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Abstract 

Scratch free surfaces are required for substrates used in epitaxial growth. Silicon 

carbide (SiC) is a substrate material that is used in the epitaxial growth of SiC, GaN, and 

InGaN electronic devices. Preliminary chemical mechanical polishing (CMP) studies of 

1 3/8" 4H-SiC wafers were performed in an attempt to identify the polishing parameter 

values that result in a maximum material removal rate and thus reduce substrate polishing 

time. Previous studies reported increased material removal rates associated with 

increasing polishing temperature, slurry pH, pressure, and polishing pad speed. In the 

current study, the effects of temperature, slurry pH, polishing pressure, and polishing pad 

speed were examined independently while keeping other polishing parameters constant. 

Material removal rates were determined using pre and post-polish wafer mass 

measurements. Photographs at specific wafer locations were obtained before and after 

each polishing period and compared to calculated removal rates. 

The current study indicated that different temperatures affect the removal rate by 

changing pad fiber dynamic shear modulus and not by altering the chemical reaction rate 

between the polishing slurry and wafer surface atoms. Also, in contradiction to other 

studies, a decrease in material removal was observed for increasing slurry pH levels. 

Increased applied pressure resulted in higher removal rates and unwanted polishing pad 

damage. Higher pad rotational speeds produced non-linear increases in material removal 

rates and appeared to have the greatest impact on material removal rates. High pressures 

and rotational speeds introduced variability and randomness in the calculated removal 

rates. 
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Chemical Mechanical Polishing Optimization for 4H-SiC 

I. Introduction 

Silicon carbide (SiC) is a semiconductor material that has the potential to be used 

in a variety of military applications due to many of its material properties. SiC is a wide 

bandgap semiconductor with excellent thermal conductivity values that vary with 

polytype and dopant concentration (Harris, 1995:5). In addition, it has outstanding 

mechanical and wear properties, which allow it to be used in a variety of demanding 

environments. It is also extremely resilient to radiation and chemical attack at room 

temperature. These properties make silicon carbide an attractive option for 

semiconductor device applications in many caustic environments as well as in space. 

Silicon carbide can exist in over 200 different crystal structure modifications or 

polytypes. Polytype 3C, which is a cubic crystal structure, and two hexagonal crystal 

structures, 4H and 6H, are common SiC polytypes used in advanced technology 

semiconductor devices. In particular, 4H- and 6H-SiC are favorites among 

semiconductor device manufacturers due to the commercial availability of low defect 

density crystals (Yasseen, 1999:327). 

Material Properties and Applications 

Although silicon carbide has many polytypes, the general atomic structure of SiC 

consists of layers of silicon and carbon atoms bonded tetrahedrally and stacked on each 

other. The various polytypes arise from the different orders in which the layers are 

arranged. 
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4H-SiC has an energy bandgap of approximately 3.285 eV at temperatures less 

than 5K (Harris, 1995:31). Typical intrinsic silicon and germanium bandgap values are 

1.1 and 0.7 eV respectively. The higher bandgap energy of SiC results in a higher 

operating temperature without intrinsic electron excitation. Coupled with the fact that 

SiC has thermal conductivity values that can exceed that of copper yields the conclusion 

that SiC devices are capable of operating in a high temperature environment. Typical 

silicon devices have operating temperatures as high as 150°C, while SiC devices have 

shown the ability to operate nominally at temperatures as high as 650°C (Neudek). 

The Air Force has a need for semiconductors that are capable of nominal 

operation at higher temperatures for many applications (Neudeck).   Many military 

aircraft utilize GaAs microwave devices for electronic communication and radar systems. 

Although GaAs has been useful for devices in the past, current military aircraft systems 

goals involve microwave devices capable of operating at higher temperatures and power 

levels. Silicon carbide devices can meet both of these Air Force requirements. 

In addition to radar and communications systems, Air Force aircraft could reap 

significant aircraft weight and reliability benefits from the development of high 

temperature electronic devices. Current military aircraft engine electronic control 

systems are typically housed in a cooled compartment with wiring connecting the control 

electronics to the various components of the engine. Advanced SiC electronics would 

drastically reduce weight and increase reliability because the electronics could be housed 

in the engine with little wiring required.    The Air Force has estimated that advanced SiC 

control electronics implemented on an F-16 fighter would result in a weight loss of 



hundreds of pounds (Neudeck). Also, aircraft reliability would increase since many 

hours of aircraft downtime and maintenance are attributable to worn wiring and bad wire 

connections. In addition to aircraft benefits, high power SiC devices would result in 

substantial weight savings on military satellites. Advanced SiC devices do not require 

the heavy cooling systems and thermal shielding with which current spacecraft electronic 

devices operate. Reductions in satellite cooling and heat shielding systems would result 

in reduced satellite weight, higher reliability, increased space for additional satellite 

functional devices and significant launch cost savings. 

Besides its ability to operate at elevated temperatures, SiC is also significantly 

less susceptible to radio frequency (RF) interference, radiation damage, and chemical 

attack than silicon. Past research conducted by the U.S. Army Research Laboratory and 

the NASA Lewis Research Center found that the use of SiC diodes reduced RF 

interference by a factor of 10 in comparison to silicon based diodes (Neudeck). Also, as 

of only five years ago, no known aqueous solution existed that chemically attacked SiC at 

room temperature, although SiC can be etched using molten salts such as NaOH or KOH 

at 500°C. Plasma and reactive ion etching techniques can also be used although the 

results from these techniques are not always conducive to quality device fabrication 

(Sugiura et al., 1986:349) (Palmour and Davis, 1986:590). These material properties 

make SiC an attractive option to Si and GaAs electronics systems used in the space 

environment. 

Many of the advanced technology electronic devices are possible due to advances 

in various epitaxial methods. Molecular beam epitaxy, liquid phase epitaxy and vapor 



phase epitaxy are all methods of epitaxial growth. Each of these methods makes use of a 

highly polished wafer frequently termed a substrate. To prevent excess mechanical 

stress, the substrate material should have an atomic lattice constant that is very similar to 

the device material. Therefore, SiC substrates are commonly used to grow SiC, GaN, and 

InGaN devices. Just as it is important to grow semiconductor wafers beginning with a 

'perfect' seed crystal, so it is imperative to begin epitaxial growth with a 'smooth', defect 

free surface. This is especially true in the case of SiC. Current SiC wafers contain 

defects called micro-pipes. Micro-pipes are extremely small material voids that can 

tunnel through the entire thickness of a wafer. Although major improvements have been 

made to reduce the number of micro-pipes in SiC crystals, their presence in current SiC 

crystals has not yet been completely eliminated. The removal of all other defects is 

important if a SiC wafer is to be used as a substrate in epitaxial growth. Defects or 

scratches on the substrate surface will propagate through the epitaxial growth process and 

result in a device which is unacceptable. 

Chemical mechanical polishing is a polishing technique that can produce the high 

quality substrates needed to epitaxially grow advanced electronic devices. The goal of 

this study is to examine several CMP parameters and develop a preliminary set of 

polishing parameters that will minimize the time required to acquire a scratch free SiC 

surface. This first chapter has been an introduction and provides information regarding 

SiC material properties and specific Air Force applications for this research. Chapter II 

presents general CMP theory and introduces the reader to several CMP parameters 

believed to be crucial to the polishing process. In addition it discusses various methods 

of material removal rate determination and describes the method used during this 



research. Chapter III provides information on the samples, equipment and experimental 

polishing techniques used during this research. Chapter IV presents the observed effects 

the several polishing parameters had on the polishing process. Finally, Chapter V is 

dedicated to a summary of the results and recommendations for future research. 



II. CMP Theory and Methodology 

Chemical mechanical polishing (CMP) has not always been accepted as an 

effective method to acquire a highly polished semiconductor surface. Many 

semiconductor manufacturers were skeptical that CMP could produce a quality surface 

when the process was first introduced in the late 1960's and early 1970's. The attitudes 

of semiconductor manufacturers have changed in the past 30 years. Chemical 

mechanical polishing has quickly become an integral part of many device manufacturing 

processes. Chemical mechanical polishing is precisely what its name implies; it is the 

polishing of a semiconductor surface by chemical reactions between the wafer surface 

atoms and the polishing slurry and mechanical removal of the 'softened' semiconductor 

surface atoms by small particles suspended in the polishing slurry. 

Obtaining an acceptable wafer surface involves many hours of polishing and 

introduces a considerable amount of cost into the wafer manufacturing process. 

Therefore, it is desirable to accelerate the polishing process by developing the optimum 

polishing conditions. There are many polishing parameters that affect the rate of material 

removal. Some of these parameters are: polishing slurry chemical composition, slurry 

particle type and percent content, slurry pH, polishing temperature, polishing pad type 

and pad condition, pad speed, and polishing pressure. Several of these parameters will 

be discussed in greater detail presently. Although a wealth of information exists on 

chemical mechanical polishing of silicon and germanium, very little has been published 

on silicon carbide. It is believed that limited data regarding CMP of SiC exists but has 

not been published because most of the research has been performed by companies that 

commercially sell CMP products. 



Polishing Slurry Chemical Composition 

There is a myriad of possible chemical compositions that can be used to polish 

silicon carbide. In most documented cases, a solution with sub-urn silica particles in 

suspension is used. Solutions such as this are termed colloidal silica polishing slurries 

and are readily available. One study (Zhou et al., 1997:L161) makes use of a diluted 

colloidal silica slurry called Nalco 2350. In this same study, the authors present a theory 

regarding the chemical reaction between the slurry and wafer surface atoms. According 

to the theory, the alkaline solution contains hydroxide (OH-) groups, which are free to 

bond with the single dangling electron of the surface silicon atom. The resulting dipole 

weakens the bonds between the surface silicon atom and the three carbon atoms. In 

addition, it allows oxygen molecules to form bonds with the surface silicon atoms, 

thereby forming SiC>2 which is a considerably softer material than SiC. The atomic layer 

of SiC>2 is subsequently removed by mechanical wear between the wafer surface and the 

silica particles and the next layer of silicon atoms is exposed to the polishing slurry. 

Pietsch (Pietsch et al., 1994:3115) and Trogolo (Trogolo and Rajan, 1994:4554) present 

similar theories with regard to chemical mechanical polishing of silicon. Although 

Zhou's theory could, in part, be correct, the theory fails to explain the mechanism for 

removal of the carbon atoms after the initial layer of silicon atoms is removed. Using the 

colloidal silica polishing slurry, Zhou reports a material removal rate of 1000 to 2000 

A/hour that is dependent upon other polishing parameters. 

Although not specifically a polishing method, an additional means of 

obtaining a defect free surface is described in the literature. This study involved etching 

the SiC surface with hot hydrogen gas (Owman et al, 1996:391). In this study, 6H-SiC 
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was placed in a hot wall chemical vapor deposition reactor and hydrogen gas heated to 

1,550°C flowed over the surface of the wafer for 30 minutes at atmospheric pressure. 

The heated hydrogen chemically reacted with the wafer surface and resulted in a smooth 

surface. Atomic force microscopy (AFM) discovered that the surface morphology 

consisted of a series of atomic terrace steps with the width of the steps approximately 

1,500Ä and a height of about 15Ä. Cornell University appears to have developed a 

method to remove the terraces from the wafer surface (Port, 1996:82). Although the 

results of the technique used by Owman are promising, the required equipment to study 

such a technique was not available. 

Slurry pH 

Besides the actual chemical composition of the polishing slurry, several 

researchers have observed a material removal rate dependence on slurry pH. Zhou 

reported that the removal rate increased with increasing slurry pH levels. In this report, 

pH levels as high as 11 were examined with the best results occurring at this highest 

value. The theory behind this observation is again due to the presence of hydroxide 

(OH-) ions. As the pH increases, so does the availability of hydroxide ions. This results 

in an increased reaction rate between the surface silicon atoms and the increasing number 

of available hydroxide ions. Thus, theoretically, the higher the slurry pH level, the 

greater the probability of bonding between hydroxides and silicon atoms which results in 

an increase in removal rate. 

