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1. Introduction 

Offshore platforms are one of the types of offshore structures used in offshore oil exploration and extraction. The 

offshore platform can be classified into fixed or floating categories. Marine risers are the most critical and sensitive 

component of the offshore platform, where the marine risers are used to transfer oil from the seabed to the top of offshore 

platforms. Figure 1 shows the schematic diagram of a riser pipe with two articulated supports at both ends where the 

upper joint is subjected to the initial static displacement and the dynamic displacement of the platform [1]. 
Long structures such as marine risers are known to be nonlinear elastic structures [2, 6]. The critical factor in the 

design of the marine risers is the estimation of the applied loads on the structure, which have been the subject of many 

studies [3, 4]. The load exerted from the ocean waves is mainly considered as the main force to be considered in the study 

of marine structures. Although the force from ocean waves are irregular and unpredictable, they are regularly considered 

in the design standards [5]. In order to have an accurate estimation of the behavior of such elastic structures, it is necessary 

to consider the origins of nonlinear term formation in the equation of motion [6].  
 

Abstract: In this paper, the nonlinear motions of marine risers are studied using the Newton's Harmonic Balance 

Method (NHBM). The nonlinear vibrational equations of the marine risers were obtained in the present study using 

the Hamilton principle and the Euler–Bernoulli beam theory. The Galerkin's decomposition technique is used to 

convert the partial differential governing equation (PDE) of the riser vibrations to the ordinary differential equation 

(ODE). By using the NHBM method, an analytical formulation has been obtained to express the natural nonlinear 

frequency of the riser. The effect of design parameters such as riser length and initial static displacement of high 

support has been investigated on riser frequency, which shows acceptable accuracy after comparing the results with 

previous research. The results show that fluid damping coefficient has a great effect on system instability and 

reducing this coefficient increases the stability range of the system. Examining the effect of nonlinear parameters 

shows that the effect of these parameters is greater in large amplitude of motion. 
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Fig. 1 - Schematic of riser pipe [2] 

 Nonlinear vibration issues are of great importance in the fields of physics, mechanical structures, and other 

engineering research. The vibration response, stability, and frequency are vital components of the vibration control 

system. The examination of the effect of different parameters can therefore be an essential step in the design process. 

Numerous studies have been conducted in recent years on nonlinear vibrations using analytical and numerical methods 

to solve complex nonlinear equations. Marcio et al. [7] proposed the use of the error function as an approximation for 

the nonlinear state of the clearance area to obtain the analytical model according to the LMS algorithm. Chengwu et al. 

[8] investigate the dynamic analysis of a single degree of freedom mechanical oscillator with preload nonlinearity. In this 

study, an arctangent function was used to estimate the non-analytical relation of the clearance region. Hakimi et al. [9] 

investigated the drill string vibration analysis using the differential quadrature method. Barari et al. [10] have solved the 

problem of nonlinear motion equations using the variational iteration method (VIM) and the Parameter Perturbation 

Method (PPM). Ansari et al. [11] investigated the geometrically nonlinear free vibration and instability of fluid-

conveying nanoscale pipes including surface stress effects. Santee et al. [12] studied the oscillations of a beam on a 

nonlinear elastic foundation under periodic loads. Mazzilli et al. [13] presented the nonlinear equations governing the 

dynamics of an axial load beam. Khan and Ahmad [14] studied the nonlinear dynamic and bilinear fatigue reliability 

analysis of marine risers in deep offshore fields. The results related to fatigue reliability and crack size development 

affecting the fatigue reliability are presented in the work.  
In the nonlinear analysis conducted on the riser structure, the bulk of the analysis is based on numerical methods or 

a combination of numerical and analytical methods. One of the most used methods is the homotopy perturbation method, 

which involves expanding the series around a small parameter in a nonlinear system. The harmonic balance method is 

another standard method used in this field to determine the analytical approximations to the periodic solutions of 

differential equations using a truncated Fourier series. In most cases, the response to natural vibrations of these structures 

is considered nonlinear and typically represented as the nonlinear equation motion. The nonlinear origin of the structure 

may be of three types: physical nonlinearity, nonlinear geometry, and nonlinear boundary conditions. In this study, the 

analysis of nonlinear vibrations of marine risers in stationary waters was performed using the NHBM analysis method. 

