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Abstract: Marijuana is the most commonly abused drug for military personnel tested at the Air
Force Drug Testing Laboratory. A publicly available dataset of drug use, personality trait scores and
demographic data was modeled with logistic regression, decision tree and neural network models to
determine the extent to which marijuana use can be predicted using personality traits. While the
logistic regression model had lower performance than the neural network model, it matched the
sensitivity of prior work (0.80), achieved a high level of significance (p < 0.05) and yielded valuable
inferences. It implied that younger, less educated individuals who exhibit sensation-seeking behavior
and are open to experience tend to be at higher risk for THC use. A method for performing an
iterative multidimensional neural network hyperparameter search is presented, and two iterations
of a 6-dimensional search were performed. Metrics were used to select a family of 8 promising
models from a cohort of 4600 models, and the best NN model’s 0.87 sensitivity improved upon
the literature. The model met an f1 overfitting threshold on the test and holdout datasets, and an
accuracy sensitivity analysis on a holdout-equivalent dataset yielded a 95% CI of 0.86 & 0.04. These
results have the potential to increase the efficacy of drug prevention and intervention programs.

Keywords: cannabis; marijuana; neural network; personality traits; prevention; THC

1. Introduction

All military services within the Department of Defense adhere to regulations on the
use and misuse of drugs. The United States Air Force (USAF), with many critical missions,
is particularly strict concerning such regulations. The Air Force Drug Testing Laboratory
(AFDTL) currently tests Air Force and some Army military personnel for 22 different drugs
or drug metabolites. Historically, the highest number of positive results are for marijuana,
also known as cannabis, or by its psychoactive component, tetrahydrocannabinol (THC).
When considering all positive drug tests between March and June 2020, the percentage
of THC-positive results was 64%, while the next highest percentage of positive results
was 18% for amphetamines. Although the amount of THC-positive results represents only
0.84% of the total population tested during this four-month time frame, there were still
1022 positive results [1]. While not static, these numbers represent typical proportions.

The prevalence of THC use in the military corresponds to the prevalence of THC use in
the United States. In an annual survey conducted by the University of Michigan’s Institute
for Social Research, marijuana has consistently been the most commonly used illicit drug [2].
This trend has led researchers to study the extent to which certain personality traits can
identify risk factors for THC use in individuals [3-8]. Subsequently, intervention methods
focusing on identified risk-prone personality traits to reduce the prevalence of THC use,
particularly among adolescents, have also been studied [9,10].

Accurate prediction of drug use supports the USAF Drug Demand Reduction Program,
the primary goal of which is to ensure mission readiness, as drug abuse “...seriously
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impairs accomplishing the military mission and is a threat to the health, safety, security
and welfare of the total force [11].” The Air Force Alcohol and Drug Abuse Prevention and
Treatment (ADAPT) Program [12] and the Army Substance Abuse Program (ASAP) [13]
include drug prevention as an integral duty within the scope of their missions, as directed
by the Department of Defense [14]. The results of this study could assist both the ADAPT
Program and the ASAP in their prevention goals by providing an innovative selective
prevention process to discover individuals at greater risk for substance use disorders [15].
Although a continuing topic of research and debate, Williams argues that THC use may also
increase the risk for more serious opioid use disorder [16]. With exponentially increasing
fatalities from opioid overdoses over the past four decades [17], targeted prevention
methods enabled by the modeling in this work may help to reduce lethal overdoses in
addition to mitigating military career impact.

An additional goal of this study is to determine whether a neural network (NN)
model can improve upon existing logistic regression (LR), or decision tree (DT) algorithms
to predict THC use. Neural networks have been successful, and often superior to other
algorithms, when making predictions in situations such as the success rates in a smok-
ing cessation program [18], incidence of metabolic syndrome [19] and infectious disease
surveillance [20]. Although it is becoming more common to use machine learning tech-
niques to predict the risk of drug use or abuse [3-8,21-23], few researchers have employed
NN models [21,23]. In a literature search, while four studies specifically modeled THC
prediction using machine learning techniques, none employed a NN model. Three of these
studies utilized a form of LR [5-7] and one used a DT [8], with moderate to high predictive
accuracy. These studies incorporated personality traits along with additional risk factors.