Pietsch makes a similar observation after polishing silicon and presents data 

describing material removal rate as a function of slurry pH level. This report indicates 

that as slurry pH increases up to about 11.5, material removal rate also increases. 
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However, further increases in the slurry pH actually result in a decrease in removal rate. 

Neither article specified how the slurry pH was varied, although, it can be easily 

increased by adding NaOH or KOH. In a separate article, Pietsch (Pietsch et al., 

1995:1652) makes the claim that slurry pH values are the most important CMP parameter 

to consider when attempting to increase material removal rate. Higher slurry pH levels 

are difficult to maintain due to the chemical reaction of CO2 in the air with the hydroxide 

groups in the slurry. 

Polishing Temperature 

Two different theories were discovered in the literature regarding the effects 

temperature has on the polishing process. In addition to observing the effects of several 

slurry pH levels, Zhou also briefly examined temperature effects. Using pre-heated 

slurry and an infrared lamp, Zhou claims to have polished at an elevated temperature of 

approximately 55°C. It was at the elevated temperature of 55°C and a slurry pH level of 

11 that produced the highest material removal rate of approximately 2,000Ä/hour 

presented in this report. 

The report concluded that the increased polishing temperature improved the 

material removal rate by increasing the reaction rate between the hydroxide groups in the 

slurry and the silicon dangling electrons. From chemical reaction kinetics, we learn that 

most reactions can be accelerated with increased temperatures (Ragone, 1995:205). 

Arrhenius performed research in the latter part of the nineteenth century and developed 

the following relationship: 

Reaction Rate oc Exp(-E /R *T) 



where E is the reaction activation energy, R is the universal gas constant and T is the 

temperature. Thus, as the temperature increases, so does the reaction rate. Zhou 

concluded that this increase in reaction rate significantly affected the overall material 

removal rate. 

A second theory regarding the effect temperature has on material removal rate is 

presented by Li (Li, 1995:601). In this study, two different pads from Rodel Products 

Incorporated were analyzed. The SUBAIV polishing pad fibers are made of a 

Polyurethane impregnated polyester fabric. Rodel IC 1000 pads are made from a 

microporous polyurethane material. The dynamic shear modulus of both pads was 

examined at temperatures between 30°C and 90°C at two different frequencies. It was 

discovered that the modulus of the SUBA IV pad decreased from about 43MPa at 30°C 

to about 29MPa at 90°C at a test frequency of 1 Hertz. In contrast, the IC1000 pad 

modulus decreased from about 90MPa at 30°C to about 32MPa at 90°C with the same 

test frequency. Thus, increased temperatures had a large effect on the dynamic shear 

modulus of the IC1000 pad and a much smaller impact on the modulus of the SUBA IV 

pad. 

In addition to this study, Li presents a theory regarding the microscopic 

mechanism of wafer material removal. According to this report, the polishing pads have 

a surface roughness of about 20um while the silica particles responsible for mechanical 

removal of the material have a diameter as small as 20nm. Thus, the valleys produced by 

the pad fibers are as much as 1000 times larger than the silica particles. Figure 1 
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illustrates a simplified picture of the semiconductor wafer interacting with the pad fibers 

and silica particles in the polishing slurry. 

Polishing Pad Fibers 

Figure 1: Magnified view of typical polishing pad fibers with smaller silica particles 
providing the mechanism for mechanical removal of the wafer surface. 

For a given pressure, the wafer compresses the pad fibers and the silica particles 

interact mechanically with the wafer surface. Note that many silica particles at the 

bottom of the valleys formed by the pad fibers do not directly interact with the wafer 

surface. Li theorizes that if the wafer interacts with more silica particles, the material 

removal rate will increase. Higher temperatures reduce the dynamic shear modulus of the 

fibers and allow the wafer to press deeper into the pad. Thus, Li theorizes that pad fiber 

temperature dependencies affect removal rates as opposed to the chemical reaction rate 

temperature dependence as claimed by Zhou. Li presents removal rate data that shows 

little to no temperature dependence using the SUBA IV pad but a significant temperature 

dependence using the IC1000 pad. The removal rate data Li presents supports his 

hypothesis. 

11 



Polishing Pad Speed and Applied Pressure 

Many documents can be found that discuss the effects of polishing pad speed and 

applied pressure on material removal rate. In regard to polishing silicon, experimental 

data led to the development of the Preston equation (Tseng et al., 1997:L15). The 

Preston equation has been used in past years as a tool to estimate material removal rates 

and is given by: 

Removal Rate = kp*P*V 

where kp is the Preston coefficient, P is the applied pressure, and V is the relative velocity 

of the wafer with respect to the polishing pad. Thus, according to this equation, removal 

rate could be increased by increasing the polishing speed of the pad or the applied 

pressure. 

Using the stress analysis and polishing model of others, Tseng derived another 

equation showing the dependency of removal rate on pressure and velocity. The Tseng 

equation is given by: 

Removal Rate = M*P5/6*V,/2 

where M is a constant depending on material properties, slurry concentration and 

chemical process dependencies, P is the applied pressure and V is the polishing velocity. 

In addition to its derivation, Tseng obtained experimental results from polishing SiC>2 that 

compared well with the removal rate values given by the Tseng equation. 

Additional subsequent work by Tseng was performed (Tseng et al., 1999:1952) in 

which Tseng develops yet another equation relating pressure and velocity to material 

removal rate. This modified equation is given by: 

Removal Rate = kc*P*V*Exp(-ß*V) 
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where kc is a removal rate weighting factor, P is the applied pressure, V is the velocity 

and ß is a deterioration factor that describes polishing particle aggregation and abrasion 

degradation. With the development of this modified Tseng equation, Tseng performed 

experimental tests and compared analytical and experimental results using the Preston, 

Tseng and modified Tseng equations. He concluded that the Preston equation was 

inadequate to provide accurate removal rate estimates for varied pressures and polishing 

velocities. He also concluded that the Tseng equation and modified Tseng equation 

provided data in good agreement with experimentally determined material removal rates. 

Doubtless, the attempts to derive these analytical relationships required a 

consideration of the dynamic effects of the polishing slurry. Indeed, the literature is rich 

with information on the effects lubrication dynamics has on the polishing process. Zhu 

(Zhu et al., 1999:848) performed tribochemical polishing of SiC in several oxidant 

solutions. Tribochemical polishing is different from CMP in that no abrasives are used in 

tribochemical polishing. Material is removed from the surface by friction stimulated 

chemical dissolution. Also, a smooth hard surface such as SisN4 or even cast iron is used 

to polish the semiconductor as opposed to a fibrous pad in chemical mechanical 

polishing. This study exposed the well known effects of hydro-planing. As the polishing 

velocity was increased, the material removal rate decreased due to the decreased contact 

between the polishing surface and the wafer. 

In contrast to the Zhu's findings, Levert (Levert et al., 1998:593) and Tichy 

(Tichy et al., 1999:1523) obtained very different results after examining lubrication 

dynamics using a typical CMP pad. Both of these studies involved measuring the 

pressure experienced by the wafer at various points across the wafer surface. The 
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experiment was arranged in such a way as to allow pressure measurements to be made 

while polishing the wafer surface on the CMP pad. Surprisingly, instead of measuring a 

decrease in pressure across the wafer, both studies found an increase in pressure. This 

suction pressure under the wafer surface increased with increasing polishing velocities 

and caused the wafer to be pressed deeper into the polishing pad fibers. In addition, 

Tichy found that the pressure due only to applied weight on a stationary wafer and pad 

was greatest at the wafer edges. The suction pressure arising from polishing with a CMP 

pad at a given velocity is added to the static pressure to give a total polishing pressure. 

Study Parameters 

After a review of the information available on CMP, the following polishing 

parameters appeared to have the greatest potential for optimizing wafer removal rates: 

slurry chemical composition, polishing temperature, slurry pH, polishing pressure, and 

pad speed. Although slurry chemical composition is believed to be an important 

polishing parameter, it was decided to exclude this parameter for this particular study due 

to possible long order lead times. This study will examine the general effects of 

polishing temperature, slurry pH level, applied pressure, and polishing speed. Although 

this study does not optimize all of the above parameters, it does provide insight that will 

prove valuable for future studies. 

Removal Rate Determination 

In order to analyze the effectiveness of the various parameters in the polishing 

process, it was critical to use a method that would provide fairly accurate and repeatable 

values for wafer removal rate. Wafer removal rate has been determined using a variety of 

methods. Perhaps the easiest method to determine removal rate is to measure wafer 
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thickness before and after polishing. Several devices such as ADE's 6300 MicroSense 

and Keyence's LC-2400 Series Laser Displacement Meter, are commercially available 

and provide up to 0.01 micrometer resolution. Such a device would be more than 

adequate for measuring removal rates for silicon wafers which have reported removal 

rates as high as 120,000Ä/hour. However, it was unknown if 0.01 micrometer resolution 

would be acceptable for silicon carbide polishing. In addition, such a device was not 

available for this particular study. 

Another method of calculating wafer removal rates consists of using an indenting 

device to place a small indentation of known geometry onto the wafer surface. It is 

believed that Zhou made use of this technique for material removal rate calculations. 

After making the indentation, the diameter of the indentation is measured using optical 

microscopy. The sample is polished and the indentation diameter is again measured. 

With the difference in the diameter and geometry of the indentation known it is 

theoretically possible to calculate the difference that has occurred in the height of the 

indentation. This method makes use of the following two assumptions: wafer edges are 

not rounded during the polishing process and optical microscopy is sufficient to 

accurately determine the diameter of the indentation. 

Rounding of the indentation edges would lead to calculated removal rate values 

that are theoretically lower than actual removal rates. Because rounding of an indentation 

edge would cause the indentation to appear larger in diameter, the calculated depth from 

this diameter would be larger and the calculated removal rate would be decreased. 

Observations made during this study that support the concept of edge rounding will be 
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presented later in this report. Besides edge rounding effects, this technique makes use of 

the assumption that the diameter of the indentation can be accurately measured using 

optical microscopy. Because removal rates achieved by polishing SiC are so small, it is 

necessary to have the capacity to accurately measure miniscule indentation diameter 

differences. Assuming an indentation width to depth ratio of 10 and an actual removal of 

1,000 angstroms of material, it would be necessary to accurately measure to the nearest 

micro-meter. This would be difficult enough with sharp indentation edges at lOOOx 

magnification. It becomes almost impossible when edge rounding blurs the indentation 

edges. Therefore, it is believed that this particular method is inadequate to accurately 

calculate material removal rates. 

Another possible method to determine wafer removal rates was developed at the 

beginning of this study. This method involves etching several thin trenches near the 

middle of the wafer (Trench locations on the wafer are shown in Figure 6 on page 25). 

The depths of the trenches would be measured before and after each polish and the 

difference would be equivalent to the amount of material removed. The trenches were 

reactive ion etched using sulfur hexa-floride and were about 4mm long, 75 micro-meters 

wide and between 2 and 2.5 micro-meters deep. Appendix A describes the steps taken to 

etch the four trenches on the wafer surface. The plasma etch resulted in a damage layer 

at the bottom of the trenches that was of unknown thickness and was not removed after 

ultrasonic cleaning in a trichloroethylene bath. 

After etching the four trenches and prior to polishing, trench width and depth 

measurements were made using two devices. A Dektak IIA and Tencor Alpha Step 250 
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were both used to make width and depth measurements and the results were compared for 

conformity. It was during stylus measurements that the damage layer at the bottom of the 

trenches was first noticed. The measuring stylus actually carved a visible path into the 

damage layer after several measurements were made at the same location. 

