
 
JOURNAL OF SCIENCE AND TECHNOLOGY VOL. 13 NO. 1 (2021) 38-46 

 

   

 

© Universiti Tun Hussein Onn Malaysia Publisher’s Office 

 

JST 

 

Journal homepage: http://penerbit.uthm.edu.my/ojs/index.php/jst 

Journal of 

Science and 

Technology 

 ISSN : 2229-8460     e-ISSN : 2600-7924  
 

*Corresponding author: ptt59@hotmail.com; fsci.krt@ku.ac.th 38 
2021 UTHM Publisher. All rights reserved. 

penerbit.uthm.edu.my/ojs/index.php/jst 

Characterization of Amino-Functionalized Ferromagnetic 

Nanoparticles with Glutaraldehyde Cross-linking  
 
Jaravee Sukprasert1, Kanjana Thumanu2, Isaratat Phung-on3, Chalermkiat 

Jirarungsatean3, Peerapon Chaisalee4, Pravate Tuitemwong1,4*, Kooranee 

Tuitemwong5* 
 
1BioScience Program, Department of Microbiology, 

 King Mongkut's University of Technology Thonburi (KMUTT), Bangkok 10140, THAILAND 

 
2Synchrotron Light Research Institute (Public Organization), 

 Muang District, Nakhonratchasima 30000, THAILAND 

 
3Maintenance Technology Center, Institute for Scientific and Technological Research and Services (ISTRS), 

 KMUTT, Bangkok, 10140, THAILAND 

 
4Food Safety Center, ISTRS, 

KMUTT, Bangkok, 10140, THAILAND 

 
5Department of Microbiology, Faculty of Science, 

Kasetsart University, Bangkok 10900, THAILAND 

 

*Corresponding Author 

 

DOI: https://doi.org/10.30880/jst.2021.13.01.005 

Received 31 March 2021; Accepted 12 May 2021; Available online 25 May 2021

 

1. Introduction 

Over the past few decades, magnetic iron oxide nanoparticles have gained much attention. There are applications 

in the various fields like protein immobilization, bioseparation, biomedicine, biotechnology, environmental treatment, 

food analysis, and material science [1-4]. Biomedicine applications include controlled drug delivery system (DDS), 

Abstract: Characterization of amino-functionalised magnetic nanoparticles (FMNs) modified surfaces with 

glutaraldehyde cross linker, which enables the attachment to a specific antibody against Salmonella was examined 

using FTIR spectroscopy. The magnetism property of the particles before and after attachment to the target cells 

was studied. Synchrotron FTIR spectroscopy technique was employed to investigate the chemistry of the 

crosslinking reaction to amino-functionalized ferromagnetic nanoparticles. Results indicated that the bonding 

pattern imine bond (C=N) and amide bond (-CONH-) were detected. The finding indicated the attachment of 

aldehyde group (CHO) to amino region of the particle and the other free end to link to the antibodies against 

Salmonella.  The bonding allowed the antibodies to bear reactive sites to catch the target Salmonella in food 

samples. The FMNs demonstrated hysteresis characteristics that could be changed due to cell attachment that 

caused reduction of loop coercive force (H). Results showed evidence of glutaraldehyde crosslinking that could be 

also used as quality control for immobilization of antibodies to the particles. Magnetism properties (the coercive 

force H) and FTIR characteristics could be further used for signal of attachment of cells to the FMNs as well. 
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magnetic resonance imaging, magnetic fluid hyperthermia (MHF), macromolecules and bacterial detection, cancer 

therapy and so on [2,5]. The benefits of their properties are super-paramagnetism, high surface area, large surface-to-

volume ratio, easy for separation under external magnetic fields and the ability of being easily chemical modified for 

biocompatibility, and dispersibility [1, 3, 6].  

Magnetic nanoparticles have been used for target bacterial capture to reduce the total time of analysis and improve 

the sensitivity of detection of pathogenic microorganisms. Usually, the magnetic nanoparticles surface functionality 

will be modified to facilitate immobilization of specific molecules onto the nanoparticles. Attachment of specific 

ligands and proper surface modification are critical [1, 2]. There are several methods for effective surface modification 

of magnetic nanoparticles. Physical immobilization, covalent conjugation and biological-mediated specific interaction 

are frequently used. These methods have the advantages and disadvantage [1, 6]. 

