
Air Force Institute of Technology Air Force Institute of Technology

AFIT Scholar AFIT Scholar

Faculty Publications

2021

Acceleration of Boltzmann Collision Integral Calculation Using Acceleration of Boltzmann Collision Integral Calculation Using

Machine Learning Machine Learning

Ian Holloway

Aihua W. Wood

Alexander Alekseenko

Follow this and additional works at: https://scholar.afit.edu/facpub

 Part of the Mathematics Commons

https://scholar.afit.edu/
https://scholar.afit.edu/facpub
https://scholar.afit.edu/facpub?utm_source=scholar.afit.edu%2Ffacpub%2F818&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholar.afit.edu%2Ffacpub%2F818&utm_medium=PDF&utm_campaign=PDFCoverPages

mathematics

Article

Acceleration of Boltzmann Collision Integral Calculation Using
Machine Learning

Ian Holloway 1,*,†, Aihua Wood 1,*,† and Alexander Alekseenko 2,†

����������
�������

Citation: Holloway, I.; Wood, A.;

Alekseenko, A. Acceleration of

Boltzmann Collision Integral

Calculation Using Machine Learning.

Mathematics 2021, 9, 1384. https://

doi.org/10.3390/math9121384

Academic Editor: Ioannis K. Argyros

Received: 31 March 2021

Accepted: 4 June 2021

Published: 15 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Air Force Institute of Technology, WPAFB, OH 45433, USA
2 Department of Mathematics, California State University Northridge, Northridge, CA 91330, USA;

alexander.alekseenko@csun.edu
* Correspondence: iholloway@riversideresearch.org (I.H.); aihua.wood@afit.edu (A.W.)
† These authors contributed equally to this work.

Abstract: The Boltzmann equation is essential to the accurate modeling of rarefied gases. Unfortu-
nately, traditional numerical solvers for this equation are too computationally expensive for many
practical applications. With modern interest in hypersonic flight and plasma flows, to which the
Boltzmann equation is relevant, there would be immediate value in an efficient simulation method.
The collision integral component of the equation is the main contributor of the large complexity. A
plethora of new mathematical and numerical approaches have been proposed in an effort to reduce
the computational cost of solving the Boltzmann collision integral, yet it still remains prohibitively ex-
pensive for large problems. This paper aims to accelerate the computation of this integral via machine
learning methods. In particular, we build a deep convolutional neural network to encode/decode the
solution vector, and enforce conservation laws during post-processing of the collision integral before
each time-step. Our preliminary results for the spatially homogeneous Boltzmann equation show a
drastic reduction of computational cost. Specifically, our algorithm requires O(n3) operations, while
asymptotically converging direct discretization algorithms require O(n6), where n is the number of
discrete velocity points in one velocity dimension. Our method demonstrated a speed up of 270 times
compared to these methods while still maintaining reasonable accuracy.

Keywords: Boltzmann equation; machine learning; collision integral; convolutional neural network

1. Introduction

While the Euler and Navier–Stokes equations have for a long time been the work
horses in the modeling of fluid dynamics, these equations are inadequate for modeling
complex flows, such as rarefied gases, for which the continuum assumption is invalid.
Rarefied gas flows have become a topic of increasing interest due to their relevance in
practical applications such as hypersonic and space vehicles. To accurately capture the
true physics of these non-equilibrium flows, analysis of molecular-level interactions is
required. As the governing equation of kinetic theory, the Boltzmann equation is key in
understanding these interactions, and therefore also critical in aiding the successful design
of these flight vehicles, as well as other applications. Unfortunately, and despite the rapid
increase in computing power of recent years, numerical solution of this equation continues
to present a major challenge. Among the components of the equation, the main driver
of computational complexity is the multi-dimensional collision integral. As a result, a
plethora of new mathematical and numerical approaches have been proposed in an effort
to reduce the computational cost of solving the Boltzmann collision integral.

Fourier-based spectral methods represent a potent approach to deterministic evalu-
ation of the collision integral [1–5]. These methods use uniform meshes in the velocity
space and have complexity of O(n6) operations, where n is the number of discrete velocity
points in one velocity dimension. A discontinuous Galerkin discretization with O(n6)
complexity was proposed in [6]. While these algorithms are suitable for simulation of

Mathematics 2021, 9, 1384. https://doi.org/10.3390/math9121384 https://www.mdpi.com/journal/mathematics

https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://doi.org/10.3390/math9121384
https://doi.org/10.3390/math9121384
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/math9121384
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math9121384?type=check_update&version=2

Mathematics 2021, 9, 1384 2 of 15

flows in one and two spatial dimensions, they are difficult to use for three dimensional
flows. An additional reduction in complexity is achieved in fast spectral methods by
leveraging low rank approximate diagonalization of the weighted convolution form of
the collision integral [7–11]. Complexities of the fast spectral methods may vary between
O(Mr M2n3 log n) and O(M2n3 log n) depending on the form of molecular interaction po-
tential. Numbers M2 and Mr correspond to the numbers of discrete integration points in
angular and radial directions used in diagonalization and usually are significantly smaller
than n. In spite of the significant improvement in efficiency, simulation of three dimen-
sional flows of gases with internal energies, multi-component gases, and flows in complex
geometries still remains challenging for fast spectral methods.

Other algorithms of lower complexities have also been proposed for either special
physics or various representations of the approximate solutions, for example, O(n4) algo-
rithm for evaluating the collision integral in the case of Maxwell’s pseudo-molecules [12],
and O(Mn3 log n) for hard spheres potentials [13,14]. Simulation of gas mixtures and gases
with internal energies, as well as multidimensional models can be found in [14–20], and
references therein. Other fast methods include representing the solution as a sum of homo-
geneous Gaussians [21,22], polynomial spectral discretization [23], utilizing non-uniform
meshes [24], and a hyperbolic cross approximation [25]. Additional review of recent results
can be found in [26,27].