Following stylus measurements, Wafer 2 was polished for one hour. Post polish 

stylus measurements were made and compared to the measurements taken before 

polishing. Although a damage layer of up to 1,500 angstroms is predicted (Harris, 

1995:136), it is believed the damage layer in the four trenches extended much deeper 

because the stylus measurements after one hour of polishing indicated an increase in 

trench depth by approximately 2000 angstroms. Given this data, it became very apparent 

that this particular method of determining removal rate would not be effective. 

Another factor that makes this method difficult to implement is the non- 

repeatability of the trench depth measurements. The plasma etch process produced a 

trench that was of non-uniform depth on the atomic scale. Depending on where the depth 

measurement was made, trench depths varied by as much as several thousand angstroms. 

The use of identifying features on the wafer surface helped reduce the variability of 

measurements. However, even with the help of surface features, it is questionable if 

trench depth measurements can be made at the same location before and after a period of 

polishing. 

Assuming the absence of the damage layer and that one had the ability to make 

trench depth measurements at the same location, one additional phenomenon was 

observed which would make the use of this technique somewhat unreliable. After many 
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hours of polishing, the damage layer caused by reactive ion etching was removed from 

the trench bottoms. Figures 2 through 5 on the following page are photographs at lOOOx 

magnification of Trench 4 on Wafer 5. A casual observation of the trenches reveals that 

the trench edges were not etched in a perfectly straight line. In fact, the end of the trench 

nearest the center of the wafer is seen at the top of these photographs and has a non- 

uniform, curved shape. The trenches extend across almost the entire width of these 

photographs. These photographs were taken during a study at 120 rpm using 5 lb/in2 

applied pressure. Figure 2 is a photograph taken after polishing with a 3 urn diamond 

polish for 2 minutes to re-introduce scratches on the wafer surface. Figures 3, 4, and 5 

are photographs taken after chemical mechanical polishing forl hour, 1.5 hours, and 2 

hours respectively. A comparison of the photographs will reveal that polishing is 

occurring at the bottom of the trenches. After two hours of polishing, most of the 

scratches that were present prior to CMP have been removed. This polishing effect is 

occurring because the trenches are approximately 2um deep while the pad polishing 

fibers can be as long as 50um. The removal of material from the bottom of the trenches 

would introduce error into removal rates calculated from Dektak trench depth 

measurements. 
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Figure 2: Wafer 5 - Trench 4 at 1 OOOx Figure 3. Wafer 5 _ Trench 4 at x 000x 

magnification - pre-polish condition magnification - post 1 -hour polish condition 

Figure 4: Wafer 5-Trench 4 at 1 OOOx c-        ,   w,   c    T      , „   . 1AAA &   ._ ,r, ,. , Figure 5: Wafer 5-Trench 4 at 1 OOOx 
magnitication - post 1.5-hour polish 
condition 

magnification - post 2-hour polish condition 

*The darkened spots and blotches on each photograph were caused by small dust 
particles on the interior microscope lens system which could not be removed. 

The final method of removal rate determination that was examined consisted of 

making mass measurements before and after each polish. Assuming a SiC density of 

3.21 g/cm and a 1 3/8" diameter wafer, one can make the simple calculation and 

discover that the removal of 100 angstroms of SiC corresponds to approximately 31 

micro-grams. This calculation assumes that material removal is perfectly uniform across 
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the entire wafer surface. For this particular study, a Mettler AT20 scale was used which 

has a resolution of the nearest even micro-gram. Lengths of the major and minor flats 

were measured for each wafer using a machinist's microscope and digital length readout 

(Wafer flats are shown in Figure 6 on page 25). The area removed by forming the flats 

was subtracted from the area of a perfect circle with a diameter of 1 3/8 inches. The 

measured diameter of the wafer varied by ± 0.003 inches. Calculated wafer areas ranged 

from 1.4890 in to 1.4896 in for the wafers used in this study. 

Wafer major flats (sometimes termed primary flats) and minor flats (secondary 

flats) are typically ground along the length of the wafer ingot prior to slicing individual 

wafers from the ingot. The major flat provides a means of positioning the wafer for 

processing by automated equipment. The minor flat(s) helps identify the orientation and 

conductivity type of the crystal (Sze, 1985:314). 

Several assumptions were made in the application of this removal rate 

determination method. First, it was assumed that the polishing process proceeded 

uniformly over the entire surface of the wafer. This assumption is not completely correct 

since lubrication hydrodynamics presented by Levert and Tichy predict the total pressure 

will be greater at the wafer center than at the edges. Therefore, wafer edges will be 

polished at a different rate than the middle of the wafer. Since the purpose of this study 

is to obtain information on the effect several parameters have on the polishing process, it 

is not necessary to obtain an absolute value for removal rate at one particular point on the 

wafer surface. Rather, it is acceptable to make the above assumption and investigate the 

differences in calculated removal rate which occur with changing parameters. 
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Secondly, the assumption was made that the four trenches did not significantly 

affect the removal rate calculated by mass measurements. As previously mentioned, a 

damage layer existed at the bottom of the four trenches after performing a plasma etch. 

The following conservative assumptions were made in the calculation of material mass 

that could be removed from the trench bottoms: 

1) Each trench is approximately 4 milli-meters long and 75 micro-meters wide 

2) the damage layer material density is equal to the density of SiC 

3) up to 2000 angstroms of damage layer material can be removed from the trench 

bottom in each one hour polishing period 

Given these assumptions, the combined, maximum mass of material that can be 

removed from the bottom of the four trenches is less than 0.8 micro-grams. Thus, the 

assumption that damage layer material removal from the trench bottoms does not 

significantly affect the overall removal rate is an acceptable one since the minimum 

removal rate occurred at 60 rpm and high slurry pH values and resulted in a 30 micro- 

gram loss. Also, wafers 5 and 6 had been polished for at least 3 hours each prior to this 

mass removal data. The 2000 angstroms of damage layer removal from the trenches 

occurred only during the very first hour of polishing and decreased until the damage layer 

was completely removed. 

While performing preliminary polishing studies, it was observed that small pieces 

of the wafer were chipped off during polishing at and around the edge cracks and defects. 

This occurred with more frequency when the wafer was polished at higher speeds. Of 

course, even a small piece of wafer removed by chipping can have a large impact on 
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removal rate calculations since in some cases only 100 angstroms of material was 

removed in an hour of polishing. Besides adequately securing the wafer to the polishing 

substrate, there was no way to prevent the wafer from chipping during the polishing 

process. However, before and after each polish, the wafer edges were examined at lOOx 

and 500x magnification. Pictures of edge defects were taken prior to polishing and these 

pictures were compared to post-polish microscope images. It is believed that this 

procedure was adequate in spotting wafer defect chipping, but an absence of all edge 

cracks and defects would be the most desirable condition. 
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III. Experimental Procedures 

Sample Description 

The samples used in this study consisted of five, 8° off-axis SiC wafers 

manufactured by Cree Research Incorporated. The wafers were 4H- SiC with physical 

dimensions of 1 3/8" in diameter and an average thickness of approximately 0.394 

millimeters. Additionally, each wafer was grown with an advertised micro-pipe density 

of 50 micro-pipes per square centimeter. All five wafers were cut from the same boule 

and were consecutive wafers of the boule. The SiC wafers used for this study had an 

identification number of Z0273-02 through Z0273-06 and will be referred to as Wafer 2 

through Wafer 6 in this report. The wafers were delivered to the Air Force under 

DARPA funded contract F33615-95-C-5426. 

Prior to any other action, each wafer was thoroughly examined with an optical 

microscope. The optical microscope used for this study was a Zeiss Axiotron II with a 

Hitachi HV-C20 camera and supporting Zeiss Image 3.0 software. The microscope was 

capable of up to lOOOx magnification and had the capacity of Nomarski differential 

contrast. The camera and software allowed the creation of the digital photographs which 

will be presented in this report. Unfortunately, dust particles accumulated at an 

undetermined location on the interior of the microscope lens system. Although several 

attempts to find and remove the particles were made, the attempts were unsuccessful. 

The particles appeared as darkened spots and blotches on the digital photographs. 

Although they could not be eliminated, the effects of the particles were mitigated by 

varying the light intensity setting, aperture size and light polarization. 
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During the initial examination of the samples, two main observations were made: 

1. defects existed predominantly but not exclusively around the edges of the wafers 

2. the as received wafers contained residual scratches left from the polishing process 
executed by Cree. 

Although their wafer polishing process is proprietary, it is believed that Cree uses a 

polish with a diamond grit of approximately 1 micro-meter in diameter as the final step in 

their polishing process. This determination was made after comparing the as received 

wafer scratches to scratches made with a 1 micro-meter diamond polish. 

Wafer Defects 

After thoroughly observing the wafer surface at various magnifications, defects 

were discovered that existed primarily, but not exclusively, close to the edge of the wafer. 

These defects were visible at 12.5x magnification and appeared to be grouped together at 

three to four distinct locations on each wafer surface. Besides being in the same location 

on each wafer, the shapes of the defect groups appeared to be extremely similar when 

compared to defect groups on adjacent wafers. It was theorized that the defects were a 

result of a less than desirable crystal growth environment and extended through the entire 

thickness of the wafers. It appears that the defects do indeed extend through the 

thickness of the wafers since they are visibly unaffected after many hours of polishing. 

Figure 6 illustrates the location of the wafer defects and the four etched trenches in 

relation to the wafer major and minor flats. 
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Trench 4       (_) 

Figure 6: Scaled sketch of 1 3/8" Cree samples with defect region and trench locations 

Although the presence of defects in a semiconductor are detrimental in almost all 

cases, they proved to be an important asset during the course of this particular research. 

With the assumption that the defects extended through the entire thickness of the wafer, it 

was only reasonable to believe that the defects could be used as landmarks to help 

evaluate the effectiveness of each polishing period. The existence of the wafer defects 

made it possible to take digital photographs of the same location on the wafer before and 

after each polishing period. Thus, instead of presenting photographs of scratches 

'somewhere' on the wafer surface and showing a smooth wafer surface 'somewhere else' 

after polishing, this report will present photographs of the exact same location before and 

after each polishing period. Figures 7 through 10 show the general shape of the defect 

groups near Region 1 at 12.5x magnification and Regions 1, 2, and 3 atlOOx 

magnification. Although not shown, Regions 2 and 3 shown in Figures 9 and 10 are part 
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of a larger cluster of defects. Also, although Figures 7 through 10 do show the general 

location of the wafer defects, it is not always clear which defects at lOOx magnification 

correspond to defects viewed in lOOOx magnification photographs. 

\ N 

Figure 7: Wafer 6 - Minor Flat Defects at 
12.5x magnification 

(Arrow indicates location of Region 1) 

\ 

Figure 8: Wafer 6 - Region 1 at lOOx 
magnification 

(Arrows indicate location of 1 OOOx defect 
photographs for Wafers 5 and 6) 

f I 

Figure 9: Wafer 6 - Region 2 at lOOx 
magnification 

Figure 10: Wafer 6 - Region 3 at lOOx 
magnification 

(Arrows indicate location of lOOOx defect      (Arrow indicates location of lOOOx defect 
photographs for Wafers 5 and 6) photographs for Wafer 6) 
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Wafer Residual Scratches 

As expected, residual scratches were observed on the wafer surface at 500 and 

lOOOx magnification. Figures 11 through 14 are photographs at several locations on as 

received wafers. 
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Figure 11: Wafer 2 - Region 2 at 1 OOOx 
magnification - as received condition 
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Figure 12: Wafer 4 - Region 1 at lOOOx 
magnification - as received condition 

\ 
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Figure 13: Wafer 5 - Region 3 at lOOOx 
magnification - as received condition 

25 |lm 

Figure 14: Wafer 6 - Region 1 at lOOOx 
magnification - as received condition 
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Figure 11 through 14 photographs were taken prior to etching the four trenches on 

the wafer surfaces. After completing the reactive ion etch process, the scratches were re- 

examined. Pre and post etch photographs of the scratches were identical. Therefore, the 

conclusion was made that the etching process did not change the surface morphology of 

the wafers except at the etch location. Figures 15 through 18 are photographs at the ends 

of several trenches after they were etched but prior to any polishing. The trenches appear 

as dark regions in the photographs. All trench photographs were taken at the trench ends 

that are closest to the center of the wafer. 

