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1. Introduction

GaN high electron mobility transistors (HEMTs) are used in high frequency, high power, and robust low-noise

applications [1–3]. Linearity is one of the most crucial figures of merit for the application of power amplifiers. For 

improving the device linearity, advanced device structures or epitaxial structure engineerings, such as field plate, 

nonlinear polarization dielectric, double-channel, and optimized barrier or cap layer thickness, have been explored [4–

7]. Polarization Coulomb Field (PCF) scattering, which stems from the non-uniform distribution of the polarization 

charges at the AlGaN/GaN interface, is a particular scattering mechanism in AlGaN/GaN HFETs. It has been reported 

that PCF scattering can affect electron mobility and parasitic source access resistance ( SR ) [8–9]. Besides, III–V 

nitride-based HEMTs simulations show that the Polarization Coulomb Field Scattering plays a very important role in 

limiting the device performance, especially saturation region [10,11]. However, the high power dissipation of 

AlGaN/GaN HEMTs operating at large biases may result in high junction temperature and enhance the phonon 

scattering causing a drop in carrier mobility. This effect has been reported to be of great influence on the static current 

characteristics and is commonly referred to as self-heating. The evidence of such an effect is a negative slope of drain 

current DSI versus drain voltage DSV  [12]. More recently, the source-drain channel resistance of III nitride-based 

HEMT has been modeled by several groups analytically, numerically or analytical-numerically [12-14]. It is important 

to investigate systematically the dependence of AlGaN–GaN HEMT performance on the Polarization Coulomb Field 

Scattering and multi sub-band with including different physical parameters. In this paper, we report the results on the 

effects of Polarization Coulomb Field Scattering on the parasitic and channel resistance with including multi sub-band. 

The channel resistance of these transistors was previously calculated without including PCF scattering [16]. In the 

present work, a new numerical model for total resistance is presented.  That is capable of determining effects of PCF 

scattering and multi sub-band on the parasitic and channel resistance. This is achieved by (i) using a self-consistent 

solution of the Schrödinger and Poisson equations in order to obtain both two-dimensional electron gas density, wave 
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function, Fermi level ( FiE ) specified relative to the bottom of a triangular well, (ii) take into account the modified 

wave function in the AlGaN barrier, (iii) take into account the occupancy of the various sub-bands, the intrasubband, 

and intersubband coupling coefficients mnH . The fringing-field effect can be ignored in the present numerical model. 

2. Material and Method

In order to obtain accurate values for the Fermi energy, the energies of quantized levels within the 2DEG, the

occupancy of the various sub-bands, the intrasubband and intersubband coupling coefficients, potential profiles, wave 

function and the sheet carrier concentration for the 2DEG in AlGaN/GaN heterostructures; both the Schrödinger and 

Poisson equations must be solved self-consistently. This has been achieved by solving Schrödinger’s equation and 

simultaneously taking into account the electrostatic potential obtained from Poisson’s equation, as well as the image 

and exchange-correlation potentials using Numerov’s numerical method. In the self-consistent calculation, the 

nonlinear formalism of the polarization–induced field as a function of Al mole fraction in AlGaN/GaN  heterostructures 

have been assumed, as well as taking into account all fully and partially occupied sub-bands within the interface 2DEG 

potential well [13,15]. Using such an approach, it is possible to calculate the 2D-electron mobility taking into account 

the combined contributions from each of the individual electron scattering mechanisms [16]. The field-effect transistor 

(FET) model used in calculations is shown schematically in Fig. 1. Knowing the electron energy in any sub-band ( )iE , 

the 2DEG density 2( )Dn , and the Fermi energy can be calculated [12, 16, 18, and 19]. The Quantum correction for the 

effective width of the 2DEG  2 2 2( 1/ )DEG D Dd n zn z dz    at a different electron temperature ( eT  ) is given by [20]: 

9 8
2 5.6 10 4.7 10DEG ed T         (1) 

Knowing the behavior of the 2DEG density as a function of the gate voltage, one can obtain the 2D electron mobility as 

a function of the gate voltage along the channel [21]. On the other hand, from the charge transport model, the channel 

potential is well known for AlGaN/GaN heterostructure FETs. Hence the electron temperature can be derived from the 

energy balance model as [22] 

2
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k
     (2) 

where total is the total relaxation time, BK  is the Boltzmann constant, 0T  is the lattice temperature, 2DEG  is the 

electron mobility and F  is the electric field along the 2DEG channel. 