Physical immobilization is simple and mild, this method generally involves weak interaction such as electrostatic 

interactions, hydrogen bonds, van der Waals forces, and hydrophobic interaction, and the binding stability of adsorbed 

species is highly affected by environmental conditions. The biomolecules tend to break away from the support, and lead 

to the loss of activity [6].  Biologically Mediated Specific Interaction has offered a novel route to solve the problem of 

selectivity, which could be achieved by the formation of bonds between the active groups on the supports and specific 

residues on the proteins. The proper modification of the support surfaces and protein alteration, such attachments could 

be strategically realized under mild conditions. The approach has considerably reduced the risk of protein degradation. 

Though this method has contributed greatly to the popularity for protein immobilization, the protein of interest must 

first be labelled with biotin if site-selective attachment is desired [6]. The covalent conjugation method for attachment 

of antibody, via its functional groups, to chemically engineered substrates, has resulted in further improvement in 

antibody [7]. 

In this case, we selected the covalent conjugation method for modification of magnetic nanoparticle, which could 

be carefully regulated with specific functional groups to bind to biomolecules such as antibodies for specific target [1, 

6]. Glutaraldehyde (GA) is one of the popular coupling reagents for covalent cross-linking the modified magnetic 

nanoparticles and biomolecules, DNA and antibodies, because their functional group include aldehyde (-CHO) group 

can react between functional groups (e.g. – amino (-NH2) group) on the surface of magnetic nanoparticles and amino (-

NH2) groups on the biomolecules [1, 6, 7, 8]. Moreover, GA is widely used in various applications such as 

histochemistry, microscopy, cytochemistry, leather tanning industry, enzyme technology, chemical sterilization, and 

biochemical and pharmaceutical sciences [9]. 

GA had great success as a result of its commercial availability and low cost. In addition, GA reacted rapidly to 

amine group at neutral pH in a more efficient way compared to other aldehydes in generating thermally and chemically 

stable crosslinks [9]. We hypothesize that aldehyde (-CHO) groups of the GA react with amino (-NH2) group 

abundantly distributed over antibodies surface. The attachment of aldehyde group to terminal amino groups of 

antibodies near the recognition place and the active sites in the fragment antigen binding (Fab) domain of antibody 

could lead to totally blocking the active sites causing antibodies to lose binding ability and reduce efficiency to the 

analysis [10]. The binding of GA as cross linker was not well understood.  

A non-destructive Fourier transform infrared (FTIR) technique is rapid, sensitive and versatile [12]. This technique 

is a measurement of wavelength and intensity of the absorption of IR radiation by a sample [13]. It is useful and applied 

for biological such as detection, discrimination, and classification of bacteria [10,14], protein structural studies [13], 

diagnosis of breast cancer [15], investigation of biological tissues [16] and studies of crosslinking processes for 

moulding sand [17].  The aim of this study was to prove binding and suitability of GA as a cross linker with antibodies 

by using FTIR technique. This was to prove the chemistry behind the interaction between GA, amino functionalized 

FMN particles (amino-FMNs) surfaces and at the same time facilitate attachment of antibodies against Salmonella on 

the other end of GA as indicated in Fig. 1. 

 

2. Materials and Method 

2.1 Reagents 

Iron (III) chloride hexahydrate, ethylene glycol, sodium acetate and ethanol (99.9%) were purchased from QREC 

(New Zealand). Sodium hydroxide was purchased from Ajax Finechem (Australia). Ethylenediamine was purchased 

from Merck (Sweden). GA was purchased from Fisher Chemical (U.S.A.). Deionized water was obtained from the 

purification system.   
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Fig. 1 - The schematic illustration of the functionalization process of amino-FMNs with glutaraldehyde (GA) 

crosslinking and antibody (Ab) attachment 

 

2.2 Apparatus 

The autoclave Sanyo Model MLS-3020 (Japan) was used for preparation of magnetic nanoparticles. Fourier 

transform infrared (FTIR) was employed to investigate functional groups and bonding on the surface of magnetic 

nanoparticles (Vertex 70, Bruker).  