Figure 15: Wafer 3 - Trench 4 at lOOOx 
magnification - post-etch, pre-polish 
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Figure 17: Wafer 5 - Trench 2 at lOOOx 
magnification - post-etch, pre-polish 

25 pm 

Figure 16: Wafer 4 - Trench 2 at lOOOx 
magnification - post-etch, pre-polish 
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Figure 18: Wafer 6 - Trench 2 at lOOOx 
magnification - post-etch, pre-polish 
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In addition to optical microscopy, the wafers were examined using Atomic Force 

Microscopy(AFM). AFM photographs and measurements were made using a Dimension 

3000 large sample microscope system with a Digital Instruments NanoScope Ilia 

microscope controller. Photographs and measurements were obtained by operating the 

microscope in tapping mode. Prior to any polishing, AFM measurements were taken on 

the surfaces of Wafers 2 through 6. Figure 19 illustrates a typical AFM amplitude image 

of Wafer 6 in the as received condition. 

20.0 

10.0 

10.0 20.0 

JJM 
Figure 19: Typical AFM Amplitude image of the wafer surface as received from Cree 
Research Incorporated (Image obtained from Wafer 6) 

29 



The scratches observed in Figure 19 were typical for Wafers 2 through 6 and 

illustrate the presence of scratches to a greater degree of resolution than the optical 

microscopy photographs at 1 OOOx magnification. AFM height images were used to 

measure the depth and width of several scratches on as-received wafers. The scratch 

dimensions ranged from 0.9nm deep and 430nm wide for 'small' scratches to 4.6nm deep 

and 390nm wide for 'deep' scratches. 

Sample Mounting 

Proper preparation techniques are critical for effective polishing of the 

semiconductor wafer. It is imperative that the wafer be mounted as level as possible to 

promote equal polishing over the entire surface of the wafer. Elevated temperature and 

slurry pH polishing pose special challenges that can be overcome with simple, common 

sense practices. 

First, it is necessary to use an adhesive that is capable of securing the wafer to the 

mount during a polishing session. The adhesive must be capable of withstanding the 

polishing temperatures, high or low slurry pH levels, and the shear stresses that will be 

imparted to the wafer by the polishing pad. In addition, the adhesive should be relatively 

easy to completely remove from both the mount and the wafer. Finally, the adhesive 

should not induce significant shear stresses on the wafer as a result of adhesive curing. 

Adhesives such as Loctite 332 Structural Adhesive should only be used with extreme 

care since they can induce shear stresses that cause the wafer to shatter after completely 

curing. 
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For this particular study, Gugolz #91 polishing pitch was used to secure the wafer 

to the metal mount. This pitch had sufficient strength at 70°C to allow a full hour of 

polishing with no movement of the wafer on the mount. One common trait of various 

pitches is the tendency of the pitch to soften and yield at temperatures significantly lower 

than the advertised melting temperature. This leads to movement of the wafer during the 

polishing operation with the possibility of breaking the wafer when it becomes fully 

detached from the wafer mount. 

In addition to temperature, this particular pitch was sensitive to higher pH slurries. 

At slurry pH levels as low as 11, the pitch dissolved into the slurry solution producing a 

white foam on the polishing pad. In combination with higher temperatures, this chemical 

reaction had the potential of disastrous results. The slurry attacked any pitch surrounding 

the edges of the wafer and even underneath the wafer edges if the wafer was mounted on 

a layer of pitch that was too thick. To avoid separation of the wafer from the wafer 

mount, wafer attachment procedures were developed. Appendix B presents the 

procedures used for securing the wafer to the metal mount in preparation for chemical 

mechanical polishing. Upon completion of these steps, the wafer was adequately secured 

to the mount to allow polishing for at least 60 minutes at elevated temperatures and slurry 

pH levels. 

Sample Polishing 

Following the procedures in Appendix B, the wafer and mount were ready for 

integration with the polishing device. A Strasbaugh Precision Polishmaster (Model 

R6UR-DC-4) with a random motion polishing armature was used for this study. Rodel 
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10" regular politex polishing pads were attached to the 10" polishing platen. These pads 

consisted of polyurethane/polyester fibers. Logitech SF1 colloidal silica polishing 

solution was used as the polishing agent. Figure 20 illustrates the integration of the wafer 

mount and the polishing station. 

Type K Therm ocouple 

in contact withSiC wafer 

Temperature increase 

with heat gun 

Armature mcving randomly 

across polishing pad surface 

Hole drilledintop of wafer mount 

Polishing Platen Rotation 

Figure 20: Typical set-up for SiC CMP 

Several points should be explained regarding Figure 20. The heat gun shown in 

the figure was used only when studying the effects of increased temperature on material 

removal rate. It was mounted to an aluminum T-section that was not in direct contact 

with the armature. Thus, placement of the heat gun in the clamp did not place additional 

weight or a moment arm on the polishing armature. Although not attached directly to the 

armature, the heat gun T-section was fastened to a cam which caused the armature to 

move back and forth across the pad. Thus, in the case of higher temperature experiments, 

the heat gun remained at a constant distance away from the wafer mount unless it was 
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physically moved in the clamp during the experiment in order to increase/decrease the 

wafer temperature. 

Note that a small hole was drilled through the wafer mount. This hole was just 

large enough to allow the placement of an insulated thermocouple wire through the hole 

and in direct contact with the back of the SiC wafer. In addition, two layers of electrical 

tape were placed over the thermocouple wire and the mount hole. The purpose of the 

tape was two-fold: secure the thermocouple wire and prevent the heated air of the heat 

gun from entering the hole and introducing additional error into the temperature reading. 

Finally, although it is not shown, a thin tin plate was wrapped around the metal 

mount to help prevent the hot air of the heat gun from drying the pad and to allow the 

wafer to reach higher temperatures. The tin plate extended approximately 2 inches above 

the wafer mount surface and was attached to the mount with a band clamp. A semi- 

circular section was cut in one side of the tin cylinder to allow the air from the heat gun 

to directly impact the mount surface. 

The armature settings were approximately 0.75 inches for the off center setting 

and 3.5 inches for the traveling head setting. These settings caused the center of the 

armature to travel randomly between 3 and 4 inches across the polishing platen surface at 

a rate of about 12 complete cycles per minute. Figure 21 illustrates a top view of the 

random motion of the armature during polishing. These particular armature settings 

resulted in smooth polishing without armature vibrations, which occurred if the armature 

traveled too close to 'Edge A' in Figure 21. 

33 



Platen Diameter = 10 inches 

SiC Wafer 

PoEshing Platen Rotation 

Figure 21: Wafer motion across pad surface 

Following integration of the wafer and mount to the polishing station, the wafer 

was ready for polishing. Typically, the wafer was polished for three or four 60 minute 

periods. For high rotational speed studies the wafers were polished for three to four 30 

minute intervals. After each polishing interval, the wafer and mount were removed from 

the polishing station and thoroughly rinsed in distilled water and dried with a soft tissue. 

The polishing pad was also rinsed with running water to remove remaining pad slurry and 

any other particles. 

After rinsing with water and prior to removal of the wafer from the mount, the 

wafer edges were examined at lOOx and 500x magnification in an attempt to identify the 

occurrence of chipping during the polishing period. Photographs taken prior to the 
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polishing period were compared to images of the wafer edges after polishing. In the 

event of noticeable damage, the removal rate was identified as a value that contained 

probable error. Although edge damage was observed for several preliminary studies, no 

edge damage was noticed for temperature, pH level, pressure, or rotational speed studies 

summarized in the following chapter. 

After carefully examining wafer edges, the wafer was removed from the wafer 

mount and prepared for mass measurements. The wafer was removed by placing the 

mount and wafer on a hotplate and increasing the temperature of the hotplate until the 

polishing pitch was liquified. The wafer was then carefully pushed to the edge of the 

mount and removed for cleaning. 

Because material removal rates were determined by mass measurements, it was 

critical that all foreign matter be removed from the wafer after each polishing period. A 

cleaning procedure was developed that proved to be adequate in preparing the wafers for 

mass measurements. This procedure can be found in Appendix C. In short, the wafer 

was wiped with trichloroethylene and a cotton ball until the surface was void of visible 

pitch residue. The wafer was then placed in two 10 minute ultrasonic baths of 

trichloroethylene followed by rinsings in acetone and alcohol. This procedure was 

developed after it was discovered that polishing pitch became embedded in wafer defects. 

The ultrasonic baths were successful in removing pitch and other contanimants from the 

wafer surface and defect sites. 

After developing this cleaning procedure, it's effectiveness was tested. After 

polishing Wafer 4 for a 60 minute period, the wafer was removed, examined and cleaned 
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in accordance with the procedure in Appendix C. Two mass measurements were taken 

using the Mettler scale. Following these initial measurements, the wafer was placed in a 

third, fourth, and fifth 10 minute ultrasonic bath with mass measurements taken after 

each additional cleaning. Finally, the wafer was placed in a vacuum of approximately 

1 torr in a final effort to remove any contaminants from the wafer. Table 1 summarizes 

the mass measurements taken after each cleaning. 

Table 1: Wafer Cleaning Procedure Effectiveness Analysis 

Action 1st Mass Measurement 
(grams) 

2m Mass Measurement 
(grams) 

2-10 minute unltrasonic 
baths in trichloroethylene 

1.231216 1.231214 

3rd - 10 minute unltrasonic 
baths in trichloroethylene 

1.231214 1.231214 

4lh - 10 minute unltrasonic 
baths in trichloroethylene 

1.231214 1.231214 

5lh - 10 minute unltrasonic 
baths in trichloroethylene 

1.231214 1.231214 

Exposure to 1 torr vacuum 1.231216 1.231216 

Two conclusions can be made after an examination of the data in Table 1. First, 

the procedure described in Appendix C seems adequate in cleaning the wafer for mass 

measurements. No significant mass differences were observed after additional cleaning 

of the wafer and exposure to a low pressure environment. Second, the mass 

measurements obtained using the Mettler scale are very repeatable. After making 12 

separate mass measurements, a difference of only 2 micro-grams between measurements 

was experienced. Although the measurements were very repeatable, two mass readings 

36 



were obtained after each polishing period and an average of the two values was used in 

removal rate calculations. 

Following mass measurements, photographs of the wafer were taken at Regions 1, 

2, and 3 and at the ends of Trenches 1, 2, 3, and 4. The trenches were photographed at 

the ends closest to the center of the wafer. These photographs were used to help 

collaborate the removal rate data obtained from mass measurements and will be presented 

with removal rate data in the following chapter. After obtaining these seven photographs, 

the wafer was ready for another period of polishing. 

Many different combinations of polishing parameters were examined during the 

course of this research. Initially, studies using Logitech slurry with a pH of 9.9 at 

3 lb/in2 and 180 rpm at various temperatures were performed. The results of these studies 

are summarized in the first section of the following chapter. Using the knowledge gained 

from these preliminary results, additional studies were defined and evaluated. In total, an 

additional twelve experiments consisting of different combinations of parameters were 

performed following the preliminary study. Each combination of parameters was studied 

for three or four periods of 30 or 60 minute polishing intervals. Table 2 summarizes the 

polishing parameters used in these twelve experiments. 
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IV. Experimental Results 

This chapter will be divided into 6 sections. Section 1 briefly presents results 

obtained from preliminary polishing experiments. Section 2 summarizes the temperature 

study results while section 3 discusses pH study findings. Sections 4 and 5 discuss the 

results of applied pressure and pad rotational speed studies, respectively. Finally, section 

6 presents AFM results obtained after polishing for 3 hours at the optimum polishing 

parameters. 

