on PEGSUS and the nomenclature used throughout the rest of this subsection, the 
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reader may refer to [49,51]. The utilized flow solver in this study (the fdl3di-code) implements 

the multi-overset grid technique, and has been successfully utilized in other applications [38,47] 

and validated [36]. Interpolation of conservative variables was adopted as recommended in the 

literature [53]. 

PEGSUS is designed to perform the following tasks for each individual mesh: 

Establish the communication boundaries (outer, hole or interior boundaries). 

Search for the interpolating stencil points in the donor or recipient meshes according to the 

established hierarchical level. 

Figure 4-5. Section in the vertical fin mesh demonstrates the topology. 

Mark other special points to be excluded from the computational domain (interior, or orphan 

points). 

At the end of this process, each point in the mesh will be assigned the appropriate status: 

Field point. 

Hole point. 

Boundary (interpolation) point. 

4-7 



■ Orphan point. 

■ Interpolating point. 

■ Interior point. 

The embedding process of the fin mesh into the wing-body mesh requires the creation of a 

hole in the wing-body mesh to exclude the fin solid volume from the computational domain of the 

wing-body mesh. A hole-creation boundary defined in the fin mesh cannot be completely closed; 

a gap must exist at the intersection of the fin surface and the hole-creation boundary (figure 4-7). 

As a result, some points close to the fuselage surface will be considered unblanked by the 

PEGSUS hole location algorithm (see figure 4-7). This problem can be solved by utilizing the so 

called Phantom mesh, which is a dummy mesh - in the sense that it does not communicate with 

the other meshes in any way - used only for the hole creation. The hole-creation boundary, 

shown in figure 4-6, has been used to define the outer boundary of the phantom mesh. However, 

the lower face of the phantom mesh is extended into the fuselage interior. The geometry of the 

outer boundaries of the fin and phantom meshes is designed to help capture the interpolating 

points in the wing-body O-grid. Since the fin mesh is an H-H grid, the fin solid surface should be 

marked as an interior region in the fin mesh to be excluded from the computational domain with 

boundary conditions being applied here. The hole in the wing-body mesh is designed in a way to 

be interpolated on five faces, leaving the lower face for the application of boundary conditions. 

The same procedure is done for the fin mesh outer boundary, where the boundary conditions are 

applied on the lower face. A double-fringe is globally applied for the two meshes for better 

results [51], and to provide the required interpolating stencil points for the 4th-order derivatives of 

the damping terms in the flow solver. An overlap of approximately five points is kept in the three 

coordinate directions to satisfy the double-fringe requirement. It is recommended to pick the in- 

coordinate (or K) in the axial direction, since PEGSUS is designed to print the MAPS file at 

constant ^-planes. Also, it is strongly recommended to do domain inclusion, either globally or 
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locally, in order to avoid any fault marking of orphan points in the neighborhood of mirror planes 

(the z=0 plane in our case). The user input file, the input mesh format, and the parameter values 

required to run PEGSUS 4.0 can be found in Appendix-A. A summary of the PEGSUS output is 

found in Appendix-B, showing no orphan points in the two meshes. Also, the summary of the 

output contains the parameter values required to run the fdl3di-üow solver (Namely IGRID, 

IIDIM, and IBDIM). A sample of the output maps, showing the layout of some cross-sectional 

planes in the two meshes, is found in Appendix-B under Diagnostic Maps. 

Geometry 
CAD 

SYSTEM Data Base i 
Entity 

GRID 
GENERATION 

UTILITY 
(Gridgen Ver.13) 

Individual 
Meshes 

User Inputs File 

OVERSET 
GRID 

TECHNIQUE 
UTILITY 

(PEGSUS Ver.4) 
Composite 

Mesh 

Figure 4-6. Block diagram illustrates the different phases of the grid generation process. 

Figure 4-7. The hole-creation boundary. 
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Chapter-5 Analysis and Results 

5.1 Introduction 

The main emphasis of this research is to study the effect of adding the sideslip degree-of- 

freedom (DoF) to the analysis of wing rock onset and characteristics. Since the actual wing rock 

motion is a combination of roll, sideslip, and vertical descent (much like Dutch-Roll motion, see 

figure 5-1), all three of these DoF will be included and these three DoF solutions will be 

compared and contrasted with the single DoF roll-only solutions. Since the vertical fin can 

produce a considerable amount of the sideslip force, the simulations are conducted for the wing- 

body configuration with and without the fin to study its effect. All the simulations are conducted 

for the same initial flight condition (Mach number of 0.4 and pressure altitude of 2000 meters). In 

all simulations, the wing rock oscillations are triggered from an initial steady level flight due to 

an initial perturbation in roll rate (p°) of 0.01 (non-dimensional value). 

\ 

\ 

\ 

^    / 
/ 

/ 

Figure 5-1. Schematic drawing for the wing rock motion. 
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In the remainder of this Chapter, some interesting phenomenon will be discussed at 

particular cross-planes. For illustration the axial location of these cross-planes is depicted in 

figure 5-2. 

* . i 

Figure 5-2. Axial location of particular cross-planes. 

5.2 Grid Sensitivity Analysis 

Three meshes of different dimensions (Table 4-1) were developed to analyze the grid 

dimension effects on the solution. The developed solutions for the three meshes are compared and 

analyzed for a sample run. The selected sample was chosen for the three DoF motion, where the 

dynamics of the motion depends on the computed aerodynamic loads in the three DoF, to 

maximize the differences in solutions. The simulations were done for an angle of attack (a = 25°), 

slightly lower than the expected wing rock onset (a = 35°). The expected response at a = 25° 

should dampen more rapidly, and hence reduces the cost of the simulation for the three meshes. 
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Figure 5-3. Roll angle response for the three meshes at a = 25° due to an initial perturbation in 
roll rate of 0.01. 

Figure 5-3 depicts the time-history for the roll angle in response to an initial perturbation in 

roll rate for the three meshes. The results show a convergence toward the fine mesh solution, with 

the solution of the medium mesh very close (even identical in some regions) to the fine mesh 

solution. This supports that the fine mesh is approximately representing a grid-independent 

solution. The comparison of the solutions developed by the coarse and fine meshes shows similar 

qualitative behavior for the coarse mesh with a 7% increase in amplitude on average, and a 

reduction in frequency of 8% on average over the fine mesh. The reason for these differences is 

the slightly stronger leading edge vortex, which was observed for the fine mesh (figure 5-4) at the 

initial flight condition (25° angle of attack and zero roll angle). This stronger vortex increases the 

damping slightly in the solution of the fine mesh over that of the coarse one. Since this research is 
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primarily concerned with the incremental effects due to adding sideslip and vertical DoF, it was 

decided that the coarse mesh accuracy was adequate for this purpose. Consequently, to save 

computational cost the majority of the simulations were conducted on the coarsest mesh. 

5.3 Simulations of Wing Rock for the Wing-Body Configuration 

The geometry of the wing-body configuration is demonstrated in detail in section 4.1, which 

represents the generic fighter model without a fin. 

5.3.1 Single Degree-of-Freedom in Roll. To begin the research, an initial guess for the 

onset angle of attack was determined from a previously published wing rock boundary versus 

aspect ratio [27:733]. The boundary in figure 5-5 was established from the observations for a 

delta wing undergoing wing rock in roll only. Although the model in this case is a blended wing- 

body configuration, the predicted onset based on this curve should be in the neighborhood of the 

actual onset value. The model aspect ratio is 1.29, which from figure 5-5 corresponds to an onset 

of 33 degrees in angle of attack. Also the observations in [27] indicate that the wing rock is likely 

to be triggered and driven by asymmetric vortex bursting, and not by asymmetric vortex 

shedding. The 33-degrees angle of attack was run for a couple of cycles, and didn't lead to a limit 

cycle oscillation. Next a 35- degrees angle of attack was tried and successfully led to a limit cycle 

oscillation in roll (figure 5-6). Approximately 16 degrees peak-to-peak amplitude in roll angle is 

observed with an interesting limit cycle phase-plane portrait (figure 5-7). 

5-4 



laltitssp 

(a) Coarse Mesh 

Uli 

«IW«5C-..1A-5-»-. -■:«.•.■.-.■4.-. 