In this paper, we apply machine learning to accelerate the calculation of the Boltzmann
collision integral. The results presented are intended to be an initial demonstration of
the viability of machine learning to accelerate solution of the problem at hand, more so
than to rigorously prove consistency of machine learning techniques with the discretized
Boltzmann equation. For our case study, we consider a class of solutions to the problem
of spatially homogeneous relaxation computed using deterministic approach of [6]. The
considered class of solutions correspond to hard spheres potential, however, we expect that
the results can be replicated for other molecular potentials. We build a deep convolutional
neural network to encode/decode the solution vector, and enforce conservation laws
during post-processing of the collision integral before each time-step. Our preliminary
results for the spatially homogeneous Boltzmann equation show a drastic reduction of
computational cost, in the order of O(n3), compared to O(n6) for direct discretization
algorithm of [6].

Specifically, our model would take the numerical solution as input and return a
predicted collision integral at every point of the computational domain as output. This
model could then directly replace the collision integral calculation in a time stepping
simulation without requiring any other aspect of the simulation to change. Due to the fact
that machine learning algorithms are to be trained on a specific set of data, the resulting
approximate algorithms will be only applicable to the same classes of problem for which the
data was generated. Thus, the proposed approaches are intrinsically applicable to a specific
set of problems. For that set of problems, however, the methods provide a significant
improvement in speed compared to classical methods. This opens an entire new avenue for
addressing the computational complexity associated with solving the Boltzmann equation.

Artificial neural networks and machine learning were previously applied to solution of
partial differential equations, see, e.g., [28–30], including solution of kinetic equations [31].
Another data driven approach consists of using low rank tensor approximations of kinetic
solutions [32]. Commonly, deep neural networks provide low rank representations of
solutions in high dimensional spaces while the governing partial differential equations
are used to define penalty functions for network training. It should be noted, however,
that a direct implementation of the collision integral in a penalty function in a manner
the governing equations are used in physics informed networks, is problematic due to
extremely high costs of evaluating the collision integral. As a result, in this paper, we focus
on learning the collision operator itself, for a class of solutions. The resulting approximation
can be, in principle, combined with approaches of [31,32] to provide an inexpensive
physically accurate collision operator. To the authors’ knowledge, this is the first attempt

Mathematics 2021, 9, 1384 3 of 15

at using machine learning to accelerate the calculation of the Boltzmann collision integral.
Our early results suggest that the approach has potential to drastically advance the state-
of-the-art in simulating complex flows or rarefied gas.

The rest of the paper is organized as follows. Section 2 presents the problem setup and
the convolutional network structure that enables the dimension reduction. Conservation
considerations are described in Section 3. Section 4 is devoted to error analysis. Our test
models and results are shown in Section 5. The paper is concluded in Section 6.

2. Problem Setup

In the kinetic approach the gas is described using the molecular velocity distribution
function f (t,~x,~v) which has the property that f (t,~x,~v)d~x d~v represents the number of
molecules that are contained in the box with the volume d~x around point ~x whose velocities
are contained in a box of volume d~v around point ~v. In this work, we are concerned with
the solution of the spatially homogeneous flows that correspond to the assumption that
the f (t,~x,~v) is constant in the ~x variable. In this case, the dynamics of the gas is given by
the spatially homogeneous Boltzmann Equation (see, for example [33,34]),

∂

∂t
f (t,~v) = I[f](t,~v) . (1)

Here I[f] is the molecular collision operator

I[f](t,~x,~v) =
∫
R3

∫
S2
(f (t,~v′) f (t,~u′)− f (t,~v) f (t,~u))B(|g|, cos θ) dσ d~u , (2)

where ~v and ~u are the pre-collision velocities of a pair of particles, ~g = ~v− ~u, S2 is a unit
sphere in R3 centered at the origin, ~w is the unit vector connecting the origin and a point
on S2, θ is the deflection angle defined by the equation cos θ = ~w ·~g/|g|, dσ = sin θ dθdε,
where ε is the azimuthal angle that parametrizes ~w together with the angle θ. Vectors ~v′

and ~u′ are the post-collision velocities of a pair of particles and are computed by

~v′ = ~v− 1
2
(~g− |g|~w), ~u′ = ~v− 1

2
(~g + |g|~w) .

Due to the high computational complexity of the collision integral, use of the Boltz-
mann equation in practice has been limited.

2.1. Class of Solutions and Solution Collection

The class of solutions for which the training data is constructed consists of solutions
to the problem of spatially homogeneous relaxation with the initial data given by two
homogeneous Gaussian densities. The initial data is normalized so that the velocity
distribution function has unit density, zero bulk velocity and, a set temperature. In the
simulations presented in this paper, the value of dimensionless temperature of 0.2 was used.
The bulk velocities of the homogeneous Gaussian densities have zero v and w components,
thus the solutions are radially symmetric in vw velocity plane.

A collection of solutions is computed by randomly generating macroscopic parameters
of density, the u components of the bulk velocity, and temperatures of two homogeneous
Gaussian densities and solving (1) until a steady state is reached using the method of [6].
The numerically computed velocity distribution functions are saved at multiple instances in
time, each save becoming a data point in the collection. We note that due to normalization
of the initial data, the steady state is the same for all computed solutions. All solutions were
computed on uniform meshes with dimensions of 41 by 41 by 41 in the velocity domain.