Preliminary Study 

Preliminary studies were conducted at 180 rpm using as received Logitech 

polishing slurry at 3 lb/in2 and at several different temperatures. Some of the results are 

shown in Table 3. 

Table 3: Preliminary Study Results 

Wafer # Wafer 
Temperature 

(C) 

Pad Life 
(Hours) 

Wafer 
Damage? 

Removal 
Rate 

(Ä/Hour) 
6 25 New No 214 
6 25 1 No 1131 
6 25 2 No 408 
4 25 New No 175 
4 25 1 No 198 
4 25 2 No 875 
5 65 New No 645 
5 65 1 Yes* 985 
5 65 2 No 392 
6 70 New No 765 
6 70 1 No 334 
6 70 2 Yes* 885 

* These are two of several data points where damage on the wafer edge was noticed at 
lOOx magnification. 
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A review of the data reveals a disturbing conclusion; the removal rate data is 

extremely random. For example, polishing at 25°C yielded removal rates of 214, 1131, 

and 408Ä/hour for a pad that was new, 1 hour old, and 2 hours old respectively. To make 

matters worse, the photographs supported the removal rate data. During hours when the 

removal rate was low, little difference between pre- and post-polish photographs was 

noticed. During periods of large calculated removal rate values, wafer scratches were 

almost entirely removed. 

Following additional research, it was concluded that most of the randomness was 

caused by the high pad rotational speed. At 180 rpm, most of the slurry was being flung 

from the edge of the pad and down the drain. During a period of high removal rate, the 

slurry was probably taking a fortunate 'bounce' towards the wafer surface. In addition, it 

was thought that the pressure of 3 lb/in2 could have been too low. 

In order to stabilize the calculated material removal rates for the temperature, 

slurry pH and pressure studies, the following two changes were made to the polishing 

parameters: 

1. the polishing speed was reduced to 60 rpm or 90 rpm 

2. the applied pressure was increased to 5 lb/in 

As hoped, these changes brought immediate stabilization to the calculated removal rates. 

Subsequent sections will discuss the results obtained after making these changes. 

Temperature Study 

Two temperatures were studied after stabilizing the material removal rate. 

Studies at 23°C and 65°C were conducted with as received polishing slurry. The applied 

pressure was 5 lb/in2 and pad rotational speed was 60 rpm. With the moderate pressure 
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and slow speed, a thin film of slurry was maintained on the entire wafer surface with a 

slurry feed rate of approximately 455 ml/hour for the 23°C study and 575 ml/hour for the 

65°C study. Wafer 5 was polished for four - 60 minute periods at 23°C and at 65°C. 

Figure 22 presents the calculated removal rates at both temperatures. 
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Figure 22: Temperature study at 60 rpm and 5 lb/in 

The average removal rate at 23°C over the 4 hour period was approximately 

139Ä/hour while the average at 65°C was approximately 129Ä/hour. Although slight 

variations existed in material removal rate calculations during the four - 60 minute 

periods, the general trend indicates that increased temperature does not have a significant 

effect on material removal rate. This finding corresponds with that of Li (Li et al., 

1995:601). The following photographs illustrate the physical changes that occurred on 

the wafer surface over three of the four 60 minute polishing periods at both temperatures. 

Figures 23 through 26 are pre-polish, post 1-hour, post 2-hour, and post 3-hour 

photographs of wafer 5 during the 23°C study. Figures 27 through 30 are pre-polish, post 
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1-hour, post 2-hour, and post 3-hour photographs of wafer 5 during the 65°C study. 

Additional photographs of the 23°C and 65°C study can be found in Appendix D and E 

respectively. 
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Figure 23: Wafer 5 - Region 1 at lOOOx 
magnification - pre-polish condition 
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Figure 24: Wafer 5 - Region 1 at lOOOx 
magnification - post 1 -hour polish, 
TC temperature = 23°C condition 
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Figure 25: Wafer 5 - Region 1 at lOOOx 
magnification - post 2-hour polish, 
TC temperature = 23°C condition 
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Figure 26: Wafer 5 - Region 1 at lOOOx 
magnification - post 3-hour polish, 
TC temperature = 23 °C condition 

The total calculated material removed during the four hours of polishing at 23°C was 557 

angstroms. 
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Notice that the first hour of polishing seemed to have little effect on the wafer 

surface scratches. This observation was common for photographs of each region during 

the first hour. While the first hour of polishing did not appear to remove deep scratches, 

it did smooth the roughened surface of the wafer. 
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Figure 27: Wafer 5 - Region 2 at lOOOx 
magnification - pre-polish condition 

Figure 28: Wafer 5 - Region 2 at lOOOx 
magnification - post 1 -hour polish, 
TC temperature = 65°C condition 
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Figure 29: Wafer 5 - Region 2 at lOOOx 
magnification - post 2-hour polish, 
TC temperature = 65°C condition 
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Figure 30: Wafer 5 - Region 2 at lOOOx 
magnification - post 3-hour polish, 
TC temperature = 65°C condition 

The total calculated material removed during the four hours of polishing at 65°C was 515 

angstroms. 
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Afiter examining the calculated removal rate data and the photographs, it becomes 

apparent that increased temperature did not significantly increase removal rate. This data 

does not support the idea that removal rates are increased by accelerating the reaction 

between the polishing slurry and wafer surface atoms as suggested by Zhou (Zhou et al., 

1997:L161). Rather, this data supports the observation made by Li. The polishing pads 

used in this study are made with polyurethane/polyester composite fibers which exhibit 

very little change in dynamic shear modulus with increasing temperature. The results of 

temperature dependence as studied by Li, are confirmed with the data from this study. 

Slurry pH Study 

Three different slurry pH levels were examined. After making an initial study of 

pH 11 slurry at 60 rpm, additional studies of pH 9.9, 11 and 12 were made at 90 rpm. 

While polishing at 60 rpm, approximately 455ml of slurry was used in a one hour period. 

The pH of the slurry was modified by adding various quantities of 1.25M NaOH solution 

to Logitech polishing slurry. To achieve a slurry pH of 11, approximately 24ml of 1.25M 

NaOH solution was added to 800ml Logitech polish. Figure 31 illustrates the material 

removal rate dependence on slurry pH with an applied pressure of 5 lb/in and a 

rotational speed of 60 rpm. 
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Figure 31: Slurry pH study at 60 rpm and 5 lb/in 

The average removal rate over the 4 hour period using Logitech polishing slurry 

was 139Ä/hour while the average rate using an increased slurry pH of 11 was 108Ä/hour. 

Thus, preliminary data suggested a decrease in removal rate with increasing slurry pH. 

Figures 23 through 26 are photographs of Wafer 5 at using Logitech slurry. Figures 32 

through 35 are pre-polish, post 1-hour, post 2-hour, and post 3-hour photographs of wafer 

5 using a slurry with a pH level of approximately 11. Additional photographs of the 

wafer 5 surface during the pH 11 slurry study can be found in Appendix F. 
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Figure 32: Wafer 5 - Trench 3 at lOOOx 
magnification - pre-polish condition 
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Figure 33: Wafer 5 - Trench 3 at lOOOx 
magnification - post 1-hour polish, slurry 
pH = 11, rpm = 60 condition 

Figure 34: Wafer 5 - Trench 3 at lOOOx 
magnification - post 2-hour polish, slurry 

pH = 11, rpm = 60 condition 
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Figure 35: Wafer 5 - Trench 3 at lOOOx 
magnification - post 3-hour polish, slurry 

pH = 11, rpm = 60 condition 

The total calculated material removed during the four hours of polishing at 60 

rpm with 11 pH slurry was 431 angstroms. Following this initial pH study, additional 

experiments were performed on Wafer 6 with slurry pH's of 9.9, 11, and 12, an applied 

pressure of 5 lb/in2 and a rotational speed of 90 rpm. The increased polishing speed was 

used in hopes of exposing a larger removal rate difference between 9.9 and higher pH 
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slurries. The higher pH level of 12 was obtained by adding approximately 75ml of 

1.25M NaOH solution to 800ml of Logitech slurry. At the higher rotational speed, 

between 700 and 750ml of polishing solution was used each hour. Figure 36 is a plot of 

material removal rates for polishing parameters of 23°C, 5 lb/in2, and 90rpm for slurry pH 

values of 9.9, 11, and 12. 
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—a— 9.9 pH 

--A- 11 pH 
-.-0..-12 pH 
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Figure 36: Slurry pH study at 90 rpm and 5 lb/in 

Except for the removal rate measured during the second hour of polishing with a 

slurry of pH 11, the removal rates for all three pH levels are quite stable and decrease 

slightly as the pad life increases. Both the preliminary pH study at 60rpm and the second 

study at 90rpm indicate that material removal rate actually decreases with increasing 

slurry pH levels. It appears the presence of many hydroxide molecules does not 

significantly raise the removal rate by increasing the reaction rate between the slurry and 

surface atoms. 
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Figures 37 through 40, 41 through 44, and 45 through 48 are photographs of 

Wafer 6 using a slurry with pH levels of 9.9, 11, and 12 respectively. Additional 

photographs of the wafer using polishing slurries with pH levels of 9.9, 11, and 12 at 90 

rpm can be found in Appendix G, H, and I respectively. 
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Figure 37: Wafer 5 - Region 2 at lOOOx 
magnification - pre-polish condition 
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Figure 39: Wafer 5 - Region 2 at lOOOx 
magnification - post 2-hour polish, slurry 
pH = 9.9, rpm = 90 condition 
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Figure 38: Wafer 5 - Region 2 at lOOOx 
magnification - post 1-hour polish, slurry 
pH = 9.9, rpm = 90 condition 
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Figure 40: Wafer 5 - Region 2 at lOOOx 
magnification - post 3-hour polish, slurry 
pH = 9.9, rpm = 90 condition 

The total calculated material removed during the three hours of polishing at 90 rpm with 

a 9.9 pH slurry was 707 angstroms. 
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figure 4l": Wafer 6 - Region 2 at lOOOx 
magnification - pre-polish condition 
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Figure 42: Wafer 6 - Region 2 at lOOOx 
magnification - post 1-hour polish, slurry 
pH = 11, rpm = 90 condition 
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Figure 43: Wafer 6 - Region 2 at lOOOx 
magnification - post 2-hour polish, slurry 
pH = 11, rpm = 90 condition 
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Figure 44: Wafer 6 - Region 2 at lOOOx 
magnification - post 3-hour polish, slurry 
pH = 11, rpm = 90 condition 
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Figure 45: Wafer 6 - Trench 2 at lOOOx 
magnification - pre-polish condition 

Figure 46: Wafer 6 - Trench 2 at lOOOx 
magnification - post 1-hour polish, slurry 
pH = 12, rpm = 90 condition 
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figure 47: Wafer 6 - Trench 2 at lOOOx 
magnification - post 2-hour polish, slurry 
pH = 12, rpm = 90 condition 
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Figure 48: Wafer 6 - Trench 2 at lOOOx 
magnification - post 3-hour polish, slurry 
pH = 12, rpm = 90 condition 

The total calculated material removed during the three hours of polishing at 90 rpm with 

a 12 pH slurry was 493 angstroms. 

A careful examination of Figure 43 will reveal that most of the surface scratches 

are removed during the second hour of polishing using a slurry of pH 11. Also, except 

for the deep scratch that is clearly visible, a similar result is observed in Figure 47 after 

polishing for two hours with a slurry of 12 pH. The photograph taken after polishing for 
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two hours with a slurry of 9.9 pH (Figure 39) shows scratches that are slightly more 

visible and numerable when compared to Figures 43 and 47. Thus, the photographs do 

not seem to conclusively support a higher removal rate data during the second hour using 

a slurry ofpH 11. 

