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Abstract: Multilateration (MLAT) system estimates the position of an aircraft using time difference of arrival (TDOA) 

measurement estimated at ground receiving station (GRS) pairs with a lateration algorithm.  In a multiple aircraft 

scenario, multiple TDOA measurements are estimated at GRS pairs. Thus, there is a need to group and associate the 

TDOA measurements according to each aircraft before the position estimation (PE) process with the lateration 

algorithm. In this paper, a multi-reference TDOA association (M-RETA) technique based on multiple referencing 

approach to TDOA estimation, its zero cyclic sum property and nearest neighbour search approach is developed for a 

minimum configuration 3-D MLAT system. The performance of the M-RETA technique is determined considering a 

five aircraft flying configuration with an aircraft pair separation of at least 5.5 km in accordance to the Federal Aviation 

Administration (FAA) standard. Simulation result shows that the M-RETA technique association accuracy depends 

on the TDOA estimation error and separation between the aircraft. Simulation result shows that the M-RETA 

technique as on an average 88% probability of correct association. 

Keywords: TDOA, zero cyclic sum, nearest neighbor search, association  

  

1. Introduction  

Multilateration (MLAT) system is one of the surveillance systems used by an air navigation service provider (ANSP) 

to track aircraft within its flight information region (FIR) (ICAO, 2007). The system first estimates time difference of 

arrival (TDOA) measurement from the aircraft transponder replies such as the automatic surveillance dependent broadcast 

(ADS-B) signals captured by ground receiving station (GRS) pairs (ICAO, 2007; Kaune, Steffes, Rau, Konle, & Pagel, 

2012; Shamian, Hadi, & Ijaz, 2012). These TDOA measurements are used with the known coordinate of the deployed 

GRSs as inputs to a lateration algorithm which then estimates the position of the aircraft. There is a nonlinear relationship 

between the input variable (TDOA measurement) to the lateration algorithm and output variable (aircraft position) 

(Gaspare Galati, Leonardi, Balbastre-Tejedor, & Mantilla-Gaviria, 2014; Yaro & Sha’ameri, 2018). To obtain the aircraft 

position, there is a need to establish a linear relationship between the two variables. For this reason, several approaches 

have been developed which can be grouped as closed-form and open form approaches (So, 2012; Yaro, Sha’ameri, & 

Kamel, 2018). In the open form approach, linearization algorithms are used to obtained the linear relationship between 

the two variables (Gaspare Galati et al., 2014; So, 2012). This is followed by an iteration process with an input random 

aircraft position while minimizing a maximum likelihood function. The open form approach suffers convergence if the 

initial random aircraft position is far from the actual aircraft position (Chaitanya, Kumar, Rao, & Goswami, 2015).  

Algebraic manipulations are used in the closed-form approach to obtain the linear relationship between the two variables 
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(Weng, Xiao, & Xie, 2011; Yaro, Sha’ameri, & Kamel, 2017). It does not suffer convergence issue as on randomly input 

aircraft position is used but very sensitive to error in the input variable (Yaro et al., 2018).  The closedform approach to 

the development of the lateration algorithm is mostly used in passive real time system which the MLAT system is an 

example. For this reason, the closed-form approach to the lateration algorithm is adopted in this paper.   

Several aircraft exist within the FIR assigned to an ANSP which result in multiple TDOA measurements estimated 

at GRS pairs (Scheuing & Yang, 2008). To estimate each aircraft position, the TDOA measurements obtained from GRS 

pairs need to be grouped according to aircraft in a process called TDOA measurement association. Several articles have 

reported on different approaches to TDOA measurements association (Amishima, Wakayama, & Okamura, 2014; Herath, 

Pathirana, Champion, & Ekanayake, 2012; Jamali-Rad & Leus, 2013; Lee, Lee, Yang, Lee, & Hwang, 2016; Li & Li, 

2014; Xionghu Zhong & Hopgood, 2015). According to (Herath et al., 2012), a minimum of four GRSs is required to 

uniquely localize more than one aircraft using the MLAT system within the FIR of a ANSP. A fingerprinting TDOA 

measurement based association technique is developed in (Jamali-Rad & Leus, 2013). Every aircraft position has a unique 