Haug et al. explored the initiation of THC and other drug use in young adult males
using hierarchical logistic stepwise regressions, reporting a Nagelkerke’s R? value of 0.11.
Of the personality traits included, sensation-seeking behavior was revealed as a positive
associated risk factor for the initiation of cannabis use [7]. Spechler, in his thesis employing
multimodal data to predict THC use in adolescents, obtained mean area under the curve
(AUC) measures of 0.71 for males and 0.81 for females utilizing LR with elastic-net regular-
ization. This study included 2413 predictor features, and of those measuring personality,
increased novelty seeking and decreased conscientiousness were found to contribute to
early THC use [6]. Rajapaksha et al. utilized LASSO LR to predict cannabis use disorder
(CUD) in known, regular THC users, achieving an overall accuracy of 0.66 and AUC of
0.65. Considering personality predictors, they found that CUD risk was higher in younger
individuals prone to sensation seeking, having higher openness to experience and lower
conscientiousness scores [5]. Fehrman et al. found that a DT model produced the best
predictive results for the risk of 18 different drugs in their study, reporting a sensitivity of
79% and specificity of 80% for the risk of THC use [8]. Focusing primarily on personality
traits, they report higher neuroticism, openness, impulsivity and lower conscientiousness
and agreeableness scores to suggest a higher risk for THC use.

2. Background

This study uses the Fehrmen et al. dataset to determine the relationship of various
personality traits to drug use [24]. Questions on the use of 18 different legal and illegal
drugs, along with questions to determine personality traits from the Revised NEO-Five
Factor Inventory (NEO-FFI-R), Barratt Impulsiveness Scale (BIS-11) and Impulsiveness
Sensation-Seeking Scale (ImpSS) were employed. The NEO-FFI-R consists of 60 questions
which assess the personality traits of neuroticism, extraversion, openness to experience,
agreeableness and conscientiousness. The BIS-11 asks 30 questions gauging impulsiveness,
and the ImpSS contains 19 questions measuring both impulsiveness and sensation-seeking
behavior [8]. The results of this anonymous online survey were compiled into a dataset
publicly available from the University of California, Irvine (UCI) Machine Learning Repos-
itory [24]. Although this dataset includes information on the use of various drugs, the
present work focuses only on THC use.
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The dataset contains 1885 observations, with responses from six labeled countries
plus others combined; primarily the United Kingdom (UK) and the United States (USA).
THC use is divided into seven classes based on the time frame of use, and these data were
transformed into a binary categorical variable: non-users and users. THC non-users (0)
have either never used THC or have not used in the last 10 years, with all others categorized
as users (1). Gender was also represented by a binary categorical variable of female (0) and
male (1). The distributions of THC users and the categorical variables used in this study
are shown in Figure 1.
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Figure 1. Distribution of the THC Use response variable (a) and other nominal categorical variables
(a,b). UK: United Kingdom, CAN: Canada, USA: United States, OTH: Other, AUS: Australia, IRE:
Ireland, and NZ: New Zealand.

Data understanding for the remaining features is gained from the Figure 2 raincloud
plot, which combines a box plot with a probability distribution function for each feature [25].
Figure 2 data are normalized; the age is categorized by 6 age groups ranging from 18 to
over 65, and the education level ranges from those who left school prior to turning 16
to those with a doctorate degree. The distribution of the personality trait variables is
quasi-normal: Nscore measures neuroticism; Escore, extraversion; Oscore, openness to
experience; Ascore, agreeableness; Cscore, conscientiousness; Impulsive, impulsivity; and
SS measures sensation-seeking behavior [24]. Numerous outliers are visible in Figure 2,
as shown by the diamonds that are outside the extended interquartile range markers.
These datapoints were retained to maximize the ability of the model to generalize upon
unseen data.