Four possible scenarios could explain the high removal rate measured after the 

second hour of polishing with the slurry of pH 11. First, it is possible Wafer 6 is 

inhomogeneous through the thickness of the wafer. Although possible, this is extremely 

unlikely. Second, it is possible that excess silica and silicon carbide particles were 

embedded in the polishing pad fibers and were not removed during the rinse after the first 

hour of polishing. The presence of these particles could increase the removal rate of the 

wafer during the second hour of polishing. However, it is not believed that the presence 

of extra particles alone could result in a removal rate that is five times the nominal value. 

Third, a piece of the wafer could have been chipped from the edge during the hour long 

polish. This is also unlikely since the edge was thoroughly inspected at lOOx and 500x 

magnification after polishing. Finally, the high removal rate could be attributed to a 

combination of the first three possibilities in conjunction with other polishing parameters 

that have not yet been considered. 

The average removal rates are 236, 171, and 164A/hour using slurries with pH 

levels of 9.9, 11, and 12 respectively. The average value for the pH 11 slurry was 

obtained by neglecting the anomalous removal rate during the second hour. The decrease 

in average removal rate with increasing pH can be explained by considering the function 

of the silica particles in the polishing process. The silica particles mechanically remove 

the 'softened' wafer surface. As increased amounts of 1.25M NaOH solution are added 
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to the polishing slurry, the percent content of silica particles in the slurry decreases. This, 

in turn, decreases the probability that a silica particle will abrade the wafer surface. It 

appears that the large increase in hydroxide concentration does not compensate for the 

small decrease in polishing particle concentration. 

Although it was found that higher pH slurries do not increase removal rate using 

Logitech SF1 polishing slurry, it is possible that increased pH levels in other polishing 

solutions could have a different effect. 

Pressure Study 

Four different pressures were evaluated using as received Logitech slurry at 23°C 

and 90 rpm. In addition to 5 lb/in2 which had previously been evaluated, pressures of 7, 

9, and 11 lb/in2 were used to polish Wafer 6. An attempt was made to maintain a thin 

layer of polishing slurry on the pad during polishing periods. Although successful at 

5 lb/in2, a thin film of slurry was not possible at higher pressures. An average of 720, 

875, and 925 ml/hour of slurry was used while polishing at 7, 9, and 11 lb/in 

respectively. However, the higher slurry feed rates did not prevent the formation of dry 

paths on the polishing pad. Levert (Levert et al., 1998, 593) and Tichy (Tichy et al., 

1999:1523) found that the pressure between the wafer and a rotating CMP pad was 

greatest at the center of the wafer. The increased pressure and rotating pad caused the 

wafer to displace the slurry to its edges thus creating a path on the polishing pad that was 

void of polishing slurry. Figure 49 illustrates the creation of a dry path on the pad surface 

by the wafer which introduced additional variation in material removal rates. Figure 50 

shows the removal rates that were calculated for 5, 7, 9, and 11 lb/in . 
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Figure 49: Pad Dry Path Formation 
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Figure 50: Pressure study at 23°C and 90 rpm 

53 



As seen in the plot, an anomalous point was acquired for the second hour of 

polishing at 7 lb/in2. The 528Ä removed during this hour appears to be abnormally high 

and could be due to the variability introduced by the presence of dry paths on the pad at 

■y 

this higher pressure. Fortunately, the calculated removal rates for 9 and 11 lb/in appear 

to be more consistent. The average removal rates for 5, 7, 9, and 11 lb/in applied 

pressures are 236, 290, 484, and 421A/hour respectively. The average for 7 lb/in2 was 

obtained by neglecting the high removal rate calculated after the second polishing hour. 

Comparison of the averages reveals the simple conclusion that increased pressure 

increases the removal rate. Of course, this conclusion is in agreement with what one 

would expect. It is expected that higher pressures would result in a higher removal rate 

since the wafer is pressed deeper into the pad fibers and contacts more silica particles. It 

is interesting that the average removal rate at 11 lb/in is less than the average at 9 lb/in . 

This could be due to damage that the higher pressure induced on the polishing pad. 

-y 

During polishing periods at 7, 9, and 11 lb/in the polishing pad was damaged. 

This conclusion was made after observing dark fibers floating on the surface of the slurry 

during and after polishing the wafer for an hour at these pressures. A greater 

concentration of fibers was observed for the higher pressures of 9 and 11 lb/in . It is 

possible that the pressure of 11 lb/in2 caused enough pad damage to result in decreased 

removal rates. It should also be noted that different results may be obtained for a 

different polishing pad. Figures 37 through 40, 51 through 54, 55 through 58, and 59 

through 62 are photographs of the wafer surface before and after polishing periods for 

pressures of 5, 7, 9, and 11 lb/in2 respectively. Careful examination and comparison will 
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reveal that the photographs seem to support the general trend of increasing removal rate 

with increasing pressures. 
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Figure 51: Wafer 6 - Trench 2 at lOOOx 
magnification - pre-polish condition 
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Figure 52: Wafer 6 - Trench 2 at lOOOx 
magnification - post 1 -hour polish, 
pressure = 7 psi, rpm = 90 condition 

Figure 53: Wafer 6 - Trench 2 at lOOOx 
magnification - post 2-hour polish, 
pressure = 7 psi, rpm = 90 condition 
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Figure 54: Wafer 6 - Trench 2 at lOOOx 
magnification - post 3-hour polish, 
pressure = 7 psi, rpm = 90 condition 

The arrows in Figures 53 and 54 locate scratches that have almost been removed from the 

surface during the 3 hours of polishing. The total calculated material removed during the 

three hours of polishing at 7 lb/in2 was 1109 angstroms which includes the relatively high 

value calculated during the second hour of polishing. 
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Figure 55: Wafer 6-Trench 3 at lOOOx        Figure 56: Wafer 6-Trench 3 at lOOOx 
magnification - pre-polish condition magnification - post 1 -hour polish, 

pressure = 9 psi, rpm = 90 condition 

\ 

25 [im 

I 1 

Figure 57: Wafer 6 - Trench 3 at "lÖÖÖx 
magnification - post 2-hour polish, 
pressure = 9 psi, rpm = 90 condition 
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Figure 58: Wafer 6 - Trench 3 at lOOOx 
magnification - post 3-hour polish, 
pressure = 9 psi, rpm = 90 condition 

The faint indications of scratches on the wafer surface can still be seen at the locations 

specified by the arrows in Figure 57. The total calculated material removed during the 

three hours of polishing at 9 lb/in was 1452 angstroms. 
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Figure 59: Wafer 6 - Region 2 at lOOOx 
magnification - pre-polish condition 

igure 60: Wafer 6 - Region 2 at lOOOx 
magnification - post 1 -hour polish, 
pressure = 11 psi, rpm = 90 condition 
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Figure 61: Wafer 6 - Region 2 at lOOOx 
magnification - post 2-hour polish, 
pressure =11 psi, rpm = 90 condition 
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Figure 62: Wafer 6 - Region 2 at lOOOx 
magnification - post 3-hour polish, 
pressure =11 psi, rpm = 90 condition 

The total calculated material removed during the three hours of polishing at 11 lb/in2 was 

1264 angstroms. 

A comparison of photographs taken after three hours of polishing will reveal that 

increased pressure does indeed seem to help in the removal of surface scratches. While 

the scratches in Figure 40 are still quite prominent, the scratches in Figures 54, 58, and 62 

are very faint to non-existent. Appendix G and J contain additional photographs of the 
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wafer during 5 and 7 lb/in studies. Additional photographs during 9 and 11 lb/in studies 

can be found in Appendix K and L. 

Rotational Speed Study 

A wide range of polishing speeds was studied at room temperature with a pressure 

of 5 lb/in . Although higher pressures do result in increased removal rates, they also 

induce damage to the polishing pad fibers. Wafer manufacturers limit their expenditures 

by reducing the amount of slurry and pads used in preparing the wafers for device 

applications. Since the higher pressures of 7, 9, and 11 lb/in produce pad damage and 

would therefore increase manufacturer costs, it was decided that the rotational speed 

study should be performed at a pressure that produced no visible signs of damage to the 

polishing pad. Thus, speed studies were conducted at 5 lb/in . In addition, since higher 

pH levels did not increase material removal rates, as-received Logitech slurry was used. 

The following pad speeds were used to polish the wafer: 60, 90, 120, 150, and 

180 rpm. For 60 and 90 rpm experiments, the wafer was polished for 60 minute periods. 

When the speed was increased to 120, 150, and 180 rpm, the polishing period was 

reduced to 30 minutes. This change in polishing duration was made due to the high 

amounts of slurry used for the higher rotational speed studies. During 60 and 90 rpm 

studies, an average of 450 and 750ml of slurry was used for a 60 minute polishing period. 

For speeds of 120, 150, and 180 rpm, slurry volumes averaged 1300, 1500, and 1750 

ml/hour respectively. The increased slurry volumes were used in an effort to maintain a 

thin film on the polishing pad. During high rotational speeds, most of the slurry was 

thrown from the pad edge and dry paths were prominent on the pad surface. The 

presence of dry paths was mitigated by allowing the slurry to flow down the side of the 
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wafer mount during high speed studies. The slurry was then drawn under the mount and 

wafer by the moving pad. For slower rotational speeds, dripping the slurry directly on 

the polishing pad was sufficient to maintain a thin film during the entire polishing period. 

Figure 63 is a plot of the removal rates for each of the polishing speeds. 
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Figure 63: Pad speed study at 23°C and 5 lb/in 

The data viewed in Figure 63 is reminiscent of the preliminary data presented in 

the first section of this chapter. The lower speed values are fairly stable up to and 

including 120 rpm. At 150 and 180 rpm, the data becomes very unpredictable. In 

particular, data for 150 rpm is less than 500Ä/hour for the first and second 30 minute 

periods of polishing. The removal rate magically increases to 1,607 and l,860Ä/hour for 

the third and fourth 30 minute periods. Surprisingly, 180 rpm data appears to be more 

stable than that obtained from the 150 rpm study. Average removal rates for the various 

speeds are 139, 236, 347, 1047, and 2119A/hour for 60, 90, 120, 150, and 180 rpm 
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respectively. The average for 150 rpm was obtained by using all four data points. 

Photographs of the wafer during these studies can be viewed in Figures 23 through 26 for 

60 rpm, 37 through 40 for 90 rpm, 64 through 67 for 120 rpm, 68 through 71 for 150 

rpm, and 72 through 75 for 180 rpm. 

f:Mf~* 

imßsmm   l 

25 pm 

h 
Figure 64: Wafer 5 - Region 1 at lOOOx 
magnification - pre-polish condition 
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Figure 65: Wafer 5 -Region 1 at lOOOx 
magnification - post 1 -hour polish, 
pressure = 5 psi, rpm =120 condition 
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igure 66: Wafer 5 - Region 1 at lOOOx 
magnification - post 1.5-hour polish, 
pressure = 5 psi, rpm = 120 condition 

mm 
Figure 67: Wafer 5 - Region 1 at lOOOx 
magnification - post 2-hour polish, 
pressure = 5 psi, rpm =120 condition 

The total calculated material removed during the two hours of polishing at 120 rpm was 

677 angstroms. 
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Figure 68: Wafer 5 - Region 1 at lOOOx 
magnification - pre-polish condition 
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igure 70: Wafer 5 - Region 1 at lOOOx 

magnification - post 60 minute polish, 
pressure = 5 psi, rpm =150 condition 

Figure 69: Wafer 5 - Region 1 at lOOOx 
magnification - post 30 minute polish, 
pressure = 5 psi, rpm =150 condition 

Figure 71: Wafer 5 - Region 1 at lOOOx 
magnification - post 90 minute polish, 
pressure = 5 psi, rpm =150 condition 

The photograph in Figure 71 was taken after 90 minutes of polishing at 150 rpm. 