JKWv.i••■■'4-«■..''.ff ■ .. ;■ 

(b) Fine Mesh 

Figure 5-4. Stagnation pressure distribution at a = 25° for a cross-plane at x=\ .3. 
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Figure 5-5. Wing rock boundary versus aspect ratio [27:733]. 
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Figure 5-6. Limit cycle oscillations in roll for the wing-body configuration at a = 35°. 
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Figure 5-7. The phase-plane portrait for a full limit cycle in roll. 

The relatively low-amplitude of the wing rock oscillation was actually not surprising, the 

previous work of Brandon and Nguyen [4:3] on a chine fore-body mounted on a 26°-sweep 

trapezoidal wing found oscillations of approximately 12° amplitude (see figure 1-3). A rapid 

rolling rate was observed in the neighborhood of the zero-roll angle position (look at the little 

circled kink in figure 5-6). Surprisingly, this little kink in the roll angle response has been 

observed in the flight test data of wing rock for realistic fighters. The closest configuration to the 

generic fighter model geometry, for which wing rock flight test data is available, is the F-4 fighter 

aircraft [23] (figure 5-8). The recorded flight test data for the F-4 wing rock [43:6-13], shows a 

similar roll angle response (figure 5-9) to that of the generic fighter model (figure 5-6). 
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Figure 5-8 Three-view drawing for the F-4 [23]. 
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Figure 5-9 Roll angle response following the onset of wing rock for the F-4 [43:6-13]. 
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In order to explain the fluid mechanism that drives the observed wing-body rock in this 

study, two main phenomena, the vortex burst and vortex dynamics, should be investigated 

throughout a full cycle of wing rock. 

The instantaneous axial location of vortex burst was traced by searching the first occurrence 

of a negative axial velocity on the upper surface of the two wing halves. The instantaneous axial 

locations of vortex burst captured by the searching algorithm within an entire cycle of wing rock 

are depicted in figure 5-10. In order to verify the instantaneous axial locations of vortex burst 

captured by the searching algorithm, mass-less particles were injected near the tips of the leeward 

side of the body. The traced trajectories of the particles at the initial conditions (a = 35°, (p = 0°) 

showed a flow reversal (see figure 5-11) at approximately the same predicted location from the 

numerical algorithm (x =1.032). 

In order to explain the vortex burst dynamics depicted in figure 5-10, let us assume the 

model is rolling in the positive direction. Then at a positive roll angle, the axial location of vortex 

burst on the left wing (which moves upward) moves downstream, while that on the right wing 

(which moves downward) is moving upstream. In the light of this behavior of the asymmetric 

vortex burst location, one can explain its role in driving the oscillations. Once the model is 

initially perturbed in roll rate, it starts to oscillate around the zero-roll angle position. The 

upward-moving wing is exposed to a down wash, which reduces the instantaneous value of angle 

of attack on this wing and hence delays vortex burst (i.e. the first occurrence of vortex burst 

moves downstream). On the other hand, the downward-moving wing is exposed to an up wash, 

which increases the instantaneous value of angle of attack on this wing, and hence promotes 

vortex burst on this wing (i.e. the first occurrence of vortex burst moves upstream). As a result, 

the lift is increased on the upward-moving wing and reduced on the downward-moving wing. So 

far, this model should go into a divergent rolling motion in the absence of a restoring moment. 

However, the effect of the variation of vortex structure and location (vortex dynamics) still need 

to be investigated to reach a complete understanding of the physics of the motion. The vortex 

5-9 



dynamics was visualized in this study through snap shots of the instantaneous stagnation pressure 

coefficient distribution for a cross-plane at x = 1.06 (see figure 5-12). As shown in figure 5-12, 

the vortex on the upward-moving wing becomes more coherent and moves slightly away of the 

surface, so its footprint on the surface is reduced (see figure 5-13 (b)). While the vortex on the 

downward moving wing is diffused and slightly moves toward the surface, so its footprint on the 

surface is increased (see figure 5-13 (b)). As a result, the lift is reduced on the upward-moving 

wing and increased on the downward-moving wing, which establishes the restoring moment. 

Figure 5-13 (a) shows the symmetric suction on the wing upper surface at the initial conditions (a 

= 35°, (p = 0°), while figure 5-13 (b) shows an asymmetric suction on the wing upper surface at a 

roll angle of 8° due to vortex dynamics. The effect of vortex dynamics during wing-body rock is 

counter-balancing the effect of the asymmetric vortex burst location, which sustains the wing 

rock oscillation. 

In summary, the vortex burst dynamics is found to produce the driving moment of the 

motion for small roll angles, where the asymmetry in vortex structure and location is not 

significant. As the rolling continues, the rolling angle increases and the asymmetries in vortex 

structure and location becomes significant, and hence the restoring moment increases. At a finite 

roll angle, the restoring moment becomes sufficiently strong to stop rolling and even reverses the 

direction of roll afterwards. 

Based on the previous explanation of the fluid mechanism that drives wing rock, tangential 

blowing on the upper surface to enhance vortex burst is suggested for wing rock delay or 

suppression. Forebody vortex control has been studied for a similar model consisting of: forebody 

of circular cross-section, sharp delta wing of 78°-sweep, and vertical fin [41]. The reported results 

showed that steady tangential blowing from leeward nozzles near the forebody tips was capable 

of suppressing wing rock [41:303]. 

5-10 



The previous discussion explains the interesting shape of the limit cycle (figure 5-7) due to 

the rapid increase in roll rate in the neighborhood of the zero-roll angle position. Since the 

asymmetries in vortex structure and location in the neighborhood of the zero-roll angle position 

are not significant, the asymmetric vortex burst location is dominantly driving the motion. This 

also explains the switch in the sign of the roll stiffness derivative Clip from negative to positive as 

the model passes points (A) and (B) (see figure 5-14). 

o Negative Roll Rate 
■*■ Positive Roll Rate 

_  Wings-Leveled Static Location 
— _ Left Wing" 

Right Wing" 

* The Left & Right Conventions are Referred to an 
Observer Standing at the Origin in the Y-Z Plane 
and Looking down the (+) direction of X-axis. 

-..L 

IfT*' 

-10        -5 0 5        1( 
Roll Angle [deg] R       H£ 

Figure 5-10. Instantaneous vortex burst locations during an entire cycle of 
roll oscillations at a = 35°. 

Figure 5-10 shows large hysteresis associated with the vortex burst location on both wing 

halves. This hysteresis is observed on the wing-half only if it is in the leeward side of the wind. 

Even though the model discussed here does not have sideslipping body motion, there is still a 

kinematically induced sideslip. Since the model is rolling about the body-fixed x-axis, the angle 

of attack and sideslip are mutually interchanging during rolling as follows: 
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tan ß = tan a„ sin (f> (5-1) 

Where: 

ß - Sideslip angle due to kinematic-coupling. 

a„ = Angle of attack (wings-leveled). 

(p = Roll angle. 

At a positive roll angle the sideslip is positive and hence the left wing is in the leeward side 

of wind. Similarly at a negative roll angle, the sideslip is negative and hence the right wing is in 

the leeward side of wind. The hysteresis associated with the instantaneous vortex burst location 

(figure 5-10) is only observed on the upward-moving wing due to the time-lag of the vortex 

motion. 

5.3.2 Three Degrees-of-Freedom Wing Rock. The previous simulation of wing rock for 

the wing-body configuration with a single DoF in roll at a = 35° is next repeated for the three 

DoF: roll, sideslip, and vertical descent. The simulation shows the response starts divergent, and 

damps out nicely after the first cycle (see figure 5-15). This result indicates that adding the 

sideslip DoF increases the damping of the motion in general and hence delays the onset. 

