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Abstract

Sporadic-E (Es) occurrence rates from Global Position Satellite radio occultation

(GPS-RO) measurements have shown to vary by nearly an order of magnitude be-

tween studies, motivating a comparison with ground-based measurements. In an

attempt to find an accurate GPS-RO technique for detecting Es formation, occur-

rence rates derived using five previously developed GPS-RO techniques are compared

to ionosonde measurements over an eight-year period from 2010-2017. GPS-RO mea-

surements within 170 km of a ionosonde site are used to calculate Es occurrence rates

and compared to the ground-truth ionosonde measurements. Each technique is com-

pared individually for each ionosonde site and then combined to determine the most

accurate GPS-RO technique for binary (present or absent) Es measurements. Overall,

the Yu et al. (2020) S4 method showed the closest agreement with ionosonde mea-

surements between 2010-2017 and is the recommended technique for future GPS-RO

based Es climatologies.
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I. Introduction

Ionospheric conditions are important to a range of electromagnetic spectrum op-

erations (EMSO), such as the function of satellite and high frequency (HF) com-

munications. Abnormalities such as sporadic-E (Es) can cause degradation of the

communication signals as well reflect it entirely (Arras and Wickert, 2018; Chu et al.,

2014; Denardini et al., 2016). Department of Defense surveillance techniques such

as over-the-horizon-radar and HF geolocation are also significantly affected by the

presence of sporadic-E, motivating the need for accurate, real-time, global sporadic-E

observations.

Sporadic-E manifests itself as a non-uniform, wavy layer, or a composition of irreg-

ular elongated clouds of intense ionization within the lower E-region of the ionosphere

(Zeng and Sokolovskiy, 2010). Real-time observation of the ionosphere is conducted

globally with ground-based ionosonde stations, incoherent-scatter radars, and very

high frequency radar (Niu et al., 2019). These devices use radio signals to probe the

ionosphere and measure plasma parameters (Hajj and Romans, 1998). However, the

limitations in power and quantity of sites have made this task difficult (Igarashi et al.,

2001).

The limited number of ground-based observations are insufficient to provide an

accurate picture of the global ionospheric conditions, which also requires a space based

approach. The Constellation Observing Satellite for Meteorology, Ionosphere, and

Climate (COSMIC) uses methods to find abnormalities in the ionosphere through a

measurement techniques known as Global Position Satellite (GPS) radio occultation.

This constellation of six satellites monitors conditions of the Earth’s ionosphere and

neutral atmosphere (Chu et al., 2010; Resources, 2014; Rocken et al., 2000).

The COSMIC constellations use GPS signals for radio occultation (GPS-RO) mea-

surements (Resources, 2014). COSMIC specifications include circular orbits at alti-
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tudes of 800 km with an inclination of 72 degrees, providing an average of 1,500-2,000

GPS-RO profiles per day (Resources, 2014; Rocken et al., 2000). By using the COS-

MIC constellations to receive dual L1 (1575.42 MHz) and L2 (1227.60 MHz) radio

signals that propagate through the ionosphere from the GPS satellites, the signal

perturbation caused by a sporadic-E layer can be measured (Chu et al., 2010; Ware

et al., 2000). This method can also be used to find temperature, water vapor pres-

sure, and ionospheric electron density (Chu et al., 2010; Kursinski et al., 2000). The

COSMIC-1 constellation is currently being succeeded by the COSMIC-2 constellation

which increases the frequency and range of the sensors activity (Satellite and Service,

2020). Using the data collected from both of these constellations and pairing it with

the ground based information enhances characterization of the ionosphere.

The primary motivation behind this project are the large discrepancies in occur-

rence rates between different GPS-RO methods for locating sporadic-E. For example,

the Chu et al. (2014) method shows a maximum of 10% occurrence rate while Ar-

ras and Wickert (2018) presents a 40-50% maximum. These discrepancies require a

comparison against reliable methods such as ionosonde based Es measurements.

To find an accurate GPS-RO method for monitoring sporadic-E, five GPS-RO

techniques are compared to ionosonde measurements over an eight year period be-

tween 2010-2017. The Arras and Wickert (2018) technique uses the Signal-to-Noise

Ratio (SNR) profiles of the GPS L1 signal to calculate a standard deviation to com-

pare against an empirically determined threshold. Chu et al. (2014) uses GPS L1 and

L2 signals to find perturbations larger than 5 cm, checks the phase ratio between L2

and L1, and analyzes the L1 SNR perturbation. Niu et al. (2019) uses Total electron

content (TEC) density profiles to calculate the maximum vertical gradient of the TEC

perturbations. Gooch et al. (2020) detrends the TEC using a Savitsky-Golay filter

and finds the electron density by computing TEC enhancement and dividing by an

2



effective path length. Finally, the Yu et al. (2020) technique uses the S4 maximum,

which is the standard deviation of signal intensity normalized by average intensi-

ties, to convert to a sporadic-E intensity. For this comparison, data from the digital

ionosonde brand Digisonde is used as the ground-truth for sporadic-E occurrence

rates across the globe.

Chapter II discusses the background of the ionosphere, sporadic-E, and measure-

ment techniques. Chapter III provides details on GPS-RO data extractions from the

COSMIC constellations and comparisons to ionosonde data with the five different

methods spanning multiple years. Chapter IV presents the conclusions and provides

suggestions for future work in this area.
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II. Background

The purpose of this chapter is to describe the ionosphere’s interaction with signals

propagating from Earth and its satellites. First, sporadic-E properties and impacts

are described. Second, a few types ionospheric measurements are discussed. Third,

the importance of the ionosonde is explained. Finally, GPS radio occultation and its

role in identifying sporadic-E are discussed.

2.1 Sporadic-E

Sporadic-E are clouds of metallic ions in the lower E-region of ionosphere at an

altitude of 95-125 km (Haldoupis, 2019). The clouds typically have a large day-to-day

variability and distinct features dependent on altitude of observance (Denardini et al.,

2016). A narrow ionization thickness of 2-10 km in height (Denardini et al., 2016) is

one distinct feature of Es layers, and the average layer horizontal width is ∼170 km

(Cathey, 1969). The main physical mechanism currently applied to sporadic-E for-

mation is the wind-shear theory using vertical shears in the zonal wind that converge

the long-lived metal ions in the lower thermosphere vertically into enhanced plasma

layers (Haldoupis et al., 2007; Whitehead, 1989). Atmospheric wave dynamics provide

the vertical wind shears needed for ion convergence. Another element of sporadic-E

variability comes from seasonal dependence that shows local summer maxima caused

by seasonal variability of thermospheric meteor deposits (Haldoupis, 2011).