First, a deformation and deflection model of a riser is presented. In this model, the elongation of the middle plane of the 

riser is considered due to its large amplitude vibrations. The nonlinear effect of fluid damping is also expressed using the 

Morrison model. The Gallerkin method is used to convert the equivalent of the governing partial differential equation 

into an ordinary differential equation known as the vibration characteristic equation. In the following section, the 

analytical relationship has been developed to express the nonlinear frequency of riser vibrations by utilizing a 

characteristic equivalent of vibrations. The effect of design parameters on riser vibration and stability can be studied by 

means of the derived analytical formulation. 

 

2. The Newton Harmonic Balance Method  

NHBM is a combination of the Newton method and the harmonic balance method, which was introduced in 2006 

by Wu et al. [15]. The equation of motion of vibration systems are defined as follows: 

 

𝑑2𝑥

𝑑𝑡2
+ 𝑓 (𝑢,

𝑑𝑢

𝑑𝑡
,
𝑑2𝑢

𝑑𝑡2
) = 0 (1) 

 

where the initial conditions are given as follows: 

𝑢(0) = 𝐴   ,    
𝑑𝑢

𝑑𝑡
(0) = 0 (2) 
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Assuming that nonlinear function 𝑓  in the Equation (1) is an odd function, which is: (−𝑢, −
𝑑𝑢

𝑑𝑡
, −

𝑑2𝑢

𝑑𝑡2) =

−𝑓 (𝑢,
𝑑𝑢

𝑑𝑡
,

𝑑2𝑢

𝑑𝑡2). By introducing 𝜔𝑡 = 𝜏 in Equations (1), the equation of motion for the vibration system and the initial 

conditions can be rewritten as follows: 

𝜔2𝑢′′ + 𝑓(𝑢, 𝜔𝑢′, 𝜔2𝑢′′) = 0 

(3) 
𝑢(0) = 𝐴 ,   𝑢′(0) = 0 

In these relations, the (′) symbol shows the differentiation with respect to 𝜏. Using Newton's method, the displacement, 

∆𝑢1 and the square of the frequency, ∆𝜔1
2 are expressed as follows:  

𝑢(𝜏) = 𝑢1(𝜏) + ∆𝑢1(𝜏) (4) 

𝜔2 = 𝜔1
2 + ∆𝜔1

2 (5) 

 

In these relationships, ∆𝑢1  and ∆𝜔1
2  show a small increase in the principal values of displacement 𝑢1  and square 

frequency 𝜔1
2, respectively. the analytical approximation of the first order is as follows: 

 

𝑢1(𝜏) = 𝐴 cos 𝜏    , ∆𝑢1 = ∆𝑢′′ = ∆𝜔1
2 = 0 (6) 

For our second approximation, Equation (7) is used after placing Equation (4) and (5) into Equation (3): 

∆𝑢1 = 𝐶(cos 𝜏 − cos 3𝜏) (7) 

By setting the coefficients cos 3𝜏 and cos 𝜏 to zero, and solving the simultaneous equations in terms of C and ∆𝜔1
2, the 

corresponding second-order approximation for frequency and the approximate periodic displacement solution are 

obtained as follows [16, 17]: 

ω = √𝜔1
2 + ∆𝜔1

2 (8) 

𝑢(𝑡) = (𝐴 + 𝐶) cos 𝜔𝑡 − 𝐶 cos 3𝜔𝑡 (9) 

 

3. Extraction and Solution of Motion Equations 

The riser structure is modeled as an elastic beam with length 𝐿, modulus of elasticity 𝐸 , cross-sectional area 𝐴 and 

moment of area 𝐼 under load 𝑃 as shown in Fig. 2. The cross-sectional area is assumed to be uniform and the material is 

homogeneous. The elastic beam is examined according to the Euler–Bernoulli beam theory. Consider an element in the 

beam with an initial length of 𝑑𝑥 reaches the length of 𝑑𝑠 after the displacement and deformation. After the load is 

applied, point p moves to the p* with the coordinates (X*, Y*). The displacement is denoted as 𝑢 in the direction of x and 

w in the direction of y. 

 

 

Fig. 2 - Schematic view of a riser and element after deformation and displacement 
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Therefore, the parameters defined in Fig. 2 can be expressed by the following equations: 

𝑌∗ = 𝑤    ,    𝑋∗ = 𝑥 + 𝑢 (10) 

𝑑𝑥∗ = (1 + 𝑢′)𝑑𝑥    ,   𝑑𝑦∗ = 𝑤′𝑑𝑥 (11) 

𝑑𝑠 = √𝑑2𝑥∗ + 𝑑2𝑦∗ = √(1 + 𝑢′)2 + 𝑤′2
𝑑𝑥 (12) 

Therefore, increasing the length of the element, e will be equal to: 