 

2.3 Preparation of Amino Functionalized Ferromagnetic Nanoparticles (amino-FMNs) 

The synthesis of amino-FMNs was prepared by polyol technique as described by Songworavit et al. [5] with some 

modification. In the synthesis, amino-FMNs were synthesized using ethylene glycol as solvent and reducing agent. 

Amino-FMNs were prepared to have amino group on the surface of particles in one step of synthesis with 

ethylenediamine as an amino group source. Firstly, 2g of FeCl3.6H2O was dissolved in 40 ml ethylene glycol and 

mixed until the solution was cleared yellow. Then 6 g of CH3COONa, 1.68 g of NaOH and 20 ml of ethylenediamine 

was added in the flask and stirred for 30 min. After the mix, the solution was further heated in a laboratory autoclave at 

121 °C, 105 KPa, 2 h per cycle, for 3 cycles. Between the cycles, the mixed solutions were shaken for 5 min. When the 

reaction was completed, amino-FMNs were separated by magnetic force and washed five times with deionized water 

and five times with 95% ethanol to remove the solvents. Ultrasonication was used to facilitate washing. The amino-

FMNs were oven dried at 50 °C for 24 h., milled with mortar and pestle then kept in amber bottles until use.  

 

2.4 Characteristic Magnetic Nanoparticles 

Characterization of nanoparticles followed that described previously in [5]. FMNs were dispersed in distilled water 

for 15 min with ultrasonicator and the top of the particle suspension was dropped on copper grid. It was air dried for 20 

min before the morphology and size of the nanoparticles were determined by images from scanning electron 

microscope (SEM: FEI Quanta 450). The samples were analysed by using SEM-EDS. Structure of nanoparticles was 

characterized by X-ray Diffractometer (XRD; Bruker AXS Model D8 Discover, Germany) with target: Cu, 40kV, 

40mA, angle 20-80 degree, increment 0.02 degrees/step, scan speed 0.3 s/step. The magnetic properties were 

characterized by vibrating sample magnetometer (VSM) developed by the Department of Physics, Kasetsart University, 

Thailand. 

 

2.5 Synchrotron FTIR Spectroscopy                                                                             

Measurements were performed with the Synchrotron IR spectroscopy facility, at the Synchrotron Light Research 

Institute (Public Organization), Thailand. The Bruker Hyperion 2000 microscope (Bruker Optics Inc., Ettlingen, 

Germany), equipped with a nitrogen cooled MCT (HgCdTe) detector with a 15×IR objective coupled to a Bruker 

Vertex 70 spectrometer, was used for FTIR data acquisition. The FTIR spectra were obtained in transmission mode. 

Spectra were collected from 64 scans, 20µm ×20µm aperture size at a resolution of 4 cm-1 over a measurement range of 

4,000-800 cm-1. Spectral acquisition and instrument control were performed using OPUS 6.5 software (Bruker Optics 

Ltd, Ettlingen, Germany).   
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2.6 Surface Modification of Amino-FMNs with GA                                

The objective of modifying the surface of amino-FMNs was to immobilize antibodies on the particle surface. In 

this study, GA was used as the crosslinking reagent to use aldehyde group to the particles and to amine groups of 

antibodies with amine linkage [7]. The reaction improved the immobilization capacity of antibodies on surface of the 

particles [10].  For the reaction, aliquots of 0.1 g amino-FMNs were washed and re-suspended in 50 ml of phosphate 

buffered saline (PBS, pH 7.4) to a concentration of 2 mg/ml. Then, 5 ml of GA (2.5% v/v) was added and gently stirred 

at room temperature for 2 h. The surface modified amino-FMNs were separated by the external magnetic field. The 

particles were washed three times with PBS (pH 7.4) to remove any unreacted chemicals and re-suspended in PBS 

before the next step. 