TDOA measurement set. A database is developed that contains predetermined TDOA measurement set of an aircraft at 

several positions within the defined MLAT system coverage. The association technique developed in (Li & Li, 2014) is 

based on the nearest neighbour search algorithm and on the assumption that multiple TDOA measurements of an aircraft 

are available within a single observation window. Beside associating the TDOA measurements to the aircraft, some 

techniques first associate the signals to each aircraft afterwards obtain the TDOA measurements (Xu, Chen, & Jiang, 

2013). This is possible if some unique properties related to each aircraft can be derived from the signal such as carrier 

frequency, modulation type, pulse width and pulse amplitude.   

In this paper, a multi-reference TDOA association (M-RETA) technique is developed under the assumption that all 

TDOA measurements are obtained at a single time instance from multiple aircraft all operating at the same downlink 

frequency.  It is based on multiple referencing approach to TDOA estimation using a total of four deployed GRSs, TDOA 

measurement zero cyclic sum property and nearest neighbour search approach. The M-RETA technique is verified 

considering an aircraft configuration with a minimum aircraft pair separation of 5.5 km in accordance with the FAA 

horizontal separation standard (Sha’ameri, Yaro, Amjad, & Hamdi, 2017).  After the TDOA measurements have been 

associated to each aircraft, their positions are obtained using the multiple reference closed-form lateration algorithm 

developed in (Yaro et al., 2017).    

The remainder of the paper is organized as follows: Section 2 gives a description on the TDOA measurement 

estimation considering multiple aircraft. This is followed by the methodology for the developed M-RETA technique, the 

condition for TDOA measurement association error and a brief description on multiple reference closed-form lateration 

algorithm developed in (Yaro et al., 2017). The simulation result and discussion presented in Section 4 and finally the 

conclusion in Section 5.   

  

2.   TDOA Measurement Estimation in Multiple Aircraft Scenario  

Within an observation window, signals from multiple aircraft are captured at all deployed GRSs resulting in multiple 

TDOA measurements between GRS pairs. The information contained in each signal such as aircraft identification, 

position and aircraft velocity are different. Thus, the assumption of statistical independence of signals from different 

aircraft is valid. Therefore, for N observed aircraft, N TDOA measurements are estimated by each GRS pair.   

For simplicity, consider the (𝑛 − 1) − th and the 𝑛 − th aircraft with coordinates 𝐱𝑒,𝑛−1 = (𝑥𝑒,𝑛−1, 𝑦𝑒,𝑛−1, 𝑧𝑒,𝑛−1) and 

𝐱𝑒,𝑛 = (𝑥𝑒,𝑛, 𝑦𝑒,𝑛, 𝑧𝑒,𝑛) respectively. Within an observation window of 0 ≤ 𝑡 ≤ 𝑇, the signal transmitted by these aircrafts 

are captured at two GRSs labelled 𝑖 − th and 𝑚 − th with coordinates as shown in Fig. 1.   

  

  
Fig. 1 - TDOA measurements from multiple aircraft scenario.  
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The signals at the i-th and m-th GRS pair can be mathematically expressed as:   

 

 

 

 

  

 

where 𝜏𝑖,𝑛−1 and 𝜏𝑖,𝑛 are the time of arrival (TOA)s in second of signal transmitted by the 𝑛 − th and (𝑛 − 1) − th 

aircrafts respectively detected at the i-th GRS while 𝜏𝑚,𝑛−1 and 𝜏𝑚,𝑛 are the TOAs of signal transmitted by the 𝑛 − th and 

(𝑛 − 1) − th  aircrafts  respectively at the m-th GRS. The TOA is the time taken by the signal to propagate from the 

aircraft to the GRS.   