However, the simulation should be conducted to a higher value of angle of attack to confirm 

whether the system would go into a limit cycle or not at all. Raising the angle of attack above the 

onset (a = 35°) one degree at a time is computationally costly (at least 3-4 cycles are needed to 

capture a limit cycle), so the angle of attack was raised by 5°. The simulation was repeated for a 

= 40° for the same initial conditions (p° = .01), and now achieves a limit cycle (figure 5-16). This 

result concludes that adding the sideslip DoF delays the onset of wing rock in general, however 

this doesn't mean that the onset was delayed by 5°, since the angles between 35° and 40° have not 

been tested. Comparing figures 5-6 and 5-16 one can see that the amplitude of the oscillations 

was reduced by approximately 50% over the single DoF case. 
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Figure 5-12. Vortex dynamics during a full limit cycle in roll at a = 35°. 
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Figure 5-14. Variations of rolling moment coefficient versus roll angle 
for a full limit cycle in roll. 

An aircraft in a rolling motion about its body-fixed longitudinal axis is subjected to sideslip 

due to two different sources, one from the kinematic-coupling of the angle of attack and sideslip 

(equation 5-1) and the other from the dynamics of the body's sideward motion (i.e. kinetics). The 

sideslip due to the kinematic-coupling is in phase with the motion as shown in figure 5-17, while 

the sideslip due to kinetics lags the motion. Figure 5-17 shows an approximately 90° phase-lag 

between the rolling and sideslip due to kinetics. This 90° phase-lag is a source of adverse sideslip 

motion during rolling, which has the effect of reducing the vortex lift-off distance on the upward- 

moving wing and hence reducing the amplitude of the oscillations. In addition, this adverse 

sideslip has the effect of reducing the hysteresis associated with the instantaneous vortex burst 

location (figure 5-18) compared with the case for the single DoF (figure 5-10). 
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Figure 5-15. Roll angle response to an initial roll rate of 0.01 at a = 35° for the 
case of three DoF motion. 
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Figure 5-16. Roll angle response to an initial roll rate of 0.01 at a = 40° for the 
case of three DoF motion. 
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Figure 5-17. Roll and sideslip angles time-histories for an entire cycle of wing rock 
at a = 40° for the case of three DoF motion. 
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cycle of the three DoF oscillations at a = 40°. 
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Previously, it has been shown that the static lateral stability derivative Clp (known as the 

dihedral derivative) can significantly influence the onset of wing rock [33,34,35,48]. The dihedral 

derivative (as are all stability derivatives) is determined at a certain angle of attack by measuring 

the value of the rolling moment coefficient for several static sideslip angles and then computing 

the derivative from this data. Due to computational costs, only dynamic simulations were 

performed for the present research. However, one can look at a pseudo stability derivative for the 

dynamic case from: 

C    = *± 
'"      dß 

dCl 

=   dt 

dt 

Where: 

Q = Rolling moment coefficient. 

ß = Sideslip angle (sum of kinematic-coupling plus kinetic motion) [rad]. 

The derivative was numerically computed by a second order accurate central difference 

scheme from the recorded data for a full cycle of wing rock in three DoF. The computed C, was 

then filtered through a low-pass filter to suppress the high frequency noise associated with the 

numerical scheme. Figure 5-19 shows the raw and filtered data. The mean value of C, over a full 

cycle was calculated to be -0.0591 [rad"1]. This concludes that during a fully developed wing rock 

oscillations, the mean value of the dihedral derivative is strongly stable. This contradicts the 

results of reference [48], where it was shown for the F-15 that C,  is approximately zero at the 

onset of wing rock. It remains to be seen whether this pseudo stability derivative is an accurate 

reflection of the true static definition. Further numerical static simulations would have to be 

performed. 
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5.4 Simulations of Wing Rock for the Full Generic Fighter Model 

The fin can produce a considerable amount of the side force, so its effect on the three DoF 

simulations needs to be examined. A finite-thickness trapezoidal fin of moderate fin-to-wing area 

ratio of 0.08 was used. The simulation of wing rock at a = 35° was repeated for the generic 

fighter model including the fin. The results show an increase in the damping and frequency of the 

oscillations (figure 5-20). However, this result is limited to the fin geometry used in this study, 

since the effect of a fin is greatly dependent upon its geometry and its area ratio [37:500]. The 

analysis reported in [41:301,4:3], for the case of single DoF in roll, shows that fins of relatively 

small area ratios have the effect of delaying the onset and reducing the amplitude of wing rock. 

Also it has been reported that fins of large area ratios are likely to get separated and produce an 

opposite effect [41:301]. The three DoF simulation of wing rock including the fin shows a 

significant increase in frequency (figure 5-20). This has not been reported for most of the fin 

configurations in literature for the case of single DoF roll only wing rock. Only one double fin 

configuration has shown a similar effect for the single DoF in roll [37:500]. A trapezoidal plane- 

form of area ratio .005 led to an increase in frequency of 36%, and significant reduction in wing 

rock amplitude [37:500]. 

The fin has two main contributions, one due to the aerodynamic interaction between the fin 

surface and the flow over the wing-body, and the other due to the side force produced by the fin. 

The main observed aerodynamic effect of the fin was the significant delay of vortex burst. The 

instantaneous location of vortex burst was determined using the same criterion that was 

previously explained in subsection 5.3.1. Figure 5-21 shows that the vortex burst location at a = 

35° for the model with fin was first observed at x* = 1.48, just downstream of the fin trailing edge 

compared with x = 1.03 for the model without fin. Figure 5-22 shows the non-dimensional axial 

velocity distribution at x* = I A4 (slightly before the fin trailing edge), which shows a positive 

minimum axial velocity. So vortex bursting has not been observed upstream of the trailing edge 
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of the fin at a = 35°. Since vortex burst dynamics produces the driving moment for the 

oscillations, the oscillations damped out more rapidly with the addition of the fin. 

10 15 20 
Nondimensional Time 

Figure 5-19. Time variation of the dihedral derivative during a three DoF wing rock. 
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Figure 5-20. Roll angle response to an initial roll rate of 0.01 at a = 35° 
in three DoF for the model with and without vertical fin. 
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Figure 5.21 Cross-plane axial velocity distribution at/ = 1.48 
for the generic fighter at a = 35°. 

Figure 5.22 Cross-plane axial velocity distribution atx = 1.44 
for the generic fighter at a = 35°. 
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5.5 Computational Cost 

The CPU-time for the diagonalized-Euler version of the modified fdl3di-code for the case of 

three DoF is approximately 2.51 /is/grid-point/sub-iteration on the CRAY-T94 supercomputer. 

Negligible difference was observed between the computational cost for the case of single DoF in 

roll and that for the case of three DoF. The reason is that the computational cost of solving the 

rigid-body dynamics equations is negligible compared with the cost of solving the flow governing 

equations. This fact motivates conducting the computational simulations of wing rock in three 

DoF rather than single DoF for better accuracy. 
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Chapter-6 Conclusions and Recommendations 

In the present study, the lateral limit cycle oscillation phenomenon known as wing rock has 

been analyzed in single and three degrees-of-freedom (DoF) for a generic fighter model with and 

without a vertical fin. 

The results for the model without fin in single DoF in roll showed a wing rock onset at a = 

35° with several interesting phenomena. A roll amplitude of 16° (peak-to-peak) was observed, 

which confirms the early results [4] on a similar model. The dynamic-aerodynamic interactions 

during the motion were thoroughly investigated by analyzing the snap shots taken for the 

flowfield at specific time intervals and tracing the instantaneous location of vortex burst on both 

wing halves for an entire cycle. The vortex burst dynamics during the motion was found to 

produce the driving moment, while the vortex dynamics (lift-off) near the peaks of the 

oscillations on the upward-moving wing half restores the motion. 

For comparison with the single DoF in roll simulations, simulations were conducted in three 

DoF: roll, sideslip, and vertical motion. The purpose of the three DoF simulations was to study 

the effect of the sideslip dynamics on the onset and limit cycle characteristics of wing rock. The 

results on the model without fin demonstrated a delay in the onset and a high reduction 

(approximately 50%) in the amplitude of the oscillations with surprisingly no change in 

frequency. The associated sideslip kinetics was found to lag the rolling motion by 90° during the 

fully developed wing rock oscillations. This adverse sideslip motion was found to be the source 

of this augmentation in damping and delay in onset. Also, the mean value of a pseudo dihedral 

derivative during a full cycle of oscillation was found to be clearly stable (-.0591), which 

contradicts previously reported F-15 results [48]. 