Sporadic-E observations are important for propagating and receiving radio signals

further than line of sight, primarily in the HF 3-30 MHz and very high frequency

(VHF) 30-100 MHz bands (Rice et al., 2011). Over-the-horizon (OTH) radar uses

sky-wave propagation in the HF band by reflecting a signal off the ionosphere to

detect targets at distances greater than microwave radars limited by line of sight

4



(Figure 1) (Headrick and Skolnik, 1974). HF geolocation uses measured sky-wave

signals to estimate an unknown transmitter’s position by backtracking the signal from

the receive location through the ionosphere down to an estimated transmit location

(Fabrizio, 2014).

Figure 1. An example of Over-the-Horizon radar sky-wave propagation to locate objects
of interest (Fabrizio, 2014).

Possessing a greater understanding and method of measuring sporadic-E will al-

low detection in locations where ionosonde sites are not feasible or permitted, such as

the oceans. Additionally, the nearly global coverage of GPS-RO measurements can

improve sporadic-E climatologies with limited measurement locations, such as the

widely used sporadic-E occurrence rate climatology developed by Smith (1957). As

displayed in Figure 2, the sparsity of ground-based measurement sites forces interpo-

lation over vast distances, which may provide occurrence rates that do not correspond

5



to reality.

Figure 2. An example of 1948 - 1954 Map showing Sporadic-E Rates as well as the
areas not covered in that time period (Smith, 1957).

2.2 Ionosphere Measurements

There are two overarching methods for extracting sporadic-E parameters from

GPS-RO measurements: phase perturbation (TEC) or signal amplitude (diffraction)

analysis. The S index is a measured the vertical TEC gradient, while the S4 index

provides a measure of amplitude perturbations and diffraction. TEC is calculated

by receiving L1 (f1 = 1.57542 GHz) and L2 (f2 = 1.22760 GHz) signals aboard a

low earth orbit satellite and using the excess phase (∆L1 and ∆L2) in the equation
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(Igarashi et al., 2001):

TEC =
1

40.3

f 2
1 f

2
2

f 2
1 − f 2

2

(∆L1 −∆L2). (1)

The S index profile is defined as the vertical gradient of the detrended TEC (∆TEC)

to estimate sporadic-E intensity where dh is the change in height (Niu et al., 2019):

S =
d(∆TEC)

dh
. (2)

The S4 index profile is defined as the standard deviation of signal intensity (SNR2 for

COSMIC measurements) fluctuations normalized by average intensities and is useful

due to its linear dependence on the electron density (Briggs and Parkin, 1963; Yu

et al., 2020):

S4 =

√
< SNR4 > − < SNR2 >2

< SNR2 >2
. (3)

Other methods to measure the ionosphere include ionosondes, which measure

propagation times for various HF frequencies to extract information on the vertical

structure of the ionosphere (Figure 3). Another device to measure the ionosphere

is an Incoherent Scatter Radar (ISR) which transmits a pulse in to the ionosphere

where the radiation is re-radiated by the electrons through Thomson scattering and is

Doppler shifted by the thermal motion of the electrons (Gordon, 1958). Using multiple

pulses, an altitude can be studied with different frequencies to give an in-depth look

with the different perspectives (Hargreaves, 1992). The difference between ISR and

ionosondes is that ISR measures the topside of the ionosphere while the ionosondes

measure the bottomside. However, ISR operation is expensive and requires a large

powerful transmitter to receive the weak scatter signals (Figure 4). GPS ground

based receivers also play a role in measurements by estimating the inter-frequency
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biases and calculating the TEC through varying slices of the ionosphere. Most of

the techniques applied estimate the vertical ionospheric structure (Komjathy et al.,

2005).

Figure 3. A diagram of vertical and oblique ionosonde operations. (Barona Mendoza
et al., 2017)

Figure 4. Millstone Hill Radar from the MIT Haystack Observatory (Observatory,
2018).
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2.2.1 Ionosondes

An ionosonde is a chirp machine that transmits a signal to the ionosphere and

measures the propagation time after reflection from the ionosphere plasma. After

sweeping through a range of frequencies, the travel time as a function of frequency is

recorded and called an ionogram (Reinisch, 2019). The virtual height h′ is defined by

h′(f) =
1

2
τ(f) c, (4)

where τ is the measured pulse travel time and c is the free speed of light (Reinisch,

2019). The dispersive nature of a plasma causes τ to be a function of signal frequency,

f . This frequency dependence is exploited by ionosondes to invert the virtual height

measurements to actual heights through an estimation of the bottomside electron

density profiles.

There are several different types of ionosonde machines that could be used for this

study, however Digisondes were used due to the long-term global data available from

the Global Ionosphere Radio Observatory (GIRO) network (http://giro.uml.edu/)

and established auto-scaling ARTIST software. A digital ionospheric sounding system

developed around 1969 is the Digisonde 128PS which has two modes of operation:

Ionogram Mode with full range and frequency but limited resolution and Doppler-

Drift Mode with full resolution in Doppler and incidence angle but limited frequency

range (Bibl and Reinisch, 1978). The Digisonde-4D (2008) offers new ways to use

software such as ARTIST-5 (Galkin and Reinisch, 2008) to increase the flexibility in

the measurement enhancements as well as mitigate some of the radio frequency (RF)

interference (Reinisch et al., 2009). An example ionogram from Lowell DIDBase is

displayed in Figure 5. The global GIRO network of Digisondes is displayed in Figure 6

along with the planned and upcoming sites to the network.
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Figure 5. Ionogram from Boulder Colorado on 21 June 2010 measured by a Digisonde
which shows the strong sporadic-E layer around the 100 km altitude (https://ulcar.
uml.edu/DIDBase/).

Figure 6. Map of current and upcoming Digisonde locations as of Dec 2020 (GIRO,
2018).

10

https://ulcar.uml.edu/DIDBase/
https://ulcar.uml.edu/DIDBase/


2.3 GPS Radio Occultation

In GPS radio occultation the scintillation of the radio waves is one of the most

important tools to measure ionosphere irregularities (Chytil, 1967). GPS-RO consists

of transmitting GPS L1 and L2 signals to a Low Earth Orbit (LEO) satellite and

measuring the signal amplitude, phase, and Doppler shift after traversing through the

Earth’s atmosphere and ionosphere (Hajj and Romans, 1998). GPS radio occultation

can yield approximately 500 occultations per satellite each day (Kursinski et al.,

