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1. Introduction 

Water quality is key to human health and essential to life. At present, the various societies are facing exponential 

increase in health risks due to hiking industrial and agricultural development that is invariably associated with 

uncontrolled anthropogenic release of alarming levels of trace heavy metals to the aqueous environment (Islam et al., 

2015; Patel et al., 2017; Cengiz et al., 2017). The Pb2+, along with cadmium and mercury, make the top of the “big three” 

heavy metal pollutants associated with poisoning (Liu et al., 2011). Inevitably, the chemical, biological and physical 

characteristics of water must be kept within acceptable limits.  

Several technologies have been investigated for the removal of heavy metals from aqueous environment which 

include oxidation/reduction, coagulation-flocculation, cementation, membrane filtration, precipitation, solvent 

extraction, adsorption and ion exchange (Dehghani, 2015; Kalavathy and Miranda, 2010). Even though the applicability 

of photocatalytic oxidation of arsenite (As3+) to less toxic arsenate (As5+) has been demonstrated (Li et al., 2009), the 

mechanism has yet to be understood and, apart from arsenite, only a few other metal ions have been abated by this 

technology (Gaya et al., 2014). Evidently, adsorption stands in the forefront due to its low cost of operation, effectiveness 

and wide choice of adsorbents (Varga et al., 2013).  

The choice of adsorbent is one of the factors that dictate the efficiency of the sorption process. Consequently, a high 

number of adsorbents continually emerge from various sources including aquatic plants, fruit peels, shells and nuts, 

Abstract: Granular activated carbons have been important adsorbents for the decontamination of aqueous 

environmental contaminants. Acanthospermum hispidum weed represents a ready available source of low-cost 

adsorbents in sub-Saharan Africa that has barely been paid attention. The effects of pH, contact time, concentration, 

adsorbent dosage, particle size and temperature on the adsorptive removal of Pb (II) from aqueous solutions over 

activated carbon granules from the thorns of Accanthospermum hispindum (AC-T) were for the first time investigated 

and compared with those of the leaves (L), the sodium hydroxide modified thorns (NaOH-T) and regular thorns (T) 

of this plant. These adsorbents were characterised by the surface charge analysis, scanning electron microscopy 

(SEM) and the Attenuated Total Reflectance Fourier Transform infrared (ATR FTIR) spectroscopy. The SEM 

revealed a wafer-like appearance for the AC-T with a large distribution of open pores. The adsorption data of lead 

uptake onto the adsorbents were examined using two pseudo-order kinetic schemes and three isotherm models. To 

fully understand the adsorption capacities of the adsorbents, batch desorption recoveries were studied. The FTIR 

depicted the various functionalities responsible for the adsorption. Adsorption over AC-T was found to agree with 

pseudo second-order kinetic scheme, the Langmuir and Freundlich isotherm. This material exhibited the highest 

adsorption capacity. The order of reusability of the adsorbents is T < AC-T < NaOH-T. 
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bagasse, cob, metal oxides, cellulose, graphene based nanocomposites, activated carbons and carbonaceous materials 

(Sathishkumar et al., 2009; Keskinkan et al., 2003; Author et al., 2015; Bagbi et al., 2017; Xu et al., 2017, Sherlala et al., 

2018). In this work, we aimed to study for the first time, the adsorption of Pb(II) onto Accanthospermum hispindum-

based granular adsorbents. This plant grows as a weed and is commonly available in sub-Saharan Africa. We undertake 

to investigate and compare the adsorption behaviours of the various adsorbents from this material. The choice of granular 

type of activated carbons was based on the fact that they can be easily prepared  from waste plant biomass (Ahmad and 

Hameed, 2010) and can outperform many porous carbonaceous adsorbents in terms of adsorption capacity, including 

single and multi-walled carbon nanotubes (Zhang et al., 2010). 