The peak of the result of the cross-correction between  (𝑡) and 𝑥𝑚(𝑡) in Eq. (1) is (Marmaroli, Falourd, & Lissek, 

2012):  

  

 

 

where:  

 

 

 
 

are the TDOA measurement of the (𝑛 − 1) − 𝑡ℎ and 𝑛 − 𝑡ℎ aircraft respectively obtain using the i-th and m-th GRS 

pair.   

The TDOA measurements in Eq. (3) can be put in a vector form as follows:  

  

 

 

Noise present in the received signal results in TDOA measurement error. By modelling the TDOA error as a zero 

mean Gaussian random variable with probability density function (pdf) as 𝑁(0, 𝜎),  the estimated TDOA measurement 

vector in Eq. (3) is written as:  

 

where  

   

  

 

 

and 𝜎𝑛−1 and 𝜎𝑛 are the TDOA error standard deviation (SD)s in obtaining the TDOAs of the ( 𝑛 − 1) − th and 𝑛 − 

th aircrafts which depends in the SNR of the signal transmitted by either aircraft detected at the i-th and m-th GRSs. For 

the 𝑛 −th aircraft, the 𝜎𝑛 in second is related to the SNR in dB as (G. Galati, Leonardi, Mantilla-Gaviria, & Tosti, 2012):  

  

  

 

where  𝐵 is the bandwidth of the receiver in Hz,   respectively are the received SNR at i-th and m-th 

GRS pair of the signal transmitted by the 𝑛 − th aircraft.    

With a total of 𝐿 GRSs, the number of TDOA measurement vectors in the form of Eq. (5) depends on the number of 

GRSs used as reference for estimating the TDOA measurements. For instance, using single GRS as reference will result 

in 𝐿 − 1 TDOA measurement vectors (Mantilla-Gaviria, Leonardi, Galati, & Balbastre-Tejedor, 2015).  To obtain the 

position of all N aircrafts, there is a need to associate the TDOA measurements from all GRS pairs to each aircraft. The 

TDOA measurements identified to belong the same aircraft are subsequently sent to the lateration algorithm for use to 

estimate the aircraft position. In the next section, the methodology for the proposed M-RETA technique is presented.  
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3.   Methodology   

In this section, a detail description of the proposed M-RETA technique is presented with is followed by the condition 

for TDOA measurement association error. Finally, a brief description on multiple reference closed-form lateration 

algorithm used in the position estimation (PE) of the aircraft.  

  

3.1 M-RETA Technique Development  

As stated earlier, 3-D multilateration system with the minimum configuration is considered. Let there be a total of N 

aircrafts within the flight information region and a copy of the signal from each aircraft is captured within the observation 

window. With the i-th and j-th GRS pair as reference, the generated TDOA measurement vector with the m-th and k-th 

as non-reference GRS in the form of Eq. (5) are described as follows:   

  

  

  

 

 

 

 

 

 

where 𝑖 ≠ 𝑚 ≠ 𝑗 ≠ 𝑘 and 𝑛 = [1,2, ⋯ , 𝑁].  

  

Using Eq. (8) and Eq. (9), a TDOA difference matrix can be obtained as follows:  

  

  

 

 

where   

  

   

 

 

for 1 ≤ 𝑢 ≤ 𝑁, 1 ≤ 𝑣 ≤ 𝑁, 𝜏 𝑖𝑚,𝑢 ∈ 𝐓𝑖𝑚 and 𝜏𝑗𝑚  ,𝑣 ∈ 𝐓𝑗𝑚  

 

Another TDOA difference matrix can be obtained using Eq. (10) and Eq. (11) as follows:   

  

 

 

 

where   

  

 

 

for 1 ≤ 𝑜 ≤ 𝑁, 1 ≤ 𝑝 ≤ 𝑁, 𝜏 𝑖𝑘,𝑜 ∈ 𝐓𝑖𝑘 and 𝜏𝑗𝑘  ,𝑝 ∈ 𝐓𝑗𝑘   

 