Participant age starts at 18, but as shown in the top subplot of Figure 2, this dataset
includes more older individuals than are typically included in drug use studies. The edu-
cation level of participants and personality trait variables are all near-normally distributed.
The ratio of THC users to non-users is approximately 2:1. Among the demographic data
collected, male and female responses are nearly equal, but the data on country of residence
and ethnicity are particularly skewed, as seen in Figure 1. Most responses came from the
UK and USA, and the overwhelming ethnicity represented is White.
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Figure 2. Distribution of quantified ordinal variables.

3. Method

The primary method used in this work is the cross-industry standard process for data
mining (CRISP-DM), with the phases of data understanding, data preparation, modeling
and evaluation [26]. Data preparation, LR/DT/NN modeling and model evaluation were
conducted in Python using a GPU-enabled Google Colaboratory environment, and the
Scikit-learn, Keras and TensorFlow frameworks. The data understanding phase was
described in the preceding Background section of this paper.

3.1. Data Preparation

Fehrman et al. quantified their dataset using categorical principal component analysis
on the nominal variables (country, ethnicity), and polychoric correlation on the remaining
ordinal variables [8]. This created a fully quantified (non-categorical) dataset apart from
the response variable.

The values for response variable THC use were changed from seven classes based on
frequency of use to two classes, “user” and “non-user.” Non-users include those who have
never used THC or used THC over a decade ago, and are labeled as “0”. Users include
those who have used THC within the last decade to within the last day, and are labeled
as “1.”
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The LR and DT models used the quantified and standardized features shown in
Figures 1 and 2, except for ethnicity because of its unbalanced distribution. Due to the
increased capacity of the NN model, a one-hot encoded transformation of the country and
ethnicity features was included.

3.2. Metrics

In the dataset, the positive class is the THC user. While accuracy on both classes is
desirable, for the purposes of this study it is considered more important to avoid false
negatives (FN), where a user is miscategorized as a non-user. In this case, a person at risk
for THC does not receive information or support. A corollary to this statement is that a
high true positive rate is important. There is negligible consequence for a false positive (FP),
where a non-user is misclassified as a user; here, the only drawback is that the member
may receive information on avoiding drug use when it is not needed.

Due to the consequences of false negatives and the importance of true positives, the
main evaluation metrics used to compare models are the FN count and sensitivity, which is
the ratio of true positives over the sum of true negatives and false positives. Sensitivity,
also known as recall, allows comparison to prior work.

The f1 metric, defined as the harmonic mean of recall and precision, was selected to
compare models due to the unbalanced nature of the dataset where 67% of the labels are
positive. For a complete comparison, accuracy and AUC are also presented for all models.

3.3. Logistic Regression Model

The logit algorithm within the Python Statsmodels framework, and the LogisticRe-
gression algorithm with the SciKit-learn (sklearn) framework were used to model the
dataset. Performance metrics were calculated using methods within the sklearn Metrics
framework. The data were divided using a 70/30 train—test split to evaluate and compare
the predictive ability of each model and check for overfitting of the model. Adding a
constant value for the intercept increased the model’s accuracy. However, no L1, L2 or
elasticnet regularization was added. The default values of quasi-Newton lbfgs solver,
100 maximum iterations and no class weights were used.

The log likelihood ratio p-value is <0.05 level of significance, indicating that the model
is suitable for predicting the response variable. Although four variables—Gender, Nscore,
Ascore and Impulsive—yielded p-values above a 0.05 level of significance, they were
retained for more relevant comparison to the NN model. Accuracy and AUC scores of the
train and test sets were monitored to assess overfitting.

3.4. Decision Tree Model

For the DT model, the data were modeled with the DecisionTreeClassifier algorithm
within the sklearn Tree framework, and the model was evaluated using the same sklearn
methods as the LR model. The classification DT model was modeled using the Gini index
attribute selection measure and the same features as the LR model. A 70/30 train—test split
was used to monitor overfitting, and a sweep of leaf nodes was conducted to determine
the optimal model. The default value of no class weights was used, without limitations on
the number of samples per split or the number of samples per node.