2.2. Dimension Reduction

A key component of finding a faster method of calculating the collision integral
is finding low dimensional features that adequately characterize the solution. The true
dimensionality of the solution data can be demonstrated using the SVD decomposition.
The saved solutions are re-arranged as one dimensional arrays f j. Then f j are added as

Mathematics 2021, 9, 1384 4 of 15

rows to the matrix Dij, where index i runs over all saved solutions and index j runs over
all discretization points. This process is schematically depicted in Figure 1.

In Figure 1, singular values of matrix Dij, i = 1, . . . , P, j = 1, . . . , M3 are shown, where
M = 41 is the number of velocity points in each velocity dimension in the computed
solutions and P is the total number of the considered solution saves, P ≈ 5000. About
100 of cases of initial data is included in the results in Figure 1. It can be seen that the
singular values decrease very fast allowing for low rank approximation D̂ij of the data
matrix Dij:

D̂ij =
K

∑
l=1

σlµ
l
iξ

l
j . (3)

Here σl is the l-th singular value, µl
i is the l-th left singular vector and ξ l

j is the l-th right

singular vector of Dij. Vectors ξ l
j represent orthogonal modes in solutions and σl represents

the relative importance of these modes in the solution data. A SVD truncation theorem of
numerical linear algebra states that the relative L2 norm of error of approximating Dij with
a truncated sum (3) is 0.001 for K = 21 and 1.0× 10−4 for K = 38. The relative L∞ norm of
the SVD truncation error is often estimated using the quantity eK = (∑P

i=K+1 σi)/ ∑P
i=1 σi.

Values of eK for K = 20, K = 36, and K = 55 are 0.0087, 0.00089, and 9.8× 10−5, respectively.
This suggests that modes corresponding to singular values σl , l > 20 account for less than
0.01 of the solutions, for l > 36 for less than 0.001, and for l > 55 for less than 1.0× 10−4

of the solutions. In other words, the solutions can be approximated accurately with first
55 singular vectors ξ l

j and these vectors provide a very efficient basis for representing this
class of solutions (but not other classes of solutions).

fj

Dij

Es
tm

at
ed

 A
cc

ur
ac

y
of

 T
ru

nc
at

on

M
ag

ni
tu

de
s

of
 S

in
gu

la
r V

al
ue

s

Singular values

Estmated Accuracy

0 500 1000 1500 2000 2500

Singular Value Index
1×10−12

1×10−10

1×10−8

1×10−6

1×10−4

1×10−2

1×100

1×102

1×10−14

1×10−12

1×10−10

1×10−8

1×10−6

1×10−4

1×10−2

1×100

Figure 1. (left) Schematic depiction of constructing the solution data matrix: 3D solutions are reshaped into vectors f j

which are then stacked as rows of the solution data matrix Dij. (right) Singular values of the solutions data matrix and
estimated accuracy plotted on logarithmic scale.

To assess the ability of low rank features to be learned, experiments were conducted
applying autoencoders to solution data. An autoencoder is a type of neural network
which tries to learn a compressed form of the data on which it is trained. Such a network
will contain a constricted layer with only a few output nodes which is meant to be the

Mathematics 2021, 9, 1384 5 of 15

compressed data. The layers preceding this bottleneck are referred to as the encoder and
the layers following are the decoder.

The architecture of autoencoders applied involved convolutional layers, thus making
them convolutional autoencoders. As with much of machine learning, there is no specific
way that such a network must be constructed. Generally speaking, a 3D convolutional
autoencoder will have an encoder with layers arranged as depicted in Figure 2a, and a
decoder with layers as depicted in Figure 2b. Figure 2a shows three convolutional filters
being applied to the original, resulting in the next three data blocks (color coded to match).
These data blocks are then reduced in size by the application of a pooling filter. Another
round of convolutional filters is applied, followed by another pooling filter. In Figure 2b,
that process is occurring in reverse. The three small data blocks in the beginning are
up-sampled to increase their size, then go through a set of convolutional filters. This
result is up-sampled again before a final convolutional filter returns the data block to its
original dimensions.

(a) (b)
Figure 2. Diagram of convolutional autoencoder. The encoder (a) contains successive convolutional and pooling layers
which downsize the data. The decoder (b) contains successive convolutional and upsampling layers which restore the data
to its original size.

The goal is for the convolutional layers to learn key features in the data which are
sufficient to reconstruct the data but can be stored in a smaller dimensional space. The
compression and decompression is controlled by pooling and upsampling layers. Pooling
layers such as max pooling or average pooling replace a block of values in the data with
a single value (the max or the average, respectively) which reduces the total number of
values being handled. Upsampling layers do the opposite which is to increase the number
of values being handled by either repeating values or inserting values which interpolate
neighboring values. Alternatively, a network can be allowed to learn its own up-sampling
method using transposed convolutional layers.

The convolutional layers are inserted between the pooling and upsampling layers to
do the learning. The size of the kernels being applied as well as their activation functions
and the number of filters applied are all hyperparameters which must be chosen to get the
best results. The requirement for an autoencoder is that at the bottleneck, the number of
filters must be such that the total number of values being output is less than the number
of values at the input to the network. In Figure 2a this means that M3 × N3 × K3 × F2 �
M1 × N1 × K1.

Samples of the data were taken randomly from the database without discriminating
based on initial conditions or the time at which the solution was saved to construct training
and test sets. A few different network architectures were constructed and fit to the data
using the Keras API included with TensorFlow [35]. The Nadam optimizer proved most
effective at training the models. Compared to the Adam and Stochastic Gradient Descent

Mathematics 2021, 9, 1384 6 of 15

optimizers, Nadam converged the fastest and resulted in the lowest prediction error. A
variety of hyperparameter values were explored for the training, some results of this
exploration are discussed next.