𝑒 = 𝑑𝑠 − 𝑑𝑥 = √(1 + 𝑢′)2 + 𝑤′2
− 1𝑑𝑥 (13) 

𝑒 = {
1

2
[2𝑢′ + 𝑢′2

+ 𝑤′2
] −

1

8
[2𝑢′ + 𝑢′2

+ 𝑤′2
] + ⋯ } (14) 

Simplify the Equation (14) by ignoring the higher-order terms yields: 

𝑒 = 𝑢′ +
1

2
𝑤′2

 (15) 

By integrating Equation (15), the displacement is obtained: 

∆= 𝑢(𝑙) − 𝑢(0) +
1

2
∫ (

𝜕𝑤

𝜕𝑥
)

2𝑙

0

𝑑𝑥 =
1

2
∫ (

𝜕𝑤

𝜕𝑥
)

2𝑙

0

𝑑𝑥 (16) 

Hamilton principle is stated as an integral equation in which the energy is integrated over an interval of time. The principle 

can be stated as the followings: 

𝛿 ∫ (𝑇 − 𝑉 + 𝑊𝑁𝑐)𝑑𝑡 = 0
𝑡2

𝑡1

 (17) 

Next, the parameters required to use the Hamilton principle must be specified. 

The expression for the force created in the middle layer is obtained by multiplying the displacement in the hardness of 

the beam (AE/L) as follows: 

𝑆 =
𝐴𝐸

𝐿
∆=

𝐴𝐸

2𝐿
∫ (

𝜕𝑤

𝜕𝑥
)

2𝑙

0

𝑑𝑥 (18) 

Kinetic energy is: 

𝑇 =
1

2
𝑚 ∫ (

𝜕𝑤

𝜕𝑥
)

2𝑙

0

𝑑𝑥 (19) 

Bending potential energy: 

𝑉𝑏 =
1

2
𝐸𝐼 ∫ (

𝜕2𝑤

𝜕𝑥2
)

2𝑙

0

𝑑𝑥 (20) 

Energy from the axial force P: 

𝑉𝑎 = −
1

4
𝑃 ∫ (

𝜕𝑤

𝜕𝑥
)

2𝑙

0

𝑑𝑥 = −
1

2
𝑃∆ (21) 

Energy from the elongation of the middle layer: 

𝑉𝑠 =
1

2
𝑆∆=

𝐴𝐸

8𝐿
(∫ (

𝜕𝑤

𝜕𝑥
)

2𝑙

0

𝑑𝑥)2 (22) 

where T is the sum of kinetic energies, V is the sum of potential energies and WNC is nonconservative forces work. By 

placing Equation (18) - (22) into Equation (17), the following partial differential equation (PDE) is obtained: 
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𝑚
𝜕2𝑊

𝜕𝑡2
+ 𝐸𝐼

𝜕4𝑊

𝜕𝑥4
+ 𝜌𝐴𝑢2

𝜕2𝑊

𝜕𝑥2
+

𝐸𝐴

𝐿
(𝑈0 + 𝑃(𝑡) +

1

2
∫ (

𝜕𝑉(𝑥. 𝑡)

𝜕𝑥
)

2

𝑑𝑥)
𝜕2𝑊(𝑥. 𝑡)

𝜕𝑥

𝐿

0

= 0 (23) 

 

U0 indicates the initial static displacement and P(t) shows the dynamic displacement in the upper support.  

Next, insert the Gallerkin's method relationship 𝑤(𝑥. 𝑡) = ∑ 𝜀∅𝑖(𝑥)𝑧𝑖(𝑡)∞
𝑖=1  into Equation (23). The function ∅𝑖(𝑥) 

represent the mode shape function of the two-hinge beam. The resulting equation converts the partial derivative motion 

into an ordinary differential equation, and finally, the equation is obtained in the following form:   

𝑧̈(𝑡) + (𝜔0
2 + 𝛿𝑃(𝑡))𝑧(𝑡) + 𝛽𝑧(𝑡)

3 = 0 (24) 

Parameters 𝛿, 𝜔0 and β  are defined as follows: 

𝛿 =
𝐸𝐴𝜋2

𝑚𝐿2
 

 

𝜔0
2 =

𝐸𝜋2(𝐼𝜋2 + 𝐴𝐿𝑈0)

𝑚𝐿3
−

𝜌𝐴(𝑢𝜋)2

𝑚𝐿2
   

 

𝛽 =
𝐴𝐸𝜋4

4𝑚𝐿4
 

(25) 