 

2.7 Preparation of Antibodies Conjugated Amino-FMNs                                 

This step was to attach antibodies to the other end of GA already attached on the particle surface. Before the 

antibodies conjugation the antiserum against Salmonella was tested by slide agglutination [18] to confirm activity of 

antibodies against Salmonella. The test was prepared by making two adjacent suspensions of the test organism in drops 

of saline on a slide. Then, a drop of the antiserum was added to one suspension and mixed. Agglutination of the 

suspension indicates reaction of antibodies and Salmonella cells. Positive result was agglutination of the suspension, 

and negative result was indicated when the suspension remains turbid. The coupling of the antibodies onto the modified 

amino-FMNs was carried out using 500 µl of antibodies (0.1 mg/ml) to mix with 500 µl of the particles (2 mg/ml). The 

mixture was incubated at room temperature for 24 h and washed three times with PBS (pH 7.4). Finally, the antibodies 

–amino-FMNs complex was re-suspended in 1 ml of PBS and stored at 4 °C before use. The antibody concentration on 

the particles was quantified using a Nano Drop spectrophotometer (NanoVue Plus TM, UK) [19].   

 

2.8 Sample Preparation for Synchrotron FTIR Spectroscopy Examination 

An aliquot of 5 µl sample was dropped onto barium fluoride windows, spread very thinly from the droplet in a 

linear fashion on the slide surface using pasture pipette, and then vacuum-dried for at least two days in a desiccator 

prior to analysis. 

 

3. Results 

3.1 SEM Micrograph of Amino-FMNs, After Modification with GA, and Amino-FMNs 

Conjugated with Antibodies 

SEM micrograph of the amino-FMNs is shown in Fig. 2. The synthesized amino-FMNs have rather uniform cubic 

shapes. After modification, it was found that the sizes of the particles are larger after each modification step. After 

conjugation with antibodies, the particles appeared to be even larger in size (Fig. 2(a), 2(b) and 2(c)). The image of the 

nanoparticles indicated the cubic shape with an average size of about 50 nm. 

 

3.2 Magnetic Properties 

Magnetization curves of amino-FMNs at room temperature indicated that the FMNs were ferromagnetism but 

nearly complete superparamagnetism with a saturation magnetization (Ms) of about 48 emu/g, remanence (Mr) of 1.7 

emu/g and coercivity (Hc) of 23.5 Oe (Fig. 3). The amino FMNs were well dispersed in water and also can be separated 

from the solution by attraction of a magnet. 

Fig. 3 showed magnetization curve of the particles with hysteresis characteristic of the FMNs particles. The 

coercive force is the force that acts on the particles in order to produce their magnetization (M). As more force is 

introduced, the magnetization would reach the saturated point. Upon lower coercive force, the magnetization should 

decrease. However, due to its hysteresis property, the magnetization does not decrease at the same path resulting in the 

remanence (Mr). In this case, to achieve the zero magnetization, the opposite (negative) value of coercive force must be 

applied. In the same way, as the opposite coercive force increase, the opposite magnetization would also reach. All of 

these show the hysteresis property of the particles. By using this property tracking the changes in coercive force, 

remanence and saturated magnetization, the attachment of particles to other materials such as bacterial cells could be 

monitored or measured.  

The hysteresis of pure particles has coercive force, a measurement of the reverse field needed to drive the 

magnetization to zero after being saturated, of about 23.5 Oe. The value is represented by the arrow in Fig. 3. Changes 

of the coercive force could be used to demonstrate the attachment of this particle to other materials such as bacterial 

cells. 
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Fig. 2 - SEM image of amino-FMNs particles under 20kV, 50,000x magnification. A bar represents 1 µm in 

length. SEM images a, b and c represent FMNs alone, after crosslink with glutaraldehyde (GA), and conjugate 

with antibodies (Ab), respectively 

 

 

Fig. 3 - Magnetization curves of (A) amino-FMNs and (B) hysteresis loop of magnetization curve. The coercive 

force is the force that brings the magnetization to zero, in this case, demonstrated by the arrow 

  

3.3 FTIR Surface Characterisation of Amino-FMNs 

Surface characterization of amino-FMNs was performed by a Synchrotron FTIR spectroscopy. The FTIR spectra 

of amino-FMNs and GA alone were shown in Fig. 4. A peak at 1672cm-1 corresponds to N-H scissoring vibration of 