 

2. Materials and Methods 

2.1 Chemicals 

Chemicals used in this study include hydrochloric acid (HCl; Sigma Aldrich, 37%), nitric acid (HNO3; BDH, 69%), 

sodium hydroxide (NaOH; BDH, 97.5%), potassium nitrate (KNO3; M and B, 89%), calcium chloride (CaCl2; M and B, 

95%), ethanol (Merck, 99%) and lead nitrate (Pb(NO3)2; Burgoyne, 99%). All preparations were performed in deionised 

water. 
 

2.2 Adsorbent Preparation 

Samples of Accanthuspermum hispindum DC was collected from irrigation farmlands about Dambo dam, Kazaure 

Local Government Area, Jigawa state, Nigeria. The plant was identified and certified at the herbarium of the Department 

of Plant Biology, Bayero University, Kano. It was dried under shade and later on separated into the thorns and the leaves. 

Features of the leaves and thorns are shown in Fig. 1. 

 

 
 

Fig. 1 - Parts of the precursor plant, Accanthuspermum hispindum DC. (a) The leaves; (b) the thorns 

 

 In this study, four adsorbents have been prepared. The thorns (or leaves) (300g) of the plant  were washed thoroughly 

with tap water to remove dirt, rinsed with deionised and finally dried in an electrical oven at 105°C overnight. Oven dry 

thorns (or leaves) were then divided into three portions. The first portion was ground and sieved into different granular 

particle sizes (≤ 150, ≤ 212, ≤ 300, ≤ 425 and ≤ 600) µm using Endecott electric sieve. The resulting fractions were 

collected, stored in airtight plastic containers and labelled as T (or L) and used directly in the adsorption experiments.  

 The NaOH-modified A hispindum thorns (NaOH-T), was prepared by modification of T using a previously described 

method (Ning-chuang and Xue-yi, 2012). Exactly 100 g of the dried T was soaked in a solution containing ethanol (500 

ml), NaOH (250 ml; 0.8 mol/l) and CaCl2 (250 ml; 0.8 mol/l) for 20 hours. The modified T was washed and filtered 

repeatedly with plenty water until pH 7. It was then rinsed with deionised water and oven-dried overnight at 105°C. The 

resulting material was ground, sieved into particle sizes (≤ 150, ≤ 212, ≤ 300, ≤ 425 and ≤ 600) µm and stored in airtight 

plastic containers labelled (NaOH-T) as the third adsorbent. To prepare the fourth adsorbent, 90g of the dry T was heated 

at 350°C for one hour in an electric muffle furnace, allowed to cool in the furnace for three hours before final cooling in 

a desiccator. This carbonized material was mixed with pellets of sodium hydroxide at an impregnation ratio of 1:3 and 

heated again for one hour at 350°C in order to corrode the surface of the carbonized. It was then washed with plenty of 

water until pH 7, rinsed with deionised water and dried overnight in an oven at 105°C. The final material was then ground 

using a clean pestle and mortar, sieved into granular particle sizes (≤ 150, ≤ 212, ≤ 300, ≤ 425 and ≤ 600 μm) and stored 

in plastic containers and labelled as AC-T. 
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2.3 Batch Adsorption Experiments 

In order to determine the effect of operating variables, batch adsorption experiments were carried out in 250 ml batch 

reactor with one parameter varied while other variables were fixed. The effect of contact time and the adsorbent particle 

sizes were investigated in the range of 10 to 180 min and 150-600 μm, respectively. Initial Pb(II) concentrations were 

varied within 25-300 mg/l at desired pH (1, 2, 4, 6, 8 or 10). The adjustment of the system’s pH carried out using 

equimolar NaOH and HNO3. Adsorbents (4-30 mg/l) were mechanically dispersed by stirring at 200 rpm. The effect of 

temperature was studied at 303, 313, 323 and 333 K. Test samples were withdrawn at regular time intervals and filtered 

using watchman filter paper (Cat. No. 1001-125). The absorbance of these test samples was measured using BUCK 

Scientific, model number 210 VGP Atomic Absorption Spectrophotometer. The concentration of each test sample Ce was 

extrapolated from calibration curves. The % adsorption and amount of metal adsorbed on the adsorbent were calculated 

by using Eq. (1) and Eq. (2): 

% x 100o e

o

C C
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   o e
e
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q V
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     (2)                                                                   

Where Co is the initial concentration of metal ion (mg/l), Ce is the concentration the metal ion when equilibrium is 

reached (mg/l), qe is the amount of metal ion adsorbed (mg/g), V is the volume of the solution in litre and w is the weight 

(g) of the adsorbent. The optimum values of operating variables were used to determine possible consistence with a given 

kinetic scheme. Similarly, the data obtained from the effect of temperature permitted the estimation of thermodynamic 

functions. 