The matrix 𝐓𝑖𝑗𝑚 is obtained using the TDOA vector 𝐓𝑖  and  𝐓𝑗𝑚 while matrix 𝐓𝑖𝑗𝑘  is obtained using the TDOA 

vectors  𝐓𝑖𝑘 and  𝐓𝑗𝑘 . The entries of these matrices are element-wise subtraction between the two vectors used in obtaining 

them.  Consider the TDOA measurement vector pair  𝑖𝑚  and  𝐓𝑗𝑚 in Eq. (8) and Eq. (9) respectively and let  

𝜏𝑖𝑚,𝐓𝑖𝑚   and  𝜏𝑗𝑚,𝑛𝜖  𝐓𝑗𝑚 be the TDOA measurement of the 𝑛 − th emitter.  The difference between 𝜏𝑖𝑚, 𝑛 and 𝜏𝑗𝑚, will 

result in another TDOA measurement 𝜏𝑖𝑗,𝑛 as follows: 
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Expanding the left-hand side of Eq. (14) will result in:  

  

   

  

 

 

 

From Eq. (15d), the left-hand side of the equation is equals to the right-hand side of the equation. Based on the TDOA 

measurement zero cyclic sum property defined in (Scheuing & Yang, 2008), the TDOA measurements 𝜏𝑖𝑚,, 𝜏𝑗𝑚,, 𝑛 and 𝜏𝑖𝑗,𝑛 
in Eq. (14) belongs to the 𝑛 − th aircraft. This is also the same for the TDOA measurement vector pair  

 𝐓𝑖𝑘 and 𝐓𝑗𝑘 in Eq. (10) and Eq. (11) respectively in which   

  

 

 
 

where 𝜏𝑖𝑘,𝑛𝜖  𝐓𝑖𝑘   and  𝜏𝑗𝑘,𝑛𝜖  𝐓𝑗𝑘  

 

If the result from the left-hand side in Eq. (15d) is the same as that in Eq. (16), it means that 𝜏𝑖𝑘,𝑛,  and 𝜏𝑗𝑘,𝑛 also 

belongs to the 𝑛 − th aircraft. The TDOA measurement 𝜏𝑖𝑗, in Eq. (14) and Eq. (16) can be seen to be obtained using the 

i-th and j-th GRS which are earlier considered as the reference GRS for the TDOA estimation. Thus, another TDOA 

measurement vector, 𝐓𝑖𝑗 using the i-th and j-th GRS is then obtained thus,   

  

Based on Eq. (12) to Eq. (17), it can be concluded that  

  

 

 

 

 

To associate the TDOA measurement to an aircraft whose TDOA measurements are in the vectors 𝐓𝑖𝑚, 𝐓𝑗𝑚, 𝐓𝑖𝑘, 𝐓𝑗𝑘 

and 𝐓𝑖𝑗, take the first entry of TDOA vector 𝐓𝑖𝑗 and search for this value in matrices  𝑖𝑗𝑚 and  𝐓𝑖𝑗𝑘 in Eq. (12) and Eq. (13) 

respectively. Due to error in the TDOA measurements, the likelihood of finding the exact value in the matrices 𝐓𝑖𝑗𝑚 and 

𝐓𝑖𝑗𝑘 is very low. A possible way is the use of the nearest neighbor search approach in which the pair of TDOA 

measurements with the least residual are said to be the same. For this reason, a residual matrix is generated using the 

selected TDOA measurement from the vector 𝐓𝑖𝑗. The residual matrices for the 𝑛 − th TDOA measurement, 

generated using matrices 𝐓𝑖𝑗𝑚 and  𝑖𝑗𝑘 in Eq. (12) and Eq. (13) respectively are as follows:   

 

 

 

 

 

 

where  
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The 𝑐𝑢, and 𝑑𝑜,𝑝 in Eq. (22) with the least value are nearest to . The TDOA measurement pairs in the matrices 

𝐓𝑖𝑗𝑚 and 𝐓𝑖𝑗𝑘in Eq. (12b) and Eq. (13b) used in obtaining 𝑐𝑢, and 𝑑𝑜,𝑝 in Eq. (22) belongs to the same aircraft. These TDOA 

measurements are subsequently sent to the localization algorithm for the PE.  Summary of the proposed TDOA 

measurements association algorithm is as follows:   