The effect of the vertical fin on the onset and characteristics of wing rock in three degrees- 

of-freedom was found similar to the results reported in [4,37,41] for the case of single degree-of- 
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freedom in roll. The vertical fin was observed to greatly affect the frequency for the case of three 

DoF wing rock, while no appreciable change in frequency was observed for the case of single 

DoF roll only wing rock. The present research shows that the vertical fin enhances the vortex 

burst on the wing by delaying its location downstream of the fin trailing edge and hence preserves 

the flow energy on the wing. 

In summary, the following conclusions can be drawn concerning wing rock for the generic 

fighter model described earlier: 

- The analysis of the wing rock motion for a full cycle showed that the vortex burst 

dynamics is the source of the driving moment that sustains the motion, while the vortex 

lift-off on the up-ward moving wing creates the restoring moment. 

In computational simulations, the sideward and vertical DoF should be included to get an 

accurate prediction of the wing rock onset and limit cycle characteristics. Especially, as 

previously mentioned in section 5.5, the computational cost of including the other two 

DoF is negligible. However, the predicted values for the single DoF in roll only were 

found to be conservative (i.e. earlier onset prediction and larger amplitude limit cycle 

characteristics). 

The computed value of the mean pseudo dihedral derivative for a full cycle of the fully 

developed three DoF simulations of wing rock was found clearly stable. 

Discarding the vertical fin in the prediction of the wing rock onset and characteristics was 

found to lead to different results. Unlike the effect of including the three DoF in wing rock 

simulations, which is approximately model-independent, the effect of vertical fin is 

greatly depending on its geometry and can't be generalized. 
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The author recommends performing the following utilizing the CFD-code developed for this 

effort: 

-     Computing the static lateral stability derivatives at the predicted onset to correlate with the 

pseudo derivative that was computed from the recorded data during the motion. 

Studying the effect of fore-body vortex control by tangential blowing for the case of three 

DoF wing rock oscillations. 

Obtain more accurate results for the onset point by repeating the simulations for 1° 

increments in angle of attack rather than the 5° increment used in the present study. 

Perform more fine mesh runs to validate the coarse mesh results. 

Extending the present work for flexible-body dynamics. 
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Appendix A - PEGSUS Inputs 

A.l PEGSUS User Inputs File 

C    PEGSUS 4.0 INPUT FILE (Coarse Mesh Version) 
C    DEFINE GLOBAL PARAMETERS 

$GLOBAL 
FRINGE = 2, 
$END 

C    DEFINE MESHES 

$MESH NAME = 'CWBGRID', 
LINK = 'CFINGRID', 
JINCLUDE = 31,68, 
KINCLUDE = 2,28, 
LINCLUDE = 19,47, 
QUALITY = 1.0,0.3,-0.1, 
$END 

$MESH NAME = 'CFINGRID', 
LINK = 'CWBGRID', 
JINCLUDE = 1,43, 
KINCLUDE = 1,36, 
LINCLUDE = 1,34, 
QUALITY = 1.0,0.3,-0.1, 
$END 

$MESH NAME = 'PHANTGRID' 
$END 

C    DEFINE BOUNDARIES 

$BOUNDARY NAME = 'PHANT HOLE BOUND', 
ISPARTOF = 'PHANTGRID', 
MHOLEIN = 'CWBGRID', 
$END 

$BOUNDARY NAME = 'FIN OUTER BOUND', 
ISPARTOF = 'CFINGRID', 
CLOSED =.FALSE., 
$END 

C DEFINE THE SURFACES THAT CONNECTED TO THE PHANT HOLE BOUND 
C THE BOUNDARY IN GENERAL IS A BOX-LIKE SHAPE COMPRISES OF 4 
C    SURFACES TO AVOID CONCAVITIES AT THE BOX CORNERS 

$SURFACE ISPARTOF = 'PHANT HOLE BOUND', 
JRANGE = 1,40, 
KRÄNGE = 1,10, 
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LRANGE = 30,30, 
NVOUT = '+L', 
$END 
$SURFACE ISPARTOF = 'PHANT HOLE BOUND', 
JRANGE = 1,40, 
KRÄNGE = 1,10, 
LRANGE = 1,1, 
NVOUT = ■-L', 
$END 
$SURFACE ISPARTOF = 'PHANT HOLE BOUND', 
JRANGE = 1,1, 
KRÄNGE = 1,10, 
LRANGE = 1,30, 
NVOUT = '-J', 
$END 
$SURFACE ISPARTOF = 'PHANT HOLE BOUND1, 
JRANGE = 40,40, 
KRÄNGE = 1,10, 
LRANGE = 1,30, 
NVOUT = '+J', 
$END 
$SURFACE ISPARTOF = 'PHANT HOLE BOUND', 
JRANGE = 1,40, 
KRÄNGE = 1,1, 
LRANGE = 1,30, 
NVOUT = '-K', 
$END 
$SURFACE ISPARTOF = 'PHANT HOLE BOUND', 
JRANGE = 1,40, 
KRÄNGE = 10,10, 
LRANGE = 1,30, 
NVOUT = '+K', 
$END 

DEFINE THE OUTER BOUNDARY OF THE FIN MESH 

$SURFACE ISPARTOF = 'FIN OUTER BOUND', 
JRANGE = 1,43, 
KRÄNGE = 1,36, 
LRANGE = 33,34, 
$END 
$SURFACE ISPARTOF = 'FIN OUTER BOUND', 
JRANGE = 1,2, 
KRÄNGE = 1,36, 
LRANGE = 2,32, 
$END 
$SURFACE ISPARTOF = 'FIN OUTER BOUND', 
JRANGE = 42,43, 
KRÄNGE = 1,36, 
LRANGE = 2,32, 
$END 
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$SURFACE ISPARTOF = 'FIN OUTER BOUND', 
JRANGE = 3,41, 
KRÄNGE = 1,2, 
LRANGE = 2,32, 
$END 
$SURFACE ISPARTOF = 'FIN OUTER BOUND', 
JRANGE = 3,41, 
KRÄNGE = 35,36, 
LRANGE = 2,32, 
$END 

C  Define the Fin surface and the fuselage part in the Fin mesh 
C   as interior banked points to be excluded from the flow field 

$REGION NAME = 'FIN REGION', 
TYPE = 'INTR', 
ISPARTOF = 'CFINGRID', 

$END 
C    DEFINE FIN SURFACE 

$VOLUME ISPARTOF = 'FIN REGION', 
JRANGE = 14,29, 
KRÄNGE = 18,19, 
LRANGE = 2,20, 
$END 

A.2  PEGSUS Parameters 

MDIM=3 
LNDIM=3 
ICHAR=40 
NBDIM=3 
MHDIM=2 
NSDIM=14 
MSLEN=2 5 0 00 
NXDIM=1 
NRDIM=2 
NVDIM=3 
INCORE=0 
MLEN=999999 
MLEMAX=999999 
MILEN=250000 
NBYTEI=8 
NBYTER=8 
MSSMAX = MSLEN*(INCORE*NSDIM+l-INCORE), 
MIMAX1 = MILEN*(INCORE*MDIM+l-INCORE), 
MIMAX2 = MILEN*(INCORE*MDIM*MDIM+l-INCORE) 
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A.3  Input Mesh Format 

The individual meshes are input to the PEGSUS via the input 

file INGRID, which has the following format for each individual 

mesh: 

RECORD VARIABLES 

1 Mesh Name 

2 JMAX, KMAX, LMAX 

3 (((X(J,K,L),J=l,JMAX),K=1,KMAX),L=1,LM 

AX) , 

(((Y(J,K,L),J=l,JMAX),K=1,KMAX),L=1,LM 

AX) , 

(((Z(J,K,L),J=l,JMAX),K=1,KMAX),L=1,LM 

AX) 

Where JMAX, KMAX, and LMAX are the maximum mesh indices in the J, 

K, and L directions respectively. 
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Appendix B - PEGSUS Output 

B.l PEGSUS Output Summary 

PPPPPPPPP  EEEEEEEEE  GGGGGGGGG  SSSSSSSSS  UUU   UUU  SSSSSSSSS 
PPPPPPPPP  EEEEEEEEE  GGGGGGGGG  SSSSSSSSS  UUU   UUU  SSSSSSSSS 