To demonstrate the performance of the autoencoders, we provide some graphs of the
reconstructed solutions to compare to the original solutions. The solutions are 3D data
cubes and so can not be easily plotted in totality. Instead we have provide graphs of slices
of the domain, taken near the center. The results in Figure 3 come from a network with
a bottleneck with dimensions of 8 by 8 by 8 with 8 filters which translates to 84 or 4096
variables which is a significant reduction down from 413 variables. Both the encoder and
decoder portions of the network had three convolutional layers, all of which used the ReLU
activation function. The ReLU activation function and its derivative are simple and compu-
tationally cheap to use and still grant networks the universal approximator property [36].
Furthermore, we observed ReLU to be easier to train than sigmoid. It has been shown that
ReLU is easier to train than sigmoid and sigmoid-like activation functions, because it does
not suffer from the vanishing gradient problem [37,38]. Since our autoencoding problem is
not a categorical one, the restricted range of sigmoid-like activation functions provides no
advantage, and thus ReLU was the preferable activation function.

(a) True above, Predicted below (b) True above, Predicted below
Figure 3. Comparison between true solutions (top) and reconstructed (bottom) from autoencoder with 8× 8× 8× 8
bottleneck. Since the solutions are on a 3D grid, only a slice towards the center of the domain is plotted here. The
reconstructions are generally good, but with sharp features having been rounded off.

The results in Figure 4 come from a network with a bottleneck with dimensions of 2 by
2 by 2 with 8 filters which translates to 64 variables. The architecture of this network was
identical to the previous, less restricted network, other than the bottleneck being tighter.

The results show promise that the convolutional architecture is capable of identifying
and capturing important features in this data set, even with a significantly smaller number
of variables. This provides hope that machine learning algorithms will be able to compute
such solutions with far less computational effort and memory usage than traditional
methods. It is most notable that the peaks of the reconstructed graphs have been rounded
off and do not reach as high as the true data. Still captured though is the location and

Mathematics 2021, 9, 1384 7 of 15

general Maxwellian shape, with the reconstructions from the network with the tighter
restriction definitely being lossier than those from the less restricted network.

(a) True above, Predicted below (b) True above, Predicted below
Figure 4. Comparison between true solutions (top) and reconstructed (bottom) from autoencoder with 2× 2× 2× 8
bottleneck. These are plots of a slice of the domain of the data. Reconstructions were clearly less accurate than those
produced by the previous autoencoder, but still demonstrate the Maxwellian’s shape and location.

3. Conservation Laws

Exact solutions to the spatially homogeneous Boltzmann equation must adhere to
the conservation of mass, momentum, and energy. Each of these quantities is computed
from the solution by the application of a linear integral operator. When these operators are
applied to the collision integral, the result must be zero in order to ensure conservation.

The present strategy to enforce conservation laws in numerical solution is to post-
process the collision integral after it is predicted and before it is used to step in time as
shown in Algorithm 1. Many approaches have been proposed to enforce conservation
laws in numerical evaluation of the collision integral, see, e.g., [17,39,40]. In this paper, we
employ a modification of the Lagrangian multiplier method of [41,42]. The resulting post-
processing procedure is schematically described in Algorithm 2. The procedure computes
a corrected value of the collision integral that satisfies the discrete conservation laws up to
roundoff errors while being as close as possible to the prediction. The difference from the
approach of [42] is that values of the predicted collision integral that are small in magnitude
are not affected by the procedure. Thus, the procedure avoids creation of small spurious
values in the conservative collision integral at the domain boundaries.

In the future, enforcement of the conservation laws can be incorporated into the model
and will thus force the training process to account for them. For example, let M be a 5 by
m matrix (5 < m) which computes the mass, momentum, and energy from the solution.
The collision integral must exist in the null space of this matrix. The basis of the null space
consists of columns of V0 from the singular value decomposition of the matrix M,

M = U [S 0]
[

VT
1

VT
0

]
(4)

Mathematics 2021, 9, 1384 8 of 15

where U, S are 5 by 5 matrices and V = [V1, V0] is an m by m matrix. Thus,

Q =
m

∑
i=6

αivi, (5)

where
V0 =

[
v6 v7 . . . vm

]
. (6)

A model can then be taught to learn values for the parameters {αi} such that Equation (5)
approximates the collision integral. This will ensure that the conservation laws are auto-
matically satisfied.

Algorithm 1 Solve 0-dimensional Boltzmann.

1: while t < t f do
2: Compute Q̂ = Q̂[f (t)] using machine learned model
3: Q̂ = enforceConservation(Q̂)
4: f (t + ∆t) = f (t) + ∆t ∗ Q̂
5: end while

Algorithm 2 Enforce Conservation.