 

i. Generate the matrices 𝐓𝑖𝑗𝑚 and 𝐓𝑖𝑗𝑘 in Eq. (12) and Eq. (13) respectively.  

ii. Take the first TDOA measurement entry in the 𝐓𝑖𝑗 vector and generate the residual matrices in Eq. (20) 

and Eq. (21).  

iii. Select the TDOA measurements 𝑎𝑢, and 𝑏𝑜, from Eq. (22) that resulted in the entries of the residual 

matrices in Eq. (20) and Eq. (21) with the least value.  

iv. Identify the TDOA measurement pair subtracted used to generate 𝑎𝑢, and 𝑏𝑜, from (iii) using Eq. (12b) 

and Eq. (13b) respectively.   

v. The two pairs of TDOA measurements from (iv) belongs to the same aircraft which are subsequently 

sent to the lateration algorithm to obtain it position.   

vi. Take the second entry of the 𝐓𝑖𝑗 and repeat (ii) to (v) to estimate the position of the second aircraft. 

Continue (ii) to (v) till all entries in the vector 𝐓𝑖𝑗 are used.   

  

3.2 TDOA Measurement Association Error Condition and Probability   

The TDOA measurements in Eq. (5) are obtained without knowledge which TDOA measurement belongs to which 

aircraft. Due to the geometrical relationship between TDOA measurement and aircraft location, closely spaced aircraft 

will have their estimated TDOA measurements close together. This will increase the likelihood of the two TDOA 

measurements to be miss-associated resulting to a TDOA association error. A TDOA association error occurs when 

TDOA measurement which does not belong to an aircraft is identified to belong to that aircraft. This usually occur when 

the aircraft are closely spaced to the extent that their TDOA error probability density distribution (PDF)s have an 

overlapping region (region A and region B) as shown in Fig. 2.   

  

  
Fig. 2 - TDOA error PDF distribution of the (𝒏 − 𝟏) − 𝐭𝐡 and 𝒏 − 𝐭𝐡 aircraft  

  

 

The PDFs shown in Fig. 2 are mathematically expressed as:   
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Given the TDOA error SDs and the mean TDOA values, Eq. (25) is used to determine if the overlapping region given 

as region A and region B as shown in Fig. 2 is created.    

If the absolute difference between the mean TDOAs of the (− 1) − th and 𝑛 − th aircraft is less than the three times 

the summation of the TDOA error SDs, the overlapping region is created. After it is determined that the overlapping 

region is created, next is to determine the probability of TDOA association error.  This is given by the area of the 

overlapping region. The area of the overlapping region A from Fig. 2 is mathematically obtained as:  

 

 

 

 

and that of region B is: 

 

Thus, the TDOA association error probability for a given TDOA measurement vector is mathematically obtained as:  

 

The PE error obtained by the lateration algorithm is either due to the TDOA association error of the M-RETA 

technique and or TDOA estimation error. Therefore, the probability that the PE error obtained by the lateration algorithm 

is due the TDOA association error is mathematically obtained as: 

while the probability that the PE error is due to TDOA estimation error is:  

  

The Eq. (30) and Eq. (31) are to be used to determine the performance of the M-RETA technique presented in 

Subsection 3.1 when coupled with the lateration algorithm.   

  

3.3Multiple reference closed-form lateration algorithm  

After the TDOA measurements for each aircraft has been identified, the next step is to estimate the position of the 

aircraft.  Let 𝜏𝑖𝑚, 𝑛, 𝜏𝑗𝑚,, 𝜏𝑖𝑘,𝑛, and  𝜏𝑗𝑘,𝑛 be the grouped the TDOA measurement obtained by the M-RETA technique for 

the 𝑛 − th aircraft.  The TDOA measurements are related to the aircraft positions as follows:  
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where: 𝐱𝑒,𝑛 = (𝑥𝑒,𝑛, 𝑦𝑒,𝑛, 𝑧𝑒,𝑛) is the location of the n-th aircraft;  𝑐 = 3 × 109, while 𝐬𝑖 = (𝑥𝑖, 𝑦𝑖, 𝑧𝑖),  𝐬𝑗 = (𝑥𝑗, 𝑦𝑗, 𝑧𝑗),  

𝐬𝑚 = (𝑥𝑚, 𝑦𝑚, 𝑧𝑚) and 𝐬𝑘 = (𝑥𝑘, 𝑦𝑘, 𝑧𝑘) respectively are the locations of the i-th, j-th, k-th and m-th GRSs.  