3.5. Neural Network Model

NN models were created using the Keras framework and sequential architectures [27].
The modeling effort was monitored for overfitting using a 70%/15%/15% train/test/holdout
split, and a checkpointing algorithm was used during training to save the model each
time the loss metric improved on the validation dataset. The stochastic gradient descent
(SGD) optimizer algorithm was evaluated and compared to the Adam optimizer, which
has been shown to be effective for both shallow and deep neural networks. The ReLu
activation function was utilized for the input layer and the output layer utilized the sigmoid
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activation function. Binary cross-entropy was chosen as the loss function, and the f1 metric
was monitored for overfitting.

An iterative multidimensional hyperparameter search was conducted that followed
the process flowchart shown in Figure 3. The flowchart was executed until the model
performance changed by less than 2% per iteration, and initial hyperparameters (HP) and
their ranges were selected from the literature [28].

Select HPs & Expand HP range If no variation, fix
Start ranges per per performance |—| HP value, remove
HOML gradient from sweep
Analyze

performance
gradient vs single
HP

If plateau, adjust
range to minimize Stop
model complexity

A

Perform
multi-dimensional
HP sweep

Test on holdout
dataset

performance
increase >=2%?

Select family of
best models

Figure 3. Flowchart for iterative multidimensional hyperparameter search. HP: hyperparameter;
HOML: hands-on machine learning with TensorFlow [28].

For the initial multidimensional hyperparameter search, an initial grid search sweep
was performed on neurons, hidden layers, L2 regularization lambda (A), batch size, epochs
and learning rate, using the specifications shown in Table 1. There were 1440 combinations
of hyperparameters modeled in this sweep.

Table 1. Neural network model initial hyperparameter search specifications.

Hyperparameter Values Tested
Neurons 1,2,3,4,5,7,9,12
Hidden layers 0,1,2,3
L2 regularization A 0.001, 0.01, 0.05, 0.1
Batch size 128,512, 1024
Epochs 1500 with checkpointing
Learning rate 0.0001, 0.0003, 0.0005, 0.0007, 0.001

A wide range of modeling performance resulted when the counts of FN and FP were
examined. In Figure 4, all model results are reported, with a red line indicating the lowest
FN count for each value of FP.

100
75
50
25

False Negatives

0

50 100 150 200
False Positives

Figure 4. NN modeling results emphasizing lowest FN prediction results, shown by red line.
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Many of the models arrived at a trivial solution, where the model over-specified FP to
achieve a low FN value. This is apparent on the right side of Figure 4. More insight into
modeling performance is gained when minimizing the metric “FN + FP”. This separates
the trivial solutions, and is shown in Figure 5, where models that possess a FN + FP < 110
are plotted. A Pareto front is apparent which indicates the best performance for each value
of false negative.

110

70

False Negatives

Figure 5. NN modeling results indicating the models with lowest FP + FN and FN counts. The red
line indicates a Pareto front.

In order to select an optimizer, this initial hyperparameter search was repeated using
the SGD algorithm where the L2 regularization sweep was replaced with SGD momentum
values in the set (0, 0.3, 0.5, 0.9) An examination of each hyperparameter’s impact on
modeling performance was then conducted. Figure 6 below shows a detailed analysis
of the best model performance for each hyperparameter, for both the SGD and Adam
optimizers, as measured by the sum of FP + FN on the test dataset.

105 . 105
100 ., 100/ *
g o5 Z o5 « Adam
+ +
L ) g . SGD
& &
85 Adam
SGD 8|,
80g 5 10 80200 400 600 800 1000
Number of Neurons Batch Size
105 105 105
1 Adam . . *
00 <D 100 . . 100
g o g o . Adam Z o . Adam
+ + +
& 90 . . & 90 . . SGD & 90 . SGD
85 85 . . 85
88.000 0.025 0.050 0.075 0.100 80" 50002  0.0005 0.0010 80 1 2 3

L2 Lambda Learning Rate Layers

Figure 6. Model performance using the SGD optimizer (black markers) and Adam optimizer (red
markers) in terms of FP + FN measured on the test dataset. Top panel: number of neurons and batch
size; bottom panel: L2 lambda, learning rate and layers.