 

2.4 Desorption Experiments 

The strength of adsorption can also be measured based on the amount of the desorbed Pb(II). The desorption was 

determined using the method of Saeed et al. (2005) by dissolving 1 g of loaded adsorbent into 50 ml of 0.1 mol/l HCl 

and agitated for 1 h. The suspension was filtered and the residue was carefully allowed to dry for use again. The process 

was repeated five times. Absorbance was measured using UV-Vis spectrometer. 

 

2.5 Percent Moisture  

Moisture (%) was determined directly using OHAUS MB23 moisture analyser equipped with an infra-red heat 

source. 

 

2.6 Surface Charge Analysis 

In order to determine the pH at which the adsorption may be very effective, the point of zero charge of the adsorbent 

was determined using the method of Banerjee et al. (2012). To permit proper comparison, the pH at point of zero charge 

(pHpzc) was determined for the adsorbents from the thorns. Aliquot (45 ml) of 0.1 mol/l KNO3 solution was transferred 

into 250 ml conical flasks and pH was adjusted to 2, 4, 6, 8, 10 or 12. The content in each flask was then made to exactly 

50 ml by dropwise addition of the KNO3 (aq) and the pH was measured again and noted as pHi. The adsorbent (1 g) was 

immediately dispersed into each flask and agitated at 303K and 200 rpm for 1 h. The suspension was filtered using 

Whatman filter paper and the pH of the supernatant solution was measured and noted as pHf. The difference between the 

pHi and the pHf (or ΔpH) was plotted against pHi. The point of zero charge corresponds to the point of intersection of the 

abscissa at ΔpH = 0. 

 

2.6 Scanning Electron Microscopy and Infrared Spectroscopy 

In order to provide insight into the characteristics of the adsorbents scanning electron microscopy (SEM) and Fourier 

Transform infrared (FTIR) spectroscopy were performed before and after adsorption. The surface morphologies of the 

adsorbents were imaged using SEM Leica 440 instrument at accelerating voltage and magnification of 10 kV and 500×, 

respectively. Fourier Transform infrared (FTIR) spectroscopy was performed on Agilent Cary 630 Attenuated Total 

Reflectance (ATR) FTIR in the wave number range of 4000 to 400 cm-1 and background scan rate of 32. 
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3. Results and Discussion 

3.1 Properties of the Adsorbent Surface   

The SEM micrograph of Accanthospermum hispindum activated carbon (AC-T) before and after adsorption of Pb(II) 

are displayed in Fig. 2. The image of this adsorbent only shows a wafer-like formation (Fig. 2a), which does not physically 

differ from the morphology after adsorption (Fig. 2b).  

 

 
 

Fig. 2 - The SEM micrographs of AC-T (a) before Pb (II) removal; (b) after adsorption of Pb(II) 

 

The FTIR spectra of the activated carbon of Accanthospermum hispindum thorns (AC-T) were recorded before and 

after adsorption. Bands were observed at 2922, 2851, 1104 and 748 cm-1 prior to lead adsorption (Fig. 3a) which could 

be assigned to alkyl –C–H, –O–H, –C–O and –C–H bending respectively (Ning-Chuang et al., 2010). The band 1776 

cm–1 correspond to carbonyl –C=O stretching vibration. The shift observed in the intensities of these peaks after Pb(II) 

adsorption, though negligible (Fig. 3b), indicate chemical adsorption. 
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Fig. 3 - The FTIR bands of AC-T (a) Prior to Pb(II) adsorption; (b) After Pb(II) adsorption 