NH2 in aliphatic primary amine [20]. Results indicated the existence of amino group on particle surface. It also 

indicated that the synthesis of amino-FMNs was successful. 
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Wavenumber 

 

Fig. 4 - FTIR spectra of amino-FMNs (a) glutaraldehyde; (b) alone. A peak of amino-FMNs (a) at 1672cm-1 

indicates NH scissoring vibration of the amino group on particle surface. Glutaraldehyde (GA); (b) has specific 

peaks at wave numbers 1722 and 1459 
 

3.4 Amino-FMNs with Glutaraldehyde Cross-linking and Antibody Conjugation 

The FTIR spectra of amino-FMNs-GA linking were shown in Fig. 5. A new imine (C=N) peak appeared at about 

1653 cm-1.  The imine bond (C=N) can be ascribed to the interaction between aldehyde (-CHO) group of GA and amino 

(-NH2) group on surface of amino-FMNs. Moreover, the unique peak at 1366 cm-1, assigned as C-H bending vibration 

of CH2 in aliphatic compounds, was observed. Results indicated successful surface modification of amino-FMNs with 

GA. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

      Wave number (cm-1)  
 

Fig. 5 - FTIR superimposed spectra of reaction steps of amino-FMNs cross linked with glutaraldehyde, (a) 

FMNs+GA and attached with antibodies: FMNs+GA+Ab (b) 

 

After antibodies attachment onto the surface of particle cross-linked by GA (Fig. 5b), a new strong absorbance at 

1652 cm-1   the characteristic of amide I with C=O stretching appeared. The peak at 1547 cm-1 characteristic of amide II 
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band with C-N stretching and N-H bending was found. It was evident that peak at 3299 cm-1 N-H stretching in amide of 

antibodies was still intact after GA crosslinking. The peak shifted slightly to 3286 cm-1   after GA attachment to 

antibodies. The proteins served as antigen binding site of the antibodies. This is also characteristic to the absorption 

spectrum of protein, thus confirming the tethering of the antibodies. The antibodies remained active after the 

attachment. The peak at 2041 cm-1, N=N=N asymmetric stretching, of antimicrobial azide in the antibody. It was absent 

after being multiple washed with PBS.   

 

 
 

Fig. 6 - Scanning electron micrograph, 98.1kx magnification, of Salmonella cell attached with FMN-GA-Ab 

particles. A bar represents 500 nm 
 

The attachment of bacterial cells with the FMNs particles was achieved as intended.  This is to verify that the FMN 

with GA cross linking to antibody (Ab) could successfully function as antibody conjugated FMN. It was evident as 

shown in Fig. 6. The FMNs particles of 50 nm in size were attached on the surface of the target cells and made visible 

under a 5.0KV SEM imaging at 98.1kx magnification. The target cell was well surrounded by the antibody-conjugated 

FMNs particles.  

 

4. Discussion 

4.1 Surface Characterization of Amino-FMNs 

Preparation of amino-FMNs employed polyol technique using ethylenediamine as source of amino group (-NH2). 

Ethylenediamine (NH2CH2CH2NH2) contains two amino group (-NH2) functional groups and CH2. Thus, Synchrotron 

FTIR spectra of amino-functionalized FMN showed vibrational modes ascribed to the amino group at 1673 cm-1 and 

858 cm-1, while the characteristic absorption of CH2 were observed at 2881 cm-1, 2810 cm-1, and 983 cm1 [21-22]. The 

C-N stretching at 1090 cm-1 was the core of chemical structure of ethylenediamine [20]. These results were clearly 

evident that the magnetic nanoparticles were successfully functionalized with amino groups from ethylenediamine.  