In Figure 6, it is clear that Adam is the best optimizer for this dataset, as it has
the lowest sum of false positives and false negatives. Using the Adam optimizer, the
hyperparameter search ranges were modified in accordance with the Figure 3 flowchart.
An example of flowchart implementation is presented by examining the Batch Size and
Learning Rate subpanels of Figure 6. In these subpanels, it appears there is potential for
model performance to be further improved by increasing the learning rate or decreasing
the batch size. Hyperparameter search range adjustments for these two hyperparameters,
and also neurons, L2 A and layers were made in the second iteration of the hyperparameter
search. This search was conducted using the parameters shown in Table 2.
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Table 2. Neural network model final hyperparameter search specifications.

Hyperparameter Values Tested
Neurons 4,5
Hidden layers 2
L2 regularization A 0.04, 0.05, 0.06
Batch size 32,64,128
Adam epsilon 1x1073,1x107%1x107°1x10°°
Epochs 2500 with checkpointing
Learning rate 0.0003, 0.0007, 0.0009, 0.0013

4. Discussion and Analysis

Each model was evaluated based on the FN count, accuracy, AUC score and sensitivity,
which is also referred to as recall or the true positive rate. These metrics determined the
model’s ability to correctly predict the risk of THC use and generalize well on unseen data.

4.1. Logistic Regression Model Results

For the LR model, accuracy and AUC for the train and test sets are presented in Table 3.
The results show that no overfitting occurred.

Table 3. Logistic regression model performance metrics on the train and test datasets.

Accuracy AUC

Train set 0.79 0.74
Test/holdout set 0.81 0.77
Entire set 0.79 0.75

Figure 7 shows the LR model confusion matrix that results from evaluating the model
on the test dataset. The model correctly predicted 330 THC users and 138 non-users, and
incorrectly predicted 38 THC users and 60 non-users. The low value of false negatives (38)
aligns with the goals of this modeling effort. The receiver operating characteristic (ROC)
curve for the LR model is presented in Figure 12 at the end of this section, and visually
compares the true positive and false positive rates. Figure 12 also contains the results of
the DT and NN models that are described below.

300

138 60 L 58

non-user

I-200

True Label

-150

38 330

user

-100

-50

non-user user
Predicted Label

Figure 7. LR model confusion matrix heatmap for the test/holdout dataset.

Comparing this LR model to those surveyed in the literature, it outperforms the model
implemented by Rajapaksha et al., which achieved an overall accuracy of 0.66 and AUC
score of 0.65 [5]. The present LR model is at least comparable to Spechler’s model, which
achieved an AUC of 0.71 for males and 0.81 for females [6]. The study by Haug et al.
reported a Nagelkerke’s R? of 0.11 [7]. The closest comparison in our model is to the
pseudo R? result of 0.37, which is calculated as McFadden’s R?. Nagelkerke’s R? is typically
higher than McFadden’s R? [29], thus we can conclude that our model outperforms this
model as well.
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While DT and NN models are difficult to interpret, odds ratios (OR) for the indepen-
dent features are easily obtained from an LR model. The LR model did not possess the
best performance of the algorithms evaluated, but it yielded valuable inferences. They are
listed, with p-values and OR 95% confidence intervals (CI) in Table 4.

Table 4. LR model odds ratios (OR), p-values and 95% confidence intervals (CI). Features are listed
in order of importance as determined by the OR value. p-values of variables with questionable
significance are in red.