 

 Moisture is an important characteristic of adsorbents that cannot be overstressed. The results of their analysis for 

Accanthuspermum hispindum adsorbents are shown in Table 1. As seen from the table, the activated carbon powder (AC-

T) had the lowest moisture (5 %), followed by NaOH-T (5.5), T (5.7) and L (6.8), respectively. Basically, the lower the 

moisture content of adsorbents the better the adsorption capacity. A limit of 15 % has been specified for activated carbon 

by the Indonesian Industrial Standard (SII No. 0258-88) (Zulkania et al., 2018). This corroborates why AC-T is the most 

active adsorbent.  

 To understand how surface charge can affect the adsorption equilibrium, point of zero charge pH was determined. 

A list of the pH at point of zero charge (pHpzc) of the adsorbents used in this study is displayed by Table 1. A sample of 

the pH profile for the AC-T is displayed by Fig. 4 (See also those of NaOH-T and T in the supplementary file; Figures 

1S and 2S). From this table there is no significant change in the pH at point of zero charge (pHpzc) as the thorns adsorbent 

(T) is converted to NaOH-T or AC-T. Generally therefore, below pH 6 the uptake of the positively charged Pb(II) will 

decrease due to repulsion. Conversely, the uptake of Cr2O7
2- will increase due to enhanced electrostatic attraction. The 

pHpzc of the granular thorns T is the same as that reported for watermelon rind adsorbent (Banerjee et al., 2012). 
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Fig. 4 - Point of zero charge plot for AC-T 

 

 

Table 1 - General properties of the adsorbent 

Property L T NaOH-T AC-T 

Moisture content (%) 6.8 5.7 5.5 5 

Point of zero charge NDa 6 6.3 6.2 

a = Not determined            

 

3.2 Effect of Adsorption Variables and Kinetics 

The effect of operating parameters is depicted by the profiles in Fig. 5. Solution pH is the main factor affecting the 

rate of adsorption as it affects the chemistry of both functional groups and metal ions (Saeed et al., 2005). Figure 5a 

shows the effect of pH on the adsorptions of Pb (II) over AC-T, NaOH-T, T and L. From the figure Pb(II) uptake onto 

AC-T was 7.68 mg/g at pH 1 but at pH = 6 (corresponding to the optimum pH) the uptake increased to the maximum 

value of 11.13 mg/g (95 %). The pH 6 was previously reported to be optimum for the removal of the same metal using 

onion skin adsorbents (Saka et al., 2011). Similarly, the optimum pH for the removal of lead over the adsorbent L is 6, 

and at this pH up to 4.70 mg/g (94 %) lead is removed. For NaOH-T, the optimum pH is 8, with 89.5% removal and 

11.27 mg/g of the metal in the adsorbed phase. The leaves (T) adsorbed 4.63 mg/g lead up to 6.83 mg/g between pH 1 

and 6. The adsorption remained steady up to pH 8 and then decreased due to excess concentration of the adsorbent.   
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Fig. 5 - Plots of the variation of adsorption capacity of Pb(II) with (a) pH; (b) contact time; (c) initial 

concentration; (d) adsorbent dosage 
 

 

 The influence of contact time on the removal of Pb(II) by all the adsorbents is shown by Fig. 5b. It is readily seen 

from the figure that the activated carbon (AC-T) attained equilibrium rather rapidly within the 90 min corresponding to 

11.9 mg Pb(II)/g and 95 % lead removal. As no significant change in the equilibrium times was observed, subsequent 

experiments were therefore performed for this equilibrium time. The equilibrium contact time depends upon the 

adsorbent, metal and concentrations used in the experiment (Kalavathy and Miranda, 2010). Consequently, the NaOH-T 

adsorbed only 92 % of the Pb(II) (equivalent to 11.5 mg/g) in 120 min. Even though the contact time for lead adsorption 

over the T was also 120 min, only 55.6 % (6.83 mg/g) lead was removed. For the L, the uptake of the metal was observed 

to rise steadily until maximum uptake was reached at 150 minutes, thereafter, the uptake remained constant with 

increasing contact time. The highest percentage removal and the corresponding quantity of the metal adsorbed were 93 

% and 4.6 mg/g respectively. Therefore 150 minutes is recommended for the adsorption of lead over the adsorbent L. 