1997). A graphical illustration of the RO geometry from a GPS satellite to a COSMIC

satellite is shown in Figure 7. The electron density can be obtained by measuring the

phase change and amplitude fluctuation between the transmitter and receiver using

principles of the index of refraction (Hajj and Romans, 1998). For high frequency

signals, the index of refraction, n, can be approximated by

n = 1− 40.3
ne

f 2
, (5)

where ne is the electron density (1/m3) and f is the signal frequency in hertz (Hajj

and Romans, 1998). The phase accumulated between the satellites can be modeled

by

Φ = ρ+Btransmitted −Breceived + ∆neutral + ∆ionosphere + b, (6)

where ρ is the geometric range, Btransmitted and Breceived are clock biases for transmit-

ter and receiver, ∆neutral is atmosphere delay, ∆ionosphere is ionosphere delay, and b is

phase ambiguity (Hajj and Romans, 1998). The ∆ionosphere is an important parameter

as it’s the primary phase contribution as the radio-path crosses a sporadic-E layer. A

characteristic u-shape is observed in SNR measurements of sporadic-E layers caused

by defocusing of the signal (Zeng and Sokolovskiy, 2010). The sporadic-E layer acts

like a negative lens diverging the GPS signal. Additionally, the diffraction caused by
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the perturbing layer can be used to characterize the sporadic-E intensity (Arras and

Wickert, 2018; Gooch et al., 2020). These fluctuations are monitored and Figure 8

shows the global COSMIC I coverage from a typical day in 2013.

Figure 7. Illustration of the signal path between GPS and COSMIC satellites through
the ionosphere (Gooch et al., 2020).

Figure 8. Global occultation map for the COSMIC I constellation on a day in 2010
(https://cdaac-www.cosmic.ucar.edu/).
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III. Methodology

3.1 Data Extraction and Structuring

The COSMIC constellation provides RO data through measurements of GPS

signals. This is archived through the COSMIC Data Analysis and Archive Center

(CDAAC) data servers (Analysis and Center, 2021). Ignoring the minimal bending

caused by the ionosphere (Schreiner et al., 1999) the signal tangent point can be

calculated using a coordinate transformation from the Earth-Centered-Inertial (ECI)

coordinates to latitude, longitude, and altitude implemented in Astropy (Community,

2021). The L1 and L2 excess phase and SNR measurements over time are assigned to

this tangent point, proving an approximate measurement location to compare with

ionosonde data. The GPS time is converted to Earth Fixed Time with time zones

and it also accounts for leap-year.

3.2 GPS-RO Methods

Here we outline the five GPS-RO techniques used to calculate sporadic-E occur-

rence rates. The range of altitudes is 70-130 km following the typical sporadic-E

altitude range (Arras and Wickert, 2018). For any technique without an explicit bi-

nary threshold, we use a lower fbEs threshold of 3 MHz and an upper threshold of

20 MHz to remove unrealistic or noisy data. In this study, we use foEs and fbEs

interchangeably for the GPS-RO measurements as the uniform blanketing sporadic-E

layers corresponding to large GPS-RO perturbations are most likely related to fbEs

rather than potentially patchy foEs measurements (Arras and Wickert, 2018; Reddy

and Mukunda Rao, 1968). However, the ionosonde data strictly uses fbEs instead of

foEs for the comparison.

To improve readability, from here on I will refer to the methods as “Arras” for
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Arras and Wickert (2018), “Niu” for Niu et al. (2019), “Chu” for Chu et al. (2010),

“Gooch” for Gooch et al. (2020), and “Yu” for Yu et al. (2020). Table 1 provides a

summary of the criteria used in each technique.

Table 1. A summary of the binary sporadic-E criteria for each of the five GPS-RO
techniques.

Technique Criteria

Arras L1 SNR standard deviation greater than 0.2

Niu Maximum TEC perturbation gradient (Smax) greater than 0.12 TECU/km

Chu 1) L1 and L2 phase perturbation greater than 5 cm

2) ratio of L1 and L2 within 1.5-1.8 range

3) amplitude of normalized L1 SNR perturbation greater than 0.01

Yu Maximum L1 S4 greater than 0.66

Gooch fbEs calculated from TEC perturbation and 170 km effective

sporadic-E length greater than 3 MHz

3.2.1 Arras and Wickert (2018) method

The range of altitudes used for the Arras method is 70-130 km following the

boundaries of typical sporadic-E. Within this range the 50 Hz L1 data (atmPhs files

from CDAAC) is used since the lower frequency L2 is noisier from elevated index

of refraction gradients. To search for sporadic-E, the L1 SNR is normalized and

a rolling standard deviation is calculated using a 2 km window. If the standard

deviation exceeds an empirically determined value of 0.2 then the surrounding altitude

is examined on both sides. With typical sporadic-E vertical thicknesses on the order

of 1 km (Zeng and Sokolovskiy, 2010), if the altitude extent of the perturbed region

with a standard deviation over 0.2 exceeds 10 km then the occultation is removed for
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quality control. An example is displayed in Figure 9 showing sporadic-E around the

100 km height. This method was used to create a global Es occurrence climatology

separated by season. Additionally, Arras and Wickert (2018) showed that the polar

rates are low compared to the mid-latitudes and that the magnetic equator held

almost no sporadic-E.
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Figure 9. The normalized L1 SNR and corresponding standard deviation.

3.2.2 Niu et al. (2019) Method

TEC profiles are calculating using L1 and L2 excess phase data from the 1 Hz

ionPhs CDAAC files. The TEC profiles with an altitude range of 70-130 km are

detrended using a Savitzky-Golay 11 point, 3rd order polynomial to obtain the back-

ground TEC profile, TECBackground:

TECDetrended = TEC − TECBackground, (7)
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where TEC is the raw TEC and TECDetrended is the TEC perturbation (or detrended

TEC). The Smax is the maximum vertical gradient of TECDetrended, as described in

Equation 2. An example of the calculated Smax for a typical sporadic-E profile is

displayed in Figure 10, where a sporadic-E layer is present at an altitude of ∼95 km.

Averaging the linear fits of Smax as a function of foEs obtained by Niu et al. (2019)

provides:

Smax [TECU/km] = 0.0502× foEs [MHz]− 0.0304. (8)

The four slopes are averaged to give a global slope by combining the slopes found for

different locations around the globe. From this averaged slope, we find a threshold

Smax of 0.12 TECU/km corresponding to a 3 MHz foEs. Niu et al. (2019) showed

that sporadic-E intensity is correlated with magnetic latitude dependency and solar

activity. It also showed that seasonal variation took place more in the mid-latitude

region.
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Figure 10. An example S index profile calculated as the vertical gradient of the de-
trended TEC (TEC − TECBackground).

16



3.2.3 Chu et al. (2014) Method

The 1 Hz COSMIC (ionPhs) phase and SNR data is used within an altitude of 70-

130 km. This method requires three criteria to be satisfied simultaneously: First, both

the L1 and L2 SNR and excess phase are smoothed with a 3 point Savitzky-Golay filter

as displayed in Figure 11. Both the L1 and L2 phase perturbation magnitudes must

be larger than 5 cm as in Figure 12. The excess phase on both the L1 and L2 are de-

trended using a Savitzky-Golay filter with a 25 km window and 3rd order polynomial

to remove large scale variations in the E-layer of ionosphere. The phase perturbation

magnitudes, ∆L, are inversely proportional to the signal frequency squared:

∆L =
40.323

f 2
TEC. (9)

Therefore, the ratio of ∆L2/∆L1 should have a value of 1.65 if the signals share the

same group path. From this, the second criteria requires the phase perturbation ratio

to lie within the range of 1.5-1.8.