Feature OR p-Value OR 95% CI
Ethnicity 6.94 0.001 2.13-22.59
Oscore 1.66 <0.001 1.37-2.01
SS 1.63 <0.001 1.30-2.05
Impulsive 1.10 0.369 0.89-1.36
Nscore 0.90 0.278 0.74-1.09
Ascore 0.86 0.067 0.72-1.01
Escore 0.81 0.048 0.66-1.00
Education 0.79 0.006 0.67-0.94
Cscore 0.79 0.014 0.66-0.95
Gender 0.73 0.082 0.52-1.04
Age 0.42 <0.001 0.35-0.52
Country 0.28 <0.001 0.21-0.38

Odds ratio values >1 indicate a positive relationship, and <1 indicate a negative rela-
tionship, and the values are constant across the range of an individual feature. For example,
the 0.42 OR for Age suggests that for each unit increase in normalized age, the risk of THC
use decreases by 58%. Accordingly, the 1.63 OR for SS suggests that for each unit increase
in SS, the risk of THC use increases by 63%.

Although the OR value for Ethnicity suggests that it is the most influential variable,
the wide 95% CI and skewed distribution, as seen in Figure 1, should signal using caution in
this interpretation. Likewise, the variables with p-values > 0.05 should also be interpreted
with caution.

Thus, the odds ratio offers inferences on what extent features affect the prediction of
THC use. In this study, they imply that younger, less educated individuals who exhibit
sensation-seeking behavior and are open to experience tend to be at higher risk for THC use.
Alternatively, those who are older, more educated, agreeable, conscientious and extroverted
tend to be at lower risk for THC use.

4.2. Decision Tree Model Results

The resulting accuracy and AUC for the train and test datasets is presented in Figure 8
from a sweep of 2—40 leaf nodes. The criteria for the best DT model were to maximize all
metrics, with more weight given to the performance on the test dataset. It was determined
that 21 nodes provided the best performance with an acceptable level of overfitting, and
this is where AUCtest had its maximum value.

The accuracy and AUC score for the 21-node DT model are presented in Table 5 for
the train and test datasets, showing that a small amount of overfitting occurred. The first 4
variables that the 21-node model split on were sensation seeking, age, extroversion and
conscientiousness. When compared with the four most influential variables for the LR
model, based on their odds ratio and p < 0.05, sensation seeking and extroversion were
present in both models.
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Figure 8. DT model accuracy and AUC vs. number of nodes for both the train and test/holdout datasets.

Table 5. The 21-node DT model performance metrics for the train and test/holdout datasets.

Accuracy AUC
Train set 0.82 0.80
Test/holdout set 0.78 0.75
Entire set 0.80 0.79

The ROC curve for the DT model shows a sensitivity of 75% at a specificity of 80%,
and is presented (with LR and NN curves) in Figure 12 at the end of this section. Only
one study in the literature search utilized a DT model—the original study on the dataset
used in this study; Fehrman et al. reported a sensitivity of 79% at a specificity of 80% [8].
Despite slightly degraded performance, the DT model in the present work is validated by
reproducing prior work.

4.3. Neural Network Model Results

Figure 9 shows the combined performance results for both iterations of the hyperpa-
rameter search, and the best performing model for each hyperparameter value is shown
with a red marker. This shows the influence of five hyperparameters on model performance,
as measured by minimizing the sum of false positives and false negatives on the test dataset.
The epsilon hyperparameter is not shown as it did not significantly influence performance.
While 4628 NN models were created, not all are visible as many had duplicate performance.

=
u H
H a H
& i
90 :
H
805 250 500 750 1000
Batch Size
3 105 120,
i I
100 110 § i i
g o5 = H
+ +100 H H
H H & 2 H R & H
i 85 <. 90 i
: : . :
88.000 0.025 0.050 0.075 0.100 80154 1073 102 80'5 T 5 3
L2 Lambda Learning Rate

Layers

Figure 9. Model performance from 1D slices of the multidimensional hyperparameter search, as mea-
sured on the test dataset. Best models are indicated by a red marker, and all other models are
indicated by a black marker. Top panel: number of neurons and batch size; bottom panel: L2 lambda,
learning rate and layers.
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The next step in model evaluation was to select a best family of NN models and
compare them to the holdout dataset. This was an important step to ensure that the model
can generalize well on unseen data. The models were ranked by their accuracy metric
on the entire dataset, and then the model performance was evaluated for false negatives,
which is a priority for this study. Another criterion for model selection was the overfitting
percentage; the f1 metric for the entire dataset was divided by the f1 metric of the test or
validation datasets.