Although not shown, no surface scratches were visible after digital enlargement of the 

photograph by 100%. Other areas on the wafer surface were also void of visible surface 

scratches. The total calculated material removed during the two hours of polishing at 

150 rpm was 2094 angstroms. 
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Figure 72: Wafer 5 - Region 1 at lOOOx 
magnification - pre-polish condition 
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Figure 74: Wafer 5 - Region 1 at 2000x 
magnification - post 30 minute polish, 
pressure = 5 psi, rpm = 180 condition 

Figure 73: Wafer 5 - Region 1 at lOOOx 
magnification - post 30 minute polish, 
pressure = 5 psi, rpm =180 condition 
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"igure 75: Wafer 5 - Region 1 at lOOOx 
magnification - post 1 -hour polish, 
pressure = 5 psi, rpm =180 condition 

The total calculated material removed during the 90 minutes of polishing at 180 rpm was 

3179 angstroms. 

The arrow in Figure 74 shows the location of the faint outline of a scratch at 

2000x magnification that was still present on the wafer surface after 30 minutes of 

polishing. Although the microscope was only capable of 1 OOOx magnification, software 

allowed digital enlargement and enhancement of the image to 2000x magnification. Very 

few scratches remained on the surface at the photographed regions after this first 
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polishing period. Again the photographs appear to support the general trend of increasing 

removal rate with increasing rotational speed. In particular, the photographs of the 180 

rpm study indicate that almost all visible scratches at this wafer location were removed 

after just 30 minutes of polishing. Photographs taken after subsequent periods reveal that 

additional polishing does not seem to introduce new scratches into the wafer surface. 

However, residual scratches were observed at other locations on the wafer surface after 

the three-30 minute polishing periods at 180 rpm. 

The variability in removal rates at higher speeds is most likely caused by the 

absence of a thin film of slurry at all times on the polishing pad surface. Although the 

pressure is only 5 lb/in , the pad is spinning at a rate high enough to eject most of the 

slurry from the pad edge. The slurry remaining on the pad is not sufficient to maintain a 

uniform distribution on the pad at all times. One possible solution to this variability 

would be to submerge the wafer, polishing substrate and pad surface in a bath of 

polishing slurry. 

Optimized Study 

Following studies of the effects of temperature, slurry pH, pressure, and pad 

rotational speed on removal rate, the optimum value of each parameter was selected for a 

final polishing study. This final study was conducted at room temperature with 9.9 pH 

polishing slurry at 5 lb/in2 and 180 rpm. These polishing parameters had previously been 

examined during the rotational speed study for three-30 minute polishing intervals. The 

photographs of this study observed in Figures 72 through 75 indicate that all visible 

scratches had been removed after 60 minutes of polishing. However, at other locations 

on the wafer, residual scratches were still visible using optical microscopy after a 90 
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minute polishing period. This final study was performed as a comparison to previous 

data and to show that all wafer surface scratches could be removed from the wafer 

surface with continued CMP. 

One difference existed between the previous study at 180 rpm and this final 

optimized study: the polishing pads used in all of the previous studies were 

approximately six months old while the polishing pad used in the final study was 

received from Rodel Inc. several days prior to its use. According to Rodel, the polishing 

pads have an expiration date of approximately one year after purchase due to the 

deterioration of the adhesive used to attach the polishing fibers to the polishing pad. 

Prior to polishing Wafer 5 at the optimized polishing parameters, surface 

scratches were re-introduced by polishing with a 3 urn diamond polishing solution for 2 

minutes. In addition to acquiring optical microscopy images, atomic force microscopy 

(AFM) height and amplitude images were obtained. Figure 76 is an AFM amplitude 

image of the surface of Wafer 5 after polishing with the diamond solution. 

Measurements using an AFM height image revealed scratches that ranged from 2.4nm 

deep and 200nm wide for faint scratches to 6.9nm deep and 700nm wide for scratches 

that appear large in Figure 76. Scratches on the wafer surfaces in the as-received 

condition from Cree measured as deep as 4.6nm deep and as wide as 430nm. Thus, the 

3 um diamond polish created scratches that were somewhat larger than the scratches left 

by the Cree wafer surface polishing procedures. 
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Figure 76: AFM Amplitude Image after re-introducing surface scratches using 3 um 
diamond polish 

After acquiring optical microscopy and AFM images, Wafer 5 was polished at 

room temperature with 9.9 slurry pH at 5 lb/in and 180 rpm using the recently received 

polishing pad for a total of three hours. Mass measurements and wafer surface 

photographs were taken after the first 30, 60 and 90 minutes of the three hour polish. 

After 2 and 2.5 hours of polishing, the wafer surface was examined, but no mass 

measurements or photographs were taken. After polishing Wafer 5 for a total of 3 hours, 

surface scratches were no longer visible at lOOOx magnification using optical 
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microscopy. A final mass measurement was made and the resulting removal rate 

calculated from this final mass measurement was averaged over the last 90 minutes of 

polishing. Figure 77 illustrates the removal rates obtained from this final study in 

comparison to the data acquired during the initial rotational speed study at 180 rpm. 

Figure 77: Initial and final study removal rate data at 180rpm 

The average removal rate for the initial study over the 90 minute polishing period 

was 2119 A/hour. The average removal rate for the final study was 1014Ä/hour. This 

large difference in removal rate between the two studies is one discrepancy that can be 

observed in Figure 77. The other discrepancy deals with removal rate value variability. 

During the initial study using the six month old pad, the calculated removal rate varied 

considerably. In contrast, the optimized study resulted in removal rate data that appears 

to be more consistent but lower in value. Figures 72 through 75 are photographs acquired 

during the initial study at 180 rpm. Figures 78 through 81 are lOOOx magnification 
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photographs taken during the final study. Additional photographs during this study can 

be found in Appendix P. Note that the photographs in Appendix P were taken after many 

hours of polishing Wafer 5. Although Trench 4 is still approximately 15,000 angstroms 

deep in these photographs, the polishing process has caused edge rounding so that the 

trench edges are no longer distinguishable. In these photographs, only the trench edge 

nearest the center of the wafer is visible. 
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Figure 78: Wafer 5 - Region 1 at lOOOx 
magnification - pre-polish condition 

Figure 79: Wafer 5 - Region 1 at lOOOx 
magnification - post 30 minute polish, 
pressure = 5 psi, rpm = 180 condition 
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Figure 80: Wafer 5 - Region 1 at lOOOx 
magnification - post 60 minute polish, 
pressure = 5 psi, rpm =180 condition 
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Figure 81: Wafer 5 - Region 1 at lOOOx 
magnification - post 90 minute polish, 
pressure = 5 psi, rpm =180 condition 
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The total calculated material removed during the three hours of this final polishing study 

at 180 rpm was 3118 angstroms. 

Although almost all scratches were removed from this particular location on the 

wafer surface after only 90 minutes of polishing, several scratches were observed at other 

wafer locations. Therefore, Wafer 5 was exposed to further CMP until all visible 

scratches at lOOOx magnification were removed. After 3 hours of polishing, a final mass 

measurement was obtained along with several AFM images. Figure 82 is a typical AFM 

amplitude image of the surface of Wafer 5 after the optimized study at 180 rpm. 
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Figure 82: Post 3 hour polish AFM amplitude image 
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Although Figure 82 does show a regularly spaced pattern across its width, this 

pattern is attributable to AFM device noise. No indications of scratches were found using 

AFM imaging techniques. The small particles seen in Figure 82 are sub-um particles that 

were found on the wafer surface after the rigorous cleaning procedure. A comparison 

between Figures 76 and 82 shows that CMP has the capability of removing scratches 

from the surfaces of SiC wafers. 

It is currently unknown why such a large difference in removal rates between the 

initial and final studies at 180 rpm exists. Rodel Inc. claims that pad age affects the 

adhesive only and not the polishing fibers. The differences in pad age and pad 

production lot numbers are the only known differences between the initial and final study 

parameters. It may be possible that adhesive curing has a positive influence on polishing 

effectiveness with these particular pads. Certainly it is not expected that the pad 

production process would produce such a discrepancy but this variable should not be 

ruled out as a contributing factor. 
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V. Conclusions and Recommendations 

This study was performed in an effort to decrease the polishing time required to 

remove all visible scratches from SiC wafers thereby preparing the wafers to be used as 

substrates in epitaxial growth. During this study, 5-1 3/8" Cree wafers from the same 

boule were chemically mechanically polished for a variety of polishing parameters. 

Temperature, slurry pH, pressure, and pad rotational speed were the four parameters that 

were examined. The wafers were polished on a Strasbaugh polishing device using Rodel 

politex pads and Logitech SF1 polishing solution. Material removal rates were 

determined from mass measurements before and after each polish using a Mettler scale. 

Preliminary experiments conducted at 180 rpm, 3 lb/in and at various 

temperatures resulted in data that varied dramatically and was extremely random. For 

example, removal rates varied between 214 and 1131Ä/hour under the same polishing 

conditions at room temperature. Similar results were observed at higher temperature 

experiments. Photographs taken before and after each polishing interval supported the 

variability observed in the calculated removal rates. In an effort to stabilize the 

randomness of the results, the pad rotational speed was decreased to 60 and 90 rpm and 

the pressure was increased from 3 to 5 lb/in . 

Temperature studies were conducted at 60 rpm using as-received Logitech slurry 

with a pH of about 9.9 and at temperatures of 23°C and 65°C. The temperature was 

monitored during the polishing process via a type K thermocouple in direct contact with 

the back of the SiC wafer. Removal rates were determined after each 60 minute 

polishing interval. The average removal rate after 4 hours of polishing at 23°C was 
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139Ä/hour while it was only 129Ä/hour at 65°C. Thus, it was concluded that increased 

temperatures do not increase removal rate by expediting chemical reactions between the 

slurry and wafer surface atoms as Zhou (Zhou et al., 1997:L161) suggests. Rather, the 

data supported Li's hypothesis (Li et al., 1995:601) that temperature affects the dynamic 

shear modulus of the pad fibers. The variability of the shear modulus is the property that 

causes variability in material removal rate. 

Slurry pH studies were conducted at 60 and 90rpm at 5 lb/in2 and 23°C. The 

series of experiments executed at both of these rotational speeds resulted in the same 

general trend: decreasing removal rates with increasing slurry pH levels. This 

observation is in direct conflict with conclusions made by Zhou and Pietsch (Pietsch 

et al., 1995:1650). The quantities of 1.25M NaOH solution added to increase the slurry 

pH slightly decreased the volume percent content of the silica particles in the slurry. It is 

believed that a combination of increased slurry pH levels and the decrease in particle 

concentration resulted in a decreased removal rate. Although the use of Logitech SF1 

polishing solution at higher pH levels did not produce increased removal rates, it is 

possible that other polishing solutions may result in higher removal rates at increased pH 

levels. 

Four different pressures were evaluated at 23°C and 90 rpm using as-received 

Logitech slurry (pH = 9.9). As expected, increased pressures of 7, 9, and 11 lb/in 

resulted in increased removal rates when compared to 5 lb/in2. While removal rates over 

3 hours averaged 236Ä/hour at 5 lb/in2, these increased to as much as 484Ä/hour at 
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9 lb/in2. However, the higher pressures also caused pad fiber damage that was observed 

as black fibers floating on the slurry film surface during and after each polishing session. 

In addition, the average removal rate at 11 lb/in was actually lower than the average at 9 

lb/in2. It is believed that this decrease in removal rate resulted from additional pad 

damage observed at 11 lb/in . 

Five different polishing speeds were analyzed for effectiveness in increasing 

material removal rates. This particular set of experiments produced the most dramatic 

difference in calculated removal rate. The average removal rate observed at 60 rpm was 

139Ä/hour and increased to an average of 2119Ä/hour at 180 rpm. The increase in 

removal rate for pad speeds of 60, 90, 120, 150, and 180 rpm was not a linear one as the 

Preston equation suggests in silicon polishing. Unfortunately, in addition to increased 

removal rates, higher speeds also resulted in greater removal rate variability for a given 

set of polishing parameters. It is believed that this variability is caused by non-uniform 

slurry distribution on the pad surface. At lower speeds and pressures, a thin film of slurry 

was maintained on the pad surface. At higher speeds (120 rpm and higher) and pressures 

(7 lb/in2 and higher) maintainability of the thin slurry film was no longer possible. 