The additional polarization charge ( )  in the gate region can be calculated as the following relation [23]: 

2
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        (3) 

Here, 33e , 33C  and 2Dn are the piezoelectric coefficients, the elastic stiffness tensor and barrier thickness of 

AlGaN, respectively, ( )) /AlGaN
z GS CH AlGaNE V V d    is the vertical direction electric field across the AlGaN barrier 

layer.  AlGaN
zE  and   under the various gate-source voltage GSV   and channel potential CHV  are calculated using 

Eq. (3).The energy-dependent momentum relaxation rate 1/ PCF    for PCF scattering can be written as [21,24]: 
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where A  is the 2-D normalization constant that converts the scattering rate per area and   is the scattering angle 

between initial state k  and final state k  .  ( , )eS q T  is the screening function to reflect the screening effect and K KM 

is the matrix element (depend on the wave function) for the transition from initial state k  to the final state k    [24]. 

The wave function, although being very practical for most of the relevant mobility-related calculation, has the 

drawback of being zero in the barrier region. This is equivalent to consider the barrier as infinitely high. However, alloy 

scattering is a mobility-limiting mechanism intrinsically related to the penetration wave function in the barrier region. 

This can be overcome by using a modified Fang-Howard wave function [25]. Besides PCF scattering, the other main 

scattering mechanisms are polar-optical-phonon (POP) scattering, piezoelectric (PE) scattering, alloy scattering 

(Alloy), dislocation scattering (DIS), acoustic-phonon (AP), and interface roughness (IFR) scattering [26-29,16]. The 
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momentum relaxation time  IFR ,  DIS , POP , Alloy  , AP and PE  can be calculated using the pre-existing 

calculation formula [11,24]. By Matthiessen ՚s rule,  CR  and  DR  can be written as:  
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2total G F CR R R R    , F S DR R R  ,   CH GR R    (8) 

 

The contact resistance CR  is constant and SR  is of different value during the measurement. As a result, SR  is 

determined by the scattering mechanisms for the electrons in the gate-source channel [27]. In order to obtain accurate 

values for mobility, the nonlinear formalism of the polarization–induced field as a function of Al mole fraction in  

AlmGa1-mN/GaN HEMTs have been assumed, as well as taking into account intersubband coupling coefficients  

1 2 1 2 1 2( ) ( ) exp(mn mn mnH dz dz z z q z z      and all fully and partially–occupied sub-bands within the interface 

2DEG potential well. From the definition of the drift mobility we obtain [26-28]: 

 

   2 *
( , ) ( , )DEG e total e

e
T E T E

m
   (9) 

 

where total   are the total relaxation times associated with PCF scattering and the other main scattering 

mechanisms so that these relaxation times have been calculated using the methods described in Refs [26-29, 16]. Also, 

the different scattering rates can be separated into two types: (i) elastic scattering due to acoustic and piezoelectric 

phonons, ionized impurities and interface roughness, etc., and (ii) inelastic scattering due to polar optical phonons. In 

order to take into consideration all scattering mechanisms in the mobility calculation, it is necessary to include all such 

mechanisms in the linearized Boltzmann equation and to solve it numerically using an iterative technique [9]. It should 

be noted that in the linearized Boltzmann equation, ( , )E T  is the perturbation function so that to obtain the ( , )E T  

needs to take into account the contribution of all occupied sub-bands by means of following relation [16]: 
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Eq. (10) indicated that all occupied states contribute to the total mobility of the two-dimensional electron gases. 

This equation also shows that the contribution of each sub-band depends on its occupation number (that is relative 

concentration 2/m DEGn n ) such that the most significant contribution comes from the first sub-band, which has the 

highest occupation number. Using such an approach, it is possible to calculate the 2D-electron mobility taking into 

account the combined contributions from each of the individual electron scattering mechanisms. Table 1 is the material 

parameters used in numerical calculation method for 2DEG (Tow Dimensional Electron Gas), 2DEM (Two 

Dimensional Electron Mobility) and Table 2 is the Specific polarization charge values for calculation of the PCF 

scattering potential ( ( , , ))V x y z ,  , K KM   and PCF   0 0( ( ) ( ( ) / ) / [ ( ( ) / ) ])PCF PCF E E f E E dE E f E E de          
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Fig. 1 - Cross-sectional view of the AlGaN/GaN HFETs 

 

 

3. Results and Discussion  

To assess the validity of the numerical model, a comparative study has been undertaken to theoretically compare 

the obtained results with experimental results. The material parameters used in the 2DEG, 2DEM calculations and 

specific polarization charge values for AlGaN/GaN HEMTs are presented in Table 1 and 2. Moreover, all other 

material parameters and device details have been taken from Refs. [10, 17, 20, 30 and 31] for 0.21 0.79 /Al Ga N GaN   

HEMTs. Fig. 2 shows that as GL  increases, the 2-DEG density 2( )Dn  decreases and the threshold voltage shifts 

towards increasingly negative values. The large values 2Dn  are attributed to the presence of polarization induced 

charges in AlGaN/GaN HEMTs, which have been incorporated accurately in the proposed model. The slope of the 

2D GSn V  curves corresponds to the capacitance of the structure, which is related directly to the separation between the 

gate and 2DEG, i.e., the thickness of the AlGaN layer. As GL decreases, the slope of the 2D GSn V  curves slightly 

increases beyond the threshold. This is due to the fact that the gate capacitance decreases as GL  decreases. 