Using these criteria, a family of eight best models was selected, and their performance
on the entire dataset, test dataset and holdout dataset are presented in Table 6. A hyper-
parameter shown in Table 6 that is not previously defined is class weight, which is the
weighting factor applied to the minority class (non-user). While this can assist model per-
formance for unbalanced datasets, the value of 1 for the best model indicates that varying
this parameter did not influence optimal performance.

Table 6. Hyperparameters and f1 metrics for the best family of NN models. Metrics are presented for the entire dataset

(f1,71), and the percent overfitting on the test and holdout datasets, based on the f1 metric. Bold text indicates the best model.

Neurons Layers L2 Learn Rate  Class Weight 1. Overfit Test Overfit Val
10 3 1x 1073 0.01 1 0.87 17.1% 16.5%
10 2 1x 1073 1x 1073 1 0.84 10.6% 11.1%
5 2 1x 1073 1x 1073 1 0.84 7.3% 8.4%
5 2 1 x 5073 0.01 1.5 0.82 5.9% 8.9%
4 2 1x 5073 0.01 1.25 0.82 4.9% 8.1%
5 2 1 x 5073 0.01 1.25 0.82 2.0% 6.6%
5 2 0.01 0.01 1.75 0.82 7.1% 8.3%
5 2 0.02 1x 1073 2 0.80 4.9% 4.7%

Models were excluded if their f1 metric on either the test or holdout set was more
than 10% lower than the f1 metric on the entire dataset. This ensures that the model can
generalize well on unseen data. The best model is denoted by bold text in Table 6, and while
it does not have the highest {1, it performs well and meets all criteria. Table 7 shows the
hyperparameters of the selected model.

Table 7. Neural network model final hyperparameters. AF: activation function.

Parameter Specification
Input layer/AF 23 neurons/ReLu
Hidden layer/AF 2 layers, 5 neurons/ReLu
Output layer/AF 1 neuron/sigmoid
L2 regularization A 0.001
Batch size 512
Epochs 1500 with checkpointing
Optimizer algorithm Adam
Adam epsilon 0.0001
Learning rate 0.001
Loss function Binary cross-entropy

The validation and holdout datasets each consist of a random 15% portion of the
original dataset, as determined by a specified random seed. A sensitivity analysis was
performed by recording the accuracy metric for a 15% split that results from 1500 different
random seed values. The resulting quasi-normal histogram is shown in Figure 10, showing
an accuracy mean value of 0.858 with a 95% CI of +0.04. This gives confidence there is a
relatively even distribution of outliers in the dataset; if that were not the case, the CI would
be larger. As expected, the mean value of the 15% split histogram matches the accuracy of
the entire dataset.
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C10.820-0.896
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Figure 10. Histogram of accuracy for 1500 random splits of a 15% portion of the entire dataset.

Using the selected NN model, ROC curves were generated from the entire dataset, test
dataset and holdout data, and they are presented in Figure 11. The selected specificity and
sensitivity of (0.79/0.86) were selected by matching the 0.79 specificity of the prior work [8].
This pair is denoted by the blue star, and occurs at a classification threshold of 0.651.

1.0 e — —
2 .
2038 -
n
[ =
Q
12
06 /
©
o
204 | NN Entire AUC = 0.91
2 f NN Test AUC = 0.91
-l NN Holdout AUC = 0.89
80.2
= Chance AUC = 0.50
%  Threshold = 0.651
%%0 0.2 0.4 0.6 0.8 1.0

False Positive Rate (100-Specificity)

Figure 11. NN ROC curves, as measured on the entire dataset (blue), test dataset (orange) and
holdout dataset (green). The selected specificity and sensitivity resulting from a threshold of 0.651
are denoted by a blue star.

Further metrics for the best NN model are presented in Table 8, as measured on the
entire, test and holdout dataset.