1: procedure ENFORCECONSERVATION(q)
2: Construct mass, momentum, and energy operator, M
3: Construct a masking projection operator P that preserves small components of q

and nullifies other components
4: Solve min 1

2 ||qcorr − q||2 s.t. Mqcorr = 0, P(qcorr − q) = 0
5: return qcorr
6: end procedure

4. Error Propagation

A known weakness of using a machine learned model in place of an analytical one
is that errors will be injected into the simulation process. Even if the magnitude of the
generated error is small, the way these errors evolve and interact may be significant. It is
thus desirable to understand how the errors will behave. In our case, if we define Q̂ as the
machine-learned model for the collision integral and f̂ as the solution computed using that
model, then we can define the error functions as

e f = f − f̂ (7)

and
eQ = Q[f]− Q̂[f̂]. (8)

We then have an equation for the evolution of error given by

∂

∂t
e f +~v · ∇xe f = eQ, (9)

from which we can derive some approximate error bounds.
If one assumes that the distribution of error is approximately uniform, then the second

term can be ignored. This leaves

∂

∂t
e f = eQ. (10)

Writing eQ as

eQ =
(
Q[f]− Q̂[f]

)
+
(

Q̂[f]− Q̂[f̂]
)

, (11)

Mathematics 2021, 9, 1384 9 of 15

we see that there are two contributions to the error. The first is the error in the prediction due
to the model not being exact, the second is from error accumulated during the time stepping
process. If we now assume Lipschitz continuity of the model and that the prediction error
is bounded by a constant, then

|eQ| ≤ C1 + C2| f − f̂ | = C1 + C2|e f |. (12)

The worst case scenario estimate is

∂

∂t
|e f | ≤ C1 + C2|e f |, (13)

which leads to the bound on the solution’s error

|e f (t,~x,~v)| ≤ C1

C2

(
eC2t − 1

)
. (14)

Depending on the application for which the Boltzmann equation is being solved, it
may not be sufficient just to bound the magnitude of the error in the prediction of the
solution, but the effect the error has on the moments may also be of interest. It is from
the moments that many physical properties of the gas are computed and the errors in the
solution may manifest in ways which significantly or insignificantly affect the moments of
the solution. In general, a moment of the solution is given by

mi =
∫

Ω
qi f , (15)

where qi is a quantity associated with the definition of the ith moment. Therefore, the error
in the moment calculation is

emi =
∫

Ω
qi f −

∫
Ω

qi f̂ =
∫

Ω
qie f , (16)

which is the corresponding moment of the error. For error in the collision integral prediction
satisfying our previous assumptions, the error bound on the moment calculation is

|emi | ≤
C1

C2
(eC2t − 1)

∫
Ω
|qi|. (17)

As of yet, it cannot be said what kind of errors should be expected or how they
will manifest themselves, other than that the error in the mass, momentum, and energy
moments will be exactly zero due to conservation law enforcement. We expect that lower
order moments will be less affected by introduced error, however higher order moments
could react dramatically to small deviations in the solution.

5. Test Model

Examination of trends in the solution, collision integral pairs in the database led to
the conclusion that a second order function should have sufficient flexibility to predict the
value at each point of the collision integral. The chosen predictors for each value in the
collision integral were the 27 values in the solution in the neighborhood of the index in the
collision integral being predicted.

A sparsely connected neural network was then constructed using an expanded feature
space which included second order terms computed from the predictors. For a given value
in the collision integral, yi∗ j∗k∗ , at indices i∗, j∗, k∗, let Pi∗ j∗k∗ be the set of corresponding
features which is

Mathematics 2021, 9, 1384 10 of 15

Pi∗ j∗k∗ := {xi1 j1k1 , xi1 j1k1 xi2 j2k2 |

d((i1, j1, k1), (i∗, j∗, k∗)) ≤ 1, d((i2, j2, k2), (i∗, j∗, k∗)) ≤ 1}, (18)

where d((i1, j1, k1), (i∗, j∗, k∗)) = max(|i1 − i∗|, |j1 − j∗|, |k1 − k∗|). We then define Xi∗ j∗k∗

to be a vector of all the elements in Pi∗ j∗k∗ . The model to predict yi∗ j∗k∗ is the support vector
machine,

yi∗ j∗k∗ = wT
i∗ j∗k∗Xi∗ j∗k∗ + wi∗ j∗k∗ ,0 , (19)

with parameters wi∗ j∗k∗ , and wi∗ j∗k∗ ,0 which correspond to the given yi∗ j∗k∗ . The full network
made up of these SVMs is a sparsely connected, single layer network with linear activation
functions. In total this architecture has O(n3) parameters and requires O(n3) flops to
compute the collision integral where n is the number of indices along a single dimension
of the discrete mesh. Both the computational complexity and memory requirements are
this linear in the size of the mesh. The model was fit to training data using a regularized
least squares loss function and achieved overall good predictions.

Comparison of Results

To assess the performance of this machine-learned method for computing the collision
integral, the model was used to solve the spatially homogeneous Boltzmann equation

∂

∂t
f (t,~v) = Q[f](t,~v) (20)

using forward Euler integration in time as shown in Algorithm 1. The solution was
integrated starting with initial data f (0,~v) from the database of solutions.

The Python implementation of this method took about 6 min to carry out 667 time
steps and about 9 min to carry out 1000 time steps, an estimated O(102) times faster than
the method of [6]. That method uses a discontinuous Galerkin discretization and takes
about 40 h on a single CPU to carry out 1000 time steps. The machine-learned method
thus greatly outperformed the method of [6]. The CPU time for both methods to perform
one evaluation of the collision operator are summarized in Table 1. The CPU time for the
machine-learned method also shows significant improvement compared to times reported
in [10] for a fast spectral method.

Table 1. Time to perform one evaluation of the collision operator using machine-learned collision
operator and the O(n6) deterministic method of [6].

ML Method Deterministic Speed Up

Time, s 0.54 147 270×

Solutions computed using the machine-learned collision operator were comparable to
the deterministic solutions with better predictions towards the center of the domain than
towards the boundary. Figures 5 and 6 show comparisons between solutions achieved
using the method in [6] and the present method. As was the case with the autoencoder,
these plots are of slices of the domain. The predictions look very similar and trend toward
the same steady state over time. The fact that the quality of the prediction is better closer to
the center of the domain may be a result of the training data being more diverse towards the
center of the domain than towards the boundary. The true solution and collision integral
go to zero at the boundary of the domain and so there was not as much information to
use to train the model out there. Even still, the magnitude of the difference between the
prediction and the true value was small.