Algebraically manipulating Eq. (32) to Eq. (35) as previously done in (Yaro et al., 2017) results in a pair of 3-D plane 

equations presented as follows:   

  

  

 
  

 

 where the coefficients of Eq. (37) and Eq. (38) are functions of the TDOA measurements and GRS coordinates 

which can be found in (Yaro et al., 2017).  

The subscript “𝑖𝑗𝑚” and “𝑖𝑗𝑘” in the coefficients of Eq. (37) and Eq. (38) respectively indicates that the resulting 

variable is from the measurements obtained using the i-th and j-th GRS as reference station respectively with the m-th or 

k-th as non-reference GRSs.  A detailed derivation of Eq. (37) to Eq. (38) and how the coordinates of the aircrafts are 

obtained using the pair of equations can be found in (Yaro et al., 2017).  

  

4     Simulation Result and Discussion   

The performance of the M-RETA technique developed in sub-section 3.1 presented in this section of the paper. Its 

performance is presented in terms of probability of correct PE based on Eq. (30) and Eq. (31).  Firstly, the simulation 

parameter is presented which is followed by the variation of the TDOA error SD with the aircraft position. The probability 

of correct PE by the M-RETA technique is subsequently presented and lastly, the PE error obtained by multiple reference 

closed-form lateration algorithm is presented.   

  

4.1 Simulation Parameter   

The performance of the M-RETA technique is evaluated considering civil aviation surveillance. The system 

parameters which include that of the aircraft transponder and ground station system is presented in Table 1.   

  

Table 1 - Aircraft transponder and ground station system parameters  

 Parameter  Values  

Aircraft 

transponder  

Antenna gain Peak 

transmit power  

3 dBi 

250 W  

 Operating frequency  1090 MHz  

Ground 

system  

Antenna gain  

Sensitivity  

Antenna height  

12 dBi  

-95 dBm  

200 m  

 Receiver bandwidth  20 MHz  
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A five-square aircraft flying configuration is considered in evaluating the performance of the M-RETA technique 

with a minimum horizontal lateration separation of about 5.5 km in accordance with FAA standard.  Fig. 4 shows the 

geometrical position of each aircraft while Table 2 shows the position of each rectangular coordinate system. The 

minimum separation between any given aircraft pair based on the configuration shown in Fig. 3 is 5.5 km which is 

between aircraft A and any of the remaining aircraft.  

  

 

Fig. 3 - The five-square aircraft flying configuration geometrical positions  

 

 

Table 2 - Aircraft positions in rectangular coordinate system  

 
  

The configuration of the deployed GRSs contributes to the PE accuracy of the aircraft PE algorithm presented in 

section 3.3. According to Chan et al (Chen, Francisco, Trappe, & Martin, 2006), the best configuration for a total number 

of 4 GRSs is the square configuration and in this research, the 10-km square shape GRS configuration is adopted with 

each GRS at the vertex (Yaro & Sha’ameri, 2018; Yaro et al., 2017). The distribution of the GRSs are shown in Fig.  

4.  

  

 

 

Fig. 4 - Distribution of the GRS in square configuration  

  

The five-square flying aircraft configuration considered in this paper for the analysis can be seen to be on the top 

right quadrant of the GRS four square configuration. It is presented in (Yaro et al., 2017) that the choice of GRS reference 

pair for TDOA estimation contributes to the PE accuracy of the lateration algorithm. The best GRS pair to use as reference 

to estimate the position of the aircraft in the top right quadrant of the GRS configuration as shown in Fig. 4 is GRS pair 

1 and 4 that is and . Thus, all the possible combination of GRS pairs to generate the TDOA measurement 

vectors in Eq. (8) to Eq. (11) are shown in Table 3.   