PPP   PPP  EEE        GGG        SSS        UUU   UUU  SSS 
PPP   PPP  EEE        GGG        SSS        UUU   UUU  SSS 

PPPPPPPPP  EEEEEEEEE  GGG        SSSSSSSSS  UUU   UUU  SSSSSSSSS 
PPPPPPPPP  EEEEEEEEE  GGG        SSSSSSSSS  UUU   UUU  SSSSSSSSS 

PPP        EEE        GGG  GGGG        SSS  UUU   UUU        SSS 
ppp        EEE        GGG    GG        SSS  UUU   UUU        SSS 

PPP        EEEEEEEEE  GGGGGGGGG  SSSSSSSSS  UUUUUUUUU  SSSSSSSSS 
PPP        EEEEEEEEE  GGGGGGGGG  SSSSSSSSS  UUUUUUUUU  SSSSSSSSS 

VERSION  4.x 

PARAMETERS 

MDIM= 3 
LNDIM= 3 
ICHAR= 40 
NBDIM= 3 
MHDIM= 2 
NSDIM= 14 
MSLEN= 25000 
NXDIM= 1 
NRDIM= 2 
NVDIM= 3 
INCORE= 0 
MLEN= 999999 
MLEMAX= 999999 
MILEN= 250000 

GLOBAL DESCRIPTION READ 
3 MESH DESCRIPTIONS READ 
2 BOUNDARY DESCRIPTIONS READ 

11 SURFACE DESCRIPTIONS READ 
0 BOX DESCRIPTIONS READ 
1 REGION DESCRIPTIONS READ 
1 VOLUME DESCRIPTIONS READ 

READING MESH 
READING MESH 
READING MESH 

CWBGRID 
CFINGRID 
PHANTGRID 
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***** GLOBAL PARAMETER SUMMARY 

MIN/MAX OF DOMAIN 
MIN X =  -0.1200E+01 
MIN Y =  -0.1500E+01 
MIN Z =  -0.1500E+01 

MAX X = 0. .3000E+01 
MAX Y = 0. .1500E+01 
MAX Z = 0 .1500E+01 

NO INCLUDE RANGES SPECIFIED 

NO. OF FRINGE POINTS 
QUALITY(1) 
QUALITY(2) 
QUALITY(3) 
EPS 

1.0000 
1.0000 
1.0000 
O.lOOOE-02 

GLOBAL ROTATION SEQUENCE = 

***** MESH PARAMETER SUMMARY ***** 

MESH NAME: CWBGRID 

PEGSUS MESH NO.=    1 
COMPOSITE MESH NO.= 

INDEX RANGES:  JMAX = 

TRANSLATION: X0 
ROTATION:    XR 

ALPHA = 
SCALING: SCALE = 
ROTATION SEQUENCE = 

79  KMAX = 35  LMAX = 65 

0.0000E+00 Y0 
0.0000E+00 YR 
0.0000E+00 BETA = 
0.1000E+01 

0.0000E+00 Z0 
0.0000E+00 ZR 
0.0000E+00  GAM 

0.0000E+00 
0.0000E+00 
0.0000E+00 

NO. OF FRINGE POINTS = : 2 
QUALITY(1) 1.0000 
QUALITY(2) 0.3000 
QUALITY(3) -0.1000 
EPS = 0.1000E- -02 

MIN/MAX OF MESH 
MIN X = -0.1200E+01 MAX X = 0.3000E+01 
MIN Y = -0.1500E+01 MAX Y = 0.1500E+01 
MIN Z = -0.1500E+01 MAX Z = 0.1500E+01 

INCLUDE PARAMETERS 
MIN X = -0.1000E+31 MAX X = 0.1000E+31 
MIN Y = -0.1000E+31 MAX Y = 0.1000E+31 
MIN Z = -0.1000E+31 MAX Z = 0.1000E+31 
MIN J = 31 MAX J = 68 
MIN K = 2 MAX K = 28 
MIN L = 19 MAX L = 47 
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LINKS 
NO.    NAME 
1     CFINGRID 

MESH NAME: CFINGRID 

PEGSUS MESH NO.=    2 
COMPOSITE MESH NO.= 

INDEX RANGES: JMAX 

TRANSLATION: XO 
ROTATION:    XR 

ALPHA 
SCALING: SCALE 
ROTATION SEQUENCE = 

43  KMAX = 3 6  LMAX = 34 

0.0000E+00 YO 
0.0000E+00 YR 
0.0000E+00 BETA = 
0.1000E+01 

0.0000E+00 ZO 
0.0000E+00 ZR 
0.0000E+00  GAM 

0.0000E+00 
0.0000E+00 
0.0000E+00 

NO. OF FRINGE POINTS = : 2 
QUALITY(1) = 1.0000 
QUALITY(2) = 0.3000 
QUALITY(3) = -0.1000 
EPS = 0.1000E- -02 

MIN/MAX OF MESH 
MIN X = 0. .9400E+ 00 MAX X = 0.1720E+01 
MIN Y = -0. .4000E+ 00 MAX Y = 0.4000E+00 
MIN Z = 0. .0000E+ 00 MAX Z = 0.4599E+00 

INCLUDE PARAMETERS 
MIN X = -0. .1000E+ 31 MAX X = 0.1000E+31 
MIN Y = -0. .1000E+ 31 MAX Y = 0.1000E+31 
MIN Z = -0 .1000E+ 31 MAX Z = 0.1000E+31 
MIN J = 1 MAX J = 43 
MIN K = 1 MAX K = 36 
MIN L = 1 MAX L = 34 

LINKS 
NO. NAME 
1 CWBGRID 

MESH NAME: PHANTGRID 

PEGSUS MESH NO.=    3 
PHANTOM MESH 

INDEX RANGES:  JMAX = 40  KMAX 10  LMAX 30 

TRANSLATION: XO 0. .0000E+00 Y0 0, .0000E+00 Z0  = 0. .0000E+00 

ROTATION: XR 0. .0000E+00 YR 0, .0000E+00 ZR  = 0 .0000E+00 
ALPHA = 0, .0000E+00 BETA = 0. .0000E+00 GAM = 0 .0000E+00 

SCALING: SCALE = 0. .1000E+01 
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ROTATION SEQUENCE = 

NO. OF FRINGE POINTS = 2 
QUALITY(l) =   1.0000 
QUALITY(2) =   1.0000 
QUALITY(3) =   1.0000 
EPS =   0.1000E-02 

MIN/MAX OF MESH 
MIN X = 0.1100E+01 MAX X = 0.1526E+01 
MIN Y = -0.1000E+00 MAX Y = 0.1000E+00 
MIN Z =   0.0000E+00     MAX Z =   0.3400E+00 

NO INCLUDE RANGES SPECIFIED 

LINKS 
NO.    NAME 

***** BOUNDARY PARAMETER SUMMARY 

BOUNDARY NAME: PHANT HOLE BOUND 

BOUNDARY TYPE   = HOLE 
CLOSED =     T 
IS PART OF MESH = PHANTGRID 

MIN/MAX OF HOLE BOUNDARY 
MIN X =   0.1100E+01     MAX X = 0.1526E+01 
MIN Y =  -0.1000E+00     MAX Y = 0.1000E+00 
MIN Z =   0.0000E+00     MAX Z = 0.3400E+00 

MAKE HOLE IN: 
NO.    NAME 
1     CWBGRID 

BOUNDARY NAME: FIN OUTER BOUND 

BOUNDARY TYPE   = OUTER 
CLOSED =     F 
IS PART OF MESH = CFINGRID 

SURFACE NO. =     1 
ISPARTOF : PHANT HOLE BOUND 
SURFACE RANGES 
MIN J = 1 MAX J = 40 
MIN K = 1 MAX K = 10 
MIN L = 30 MAX L = 30 
NVOUT = +L 
CONNECTING MESH = PHANTGRID 