Table 8. Metrics for the best NN model.

Dataset AUC Accuracy Specificity Sensitivity
All 0.91 0.86 0.79 0.87
Test 0.91 0.79 0.79 0.86

Holdout 0.89 0.78 0.79 0.86

4.4. Final Model Comparisons

Accuracy, AUC and sensitivity for the LR, 21-node DT, and NN models are summa-
rized in Table 9. Additionally, those metrics for a hypothetical chance model (random
output) and a no information rate (NIR, always predict majority class) model are presented
for comparison. When compared to the LR and DT models, the NN model possessed the
best AUC and sensitivity, while the LR model had the best accuracy.
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Table 9. Model metric comparisons, as measured on a 30% holdout dataset (DT and LR) or a 15%
holdout dataset. NIR: no information rate, or the metrics that result from always predicting the
majority class of “THC user.”

Metric LR DT NN Chance NIR
Accuracy 0.79 0.76 0.78 0.45 0.72

AUC 0.75 0.81 0.89 0.50 —
Sensitivity 0.80 0.76 0.86 0.68 1.00

The ROC curves of the three model families comprise the final comparison, as mea-
sured on the holdout datasets. This comparison is shown in Figure 12, along with the
specificity /sensitivity pairs from the best NN model and those from Fehrman [8]. The in-
creased AUC of the NN model gives the practitioner more flexibility in choosing the
combination of specificity and sensitivity that are the best for their application.

1.0 — —
§ *
0.8 y
@
fiing J
> P
E 0.6
= A
7 y
S04 / Logistic Regression (AUC = 0.75)
2 Decision Tree (AUC = 0.81)
Y
NN (AUC =0.89
o2 ¢ )
& % NN Best Model
e Fehrman Metrics
080 0.2 0.4 0.6 0.8 1.0

FPR / 1 - Specificity

Figure 12. Comparison of ROC curves for the DT, LR and NN models, as measured on the holdout
datasets. The sensitivity and specificity of prior work is designated by a round marker [8], and the
present work is designated by a star. TPR: true positive rate; FPR: false positive rate.

As noted earlier, one goal of this study is to determine whether an NN model can pro-
duce superior results to an LR or DT model in predicting the risk of THC use. The metrics
presented in this work confirmed our NN model’s ability to meet that goal. These results
also validate the iterative multidimensional hyperparameter search method developed in
this work.

5. Conclusions

The LR and DT models developed in this work matched the performance of prior
work to predict marijuana use from personality trait scores and demographics, and the NN
achieved a higher level of performance. The LR model was significant (p < 0.05) and yielded
valuable inferences by showing the extent that each feature affects the class prediction
with its calculated odds ratios. The LR model showed that younger, less educated, and
sensation-seeking individuals tend to be at higher risk for THC use. Older, more educated,
agreeable, conscientious and extroverted individuals have a lower risk for THC use.

A method to perform an iterative method of multidimensional hyperparameter search
was presented, which allowed the NN model to exceed the LR and 21-node DT perfor-
mance, while avoiding a high level of overfitting. Eight optimal models from a cohort of
4600 models were evaluated on a holdout dataset, and the best NN model possessed 0.86
accuracy and 0.91 AUC on the entire dataset. The sensitivity of the present model (0.87)
exceeded that of the prior work (0.80) when measured at the same value of specificity (0.79).
Finally, an accuracy sensitivity analysis on a holdout-equivalent dataset yielded a 95% CI
of 0.86 £ 0.04, showing a relatively even distribution of outliers in the dataset.

Given this understanding of how various personality traits may affect the risk of indi-
viduals using THC, the Air Force and the Army could possibly achieve lower numbers of
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THC-positive drug tests with an increased ability to focus prevention efforts. The literature
shows that THC use may increase the risk for more serious opioid use disorder, and that
fatalities from opioid overdoses have significantly increased in the past four decades. As a
result, mitigation measures enabled by accurate THC use prediction may save service
member’s lives in addition to preserving their career potential.
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