  

 

 

 

 

Aircraft   

Position   

𝒙   
( 𝒌𝒎 )   

𝒚   
( 𝒌𝒎 )   

𝒛   
( 𝒌𝒎 )   

A   70   70   

7   

B   75.5   70   

C   70   75.5   

D   64.5   70   

E   70   64.5   
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𝒌 = 𝟐   𝒌 = 𝟑   

𝒊   = 𝟏 

𝒋   = 𝟒 

 

Table 3- All possible GRS pair generation of TDOA measurement vector  

Non-reference GRS pair 
GRS pair  

 Reference    Pair 1  Pair 2  

 GRS pair    Pair 3  Pair 4  

  

4.1 Variation of TDOA Error SD with Aircraft Position  
At 7 km altitude, there is line of sight between each aircraft to all the GRSs for this reason, the free space path loss 

model is considered for the SNR calculation. Using Eq. (7), the TDOA error SD of each aircraft obtained using each of 

the GRS pair combination presented in Table 3 is shown in Table 4.   

  

Table 4 - TDOA error SD for different GRS pair combination  

TDOA SD at GRS pair  
Aircraft  (nsec) position  

 Pair 1  Pair 2  Pair 3  Pair 4  

 

A 2.55  2.45  2.65  2.55  

B 2.86  2.77  2.95  2.86  

C 2.46  2.36  2.55  2.46  

D 2.26  2.17  2.35  2.26 

E 2.66  2.57       2.75       2.66  

 
 

Based on the aircraft configuration shown in Fig. 3 and using the system parameter as shown Table 1, the maximum 

TDOA error SD is 2.95 nsec and the minimum is 2.17 nsec. The graphical representation of the error free TDOA 

measurement vectors that is T12, T13, T42 and T43 based on the aircraft flying configuration in Fig. 3 is shown in Fig. 5.   

  

 

 (c)   (d)   

  

Fig. 5 - Graphical presentation of TDOA measurement vectors: (a) Vector 𝐓𝟏𝟐, (b) Vector 𝐓𝟏𝟑, (c) Vector 𝐓𝟒𝟐, 

and (d) Vector 𝐓𝟒𝟑  

  

The TDOA measurement pair with the least absolute difference (𝛿𝜏) have a higher chance of been wrongly associated 

when estimated in the presence of noise.  The TDOA measurements of aircraft C and D from TDOA measurement vectors 

T12 and T13 have the least absolute difference values of about 𝛿12,𝜏= 4.67 nsec and 𝛿13,𝜏= 0.67 nsec respectively. Likewise, 

from TDOA measurement vectors T42 and T43, the TDOA measurements of aircraft B and E have the least absolute 

difference of about 𝛿42,𝜏= 4.67 nsec and 𝛿43,𝜏= 0.67 nsec. This means that in TDOA measurement vectors T12 and T13, the 
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TDOA measurement of aircraft C and D have a higher chance of been wrongly associated so also the TDOA 

measurements of aircraft B and C in vector T42 and T43.   

In the next section, using the TDOA error SD, the probability of an association error in each of the TDOA 

measurement vector is determined.   

  

4.2 M-RETA Technique Probability of Correct Aircraft Position Estimation   

By considering the TDOA measurement pair with the least absolute difference in vector T12 from Fig. 5 which are 

from the aircraft C and D, the value of  𝛿12,𝜏= 4.67 nsec. The TDOA error SDs at these two aircraft positions from Table 

4 using GRS pair 1 are 𝜎12,𝑐= 2.46 nsec and 𝜎12,𝑑= 2.26 nsec respectively. The result of three times the sum of the two  

TDOA error SDs is 3(𝜎12, + 𝜎12,𝑑)= 14.16 nsec. Since 𝛿12,𝜏 < 3(𝜎12,𝑐 + 𝜎12,𝑑) for the TDOA measurements of aircraft C 

and D in vector T12, it means that the overlapping regions given as region A and region B as shown in Fig. 2 are created. 