SURFACE NO. =     2 
ISPARTOF : PHANT HOLE BOUND 
SURFACE RANGES 
MIN J =     1   MAX J =    40 

B-4 



MIN K =     1 MAX K =    10 
MIN L =     1 MAX L =     1 
NVOUT = -L 
CONNECTING MESH = PHANTGRID 

SURFACE NO. =     3 
ISPARTOF : PHANT HOLE BOUND 
SURFACE RANGES 
MIN J =     1   MAX J =     1 
MIN K =     1   MAX K =    10 
MIN L =     1   MAX L =    3 0 
NVOUT = -J 
CONNECTING MESH = PHANTGRID 

SURFACE NO. = 4 
ISPARTOF : PHANT HOLE BOUND 
SURFACE RANGES 
MIN J =    40 MAX J =    40 
MIN K =     1 MAX K =    10 
MIN L =     1 MAX L =    30 
NVOUT = +J 
CONNECTING MESH = PHANTGRID 

SURFACE NO. =     5 
ISPARTOF : PHANT HOLE BOUND 
SURFACE RANGES 
MIN J =     1 MAX J =    40 
MIN K =     1 MAX K =     1 
MIN L =     1 MAX L =    30 
NVOUT = -K 
CONNECTING MESH = PHANTGRID 

SURFACE NO. = 6 
ISPARTOF : PHANT HOLE BOUND 
SURFACE RANGES 
MIN J =     1 MAX J =    40 
MIN K =    10 MAX K =    10 
MIN L =     1 MAX L =    30 
NVOUT = +K 
CONNECTING MESH = PHANTGRID 

SURFACE NO. = 7 
ISPARTOF : FIN i OUTER BOUND 
SURFACE RANGES 
MIN J =     1 MAX J =    43 
MIN K =     1 MAX K =    36 
MIN L =    33 MAX L =    34 
NVOUT = 
CONNECTING MESH = CFINGRID 

SURFACE NO. = 8 
ISPARTOF : FIN OUTER BOUND 
SURFACE RANGES 
MIN J =     1 MAX J =     2 
MIN K =     1 MAX K =    36 
MIN L =     2 MAX L =    32 
NVOUT = 
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CONNECTING MESH = CFINGRID 

SURFACE NO. =     9 
ISPARTOF : FIN OUTER BOUND 
SURFACE RANGES 
MIN J =    42   MAX J =    43 
MIN K =     1   MAX K =    36 
MIN L =     2   MAX L =    32 
NVOUT = 
CONNECTING MESH = CFINGRID 

SURFACE NO. =    10 
ISPARTOF : FIN OUTER BOUND 
SURFACE RANGES 
MIN J =     3   MAX J =    41 
MIN K =     1   MAX K =     2 
MIN L =     2   MAX L =    32 
NVOUT = 
CONNECTING MESH = CFINGRID 

SURFACE NO. =    11 
ISPARTOF : FIN OUTER BOUND 
SURFACE RANGES 
MIN J =     3   MAX J =    41 
MIN K =    35   MAX K =    3 6 
MIN L =     2   MAX L =    32 
NVOUT = 
CONNECTING MESH = CFINGRID 

***** REGION PARAMETER SUMMARY ***** 

REGION NAME: FIN REGION 

REGION TYPE = INTR 
IS PART OF MESH = CFINGRID 

VOLUME NO. =     1 
ISPARTOF : FIN REGION 

VOLUME RANGES 
MIN J =    14 MAX J = 29 
MIN K =    18 MAX K = 19 
MIN L =     2 MAX L = 20 

INTERPOLATING BOUNDARY POINTS FOR 
MESH: CWBGRID 
LINK: CFINGRID 
QUALITY= 1.00000     STENCILS FOUND:     1712 

NO ORPHAN POINTS LEFT IN MESH - CWBGRID 

INTERPOLATING BOUNDARY POINTS FOR 
MESH: CFINGRID 
LINK: CWBGRID 
QUALITY= 1.00000     STENCILS FOUND:    12210 
LINK: CWBGRID 
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QUALITY= 0.90000     STENCILS FOUND:       76 
LINK: CWBGRID 
QUALITY= 0.80000     STENCILS FOUND:       7 6 
LINK: CWBGRID 
QUALITY= 0.70000     STENCILS FOUND:       2 0 
LINK: CWBGRID 
QUALITY= 0.60000     STENCILS FOUND:       12 

LINK: CWBGRID 
QUALITY= 0.50000     STENCILS FOUND:        2 

NO ORPHAN POINTS LEFT IN MESH - CFINGRID 

INTERPOLATING BOUNDARY POINTS FOR 
MESH: PHANTGRID 

* * * * * QUALITY SUMMARY 

MINIMUM NO. OF INTERPOLATED 
QUALITY BOUNDARY POINTS FOUND 

= 1.0 13922 

>=0.9 76 
>=0.8 76 
>=0.7 20 
> = 0.6 12 
>=0.5 2 
>=0.4 0 
>=0.3 0 
>=0.2 0 
>=0.1 0 
>=0.0 0 

MESH: CWBGRID 
NUMBER OF BOUNDARY POINTS:     1712 
NUMBER OF INTERPOLATION STENCILS:    12396 

MESH: CFINGRID 
NUMBER OF BOUNDARY POINTS:    12396 
NUMBER OF INTERPOLATION STENCILS:     1712 

XMER3D PARAMETERS 

MINIMUM DIMENSIONS REQUIRED FOR THE FLOW SOLVER 

IWRK =  385128 IGRD =  179725 

JDIM 79 KDIM 36 LDIM 65 
IIDIM  = 12396 IBDIM  = 12396 IQBDIM = 14108 

XLIM3D PARAMETERS 

MINIMUM DIMENSIONS REQUIRED FOR THE FLOW SOLVER 

IWRK = 61992 IGRD =  179725 

LARG = 79 NORPH  = 0 
IIDIM = 12396 IBDIM  = 12396 ISDIM  =  898625 
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B.2 Diagnostic Maps 

DIAGNOSTIC MAPS 
LEGEND 

BOUNDARY POINTS UPDATED BY : 
A  -  CWBGRID 
B  -  CFINGRID 

INTERPOLATION STENCILS UPDATING POINTS IN : 
a  -  CWBGRID 
b  -  CFINGRID 

.  -  FIELD POINT 
# -  HOLE POINT 
?  -  ORPHANED BOUNDARY POINT 
* -  INTERPOLATION STENCIL UPDATING MORE THAN ONE 

INTERPOLATION BOUNDARY POINT 
Here in the following are samples of the diagnostic maps for the two meshes 

MAP FOR CWBGRID 

PLANE  L =  31 

J        1 2 3 4 5 6 7 8 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

K 
1  * #################  
2  *b BB#################BB. .**  
3  ** BB#################BB. . **  
4  ** BB#################BB. .**  
5  *. . . .BB#################BB. .**  
6  * BB################BB. . **  
7  ** BB################BB. .**  
8  b* BB################BB. . **  
9  **...BB################BB.. 

10  **• • 
11  *b. 
12  **. 
13  ** 
14  ** 
15  * 
16   
17  **. . .BB###########BB. . **. 
18  **. . .BB##########BB. . **. 
19  **. . .BB#########BB. . **. 
20  **■ • .BBBBBBB###BB. . **. 
21  ******** *bBBBBB ...**. 
ryj *********** *T3       * * 

Q-j ********* 

24   
25   
26   
27   
28   
29   
30   
31   
32   
33   
34   
35   
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MAP FOR CWBGRID 

PLANE  L =  32 

J12345678 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

K 
1  * #################  
2  ** BB#################BB. .**  
3  ** BB#################BB. .**  
4  ** BB#################BB. .**  
5  * BB################BB. .**  
6  * BB################BB. .**  
7  ** BB################BB. .**  
8  ** BB################BB. .**  
g  *b BB###############BB. .**  

10  ** BB###############BB. .**  
11  * BB###############BB. .**  
12  ** BB##############BB. .**  
13  * BB##############BB. .**  
14  ** BB#############BB. .**  
15  **. . .BB#############BB. .**  
16  **...BB############BB..**  
17  **. . .BB###########BB. .**  
18  **. . .BB##########BB. . **  
19  *. . . .BBBBBBB####BB. .**  
20  **■ - .BBBBBBBB##BB. . **  
21  **********BBBBB. . . **  

24   
25   
26   
27   
28   
29   
3 0   

31   
32   
33   
34   
35   
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MAP FOR CWBGRID 

PLANE  L =  33 

j 1        2        3        4        5        6        7        8 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

K 
1       * #################  
2  ** BB#################BB. . **  
3       ** BB#################BB. .**  
4     ** BB#################BB. .**  
5    * BB################BB. .**  
6    * BB################BB. .**  
7  ** BB################BB. .**  
8  ** BB################BB. .**  
g   *b BB###############BB. .**  

10  ** BB###############BB. .**  
11  * BB###############BB. .**  
12    ** BB##############BB. .**  
13  * BB##############BB. .**  
14  ** BB#############BB. .**  
15       **. . .BB#############BB. . **  
16  **. . .BB############BB. .**  
17      **. . .BB###########BB. .**  
18  **. . .BB##########BB. .**  
19  *. . . .BBBBBBB####BB. .**  
20  **■ ■ .BBBBBBBB##BB. . **  
21  **********BBBBB. . . **  

22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

************£}_ _ t .**. 
******** 
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MAP FOR CWBGRID 

PLANE  L 34 

J12345678 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 

.* #################  

.*b BB#################BB.. 