 The influence of concentration on the removal of Pb (II) ions is displayed by Fig. 5c. Generally, irrespective of the 

adsorbent, the higher the initial concentration of the higher the amount of metal adsorbed. This unique property of the 

adsorbents within the concentration regimes of the study (25 to 300 mg/l) may be attributed to the presence of a large 

number of open pores on the adsorbents surfaces (Fig. 5c). For example, the uptake capacity of Pb (II) by the AC-T was 

6.13 mg/g when the initial concentration is 25 mg/l and this rose steadily up to 36.3 mg/g as concentration reached 300 

mg/l. The order of decreasing lead uptake is AC-T > NaOH-T > T > L. 
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Fig. 6 - Variation of amounts of adsorbed lead with particle size 

 

The effect adsorbent dosage on the removal of Pb(II) was monitored at pH 6, is depicted by Fig. 5d. From the figure, 

the uptake of Pb(II) by AC-T rose sharply from 24.4 to 11.9 mg/g (89.8 to 95.4 % removal) as the adsorbent dosage is 

varied from 2 g/L to 4 g/L (or 0.1 to 0.2 g). This uptake diminished to 1.61 with further increase in the adsorbent dosage 

down to 30 g/l (or 1.5 g). Therefore, 4 g/L was considered as the optimum adsorbent dosage. Accordingly within the 

remaining adsorbents behaved in a similar manner with increase in adsorbent doses. At the other end, the effect of 

granular adsorbent size range (150 to 600 µm) on the lead adsorption capacity was investigated (Fig. 6). From the figure 

an increase in the particle size from ≤ 150 µm to ≤ 600 µm caused a decrease in the quantity of the AC-T adsorbed lead 

from 12.1 to 8.75 mg/g (96.2 to 69.8 % removal). From analytical standpoint, adsorption was nearly steady up to ≤ 212 

µm corresponding to 11.9 mg/g (95.4 % removal). Therefore, particle size of ≤ 212 µm was considered as optimum for 

the Pb(II) removal. As the particle size is increased down to ≤ 600 µm the quantity of the metal adsorbed decreased from 

to 8.75 mg/g 69.8 % removal. Similar trend was observed for NaOH-T, T and L. The negative effect of particle size can 

be attributed to the decrease in surface area which results in decreased sites for adsorption.  
 

3.3 Isotherms and Adsorption Kinetics 

The adsorption data of Pb(II) were tested against Langmuir, Freundlich and Temkin two-parameter isotherm models 

and the resulting data are displayed in Table 2 (see also isotherms in the supplementary Fig. 3-6). The Langmuir 

adsorption isotherm is given by Equation (3). 

 

max max

1e e

e L

C C

q q K q
       (3) 

 

 Where, Ce is equilibrium concentration (mg/l), qe is amount of metal adsorbed (mg/g), qmax is the maximum 

adsorption (mg/g) which gives a complete monolayer and KL is the adsorption equilibrium constant in l/mg. A linear plot 

of Ce/qe against Ce gives a slope of 1/qmax and an intercept of 1/KLqmax. As may be seen from Table 2, the highest value 

of qmax (38.5 mg/g) was obtained when AC-T was applied as adsorbent. This value is slightly less than the qmax (46.69 

mg/g) reported for the removal of Pb(II) using Myriophyllum spicatum as adsorbent (Keskinkan et al., 2003).  