Based on Eq. (28), the TDOA association error probability in the TDOA measurement vector T12 that is 𝑃𝑎𝑠𝑠𝑜𝑐12 _𝑒𝑟𝑟 is 

3%. This means is that there is a probability of about 3% that two estimated TDOA measurements in vector T12 will be 

wrongly associated and these measurements are from aircraft C and D.    

Extending the analysis to vectors T13, T42 and T43, for the least absolute TDOA measurement differences of 𝛿13,=  

0.67 nsec, 42,= 4.67 nsec and 𝛿43,𝜏= 0.67 nsec respectively. The three-time sum of their TDOA error SDs are about  

13.59 nsec, 17.10 nsec and 16.56 nsec respectively.  For the TDOA measurement vectors T13 , T42 and T43 , the 

overlapping region is created, and this will lead to an association error. The TDOA association error probability in the 

TDOA measurement vectors T13, T42 and T43 are obtained as 19%, 4% and 20% respectively. This means that in vectors 

T13, T42 and T43, there is a probability of about 19%, 4% and 20% that two estimated TDOA measurements in each vector 

are wrongly associated. In vector T13, the TDOA measurements are from aircraft C and D while in vectors T42 and T43 

the TDOA measurements are from aircraft B and E.   

Base on Eq. (31), the probability that PE errors in estimating the positions of each of the aircraft in the flying 

formation as shown in Fig. 3 is due to an association error by the M-RETA technique is 𝑃𝑃𝐸_𝑎𝑠𝑠𝑜𝑐_𝑒𝑟𝑟𝑜𝑟=12%. This means 

that 88% of the time, the PE error obtained by the lateration algorithm coupled with the M-RETA technique is due to the 

TDOA estimation error. In the next section, using the TDOA error SDs shown in Table 4 for the different aircraft positions 

and GRS pairs, the estimated aircraft positions using the lateration algorithm in section 3.3 are determined.   

  

4.3 Multiple Reference Closed-form Lateration Algorithm Position Estimation Error   

The estimated aircraft positions using the TDOA measurements associated by the M-RETA technique in Section 3.1 

is determined using the aircraft positions shown in Fig. 3 and the TDOA error SDs shown in Table 4.  For each aircraft 

position, the position root mean square error (RMSE) is obtained after 500 realization Monte Carlo simulation. Fig. 7 

shows the estimated and the actual aircraft positions based on the geometrical locations of each aircraft as presented in 

Fig. 4.   

 
(b)  

Fig. 6 - Comparison between estimated and actual aircraft position; (a) Horizontal coordinate; (b) Altitude 

position  
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From Fig. 6, the position RMSE of the lateration algorithm varies with the aircraft positions. The horizontal position 

RMSE for aircraft at positions A, B, C, D and E are 3.3 𝑚, 3.5 𝑚, 10 𝑚, 0.8 𝑚 and 4.8 𝑚 respectively. The altitude 

RMSE are 0.86 𝑚, 7.4 𝑚, 5.2 𝑚, 3.9 𝑚 and 6.8 𝑚 for aircraft at positions A, B, C, D and E respectively. Based on the 

M-RETA performance analysis earlier presented in section 4.2, the deviations in the actual position of each aircraft that 

is the position RMSE is 12% due an association error and 88% due to TDOA estimation error.   

  

5    Conclusion  

In this paper, a M-RETA technique is developed for the minimum configuration 3-D multilateration system.  The 

technique is based on multiple reference approach for the TDOA estimation, the cyclic sum property of the TDOA 

measurements and nearest neighbor search algorithm. The condition for a TDOA measurement association error 

established based on separation of aircraft and TDOA error SD.  The grouped TDOA measurements by the M-RETA 

technique from 5 aircraft with a minimum horizontal lateral separation of about 5.5 km are used as input to the multiple 

reference closed-form lateration algorithm. Simulation result shows the position RMSE obtained by lateration algorithm 

due to an association error by the M-RETA technique is about 12%.   
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