Finally, the amplitude of the normalized L1 SNR perturbation has to be greater

than 0.01 as displayed in Figure 13. The height where the peak of the perturbation

occurs is the height of the sporadic-E layer. Chu et al. (2010) used this method to cre-

ate a global climatology that removed magnetic activity and other irregularities from

the raw measurements. This study was able to show summer and winter occurrence

rates of sporadic-E are likely due to the metallic ion flux.
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Figure 11. An example of L1 and L2 excess phase measurements.
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Figure 12. An example of the detrended excess phase for both the L1 and L2 signals.
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Figure 13. An example of the detrended SNR for both the L1 and L2 signals.

3.2.4 Yu et al. (2020) Method

From the 50 Hz COSMIC (atmPhs) L1 SNR data, a 50 point window of (25 below

and above) is used to calculate a 1 Hz S4. This S4 is calculated as a function of

altitude and is converted to an foEs following:

(foEs− 1.2)2 = 13.62 ∗ S4,Max, (10)

where the S4,Max is the maximum of the S4 index and the foEs is the peak frequency of

the sporadic-E cloud. Yu et al. (2020) developed a high resolution and high sensitivity

RO technique to determine the global distribution of sporadic-E layer intensities at a

high spatial and temporal resolution, including weak sporadic-E layers that are below

thresholds of reliable detection for ground-based ionosondes. An example of the S4

as a function of altitude is displayed in Figure 14.
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Figure 14. An example of L1 S4 as a function of altitude. The maximum S4 values is
used to estimate an fbEs.

3.2.5 Gooch et al. (2020) Method

Using the 50 Hz COSMIC (atmPhs) excess phase data, a TECBackground is cal-

culated using Equation 1 and smoothed with a 1 km interval. From there, the

TECSmoothed is detrended using a Savitzky-Golay filter with a 25 km window as

displayed in Figure 15. The electron density is calculated from

∆ne =
TECSmoothed − TECBackground

2
√

2r∆r
, (11)

where the detrended TEC is divided by an effective path length of 176 km correspond-

ing to an effective path through a cylinder with a vertical thickness of ∆r = 0.6 km

(Gooch et al., 2020). The effective path length is derived from an assumed geometry

of a cylinder centered around the tangent point (Ahmad, 1999). Gooch et al. (2020)
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provided insight into bias and limitations of three GPS-RO methods for estimating

sporadic-E intensities for the years 2010 and 2014. .
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Figure 15. An example of 50 Hz detrended TEC used to calculate a sporadic-E electron
density through division by an effective path length.

3.3 Ionosonde and GPS-RO Comparison

To compare RO and ionosonde occurrence rates, the number of RO tangent point

crossings at an altitude of 100 km within 170 km of each Digisonde site are counted.

This 170 km used for the spatial separation corresponds to the average length of

sporadic-E (Cathey, 1969). A map of the 32 Digisonde sites and corresponding areas

used to compare with RO are displayed in Figure 16. A threshold fbEs of 3 MHz

is used to count the binary sporadic-E presence. Occurrence rates are calculated by

dividing the total number of sporadic-E occurrences by the total number of measure-

ments for some time period (seasonal or entire year).
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Figure 16. Map of the Digisonde sites and areas used for GPS-RO calculations corre-
sponding to the range of 170 km shaded yellow.

Digisonde data that has been used for this project are restricted to data auto-

scaled by ARTIST-5 to standardize the results. ARTIST-5 is the latest version

of auto-scaling software and provides the most advanced methods for estimating

sporadic-E parameters compared to older versions of ARTIST (results not shown).

Additionally, the occurrence rates calculated for the Digisondes check to ensure there

are at least 2 ionograms per hour over the course of a year.

An informative method to find the mean and median of the occurrence rates re-

quires the use a bootstrapping approach with a sample size of 10,000 and confidence

interval of 95% to analyze statistical similarity between the RO and ionosonde mea-

surements. A bootstrapping approach is used to estimate a population of data by

sampling a dataset replacement (Brownlee, 2019). Another method for comparison is

to plot occurrence rates as a function of latitude to determine how each site performed

with respect to location. This helps to see how occurrence rates change seasonally in
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each hemisphere. With the latitude plots a rolling average trend line can be added

with a 10 degree window. Using an ellipse plot for GPS-RO ratios against Digisonde

ratios can show graphically the covariance to the second standard deviation. This

provides a measure of the data spread in for both measurements of interest. Another

comparison method is to compare linear fits of the ratios and compare against the

expected one-to-one line. Using the same GPS-RO ratios against the Digisonde ra-

tios error bars can be calculated per site to find accuracy of the data. A cumulative

probability distribution of the errors in GPS-RO estimates provides a measure of the

error spread for the different techniques. Separating the data into seasonal 3 month

increments provides a more accurate comparison of results since each hemisphere of

the Earth behaves differently depending on the time of year (Arras and Wickert, 2018;

Chu et al., 2010).
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IV. Results

This chapter presents a comparison between GPS-RO and ionosonde based occur-

rence rates of sporadic-E across the globe over the years 2010-2017. First, the summer

and winter seasons are compared, followed by spring and fall, and finally all seasons

combined. The seasonal comparisons are required because of the highly seasonal na-

ture of sporadic-E, ensuring the occurrence rates from the different measurements are

observed over the same season.

4.1 Winter and Summer Comparison

The figures that compare the GPS-RO ratio to the Digisonde ratio are displayed

in Figure 17 for winter and Figure 18 for summer. Each GPS-RO technique is com-

pared to the ionosonde results for each Digisonde site for the season over the years

2010-2017. The linear fit provides a measure of the general trend and should be

compared against the expected one-to-one line. In the winter season, Gooch (green)

and Niu (cyan) overestimate the occurrence rates. However, the slope of the two

methods correlates to the Digisonde ratios as increases with value. The Arras (red)

method overestimates the slope which will increase the over estimation rate as the

actual (ionosonde) occurrence rate values increase. The Chu (blue) methodology un-

derestimates both the occurrence rates and slope. The Yu (yellow) method has the

closest occurrence rates but the slope is lower which would increase the gap between

the Digisonde ratios for larger ionosonde occurrence rates. In the summer season Chu

(blue) underestimates and Arras (red) and Gooch (green) overestimate the rates. Yu

(yellow) and Niu (cyan) are near the one-to-one ratio (dashed black line) however

their slopes are leass than one which will lead to underestimating if there were higher

ratios.
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Figure 17. Dec, Jan, and Feb 2010-2017: Sporadic-E occurrence rates for the GPS-RO
methods and the Digisonde observations with a linear fit for each method.