.** BB#################BB.. 

.** BB#################BB.. 

..* BB################BB.. 

. .* BB################BB. . 

..** BB################BB.. 

..b* BB################BB.. 

...** BB###############BB.. 

...** BB###############BB.. 
 *b. ..BB###############BB. . 

.BB##############BB.. 

.BB##############BB.. 

..BB#############BB. 

..BB#############BB. 
**...BB############BB. 
.**...BB###########BB. 
..**...BB##########BB. 
...**...BBBBBBB####BB. 
....**...BBBBBBBB##BB. 

* * 

*********bBBBBB.. 
*********** *Y$ 

****** 

* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
* * 
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MAP FOR CWBGRID 

PLANE  L =  3 5 

j        1        2        3        4        5        6        7        8 
12345678901234567890123456789012345678901234567890123456789012345678901234567890 

K 
1  * #################  
2  * BB#################BB. .**  
3  ** BB#################BB. .**  
4  b* BB#################BB. .**  
5  * BB#################BB. .**  
6  ** BB################BB. .**  
7  ** BB################BB. .**  
8  *b. . .BB################BB. .**  
9  **...BB################BB..**  

10  b* BB###############BB. .**  
U  **. . .BB###############BB. .**  
12  b* BB##############BB. .**  
13  **. . .BB##############BB. .**  
14  * BB#############BB. .**  
15  **. . .BB#############BB. .**  
16  **. . .BB############BB. .**  
17  **. . .BB###########BB. .**  
18  **. . .BB##########BB. .**  
19  **. . .BB#########BB. .**  
20  *• • • .BBBBBBB###BB. .**  
21  **. . .BBBBBBBBBB. . .**  
99 ********** bBB....**. 
~~ v-,* ********** 

24   
25   
26   
27   
28   
29   
3 0   
31   
32   
3 3   
34   
35   
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MAP FOR CFINGRID 

PLANE  L =   2 

J        1 2 3 4 5 
12345678901234567890123456789012345678901234567890 

K 
1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
3AA AA 
4AA AA 
5AA a a AA 
6 AA aaaaaaaa.a.aaa.a AA 
7 AA a.aa. .a.a AA 
8 AA aaa a* .aa.a AA 
9 AA AA 

10 AA. . . .aa AA 
11 AA aa. . . .AA 
12 AA. . . .aa AA 
13 AA AA 
14 AA a.a aa. . . .AA 
15 AA AA 
16 AA a.a aa. . . .AA 
17 AA AA 
18 AA a.a. . .################ aa AA 
19 AA ################ AA 
20 AA a.a aa. . . .AA 
21 AA AA 
22 AA a.a aa. . . .AA 
23 AA AA 
24 AA. . . .aa AA 
25 AA aa. . . .AA 
26 AA. . . .aa AA 
27 AA AA 
28 AA aaa a* .aa.a AA 
29 AA a. aa. . a. a AA 
30 AA aaaaaaaa. a. aaa .a AA 
31 AA a a AA 
32 AA AA 
33 AA AA 
34 AA AA 
35 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
3 6 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
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MAP FOR CFINGRID 

PLANE  L 

J 1 2 3 4 5 
12345678901234567890123456789012345678901234567890 

K 
1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

3 AA AA 

4AA AA 
5AA a* AA 
6 AA aaaaaa aa AA 

7 AA a. aa. . a. a AA 
8 AA aaaaaa.a.aaa.aa.a AA 

9 AA a. . a. . a. a. aa AA 

10 AA. . . .a AA 
11 AA aa. . . .AA 

12 AA. . . .aa AA 
13 AA AA 
14 AA aa aa. . . .AA 

15 AA AA 
16 AA aa aa. . . .AA 

17 AA AA 
18 AA aa ################ aa AA 
19 AA ################ AA 
20 AA aa aa. . . .AA 

21 AA AA 
2 2 AA aa aa. . . . AA 

23 AA AA 
24 AA. . . .aa AA 
25 AA aa. . . .AA 

26 AA. . . .a AA 
27 AA a. .a. .a.a.aa AA 
28 AA aaaaaa.a.aaa.aa.a AA 

29 AA a.aa..a.a AA 
30 AA aaaaaa aa AA 
31 AA a* AA 

32 AA AA 
33 AA AA 
34 AA AA 
3 5 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
36 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
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MAP FOR CFINGRID 

PLANE  L =   4 

J        1 2 3 4 5 
12345678901234567890123456789012345678901234567890 

K 
1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
3AA AA 
4AA AA 
5 AA a. aa AA 
6 AA a.aaaaaaaa.a.aa AA 
7AA a.a..a a AA 
8 AA a.aaaaaaa.a. .aa.aa.a AA 
9 AA aa.a.a..a AA 

10 AA AA 
11 AA aa aa. . . .AA 
12 AA AA 
13 AA a AA 
14 AA aa a....AA 
15 AA AA 
16 AA aa aa. . . . AA 
17 AA AA 
18 AA aa ################ aa AA 
19 AA ################ AA 
20 AA aa aa. . . .AA 
21 AA AA 
22 AA aa a....AA 
23 AA a AA 
24 AA AA 
25 AA aa aa. . . .AA 
26 AA AA 
27 AA aa.a.a. .a AA 
28 AA a.aaaaaaa.a. .aa.aa.a AA 
29 AA a.a. .a a AA 
30 AA a.aaaaaaaa.a.aa AA 
31 AA a.aa AA 
32 AA AA 
33 AA AA 
34 AA AA 
3 5 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
3 6 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAÄAA 
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MAP FOR CFINGRID 

PLANE  L =  33 

J        1 2 3 4 5 
12345678901234 567890123456789012345678901234567890 

K 
1 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
3 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
4 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
5 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
6 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
7 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
8 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
9 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

10 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
11 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
12 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
13 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
14 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
15 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
16 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
17 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
18 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
19 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
20 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
21 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
22 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
23 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
24 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
25 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
26 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
27 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
28 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
29 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
30 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
31 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
32 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
33 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
34 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
35 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
36 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
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MAP FOR CFINGRID 

PLANE  L =  34 

J        1 2 3 4 5 
12345678901234567890123456789012345678901234567890 

K 
1 AAAAAAAAAAAAAAAAAAAA/\AAAAAAAAAAAAA/\AAAAAAAA 
2 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
3 AAAAAAAAAAAAAAAA/\AAAAAAAAAAAAAAAAAAAAAAAAAA 
4 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
5 AAAAAAAAAAAAAA/\AAAAAAAAAAAAAAAAAAAAAAAAAAAA 
6 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
7 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
8 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
9 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 

10 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
11 AJUUWYAAAAAAAAAAAAAAAAAJYAAAAAAAAAAAAAAAAAAA 
12 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
13 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
14 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
15 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
16 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
17 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
18 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
19 A/\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
20 A7\AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
21 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
22 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
23 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
24 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
25 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
26 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
27 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
28 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
29 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
3 0 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
31 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
32 AAAAAAAAAAAAJVAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
33 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
34 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
3 5 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
3 6 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA 
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Appendix C - Numerical Application of the 
Euler Boundary Conditions 

The classical Euler boundary conditions have been known for decades as "there is no 

penetration of the fluid medium to the solid boundary", or alternatively the normal component of 

the relative fluid velocity is zero on a solid boundary. Although the statement of the Euler 

boundary condition seems simple, its application in computational fluid dynamics is not. In the 

rest of this Appendix, the numerical application of the Euler boundary conditions is presented in 

detail. The methodology will be discussed for a general case when the grids are allowed to move, 

and the static case can be easily derived by assigning zero value for the grid velocity. 