 

4.2 Magnetic Properties 

Magnetization curves of amino-FMNs at room temperature indicated that the FMNs were ferromagnetism but 

nearly complete superparamagnetism with a saturation magnetization (Ms) of about 48 emu/g, remanence (Mr) of 1.7 

emu/g and coercivity (Hc) of 23.5 Oe (Fig. 3). The amino-FMNs were well dispersed in water and also can be 

separated from the solution by attraction of a magnet. Magnetite particles would exhibit complete superparamagnetic 

properties when their size below 25 nm which is a critical size of magnetite [23]. At this size, each particle has only one 

magnetic domain, and when a magnetization curve is plotted, the curve would show intersection at the zero point and 

has no remanence and coercivity. Although, the amino-FMNs produced in this work was not super-paramagnetism 

because their size was larger than the critical size and their ferromagnetic properties were very low. They were 

sufficient to be used in any biological applications because they could be well dispersed in an aqueous solution and 

separated by a magnet as well. The results were similar to those reported in [24] and [5]. The FMNs particles were also 

reported of having ferromagnetism with saturation magnetization (Ms) of 48 emu/g, remanence (Mr) of 1.7 emu/g, and 

coercivity (He) of 23.5 [5]. The changes of coercive forces could be used to report attachment of this particle to other 

materials such as bacterial cells. 
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4.3 FTIR Characterization of Amino-FMNs with Glutaraldehyde Crosslinking 

In this experiment, hypothesis was that the glutaraldehyde (GA) is used as crosslinker to bind amine of amino-

FMNs on one end and another end with amine group of biomolecules such as antibodies [7]. GA was an organic 

compound that contains a linear of 5 carbon and dialdehyde groups (-CHO) on both ends with chemical formula of 

C5H8O2 or OHC(CH2)3CHO or HCO(CH2)3CHO [9]. The functional groups of GA are 2 aldehyde groups (-CHO) and 

alkyl group (CH2) [25]. The absorption characteristics of GA are shown in Fig. 4(b). The carbonyl groups of aldehydes 

(-CHO) absorb energy at 1722 cm-1, while C-H stretching of aldehyde (-CHO) absorbs energy at 2872 and 2726 cm-1. 

The strong band observed at 2948 cm-1 corresponds to C-H symmetric stretching in aliphatic compounds. The 

vibrational modes ascribed to the alkyl group (CH2) such as 1460 (CH2 scissors), 1355 (CH2 wagging) and 952 (C-H 

out of plane bending). Furthermore, the peak appeared at 1114 cm-1 was assigned to C-C stretching [21,25]. The FTIR 

spectra characteristics of glutaraldehyde were conducted to compare before and after surface modification of magnetic 

nanoparticle with glutaraldehyde. Aldehyde group at one end of the glutaraldehyde reacts with amine of the surface of 

FMN and forms amide bond. A new peak appearing at about 1653 cm-1 was due to imine bond (-C=N-) [21,25-27]. 

Moreover, the peak at 2858 cm-1 refers to C-H symmetric stretching of CH2 in aliphatic compound and 1366 cm-1 is 

aldehydic C-H bending vibration [21-22].  

 

5. Conclusion 

This Synchrotron FTIR spectroscopy study showed the chemistry changes during reaction stage of glutaraldehyde 

as cross linker on the surface of magnetic nanoparticles. Results showed that there were changes of amino (-NH2) group 

of amino-FMNs after reacted with aldehyde (-CHO) group of glutaraldehyde resulting in imines (C=N) formation. It is 

evident that glutaraldehyde can serve as cross linker between the particles and biomolecules. Though, FTIR technique 

cannot identify location of aldehyde (-CHO) group reaction with amino (-NH2) group in the Fab region of the antibody, 

we reported different unique signals of glutaraldehyde reaction stage. The first stage in preparation of magnetic 

nanoparticle showed a specific peak at 1672 cm-1. The second stage of surface modification with glutaraldehyde, had a 

specific peak at 1653 cm-1. The data obtained from Synchrotron FTIR spectroscopy showed unique signal changes 

during reaction stages. Unique peaks could be used for quality control and identify presence of target biomolecules 

such as bacteria or virus. The findings confirmed glutaraldehyde cross linking that could lead to further attachment of 

target antibodies.  

Coercive force of the particles hysteresis characteristics could be of benefit to indicate their attachment to other 

materials such as bacterial cells. The results from this study could benefit further immobilization of antibodies to FMNs 

and the design of non-destructive testing for detection of foodborne pathogens.  
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