Mathematics 2021, 9, 1384 11 of 15

(a) t = 0.027 (b) t = 0.1065
Figure 5. Comparison between solutions computed numerically (top) and using the machine learned model (bottom).
Both comparisons were produced from the same initial data. Time stamps are normalized to the maximum time for which
training data existed. These plots are of a single slice of the domain.

(a) t = 0.027 (b) t = 0.507
Figure 6. Comparison between solutions computed numerically (top) and using the machine learned model (bottom).
Both comparisons were produced from the same initial data. Time stamps are normalized to the maximum time for which
training data existed. These plots are of a single slice of the domain.

Mathematics 2021, 9, 1384 12 of 15

Figure 7 demonstrates how the absolute error between the true solution and the
predicted solution evolves over time. The total magnitude of the difference remains low
throughout the duration of the simulation, being under 10% of the L1 norm of the true
solution. There is also a consistent behavior among all the error curves, mainly that the
difference grows the most during the first few iterations, then starts to flatten out.

Figure 7. Normalized L1 error, given by ‖ fTrue − fPred‖1/‖ fTrue‖1, shown for 10 different test cases.
Time axis is normalized to the maximum time for which training data existed. Error growth is
consistently most rapid for t < 0.2. For t > 0.5 error growth is consistently at a much lower rate.

It is now of interest to see the effect the error has on the moments of the solution.
Figure 8 shows a comparison of second and third order moments between the predicted
and true solution. The lower order moments corresponding to mass, momentum, and
temperature moments are not shown because they match exactly with the analytically
computed solution’s moments. Generally, the moments of the predicted solutions followed
the true moments and headed towards the steady state. They did not however perfectly
arrive and remain at the steady state. In some cases the moments of the predicted solution
cross over each other, and in other cases they simply fail to meet. The higher order moments
exhibited similar behaviors, even more so than the lower order moments, but for many
applications moments higher than 3rd order will not be as important.

Solutions remained stable up until and beyond time values for which training data
existed. Eventually though there was observed degradation and destabilization of the
quality of predictions. Figure 9 demonstrates the long term behavior of the predicted
solutions. Training data existed up until the dimensionless time t = 1.0, and the simulation
was run until t = 2.0. The solution has clearly lost its shape by the end of that run; no
longer having a nice Gaussian shape. In addition, the moments do not nicely converge
to uniform values. The typical behavior was that the moments would tend towards the
appropriate steady state early on, but would eventually begin to diverge. We propose that
this behavior could be corrected by replacing the machine-learned model with an analytical
method once the solution is close to steady state. This would ensure the appropriate long
term behavior, and would still run much faster than using a direct discretization method
for the full duration. Additionally, we are confident a more advanced architecture can
be developed which achieves better accuracy and will likely still be faster than the true
method. Even a model architecture that requires ten times the computational work of this
simple model would still be tremendously time saving.

Mathematics 2021, 9, 1384 13 of 15

(a) Directional Temperature, Case 116 (b) 3rd Moments, Case 116

(c) Directional Temperature, Case 082 (d) 3rd Moments, Case 082

Figure 8. Comparison of moments between numerically computed and machine learning computed
solutions. The red and blue curves correspond to different coordinate directions. The case numbers
merely serve to differentiate the runs. Time axis is normalized to the maximum time for which
training data existed.

(a) Directional Temperature (b) 3rd Moments

(c) t = 1.962
Figure 9. Long term behavior of predicted solution, Case 116. Key moments and domain slice are
shown. Divergence of the directional temperature is seen around t = 1.75, and the plot of the solution
is visibly degraded. Time axis is normalized to the maximum time for which training data existed.

Mathematics 2021, 9, 1384 14 of 15

6. Conclusions

In an effort to advance the state-of-the-art in simulating complex flows, we have
conducted investigations into the ability of machine learning to calculate the Boltzmann
collision integral more quickly than traditional methods. Our experiments show that the
machine-learned models are capable of finding low dimensional features that can encode
the solutions with good accuracy. Consequently, predictions of the collision integral are able
to be computed in much less time than is required for analytical methods. In the spatially
homogeneous case, this approach shows greatly accelerated integration time. The resulting
approximate solutions and key moments are generally similar to those of the true solutions.
A key weakness exhibited by the method is the long term degradation of the solutions.
An ideal numerical method will convergence to the correct steady state solution, however
we have observed that the method presented here does not. Future work will involve
improving accuracy even further by implementing more sophisticated machine learning
methods. This will include investigation of different model architectures, and incorporating
the enforcement of conservation laws into the model and the training process.

Author Contributions: Conceptualization, I.H. and A.W.; Data curation, A.A.; Funding acquisition,
A.W.; Methodology, I.H., A.W., and A.A.; Project administration, A.W.; Software, I.H. and A.A.;
Writing–review & editing, I.H., A.W. and A.A. All authors have read and agreed to the published
version of the manuscript.

Funding: The first author was supported in part by an appointment to the Student Research Partici-
pation Program at the U.S. Air Force Institute of Technology administered by the Oak Ridge Institute
for Science and Education through an interagency agreement between the U.S. Department of Energy
and USAFIT. The second author was supported by AFOSR grant F4FGA08305J005. The third author
was supported by AFOSR grant F4FGA08305J005 and the NSF DMS-1620497 grant.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Fortran and Python source code, and training data used in this study
are available upon request. If interested please reach out to the corresponding author.