 

 The Freundlich model is based on Eq. (4).                                      

1
log log loge F eq K C

n
      (4) 

Where n (dimensionless) characterizes the adsorption strength and KF is the Freundlich constant. The KF value relates 

to bond strength and increases with the total adsorption capacity of the adsorbent. A linear plot of log qe against log Ce 

gives a straight line with a slope 
1

n
 (whose value is indicative of bond energies between the metal ion and the adsorbent), 

and intercept of logKF. From Table 2 the uptake of Pb(II) over all the adsorbents used in this study is associated with 

high n values (or low 1/n values) which translate to stronger the interaction between the adsorbents and the heavy metal 

(Jonathan et al., 2009). The Temkin isotherm is given by Eq. (5). 
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ln lne e

RT RT
q A C

B B
       (5) 

 

 Where A (l/g) and B are Temkin constants whose values are obtained from intercept and slope of the plot of qe against 

lnCe, respectively. Generally speaking, the adsorption processes are consistent with Langmuir isotherm, except for AC-

T whose adsorption was consistent with both Langmuir and Freundlich isotherm rather than the Temkin isotherm as 

demonstrated by the high R-square values in the former cases (Table 2). Agreement with both of these isotherms was 

previously reported for Pb(II) adsorption on carbon nanotube (Li et al., 2003) and potassium hydrogen phthalate 

adsorption on TiO2 (Valente et al., 2006). The agreement of our data with Langmuir isotherm is supportive of the 

chemisorption mechanism, which informs of the high binding energy between Pb(II) and the adsorbents. 

 

Table 2 - Parameters of selected isotherms for the removal of 50 mg/l Pb (II) at pH 6 

Adsorbent 

(4 g/l) 

Langmuir 

 

Freundlich Temkin 

 

 R2 qmax 

(mg/g) 

KL R2 KF 

(mg/g) 

1/n R2 A B 

AC-T 0.994 38.5 0.556 0.996 9.31 0.266 0.955 5.59 5.66 

NaOH-T 0.976 31.3 0.080 0.908 7.53 0.260 0.909 4.47 3.75 

T 0.947 26.3 0.014 0.899 26.3 0.004 0.949 6.95 -16.1 

L 0.973 17.2 0.002 0.987 2.98 0.305 0.945 5.23 -14.2 

 

 The kinetics of Pb(II) removal was evaluated using the Lagergren pseudo first-order equation [Eq. (6)] and the 

pseudo second-order equation [Eq. (7)].   

 

  1ln lne t eq q q k t        (6) 

 

2

2

1

t e e

t t

q k q q

 
  
 

      (7) 

 

 Where qe and qt are the adsorption capacities at equilibrium and at any time t, respectively. The k1 in Eq. (6) is the 

pseudo first-order rate constant whose value is obtained as the slope of ln(qe-qt) versus t. The k2 in Eq. (7) can be obtained 

from the plot of t/qt versus t whose intercept is 1/k 2.qe
2. The calculated and experimental adsorption capacities as well as 

the pseudo first-order and pseudo second-order rate constants are displayed in Table 3 (with representative kinetic profiles 

in the supplementary (Fig. 6-9). From the table, it can be seen that the Pb(II) adsorption is more consistent with the 

pseudo second-order kinetic model, which reveals chemical adsorption. This is further confirmed by the values of 

correlation coefficients (which are all close to unity) and the fact that experimental and calculated adsorption capacities 

do not differ significantly. The pseudo second-order kinetic scheme shows that the adsorption is chemisorption-

controlled. 

 

Table 3 - Kinetic data for the removal of Pb(II)  from 50 mg/l solution at pH 6 

Adsorbent 

(4 g/l) 

Observed qe 

(mg/g) 

 

Pseudo-first order equation Pseudo-second order equation 

 

R2 Calculated qe 

(mg/g) 

k1(min-1) R2 Calculated  

qe (mg/g) 

k2 (g/mg 

min) 

AC-T 11.9 0.984 4.05 0.0299 0.998 12.2 0.0175 

NaOH-T 11.5 0.913 6.68 0.0386 1.000 12.6 0.0074 

T 6.83 0.986 6.65 0.0207 0.999 12.5 0.0007 

L 4.60 0.995 3.24 0.0161 0.996 5.43 0.0057 

 