Although this study revealed several important features of CMP of SiC, these 

observations are only preliminary. Additional research is necessary to discover a 

polishing recipe that will minimize polishing time and costs. It is believed that 

alternative polishing slurries make up a parameter that has great impact on the polishing 

process and should be explored. Also, increased concentrations of polishing particles 

should be examined. It is expected that increased particle concentrations will result in 
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higher removal rates. Additional pad studies would be helpful in determining the effects 

of pad age and rotational speed on removal rate variability and the time needed to prepare 

a scratch free substrate. 
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Appendix A: Reactive Ion Etch Procedure 

1. Thoroughly clean the wafer with acetone and q-tips. 

2. Using vacuum sputtering techniques, deposit a gold film of approximately 5000 
angstroms thick on the wafer surface. 

3. Apply a 1.8um thick film of photo-resist (S1418-J2) to completely cover the gold 
film. 

4. Lay the photomask with the desired pattern on the surface of the photoresist. 

5. Expose the wafer to ultraviolet light for approximately 20 seconds. 

6. Remove the photomask and develop the pattern. 

7. Clean the wafer surface with distilled water. 

8. Etch the exposed gold with a tri-iodide solution. 

9. Clean the wafer surface with distilled water and dry with nitrogen gas. 

10. Place the wafer in a vacuum chamber and plasma etch the pattern on the exposed 
wafer surface at 100 watts for approximately 1 hour. 

74 



Appendix B: Wafer Attachment Procedure 

1. Preheat the wafer, mount, and pitch on a hot plate. Ensure the temperature of the plate 
does not cause the pitch to vaporize as this will degrade the quality of the pitch. 

2. Apply a thin layer of pitch to the center of the mount ensuring that the temperature is 
high enough to produce an almost water-like consistency of pitch on the mount 
surface but not high enough to vaporize the pitch. 

3. Using a heat gun, apply heat for several seconds to the pitch on the mount surface to 
even the distribution of pitch on the mount. 

4. Carefully place the wafer in the center of the mount. 

5. Carefully remove the mount from the hot plate. 

6. Place several layers of lens tissue over the wafer. 

7. Place a small amount of weight (approximately 1 lb/inA2) onto the lens tissue directly 
over the wafer. 

8. Allow the wafer and mount to cool. 

9. Remove the weight and lens tissue from the wafer. 

10. Using cotton balls and Trichloroethylene, carefully remove the excess pitch 
surrounding the wafer. 

11. Using q-tips and Trichlorethylene, carefully clean the surface of the wafer of all 
visible pitch. 

12. Using q-tips and Acetone, thoroughly clean the wafer surface of any remaining 
contaminants. 
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Appendix C: Wafer Cleaning Procedure 

1. After removing the polished wafer from the wafer mount, submerge the wafer in a 
container of acetone. Physical contact of the hands with the wafer should be avoided. 
Handle the wafer with tweezers. 

2. Remove the wafer from the acetone bath and clean all visible pitch residue from the 
wafer using a cotton ball and acetone. 

3. Carefully place the wafer in a container of trichloroethylene and place the container 
in an ultrasonic cleaner for 10 minutes. 

4. Remove the wafer from the trichloroethylene filled container and submerge in an 
acetone bath. 

5. Remove the wafer from the acetone bath and submerge in an isopropyl alcohol bath. 

6. While slowly extracting the wafer from the isopropyl alcohol bath, lightly blow room 
temperature air over the wafer using a heat gun. The rate of wafer extraction should 
match the rate at which the alcohol evaporates from the wafer surface. 

7. Using clean q-tips and acetone, thoroughly clean the wafer. 

8. Repeat steps 3 through 6. 

9. The wafer is now prepared for mass measurements. 
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Appendix D: Wafer 5 - Temperature Study (23°C) 

25 [Im 25lJm 

Wafer 5 - Trench 2 at 1 OOOx magnification 
- pre polish, TC temperature = 23°C 
condition 

Wafer 5 - Trench 2 at lOOOx magnification 
- post 1-hour polish, TC temperature = 
23°C condition 

25|lm 

Wafer 5 - Trench 2 at lOOOx magnification 
- post 2-hour polish, TC temperature = 
23°C condition 
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H h 
Wafer 5 - Trench 2 at lOOOx magnification 
- post 3-hour polish, TC temperature = 
23°C condition 
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Appendix E: Wafer 5 - Temperature Study (65°C) 
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Wafer 5 - Region 3 at lOOÖx magnification 
- pre-polish, TC temperature = 65°C 
condition 
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Wafer 5 - Region 3 at lOÖÖx magnification 
- post 1-hour polish, TC temperature = 
65°C condition 
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Wafer 5 - Region 3 at lOOOx magnification 
- post 2-hour polish, TC temperature = 
65°C condition 
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Wafer 5 - Region 3 at 1 OOOx magnification 
- post 3-hour polish, TC temperature = 
65°C condition 
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Appendix F: Wafer 5 - pH 11 Study at 60rpm 
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Wafer 5 - Region 1 at 1 OOOx magnification 
- pre-polish, slurry pH = 11, rpm = 60 
condition 

Wafer 5 - Region 1 at lOOOx magnification 
- post 1-hour polish, slurry pH = 11, 
rpm = 60 condition 
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Wafer 5 - Region 1 at lOOOx magnification    Wafer 5 - Region 1 at lOOOx magnification 
- post 2-hour polish, slurry pH = 11, - post 3-hour polish, slurry pH = 11, 
rpm = 60 condition rpm = 60 condition 

79 



Appendix G: Wafer 5 - 90rpm Study at 5 lb/in2 
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Wafer 5 - Trench 2 at lOOOx magnification    Wafer 5 - Trench 2 at lOOOx magnification 
- pre-polish, slurry pH = 9.9, - post 1-hour polish, slurry pH = 9.9, 
rpm = 90 condition rpm = 90 condition 

ilflfiill 

Wafer 5 - Trench 2 at lOOOx magnification    Wafer 5 - Trench 2 at lOOOx magnification 
- post 2-hour polish, slurry pH = 9.9, - post 3-hour polish, slurry pH = 9.9, 
rpm = 90 condition rpm = 90 condition 
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Appendix H: Wafer 6 - pH 11 Study at 90rpm 
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Wafer 6 - Trench 4 at lOOOx magnification    Wafer 6 - Trench 4 at lOOOx magnification 
- pre- polish, slurry pH = 11, - post 1 -hour polish, slurry pH = 11, 
rpm = 90 condition rpm = 90 condition 
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Wafer 6 - Trench 4 at lOOOx magnification    Wafer 6 - Trench 4 at lOOOx magnification 
- post 2-hour polish, slurry pH = 11, - post 3-hour polish, slurry pH = 11, 
rpm = 90 condition rpm = 90 condition 
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Appendix I: Wafer 6 - pH 12 Study at 90rpm 
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Wafer 6 - Region 2 at lOOOx magnification    Wafer 6 - Region 2 at lOOOx magnification 
- pre-polish, slurry pH = 12, - post 1-hour polish, slurry pH = 12, 
rpm = 90 condition rpm = 90 condition 
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Wafer 6 - Region 2 at 1 OOOx magnification    Wafer 6 - Region 2 at 1 OOOx magnification 
- post 2-hour polish, slurry pH = 12, - post 3-hour polish, slurry pH = 12, 
rpm = 90 condition rpm = 90 condition 
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Appendix J: Wafer 6 - 7Ib/in Study at 90rpm 
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Wafer 6 - Region 2 at lOOOx magnification    Wafer 6 - Region 2 at lOOOx magnification 
- pre-polish, pressure = 7 lb/in , - post 1-hour polish, pressure = 7 lb/in , 
rpm = 90 condition rpm = 90 condition 
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Wafer 6 - Region 2 at lOOOx magnification    Wafer 6 - Region 2 at lOOOx magnification 
- post 2-hour polish, pressure = 7 lb/in2, - post 3-hour polish, pressure = 7 lb/in2, 
rpm = 90 condition rpm = 90 condition 
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Appendix K: Wafer 6 - 91b/in Study at 90rpm 
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Wafer 6 - Trench 4 at lOOOx magnification    Wafer 6 - Trench 4 at lOOOx magnification 
- pre- polish, pressure = 9 lb/in2, - post 1-hour polish, pressure = 9 lb/in2, 
rpm = 90 condition rpm = 90 condition 

lilllllllll 

25 ^lm 

Wafer 6 - Trench 4 at lOOOx magnification 
- pre- polish, pressure = 9 lb/in2, 

rpm = 90 condition 
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Appendix L: Wafer 6- 1 lib/in Study at 90rpm 
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Wafer 6 - Trench 4 at 1 OOOx magnification    Wafer 6 - Trench 4 at 1 OOOx magnification 
- pre-polish, pressure =11 lb/in2, - post 1-hour polish, pressure = 11 lb/in2, 
rpm = 90 condition rpm = 90 condition 
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Wafer 6 - Trench 4 at lOOOx magnification    Wafer 6 - Trench 4 at lOOOx magnification 
- post 2-hour polish, pressure =11 lb/in2,       - post 3-hour polish, pressure = 11 lb/in , 
rpm = 90 condition rpm = 90 condition 
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Appendix M; Wafer 6 - 120rpm Study at 51b/in2 
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Wafer 6 - Trench 4 at lOOOx magnification    Wafer 6 - Trench 4 at lOOOx magnification 
- pre- polish, pressure = 5 lb/in , - post 1-hour polish, pressure = 5 lb/in , 
rpm = 120 condition rpm =120 condition 
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Wafer 6 - Trench 4 at lOOOx magnification    Wafer 6 - Trench 4 at lOOOx magnification 
- post 1.5 hour polish, pressure = 5 lb/in2,      - post 2-hour polish, pressure = 5 lb/in2, 
rpm =120 condition rpm = 120 condition 
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Appendix N: Wafer 6 - 150rpm Study at 5Lb/in2 
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Wafer 6 - Trench 3 at lOOOx magnification Wafer 6 - Trench 3 at lOOOx magnification 
9 9 

- pre- polish, pressure = 5 lb/in , - post 30 minute polish, pressure = 5 lb/in , 
rpm = 150 condition rpm =150 condition 
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Wafer 6 - Trench 3 at lOOOx magnification Wafer 6 - Trench 3 at lOOOx magnification 
9 9 

- post 60 minute polish, pressure = 5 lb/in , - post 90 minute polish, pressure = 5 lb/in , 
rpm =150 condition rpm =150 condition 
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Appendix O; Wafer 6 - Initial 180rpm Study at 51b/in 

Wafer 6 - Trench 3 at 1 OOOx magnification    Wafer 6 - Trench 3 at 1 OOOx magnification 
- pre- polish, pressure = 5 lb/in , - post 30 minute polish, pressure = 5 lb/in , 
rpm =180 condition rpm =180 condition 
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Wafer 6 - Trench 3 at 1 OOOx magnification 
- post 60 minute polish, pressure = 5 lb/in , 
rpm =180 condition 
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Appendix P: Wafer 6 - Final 180rpm Study at 51b/in2 

Wafer 5 - Trench 4 at 1 OOOx magnification 
- pre- polish, pressure = 5 lb/in , 
rpm =180 condition 

Wafer 5 - Trench 4 at lOOOx magnification 
- post 30 minute polish, pressure = 5 lb/in , 
rpm =180 condition 
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Wafer 5 - Trench 4 at lOOOx magnification 
- post 60 minute polish, pressure: 

rpm =180 condition 
5 lb/inz 

Wafer 5 - Trench 4 at 1 OOOx magnification 
- post 90 minute polish, pressure = 5 lb/in2, 
rpm =180 condition 
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