0.0 0.2 0.4 0.6 0.8 1.0
Digisonde Ratio

0.0

0.2

0.4

0.6

0.8

1.0

GP
S-

RO
 R

at
io

24

24

24

20

20

20

31

31

31

16

16

16

37

37

37

35

35

35

73

73

73
50

50

50

30

30

30

51

51

51

1717

17

6464

64

34

34

34

19

1919

29

29

29

18

18

18

1919

19

41

41

41

33

33

33

40

4040

41

41

41

14

14

14

35

35

35

20

20

20

57

57

57

14

14

14

2222

18

18

27

27

17

17

30

30

29

29

54

54

27

27

24

24

42

42

15

15

56

56

32

32

15

15

25

25

16

16

19

19

37

37
14

14

32

32
29

29

1111

28

28

20

20

37

37

14

14

L1 SNR SD: Arras + Wickert
Phase + SNR: Chu
TEC: Gooch
d(TEC)/dz: Niu
L1 S4: Yu

Figure 18. Jun, Jul, and Aug 2010-2017: Sporadic-E occurrence rates for the GPS-RO
methods and the Digisonde observations with a linear fit for each method.
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Figure 19 and Figure 20 show the 95% confidence ellipses of each technique for

winter and summer, respectively. They show the area where most of the values lie

within the scatter plot and provide a visual representation of where the techniques

stand relative to each other. In the summer and winter Arras (red), Niu (cyan), and

Gooch (green) overestimate the rates and Chu (blue) underestimates. Yu (yellow)

falls mostly centered with values both over and under estimating. The confidence

ellipse thicknesses demonstrate a wide variability in the GPS-RO measurements for

each technique.
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Figure 19. Dec, Jan, and Feb 2010-2017: Sporadic-E occurrence rates for the GPS-RO
methods and the Digisonde observations with a confidence ellipse corresponding to two
standard deviations (95%).

26



0.0 0.2 0.4 0.6 0.8 1.0
Digisonde Ratio

0.0

0.2

0.4

0.6

0.8

1.0

GP
S-

RO
 R

at
io

24

24

24

20

20

20

31

31

31

16

16

16

37

37

37

35

35

35

73

73

73
50

50

50

30

30

30

51

51

51

1717

17

6464

64

34

34

34

19

1919

29

29

29

18

18

18

1919

19

41

41

41

33

33

33

40

4040

41

41

41

14

14

14

35

35

35

20

20

20

57

57

57

14

14

14

2222

18

18

27

27

17

17

30

30

29

29

54

54

27

27

24

24

42

42

15

15

56

56

32

32

15

15

25

25

16

16

19

19

37

37
14

14

32

32
29

29

1111

28

28

20

20

37

37

14

14

L1 SNR SD: Arras + Wickert
Phase + SNR: Chu
TEC: Gooch
d(TEC)/dz: Niu
L1 S4: Yu

Figure 20. Jun, Jul, and Aug 2010-2017: Sporadic-E occurrence rates for the GPS-RO
methods and the Digisonde observations with a confidence ellipse corresponding to two
standard deviations (95%).

The individual site uncertainties are displayed in Figure 21 for winter, and Fig-

ure 22 for summer. The uncertainties are calculated from the standard deviation for

each technique at each site treating each year in 2010-2017 as a separate point. In the

winter season Gooch (green) and Niu (cyan) techniques had the upper bounds for the

largest uncertainties while Chu (blue) and Yu (yellow) had the smallest yearly fluctu-

ations. In the summer season Arras (red) had the upper bounds and Chu (blue) had

the lower. These error bars show how far each technique can vary from year-to-year

and site-to-site.

27



0.0 0.1 0.2 0.3 0.4 0.5 0.6
Digisonde Ratio

0.0

0.1

0.2

0.3

0.4

0.5

0.6

GP
S-

RO
 R

at
io

18

18

18

15

15

15

11

11

11

31

31

31

4242

42

79

79

79

13

13

13

17

17

17

60

60

60

32

32

32

16

16

16

29

29

29

25

25

25

22

22

22

24

24

24

27

2727

29

29

29

49

49

49

22

22

22

42

42

42

47

47

47

28

28

28

1414

14

14

13

13

22

22

35

35

68

68

13

13

11

11

53

53

21

21

14

14

19

19

21

21

19

19

19

19

18

18

20

20

41

41

17

17

31

31

37

37

21

21

L1 SNR SD: Arras + Wickert
Phase + SNR: Chu
TEC: Gooch
d(TEC)/dz: Niu
L1 S4: Yu

Figure 21. Dec, Jan, and Feb 2010-2017: Sporadic-E occurrence rates for the GPS-RO
methods and the Digisonde observations showing the individual site uncertainty per
method.
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Figure 22. Jun, Jul, and Aug 2010-2017: Sporadic-E occurrence rates for the GPS-RO
methods and the Digisonde observations showing the individual site uncertainty per
method.
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The occurrence rates as a function of latitude are displayed Figure 23 and Figure 24

for winter and summer, respectively. The expected latitude dependence of sporadic-E

formation is immediately obvious, with a maximum in the local summer hemisphere.

In the winter, all trendlines correlate with higher values in the lower latitude and lower

values in the higher latitude. Arras (red), Niu (cyan), and Gooch (green) overestimate

rates while Yu (yellow) and Chu (blue) underestimate. Yu is the closest to the actual

value of the Digisonde data (dashed black line) and within the yearly uncertainty

for the ionosonde data. In the summer season all but Chu overestimate the rates.

However, Chu has the closest values and is within the uncertainty for multiple sites.
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Figure 23. Dec, Jan, and Feb 2010-2017: Occurrence rates as a function of latitude
with a rolling average of ±10◦ for trendlines and shading for the Digisonde uncertainty.
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Figure 24. Jun, Jul, and Aug 2010-2017: Occurrence rates as a function of latitude
with a rolling average of ±10◦ for trendlines and shading for the Digisonde uncertainty.

The bootstrap calculated means using 10,000 random resamples are displayed

in Figure 25 for winter and Figure 26 for summer. These figures show the mean

and associated 95% confidence interval for each technique, providing a measure of

statistical similarity between the measurement methods. The winter shows Arras

(red), Gooch(green), and Niu (cyan) overestimating rates and not intersecting the

confidence interval of the Digisonde data (shaded region). In the summer, Arras

overestimates rates with Gooch and Niu but crosses the Digisonde confidence interval.