Acknowledgments: The authors would like to thank Robert Martin for motivating and inspiring
discussions at the early stages of this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pareschi, L.; Perthame, B. A Fourier spectral method for homogeneous Boltzmann equations. Transp. Theory Stat. Phys. 1996,

25, 369–382. [CrossRef]
2. Ibragimov, I.; Rjasanow, S. Numerical solution of the Boltzmann equation on the uniform grid. Computing 2002, 69, 163–186.

[CrossRef]
3. Kirsch, R.; Rjasanow, S. A weak formulation of the Boltzmann equation based on the Fourier transform. J. Stat. Phys. 2007,

129, 483–492. [CrossRef]
4. Gamba, I.M.; Tharkabhushanam, S.H. Shock and boundary structure formation by spectral-Lagrangian methods for the

inhomogeneous Boltzmann transport equation. J. Comput. Math. 2010. [CrossRef]
5. Munafò, A.; Haack, J.R.; Gamba, I.M.; Magin, T.E. A spectral-Lagrangian Boltzmann solver for a multi-energy level gas. J.

Comput. Phys. 2014, 264, 152–176. [CrossRef]
6. Alekseenko, A.; Limbacher, J. Evaluating high order discontinuous Galerkin discretization of the Boltzmann collision integral in

O(N2) operations using the discrete Fourier transform. Kinet. Relat. Model. 2019, 12, 703. [CrossRef]
7. Mouhot, C.; Pareschi, L. Fast Algorithms for Computing the Boltzmann Collision Operator. Math. Comput. 2006, 75, 1833–1852.

[CrossRef]
8. Wu, L.; Liu, H.; Zhang, Y.; Reese, J.M. Influence of intermolecular potentials on rarefied gas flows: Fast spectral solutions of the

Boltzmann equation. Phys. Fluids 2015, 27, 082002. [CrossRef]
9. Mouhot, C.; Pareschi, L.; Rey, T. Convolutive decomposition and fast summation methods for discrete-velocity approximations

of the Boltzmann equation. ESAIM M2AN 2013, 47, 1515–1531. [CrossRef]
10. Gamba, I.M.; Haack, J.R.; Hauck, C.D.; Hu, J. A fast spectral method for the Boltzmann collision operator with general collision

kernels. SIAM J. Sci. Comput. 2017, 39, B658–B674. [CrossRef]

http://doi.org/10.1080/00411459608220707
http://dx.doi.org/10.1007/s00607-002-1458-9
http://dx.doi.org/10.1007/s10955-007-9374-1
http://dx.doi.org/10.4208/jcm.1003-m0011
http://dx.doi.org/10.1016/j.jcp.2014.01.036
http://dx.doi.org/10.3934/krm.2019027
http://dx.doi.org/10.1090/S0025-5718-06-01874-6
http://dx.doi.org/10.1063/1.4929485
http://dx.doi.org/10.1051/m2an/2013078
http://dx.doi.org/10.1137/16M1096001

Mathematics 2021, 9, 1384 15 of 15

11. Wu, L.; White, C.; Scanlon, T.J.; Reese, J.M.; Zhang, Y. Deterministic numerical solutions of the Boltzmann equation using the fast
spectral method. J. Comput. Phys. 2013, 250, 27–52. [CrossRef]

12. Bobylev, A.; Rjasanow, S. Difference scheme for the Boltzmann equation based on Fast Fourier Transfrom. Eur. J. Mech.-B/Fluids
1997, 16, 293–306.

13. Bobylev, A.; Rjasanow, S. Fast deterministic method of solving the Boltzmann equation for hard spheres. Eur. J. Mech.-B/Fluids
1999, 18, 869–887. [CrossRef]

14. Filbet, F.; Mouhot, C.; Pareschi, L. Solving the Boltzmann Equation in N log2 N. SIAM J. Sci. Comput. 2006, 28, 1029–1053.
[CrossRef]

15. Kloss, Y.Y.; Tcheremissine, F.G.; Shuvalov, P.V. Solution of the Boltzmann equation for unsteady flows with shock waves in
narrow channels. Comput. Math. Math. Phys. 2010, 50, 1093–1103. [CrossRef]

16. Morris, A.; Varghese, P.; Goldstein, D. Monte Carlo solution of the Boltzmann equation via a discrete velocity model. J. Comput.
Phys. 2011, 230, 1265–1280. [CrossRef]

17. Varghese, P.L. Arbitrary post-collision velocities in a discrete velocity scheme for the Boltzmann equation. In Proceedings of the
25th International Symposium on Rarefied Gas Dynamics, Saint-Petersburg, Russia, 21–28 July 2006; Ivanov, M., Rebrov, A., Eds.;
Publishing House of Siberian Branch of RAS: Novosibirsk, Russia, 2007; pp. 227–232.

18. Dimarco, G.; Loubère, R.; Narski, J.; Rey, T. An efficient numerical method for solving the Boltzmann equation in multidimensions.
J. Comput. Phys. 2018, 353, 46–81. [CrossRef]

19. Jaiswal, S.; Alexeenko, A.A.; Hu, J. A discontinuous Galerkin fast spectral method for the full Boltzmann equation with general
collision kernels. J. Comput. Phys. 2019, 378, 178–208. [CrossRef]

20. Wu, L.; Zhang, J.; Reese, J.M.; Zhang, Y. A fast spectral method for the Boltzmann equation for monatomic gas mixtures.
J. Comput. Phys. 2015, 298, 602–621. [CrossRef]

21. Alekseenko, A.; Grandilli, A.; Wood, A. An ultra-sparse approximation of kinetic solutions to spatially homogeneous flows of
non-continuum gas. Results Appl. Math. 2020, 5, 100085. [CrossRef]