 The performances of all the adsorbents for the uptake of Pb(II) were evaluated by adsorption and desorption over 

the thorn-based adsorbents for five cycles. The essence of desorption experiments is to understand how the Pb(II) ion is 

transferred between aqueous phase and adsorbent phase, whether in exchangeable, complexed or adsorbed form and if 

more than the adsorption process (Xie et al., 2018). The uptake of the lead by these adsorbents in the last cycle was used 

to grade the efficiencies of the adsorbents. The lead desorption profiles are displayed in Fig. 7. From the figure, the 

quantity of the Pb(II) in the adsorbed-phase after 5 cycles of use of the adsorbents T, AC-T and NaOH-T are 9.25 mg/g, 
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9.90 mg/g and 10.4 mg/g which shows the order of reusability T < AC-T < NaOH-T, respectively. This order can be 

attributed to the increasing order of affinity of Pb(II) to the surface of the adsorbents. 

 

 
Fig. 7 - Profiles of Pb(II) desorption from thorns adsorbents 

 

3.4 Thermodynamics  

Thermodynamic functions were determined from experimental data obtained at 303, 313, 323 and 333 K. The 

heterogeneous equilibrium constant K for the adsorption equilibria is given by the Eq. (8).  

 

  s

e

C
K

C
       (8) 

  ∆Go = -RTlnK     (9)  

 Where Cs (mg/l) is the amount of adsorbate in the adsorbed phase and Ce (mg/l) is the equilibrium concentration of 

the solution. The values of K for Pb(II) adsorption onto the adsorbents used in the study were calculated. The 

corresponding values of the Gibbs free energy change (∆Go) were calculated using Eq. (9). The thermodynamic functions 

such as adsorption enthalpy (∆Ho) and entropy change (∆So) are given by the Eq. (10).  

  ln
o oH S

K
RT R

 
       (10) 

Table 4 - Thermodynamic data for the removal of Pb(II) from 50 mg/l solution at pH 6 

Adsorbent         ΔG (kJ /mol) ΔH (kJ/mol) ΔS (J/mol K) 

 303 K 313 K 323 K 333 K   

AC-T -4.01 -2.71 -1.41 -0.11 -43.4 -130 

NaOH-T -3.43 -2.51 -1.59 -0.66 -31.4 -92.3 

T +2.92 +3.47 +4.03 +4.58 -13.9 -55.5 

L -0.53 -1.12 -1.83 -2.48 +19.2 +65.1 

 

The activation energies of adsorption over the Accanthuspermum hispindum adsorbents are shown in Table 4. From 

the table, the negative Gibbs free energies for the adsorption of Pb(II) over AC-T, NaOH-T and L were consistent and 

this shows the feasibility and the spontaneous nature of these adsorption processes (Sathishkumar et al., 2009). However, 

for the Pb(II) removal on the surface of the adsorbent T negative values of  ΔS and ΔH with a positive ΔG indicate the 

need for lower temperatures for the process to proceed spontaneously. Conversely, the positive ΔS and ΔH values 

associated with the adsorption over L indicate the need for higher temperatures for the process to be spontaneous.  
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3.5 Correlation of Surface Properties with Performance  

Some many factors may be considered responsible for the performance of the Accanthuspermum hispindum –based 

adsorbents. They demonstrated low moisture, favourable pHpzc and surface functionalities such as –O–H, –C–O and           

–C=O which may be sufficient to account for the observed efficiency of adsorption.   Since chemical adsorption 

mechanism holds true, these functional groups may mediate in monolayer formation and lead binding affinity. The point 

of zero charge pH obtained for the thorn-based adsorbents were all above 6 which reveal the non-suitability of the 

adsorbents for use in acidic media. 

 

Conclusion 

This study successfully shows the effectiveness of granular adsorbents generated from readily available 

Accanthuspermum hispindum weed for the adsorptive removal of Pb(II) from aqueous solutions. The adsorption was 

observed to be dependent on pH, contact time, concentration, temperature and particle size. The pH at the point of zero 

charge appeared as important factor that dictates the adsorption equilibrium.  
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