Gooch and Niu crossed the Digisonde mean value (dotted black line) within the

uncertainty for each technique. Chu (blue) underestimates rates and the Yu (yellow)

mean value and confidence interval overlapped with the Digisonde data.
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Figure 25. Dec, Jan, and Feb 2010-2017: Bootstrap calculated means and 95% confi-
dence intervals for each GPS-RO technique compared to the ionosonde rates.
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Figure 26. Jun, Jul, and Aug: 2010-2017: Bootstrap calculated means and 95% confi-
dence intervals for each GPS-RO technique compared to the ionosonde rates.
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The bootstrap calculated medians are displayed in Figure 27 for winter and Fig-

ure 28 for summer. The medians determine where the 50% point of the set is located.

In the winter, only Yu (yellow) falls within the confidence interval (shaded region)

of the Digisonde values. Chu (blue) underestimates and Arras (red), Gooch (green),

and Niu (cyan) overestimate. In the summer season the confidence intervals overlap

for Chu, Gooch, Niu, and Yu.
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Figure 27. Dec, Jan, and Feb 2010-2017: Bootstrap calculated medians and 95%
confidence intervals for each GPS-RO technique compared to the ionosonde rates.
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Figure 28. Jun, Jul, and Aug 2010-2017: Bootstrap calculated medians and 95%
confidence intervals for each GPS-RO technique compared to the ionosonde rates.

The cumulative probability distributions for the ratio differences between the

GPS-RO techniques and the ionosonde measurements are displayed in Figure 29 for

winter and Figure 30 for summer. Each figure shows where the second standard de-

viation and first deviation lies (dotted black lines). In the winter, the Yu (yellow)

cumulative probability arrives at the 68% and 95% values before the other methods.

However, in the Summer Niu (cyan) reaches 68% first while Chu (blue) reaches the

95% first.
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Figure 29. Dec, Jan, and Feb 2010-2017: Cumulative probability distributions for
the occurrence rate differences between each GPS-RO technique and the ionosonde
measurements.
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Figure 30. Jun, Jul, and Aug 2010-2017: Cumulative probability distributions for
the occurrence rate differences between each GPS-RO technique and the ionosonde
measurements.
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4.2 Spring and Fall Comparison

In this section, the spring and fall seasons are analyzed to highlight differences

and similarities in sporadic-E measurements outside of the maximum and minimum

occurrences rates observed for summer and winter. Scatter plots of the occurrence

rates with linear fits for the different GPS-RO techniques are displayed in Figure 31

for spring and Figure 32 for fall. The 95% confidence ellipses are shown in Figure 33

for spring and Figure 34 for fall. Individual site uncertainties and occurrence rates as a

function of latitude are displayed in Figure 35 and Figure 37 for spring, and Figure 36

and Figure 38 for fall. The bootstrapped means and medians are shown in Figure 39

and Figure 41 for spring and Figure 40 and Figure 42 for fall. The cumulative

probability distributions are displayed in Figure 43 for spring and Figure 44 for fall.
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Figure 31. Mar, Apr, and May 2010-2017: Sporadic-E occurrence rates for the GPS-RO
methods and the Digisonde observations with a linear fit for each method.
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Figure 32. Sept, Oct, and Nov 2010-2017: Sporadic-E occurrence rates for the GPS-RO
methods and the Digisonde observations with a linear fit for each method.

Overall, the results are similar to the summer and winter comparisons. Some

notable differences included a negative slope for the Gooch technique in Figure 32,

indicating a large overestimation of the low occurrence rates. The confidence ellipse

of Figure 34 show a similar result with a nearly vertical ellipse for Gooch.
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Figure 33. Mar, Apr, and May 2010-2017: Sporadic-E occurrence rates for the GPS-
RO methods and the Digisonde observations with a confidence ellipse corresponding
to two standard deviations (95%).

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Digisonde Ratio

0.0

0.1

0.2

0.3

0.4

0.5

0.6

GP
S-

RO
 R

at
io

17

17

17

17

17

17

11

1111

14

14

14
27

27

27

24

24

24

41

41

41

46

46

46

41

4141

45

45

45

45

45

45

26

26

26

22

22

22

35

35

35

11

11

11

41

41

41

27

27

27

13

1313

16

16

16

35

35

35

39

39

39

38

38

38

20

20

11

11

1212

12

12

27

27

20

20

27

27

39

39

32

32

41

41

41

41
22

22

17

17

26

26

12

12

27

27

15

15

10

10

14

14

27

27

28

28

32

32

L1 SNR SD: Arras + Wickert
Phase + SNR: Chu
TEC: Gooch
d(TEC)/dz: Niu
L1 S4: Yu

Figure 34. Sept, Oct, and Nov 2010-2017: Sporadic-E occurrence rates for the GPS-RO
methods and the Digisonde observations with a confidence ellipse corresponding to two
standard deviations (95%).
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Figure 35. Mar, Apr, and May 2010-2017: Sporadic-E occurrence rates for the GPS-
RO methods and the Digisonde observations showing the individual site uncertainty
per method.
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Figure 36. Sept, Oct, and Nov 2010-2017: Sporadic-E occurrence rates for the GPS-RO
methods and the Digisonde observations showing the individual site uncertainty per
method.
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The Chu estimates no sporadic-E occurrence for −20◦ to 0◦ latitude in May, Apr,

and May (Figure 37). In this same latitude range, the ionosonde value is around 10%.

For Sept, Oct, and Nov, the Chu technique falls within the ionosonde uncertainties

for most latitudes (Figure 38). Similar to the summer and winter comparison, the Yu

technique results align with the Digisonde results for most latitudes.
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Figure 37. Mar, Apr, and May 2010-2017: Occurrence rates as a function of latitude
with a rolling average of ±10◦ for trendlines and shading for the Digisonde uncertainty.
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Figure 38. Sept, Oct, and Nov 2010-2017: Occurrence rates as a function of latitude
with a rolling average of ±10◦ for trendlines and shading for the Digisonde uncertainty.

For the fall and spring bootstrapped means and medians, the Yu technique is the

only technique to fall within the ionosonde confidence interval. Chu underestimates

the rates while Niu, Gooch, and Arras overestimate.
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Figure 39. Mar, Apr, and May 2010-2017: Bootstrap calculated means and 95% confi-
dence intervals for each GPS-RO technique compared to the ionosonde rates.
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Figure 40. Sept, Oct, and Nov 2010-2017: Bootstrap calculated means and 95% confi-
dence intervals for each GPS-RO technique compared to the ionosonde rates.
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Figure 41. Mar, Apr, and May 2010-2017: Bootstrap calculated medians and 95%
confidence intervals for each GPS-RO technique compared to the ionosonde rates.
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Figure 42. Sept, Oct, and Nov 2010-2017: Bootstrap calculated medians and 95%
confidence intervals for each GPS-RO technique compared to the ionosonde rates.
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Figure 43. Mar, Apr, and May 2010-2017: Cumulative probability distributions for
the occurrence rate differences between each GPS-RO technique and the ionosonde
measurements.
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Figure 44. Sept, Oct, and Nov 2010-2017: Cumulative probability distributions for
the occurrence rate differences between each GPS-RO technique and the ionosonde
measurements.
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4.3 Whole Year Comparison

In this section, the whole year (all seasons) are compared with no separation by

season. While these results are helpful for analyzing the entire datasets, care must be

taken with the interpretation of results due to the highly seasonal nature of sporadic-

E. Some measurements may not be uniformly distributed throughout the year, which

would induce a seasonal weighting to the data.