22. Alekseenko, A.; Nguyen, T.; Wood, A. A deterministic-stochastic method for computing the Boltzmann collision integral in
O(MN) operations. Kinet. Relat. Model. 2018, 11, 1211. [CrossRef]

23. Grohs, P.; Hiptmair, R.; Pintarelli, S. Tensor-product discretization for the spatially inhomogeneous and transient Boltzmann
equation in 2D. SMAI J. Comput. Math. 2017, 3, 219–248. [CrossRef]

24. Heintz, A.; Kowalczyk, P.; Grzhibovskis, R. Fast numerical method for the Boltzmann equation on non-uniform grids. J. Comput.
Phys. 2008, 227, 6681–6695. [CrossRef]

25. Fonn, E.; Grohs, P.; Hiptmair, R. Hyperbolic cross approximation for the spatially homogeneous Boltzmann equation. IMA J.
Numer. Anal. 2015, 35, 1533–1567. [CrossRef]

26. Dimarco, G.; Pareschi, L. Numerical methods for kinetic equations. Acta Numer. 2014, 23, 369–520. [CrossRef]
27. Narayan, A.; Klöckner, A. Deterministic numerical schemes for the Boltzmann equation. arXiv 2009, arXiv:0911.3589.
28. Raissi, M.; Perdikaris, P.; Karniadakis, G. Physics-informed neural networks: A deep learning framework for solving forward

and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 2019, 378, 686–707. [CrossRef]
29. Weinan, E.; Han, J.; Jentzen, A. Deep Learning-Based Numerical Methods for High-Dimensional Parabolic Partial Differential

Equations and Backward Stochastic Differential Equations. Commun. Math. Stat. 2017, 5, 349–380. [CrossRef]
30. Sirignano, J.; Spiliopoulos, K. DGM: A deep learning algorithm for solving partial differential equations. J. Comput. Phys. 2018,

375, 1339–1364. [CrossRef]
31. Lou, Q.; Meng, X.; Karniadakis, G.E. Physics-informed neural networks for solving forward and inverse flow problems via the

Boltzmann-BGK formulation. arXiv 2020, arXiv:2010.09147.
32. Boelens, A.M.; Venturi, D.; Tartakovsky, D.M. Tensor methods for the Boltzmann-BGK equation. J. Comput. Phys. 2020,

421, 109744. [CrossRef]
33. Kogan, M. Rarefied Gas Dynamics; Plenum Press: New York, NY, USA, 1969.
34. Cercignani, C. Rarefied Gas Dynamics: From Basic Concepts to Actual Caclulations; Cambridge University Press: Cambridge, UK, 2000.
35. Chollet, F.; et al. Keras. 2015. Available online: https://keras.io (accessed on 15 October 2019).
36. Hanin, B. Universal Function Approximation by Deep Neural Nets with Bounded Width and ReLU Activations. Mathematics

2019, 7, 992. [CrossRef]
37. Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. Proc. Icml. Citeseer 2013, 30, 3.
38. Krizhevsky, A.; Sutskever, I.; Hinton, G. ImageNet Classification with Deep Convolutional Neural Networks. Neural Inf. Process.

Syst. 2012, 25. [CrossRef]
39. Tcheremissine, F.G. Solution to the Boltzmann kinetic equation for high-speed flows. Comput. Math. Math. Phys. 2006, 46, 315–329.

[CrossRef]
40. Aristov, V. Direct Methods for Solving the Boltzmann Equation and Study of Nonequilibrium Flows; Fluid Mechanics and Its Applications;

Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001.
41. Gamba, I.M.; Tharkabhushanam, S.H. Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states. J.

Comput. Phys. 2009, 228, 2012–2036. [CrossRef]
42. Zhang, C.; Gamba, I.M. A Conservative Discontinuous Galerkin Solver for the Space Homogeneous Boltzmann Equation for

Binary Interactions. SIAM J. Numer. Anal. 2018, 56, 3040–3070. [CrossRef]

http://dx.doi.org/10.1016/j.jcp.2013.05.003
http://dx.doi.org/10.1016/S0997-7546(99)00121-1
http://dx.doi.org/10.1137/050625175
http://dx.doi.org/10.1134/S096554251006014X
http://dx.doi.org/10.1016/j.jcp.2010.10.037
http://dx.doi.org/10.1016/j.jcp.2017.10.010
http://dx.doi.org/10.1016/j.jcp.2018.11.001
http://dx.doi.org/10.1016/j.jcp.2015.06.019
http://dx.doi.org/10.1016/j.rinam.2019.100085
http://dx.doi.org/10.3934/krm.2018047
http://dx.doi.org/10.5802/smai-jcm.26
http://dx.doi.org/10.1016/j.jcp.2008.03.028
http://dx.doi.org/10.1093/imanum/dru042
http://dx.doi.org/10.1017/S0962492914000063
http://dx.doi.org/10.1016/j.jcp.2018.10.045
http://dx.doi.org/10.1016/j.cpc.2021.107863
http://dx.doi.org/10.1016/j.jcp.2018.08.029
http://dx.doi.org/10.1016/j.jcp.2020.109744
https://keras.io
http://dx.doi.org/10.3390/math7100992
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1134/S0965542506020138
http://dx.doi.org/10.1016/j.jcp.2008.09.033
http://dx.doi.org/10.1137/16M1104792

	Acceleration of Boltzmann Collision Integral Calculation Using Machine Learning
	Introduction
	Problem Setup
	Class of Solutions and Solution Collection
	Dimension Reduction

	Conservation Laws
	Error Propagation
	Test Model
	Conclusions
	References