The fluid around the riser also applies that force. Assuming that the fluid is stationary, based on the Morrison model for 

nonlinear fluid damping, the damping force is written as follows [18]: 

𝑓𝑑 = 𝜀𝑧̇(𝑡)|𝑧̇(𝑡)| (26) 

In this equation,  is the fluid damping coefficient, which is itself a function of drag coefficient, seawater density, and 

effective riser level. By adding this assumption to Equation (24), the riser vibration equation will eventually be as follows: 

𝑧̈(𝑡) + (𝜔0
2 + 𝛿𝑃(𝑡))𝑧(𝑡) + 𝛽𝑧(𝑡)

3 + 𝜀𝑧̇(𝑡)|𝑧̇(𝑡)| = 0 (27) 

Equation (27) is the equation governing nonlinear beam vibrations of the Bernoulli Euler, and the center of the beam is 

subject to the following initial conditions: 

𝑧(0) = 𝐴   ,   𝑧̇ (0) = 0 (28) 

where A denotes the non-dimensional maximum amplitude of oscillation. These conditions indicate that the riser is placed 

in one of its linear mode shapes with a specific range and then released without applying the initial velocity [19]. Using 

the harmonic balance method to obtain the frequency equation, and assuming that function 𝑧 = 𝐴 cos 𝜔𝑡 is used in 

Equation (27), the following equation will be reached: 

−𝐴𝜔2𝑐𝑜𝑠𝜔𝑡 + 𝐴(𝜔0
2 + 𝛿𝑃(𝑡)) cos 𝜔𝑡 + 𝛽𝐴3 (

1

4
cos 3𝜔𝑡 +

4

3
cos 𝜔𝑡) −𝐴𝜔𝜀 sin 𝜔𝑡 |𝐴𝜔 sin 𝜔𝑡|=0 (28) 

To get the frequency, cos 𝜔𝑡 coefficients on both sides of the equation are equal: 

𝜔 = √0.75𝐴2𝛽 + 𝜔0
2 + 𝛿𝑃(𝑡) (29) 

So the first approximation of the answer to the Equation (24) is 𝑧1 = 𝐴𝑐𝑜𝑠(0.75𝐴2𝛽 + 𝜔0
2 + 𝛿𝑃(𝑡))1/2𝑡. In order to 

obtain the second approximation of Newton's harmonic balance method, placed ωt = τ in Equation (24) which yields: 

𝜔2𝑧̈(𝑡) + (𝜔0
2 + 𝛿𝑃(𝑡))𝑧𝜏 + 𝛽𝑧𝜏

3 = 0 

𝑧(0) = 𝐴            𝑧′(0) = 0 
(30) 

By placing the relations (4) and (5) in Equation (30), the following equation can be obtained: 
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(𝜔1
2 + ∆𝜔1

2)(𝑧1
" + ∆𝑧1

") + (𝜔0
2 + 𝛿𝑃(𝑡))(𝑧1 + ∆𝑧1)+𝛽(𝑧1 + ∆𝑧1)3 = 0 (31) 

Equation (31) can be further linearized with ∆𝑢1 and ∆𝜔1
2 producing the following form: 

𝑧1
"(𝜔1

2 + ∆𝜔1
2) + ∆𝑧1

"𝜔1
2 + (𝜔0

2 + 𝛿𝑃(𝑡))(𝑧1 + ∆𝑧1) + 𝛽(𝑧1
3 + 3𝑧1

2∆𝑧1) = 0 (32) 

To get the approximation of the second-order, place the solution of Equation (7) ( ∆𝑧1) in Equation (32) and then obtain 

the following equations device by setting the coefficients 𝑐𝑜𝑠𝜏 and 𝑐𝑜𝑠3𝜏 equal to zero: 

−(𝐴 + 2𝐶)𝜔1
2 − 𝐴∆𝜔1

2 + (𝜔0
2 + 𝛿𝑃(𝑡))(𝐴 + 𝐶) +

4

3
𝛽(𝐴3 + 3𝐶𝐴2) = 0 (33) 

𝐶𝜔1
2 − (𝜔0

2 + 𝛿𝑃(𝑡))𝐶 +
1

4
𝛽(𝐴3 + 3𝐶𝐴2) = 0 (34) 

Simultaneously solving these equations for both ∆𝜔2 and C leads to the following relations: 

𝐶 =
−𝛽𝐴3

4𝜔1
2 − 4(𝜔0

2 + 𝛿𝑃(𝑡)) +
16
3

𝛽𝐴3
 (35) 

∆𝜔1
2 =

(𝜔0
2 + 𝛿𝑃(𝑡))