The scatter plot and linear fits of the GPS-RO to ionosonde ratios are displayed in

Figure 45. Both the Yu and Gooch slopes are negative, and the Chu, Arras, and Niu

slopes are much less than one. However, the Yu trend crosses the one-to-one line while

the other techniques are primarily above or below this line. Confidence ellipses are

displayed in Figure 46, which show nearly vertical ellipses for all techniques outside of

Chu. Uncertainties for the different sites and techniques are displayed in Figure 47.
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Figure 45. 2010-2017: Sporadic-E occurrence rates for the GPS-RO methods and the
Digisonde observations with a linear fit for each method.
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Figure 46. 2010-2017: Sporadic-E occurrence rates for the GPS-RO methods and
the Digisonde observations with a confidence ellipse corresponding to two standard
deviations (95%).

0.0 0.1 0.2 0.3 0.4 0.5 0.6
Digisonde Ratio

0.0

0.1

0.2

0.3

0.4

0.5

0.6

GP
S-

RO
 R

at
io

100

100

100

61

61

61

101

101

101

161

161

161 52

52

52

103

103

103

93

93

93

146

146

146

212

212

212

250

250
250

284
284

284

140

140

140

27

27

27

194

194

194

50

50

50

286

286

286

157

157

157

133

133

133

45

45

45

166

166

166

102

102
102

127

127

127

227

227

227

156

156

156

89

89
89

171

171

171

180

180

180

86

86

86

186

186

186

215

215

215

220

220

220

100

100

100

89

89

45

45

45

45

124

124

44

44

86

86

79

79

109

109

156

156

173

173

227

227

104

104

21

21

163

163

4646

240

240

130

130

92

92

26

26

119

119

85

85

104

104

179

179

89

89

60

60

121

121

133

133

73

73

137

137

168

168

159

159

71

71

L1 SNR SD: Arras + Wickert
Phase + SNR: Chu
TEC: Gooch
d(TEC)/dz: Niu
L1 S4: Yu

Figure 47. 2010-2017: Sporadic-E occurrence rates for the GPS-RO methods and the
Digisonde observations showing the individual site uncertainty per method.
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The latitude dependence of the sporadic-E rates averaged over the entire year

shows fbEs occurrence rates around 10% with a slight increase in rates for the northern

hemisphere (Figure 48). Similar to the seasonal results, the Chu technique tends to

underestimate the rates, while Gooch, Arras, and Niu tend to overestimate. The Yu

technique is within the ionosonde uncertainty for most latitudes.
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Figure 48. 2010-2017: Occurrence rates as a function of latitude with a rolling average
of ±10◦ for trendlines and shading for the Digisonde uncertainty.

The most valuable comparisons over all seasons are the mean (Figure 49) and

median (Figure 50) which show whether or not the GPS-RO techniques are within

the correct range of magnitudes overall. Both the mean and median show that the

Yu technique provides the correct occurrence rate magnitude nearly matching the

ionosonde results. The Niu, Arras, and Gooch techniques overestimate the rates

while Chu underestimates.
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Figure 49. 2010-2017: Bootstrap calculated means and 95% confidence intervals for
each GPS-RO technique compared to the ionosonde rates.
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Figure 50. 2010-2017: Bootstrap calculated medians and 95% confidence intervals for
each GPS-RO technique compared to the ionosonde rates.

The cumulative probability distributions (Figure 51) indicate the the Yu technique
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minimizes error for 68% of the data, but the Chu technique minimizes the error if this

is extended to 95%. While the Chu technique tends to underestimate the rates overall,

the magnitude of the differences are smaller than the differences for the techniques

that overestime the occurrence rates.
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Figure 51. 2010-2017: Cumulative probability distributions for the occurrence rate
differences between each GPS-RO technique and the ionosonde measurements..

4.4 Statistical Analysis

To compare the methods statistically we must combine the weighting for each

method and the Digisonde weight. Here, the data is weighted by the total number

of measurements. Afterward, the mean absolute error can be computed along with

the relative error. We can also compute the average, standard deviation, correlation,

and the statistical similarity of each method against the Digisonde numbers. Table 2

shows the average ratio over eight years for each technique along with the number of

Digisonde observations and radio occultations averaged over all sites. The overall ratio

from ionosonde observations (0.15) is closely matched by Yu while Chu underestimates
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and Arras, Gooch, and Niu overestimate.

Table 2. Digisonde and GPS-RO ratios and the number of observations averaged over
all sites.

Technique Total RO Total Es Ratio

Digisonde 209,040 32,313 0.15

Arras 144 40 0.28

Gooch 144 39 0.28

Yu 144 21 0.15

Chu 109 8 0.07

Niu 109 26 0.25

Table 3 shows the sporadic-E occurrence rate averages and standard deviations.

Observed averages of ionosonde occurrence rates is between 0.10 and 0.28 for the four

seasons and as a whole 0.16. Arras, Gooch, and Niu methods overestimated these

rates from 0.18 to 0.43. The Chu method underestimated with 0.04 through 0.15.

The Yu methodology was more inline with rates at 0.08 through 0.27. The ionosonde

standard deviation for the whole year was 0.06 and was closely aligned with Gooch,

Niu, and Yu at 0.07. Chu underestimated the standard deviation with 0.04 and Arras

was over with 0.10.
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Table 3. Digisonde and GPS-RO occurrence rate averages and standard deviations.