The following assumptions have been made in the next derivation: 

First-order approximation for the tangents at the grid points on the body surface. 

The magnitude of the velocity at a grid point on the body surface is interpolated from the next 

point to the surface in the direction of the outward normal. 

K= Const. Surface 

11 

Figure C-l. Schematic drawing for the body surface. 

Let V[  and v2 denote the two vectors that representing the first-order approximation of the 

tangents to the surface at the grid point (see figure C-l). 
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v, = (x(i +1, j, k) - x(i -1,j, k))i + (y(i +1,j, k) - y(i -1, j, k))j + (z(i +1, j, k) - z(i -1,j, k))k 

= v:J + vhj + vuk 

v2 = (*(i, 7 + U) - JC(I, 7 -1, k))i + (y(i, j + U) - y(i, j -1 k))j + (z(j, j + U) - z(i, j -1, k))k 

The outward normal to the surface JV is determined as follows: 

N = v,xv2 

= (\V2Z ~\v2,)'" + (\V2X - vlxv2j); + (vlxv2> -vyv2x )k 

= Nj + Nv] + N.ic 

Since v,  and v2 are not orthogonal in general, let tx and n denote the unit vectors in the 

direction of v, and N respectively, then use tx and n to find the third orthogonal unit vector t2. 

t2 =nxtl 

Where: 

i     i- i 

= tx i +t{ j + ty k 

= nj +nyj + nzk 

t2 = (nytu - nzth ) i + (nztK - nxtlt)] + (nxtXy - nytlx )k 

= t2 i +12 j +12_ k 
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Assume the body is moving with a velocity Ub, where: 

Ub =ubi+vb] + wbk 

Then the body velocity in the normal direction is given by: 

uK = Ub-n 

= ubnx+vbny+wbnz 

Projecting the fluid velocity U on the body surface along the three orthogonal directions n, tx, 

and t2 yields: 

un =U -n 

~unx +vny +wnz 

uh =V-tx 

-ut,  +vt,  +wt, 
lx ly z 

uu = V ■ t2 

= ut2 +vt2 +wt2 

Now, apply the Euler boundary condition: 

Un = ub„ (C_1) 

Interpolate the value of the velocity components in the other two directions from that of the next 

layer in the direction of the outward normal: 

Mr,  = uh 1+ (C-3) 

The ± sign indicates that, the interpolation will be done from either the next or previous layer 

according to the direction of the outward normal. For the directions posted in figure C-l, the 
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nx ny nt] ("1 ubnx+vbny-¥wbnz 

1 X \ K V - tl u+ +tlv± +tuw± 

^X *h K W 
V    ) 

t2 u+ +t2 v+ +t2_w± 

outward normal is running in the direction of increasing K, so the interpolation will be done from 

the surface (K+l) and vice-versa. 

Equations (C-l to C-3) could be written in matrix form as follows: 

(C-4) 

Equation (C-4) is a system of three linear determined algebraic equations, which can be easily 

solved by Kramer's Rule. Finally, the solution is given by: 

v = nx (ul>± t2i - tK uh±) - uK (th t2z - th t2) + nz (ut2± ^ - t2x w,_± ) 

w = nx{uh±tXj -t2yuh±)-ny(tlxut± -u,at2x) + uK (^tly -tlft2x) 
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Appendix D - Numerical Computation of the 
Aerodynamic Forces and Moments 

Given an arbitrary body immersed in a fluid medium (figure D-l), the elementary force 

dF exerted on an element of the surface area da is given by: 

dF = {n-f)da 

Where: 

n Denotes the outward normal to the surface, 

f  Denotes the stress tensor. 

Figure D-l. Schematic drawing shows the nomenclature used. 

Let the equation of the surface be given by: 

f(x,y,z) = r](x,y,z) = c 

Then by definition the normal vector n is given by: 

eel 

n- 
v/l 
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Vj+VyJ + rizk 

4 V2
x+ril+t12

z 

=VJ+Vyj + Vzk 

Where: i, ], and k are unit vectors in the inertial frame of reference, and 

nx 

% = 

Vx 

Vz 

^Vx
2+Vy

2+Vz 

^t]x
2+riy2+nz 

T]VX
2

  +Vy2  +VZ 

Hence: 

n-r = hx Vy nz] 

XXX xv xy xz 

XXX 
yx        yy        yz 

XXX 
zx zy zz 

For the case of an inviscid fluid (Euler equations), all the off-diagonal elements of the stress 

tensor are zeros, leaving the diagonal elements, which are given as follows: 

X    =x    =X    =-P 
ILK yy zz 

Hence: 

dF = -PVr\ da 

dFx = -P ffx da 

dFy = -Prfy da 

dF7 = -Pr\  da 

(D-l) 
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Assume dSx and dS2 are two arbitrary orthogonal curvilinear elements of arc length that bound 

the element of area da . For simplicity, let us pick dS{ along the line £ = const, and dS2 along 

the line C, - const. 

In general, \ds\ = -Jdx2 +dy2 +dz2 

Also dx, dy, and dz could be written as: 

dx = x^dE, + xv dr\ + x^dC, 

dy = yid% + yvdri + y(d( 

dz = z^dE, + zndri + z^dC, 

Substitute by d% =0on rf^and dC, =0on J,S2. Since dS,and <iS2are bounding the element 

of area do , then dr\ is also zero on dSl and J52. 

=> dS 

dS~ = ij(xtdfl+{yedZj+(zsdfl 

By definition, da is given by: 

da = dS{ x dS2 

dSl dS* -(dSrdsJf 

Factoring out the previous equation, and inserting the expressions for dSl and dS2. 

-i 

=>        da = {x(y^-xiycJ
i+(xizi-x^zi)

2+(yiz^-yiziJ\2d^dC      (D-2) 

Recall the following metric relations: 

Vy=j(xiZ(-XiZ^) 
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rlz=j(xcy4-xsyi) 

Where/ is the Jacobian of the coordinate transformation at the grid point (£,?7,£). 

Insert the metric relations into (D-2), finally, da is given by: 

do = Jnl+ril+nl %f- (D-3) 

Inserting (D-3) into (D-l) yields: 

J 

=> dFx=-P^d£dC 

dF=-P^d1;d£ y j 

dF=-P^-d^dC 
J 

The differential force dF exerts a moment dM about the center of gravity, which is given by: 

dM=rtxdF (D-4) 

Where: 

fi Denotes the displacement vector from the e.g. to the surface area da. 

r, =(x-xcg)I + (y-ycg)] + (z-zcg)k 

Inserting the expression for ri in (D-4) and applying the cross product yields: 

dMx=(y-ycg)dFz-{z-zcg)dFy 

dMy=(z-zcg)dFx-(x-xcg)dFz 

dMz=(x-xcg)dFy-(y-ycg)dFx 

Inserting the expressions for dFx, dF , and dFzyields: 
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dMx = -y b-ycg)nz -(z-zcg)r)y}dt, dC 

dMy=~ [(z - zcg )r\x-{x- xcg )r]z ]d£ dt, 

dMz =~h- xcg)ny -(y- ycg )nx kl dC 

Integrating over the whole surface yields the total forces and moments components, which are 

given respectively as follows: 

Fx=-lJP^dZdZ 

Fy=-\\pn-fd^dC 

Fz=-\\pn-fd^di; 

M JJ  jiiz-zJV.-^-xJvMdC 

= -jj j{{x-xcs)ny-(y-ycg)nx]dl;dt Mz=- 

Since the body-fixed x-axis is only translating (not rotating), then the rolling moment about the 

body-fixed x-axis (Lb) in equation (3-3) equals Mx. 
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