𝐴
(𝐴 + 𝐶) +

4

3
(𝛽𝐴2 + 12𝐶) −

(𝐴 + 𝐶)𝜔1
2

𝐴
 (36) 

Therefore, the approximation of the second order for frequency and displacement by Newton harmonic balance method 

will be as follows: 

𝑍 = (𝐶 + 𝐴) cos 𝜔𝑡 − C cos 3𝜔𝑡 = cos 𝜔𝑡 +
−𝛽𝐴3

4𝜔1
2 − 4(𝜔0

2 + 𝛿𝑃(𝑡)) +
16
3

𝐴
(cos 𝜔𝑡 − cos 3𝜔𝑡) (37) 

ω = √𝜔1
2 + ∆𝜔1

2 = √𝜔1
2 +

(𝜔0
2 + 𝛿𝑃(𝑡))

𝐴
(𝐴 + 𝐶) +

4

3
(𝛽𝐴2 + 12𝐶) −

(𝐴 + 𝐶)𝜔1
2

𝐴
 (38) 

 

4. Results and Discussion 

The results of this method are compared with the homotopy perturbation method [1] and the comparison result 

presented for different vibration frequencies (L = 20 m, 21 m and 22 m) is shown in Fig. 3. The comparison plot shows 

that the prediction from the proposed Newton harmonic balance method (NHBM) is consistent with the homotopy 

perturbation method. Next, the corresponding effect of initial amplitude on the vibration response is given in Fig.4 and 

Fig.5. The basic parameters used for the simulation of displacement z (A, t) are based on values given in Table 1, where 

the dimensionless coefficient, α = π and β = 0.15 are used. Results from Fig. 4 and Fig. 5 demonstrates that the selection 

of initial amplitude, A would further increase the amplitude of displacement z (A, t). 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

Fig. 3 - Dimensionless current amplitude 
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Table 1 - Values of parameters used in the validation 

Parameter Description Value 

L Riser length 1000 m 

D Riser External diameter 152.4 mm 

d Riser inner diameter 128.4 mm 

EI Riser stiffness 1.5107 Nm2 

 Fluid damping 0.5 N s/m 

 

 

 

 
Fig. 4 - The effect of the initial domain on the response Fig. 5 - The effect of the initial domain on the 

displacement response relative to time 

 

The Phase Plane diagram and the effect of the parameter  in frequency response are shown in Fig. 6 and Fig. 7. Phase 

Plane is a graphical and qualitative representation of the characteristics of the differential equation. Important information 

is obtained from the phase page, including how the system behaves, balance points, stability and instability. In fact, with 

the help of the phase plate, the qualitative behavior of the differential equation is determined without solving it. Especially 

in nonlinear systems, which are nonlinear equations, the phase plane drawing is very useful. The phase diagram of this 

equation under consideration (Equation 27) is shown in Fig. 6, which is quite stable due to the shape of the system without 

loading (assuming p(t) = 0). The parameter that has the most impact on system stability is the  coefficient in damping 

force. Fig. 8 shows the effect of increasing this coefficient on system instability.  is the fluid damping coefficient, which 

is itself a function of drag coefficient, seawater density, and effective riser level. The effect of the nonlinear factor 

coefficient β on the frequency is shown in Fig. 9. 

 

 

 

Fig. 6 - Phase Plane (β=0.15, =1, p(t)=0, =0.01) Fig.7 - The effect of changes in p(t) force on 

vibration frequency 
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Fig. 8 Phase Plane (β=0.15, =1, p(t)=0, =0.1) 

 

 

 
Fig. 9 - Effect of pipe length changes on vibration frequency 

 

 

5. Conclusion 

The nonlinear vibration equations of marine risers have been obtained in the present study using the Hamilton 

principle and the Euler–Bernoulli beam theory. The PDE equation of the vibration problem can be converted into an 

ordinary differential equation using the Gallerkin method. After obtaining the equation governing the vibrations of the 

beam, the new Newton Harmonic Balance Method (NHBM) was used to solve this equation. The validation result shows 

that the proposed method produces similar prediction quality with the homotopy perturbation method. Therefore, it can 

be concluded that the proposed method could produce satisfactory prediction performance and provide us with the further 

capability to analyze the vibration problem in terms of various vibration parameters. Results from simulation show that 

the nonlinear natural frequency of the system decreases as the length of the riser increases. Further findings from the 
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simulation also confirm that the fluid damping coefficient has a significant effect on system instability and reducing this 

coefficient increases the stability range of the system.  
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