Technique Dec-Feb Mar-May Jun-Aug Sept-Nov
Whole

Year

Digisonde Avg 0.10 0.13 0.28 0.12 0.16

Digisonde Std 0.05 0.06 0.13 0.06 0.06

Arras Avg 0.18 0.23 0.43 0.21 0.28

Arras Std 0.08 0.11 0.23 0.12 0.10

Chu Avg 0.04 0.06 0.15 0.05 0.08

Chu Std 0.04 0.04 0.11 0.07 0.04

Gooch Avg 0.22 0.28 0.30 0.28 0.27

Gooch Std 0.12 0.10 0.11 0.12 0.07

Niu Avg 0.19 0.24 0.33 0.21 0.24

Niu Std 0.09 0.10 0.20 0.10 0.07

Yu Avg 0.08 0.11 0.27 0.09 0.15

Yu Std 0.06 0.08 0.19 0.06 0.07

Table 4 shows the mean absolute error (MAE) which is the statistical measure-

ment of the model performance error (Botchkarev, 2018; Willmott and Matsuura,

2005). This MAE is calculated in relation to the ionosonde observations. The lowest

throughout most of the year was the Yu method ranging from 0.05 to 0.10. The

highest was Gooch ranging from 0.12 to 0.19.
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Table 4. Mean absolute error for each of the five GPS-RO techniques.

Technique Dec-Feb Mar-May Jun-Aug Sept-Nov
Whole

Year

Arras 0.08 0.11 0.19 0.11 0.14

Chu 0.07 0.07 0.11 0.08 0.07

Gooch 0.12 0.16 0.13 0.19 0.14

Niu 0.09 0.13 0.12 0.11 0.11

Yu 0.06 0.07 0.10 0.05 0.05

The relative absolute error which shows the performance of a model by using

the mean of the absolute value the actual forecast errors divided by the mean of

absolute values of the native models’ forecast errors (Glen, 2019). The Chu and Yu

methodologies have the lowest relative error values at 0.46 and 0.56, respectfully,

while the Gooch technique has the largest relative error (Table 5).

Table 5. Relative absolute error for each of the five GPS-RO techniques.

Technique Dec-Feb Mar-May Jun-Aug Sept-Nov
Whole

Year

Arras 0.94 1.05 0.86 1.37 1.35

Chu 0.66 0.59 0.49 0.70 0.46

Gooch 1.43 1.67 0.89 2.59 1.43

Niu 1.04 1.41 0.59 1.28 1.04

Yu 0.61 0.56 0.55 0.49 0.56

The Pearson R correlation or Pearson Product Moment Correlation (PPMC)

shows a linear relationship between two sets of data (Glen, 2017). Table 6 shows
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that Arras has the strongest correlation during the summer and spring seasons. Yu

had the highest value during the fall season with Niu and Chu during the winter.

Table 6. Digisonde and GPS-RO occurrence rate Pearson R correlation coefficients.

Technique Dec-Feb Mar-May Jun-Aug Sept-Nov
Whole

Year

Arras 0.54 0.41 0.72 0.33 0.34

Chu 0.58 0.28 0.67 0.39 0.53

Gooch 0.26 0.07 0.16 -0.34 -0.09

Niu 0.58 0.35 0.67 0.43 0.41

Yu 0.30 0.35 0.64 0.63 0.32

Statistical similarity is calculated as the percentage of overlap between uncertainty

intervals calculated for a particular statistical metric. For the occurrence rate means,

the statistical similarity is displayed in Table 7. As highlighted by the bootstrapping

figures, the Yu technique shows the most overlap and has the strongest statistical

similarity with the Digisonde mean over all seasons. Most other techniques show

little to no statistical similarity with the Digisonde mean.
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Table 7. Digisonde and GPS-RO mean statistical similarity confidence rates.

Technique Dec-Feb Mar-May Jun-Aug Sept-Nov
Whole

Year

Arras 0.01 0.01 0.07 0.02 0.00

Chu 0.00 0.00 0.03 0.04 0.00

Gooch 0.00 0.00 0.75 0.00 0.00

Niu 0.01 0.00 0.51 0.01 0.00

Yu 0.38 0.55 0.84 0.22 0.86
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V. Conclusions

Five GPS-RO methods for monitoring sporadic-E from Arras and Wickert

(2018), Chu et al. (2014), Niu et al. (2019), Gooch et al. (2020), and Yu et al. (2020)

are compared against Digisonde results obtained through the GIRO network to find

a technique with strong agreement. Data over a period of 2010-2017 was analyzed

and separated by season to compare the techniques’ applications and results. Results

for the five techniques varied depending on the statistical measurement and season.

The Arras and Wickert (2018) method overestimated throughout most of the

comparisons with the Digisonde data. The linear fit of the rates compared to the

Digisonde rates provided a slope near one-to-one in the summer season. Statistically,

the Arras technique overestimated compared to the other methods, but it had the

strongest correlation with Digisonde data for half of the year (two seasons).

The Chu et al. (2014) method underestimated the ratio in almost every Digisonde

comparison. However, the linear slope of the trendline was closest to the Digisonde

data for the summer months. The Chu method underestimated in the statistical

similarity of the mean in each season as well as fall, and was under the rolling average

of the Digisonde occurrence rates for each latitude. Statistically, Chu performs better

than the other methods when analyzing the relative absolute error and Pearson R

correlation. However, differentiating the year into seasons removes that advantage.

The Niu et al. (2019) and Gooch et al. (2020) methods both overestimated the

sporadic-E occurrence rates across all metrics. The Gooch method also showed a

reduced linear slope for the ratios indicating an overestimation of the low occurrence

rate scenarios. Focusing on the mean and median occurrence rates, both methods

appeared to track one another due to the reliance on TEC for these methods. Only

in the summer months do the two methods overlap the Digisonde confidence interval.

The Yu et al. (2020) method overestimates slightly for the lower occurrence rates
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but underestimates slightly for the higher occurrence rates. Through the occurrence

ratios the Yu method maintained a close correlation with the Digisonde ratios and

the same relationship was observed for the estimates across each latitude. For the

mean and median occurrence rates the Yu method falls within the Digisonde confi-

dence interval throughout all seasons. Statistically, the Yu technique outperformed

the other methods in mean absolute error, relative absolute error, and mean statistical

similarity confidence percentage. While the Yu technique provides a sound estima-

tion of sporadic-E occurrence rates, the linear trendlines with respect to Digisonde

rates show that if the ratios were to approach higher values this technique might not

outperform the others. In most cases the S4 technique used by Yu showed the closest

agreement with the Digisonde measurements during the span of 2010-2017.

The Chu methodology and the use of a weighted linear fit produced a close corre-

lation to the Digisonde results, outperforming the Yu S4 technique. However, the Chu

methodology was too strict to match the magnitudes perfectly. The recommended

technique to use for sporadic-E monitoring and studying of sporadic-E climatologies

is the S4 by Yu et al. (2020).

For future research, these methods could be used to create an updated global

climatology of sporadic-E occurrence. Combining the GPS-RO data with ionosonde

data would provide a powerful combination with nearly global coverage. Possible

improvements to the Yu et al. (2020) technique may include the implementation of

the L2 signal in some manner even though it is noisier. Another possible improvement

to the Yu et al. (2020) technique could be to incorporate the use of phase since the

current usage only involves the amplitude of the L1 signal.
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