For 4GL m , the slope is obtained as 2 11.9551012cm V  , whereas for 16GL m , the slope decreases to 

2 11.81012cm V  . Thus, a lower value GL  is desirable to achieve a high value of the 2-DEG density and lower values 

of the gate capacitance. The wave functions under different 2Dn , as shown in Fig. 3. It is apparent that the wave 

function is closely relevant to 2Dn . The greater 2Dn  helps the electron wave to well-function in the quantum, and the 

modified Fang-Howard (inset of Fig. 3) is closer to the AlGaN/GaN interface. Hence, the wave function depends 

on 2Dn . In Fig. 3 and 4,  Calculated specific SR and DR   as a function of forward gate-source voltage for PCF, POP, 

AP, IFR, ALLOY and DIS scatterings as well as the total SR  (TOTAL) and the measured SR  values at room 

temperature in comparison with experimental data. As shown in Fig. 5, only the resistance of PCF with the gate voltage 

is changed, which is related to the polarization charge  in the gate region. The rest of the resistors are fixed at the 

gate voltage, except for the resistance POP, which is extremely small in relation to the voltage and thus is not effective 

in the variation process of SR  (or DR  at this temperature. However, this will be effective at high temperatures, although 

investigation in this study was performed only at the 300K  temperature. Fig. 5 shows how this issue is corrected. The 

calculated totalR for devices is shown in Fig. 5. As shown in the figure, there is a distinct difference between the 

experimental data and the calculated totalR excluding the PCF scattering and the MSB effect. This means that the PCF 

scattering and the MSB effect are not ignorable in AlGaN/GaN HEMTs. The effect of the MSB and PCF scattering on 

increasing the source-drain channel resistance is almost 35% and 65%, respectively. However, the increase in GSV  and 

thus the decrease in the electric potential in the channel under the gate induces the decrease/increase in the 

negative/positive  , according to Eq. (3). Accordingly, the PCF scattering becomes weaker with the increase in GSV , 

inducing a decrease in totalR . 

 

 



Rajab Yahyazadeh et al., J. Sci and Tech Vol. 11 No. 1 (2019) p. 1-9 

 

 

 5 

Table 1- Material parameters used in 2DEG and mobility calculations for the 0.21 0.79 /Al Ga N GaN  HEMTs 

(Refs. 10, 14, 19–21) 

Parameters            Unit Value 

Electron effective mass *
GaNm       0m  0.228 

Mass density 3/kg m  6.13103 

Static dielectric constant ( )S GaN  0  10.4 

Optical dielectric constant   0  5.35 

LO-phonon energy meV  90.5 

Acoustic-phonon velocity /m s  36.6 10  

Piezoelectric constant 14h  /V m  94.28 10  

Deformation potential eV  8.5 

Elastic constant LC  2/N m  112.66 10  

Elastic constant TC  2/N m  110.66 10  

Band gap (0)GaN
gE  eV  3.42 

Band gap (0)AlN
gE  eV  6.13 

Drain-gate & gate-source distance (LGD 

& LGS) 
m  8 

gate with  m  100 

Gate length  m  4 

AlGaN unintentional doping density 3cm  181 10  

AlGaN Si doping density 3cm  182 10  

Electron effective mass 
1

*

m mAl Ga Nm


 0m  0.252m+0.228 

Static dielectric constant 1( )S m mAl Ga N   0  -0.3m+10.4 

Schottky barrier height ( )B m  eV  1.3m+0.84 

Interface roughness parameter L nm  1.5 

Dislocation charge density dissN  2cm  101 10  

Lattice constant  c A  5.185 

Average displacement of the interface   nm  1 

Auto-correction length of    nm  7.5  

 

Table 2- Specific polarization charge values for the PCF scattering potential (Refs. 10, 26) 

( )GSV V  
2 2

0(10 / )C m 
 

2 2
1(10 / )C m 

 
2 2

2 (10 / )C m 
 

2 2
3(10 / )C m 

 
2 2

4 (10 / )C m 
 

0.6 

0.7 

0.8 
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1.0 

1.1 

 

 

 

1.455 

 

 

 

0 
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1.450 
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1.448 
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1.463 

1465 
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1.452 
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Fig. 2 - The 2DEG density ( 2Dn ) verse for  0.21 0.79 /Al Ga N GaN  HEMTs with different gate lengths in 

comparison with experimental data [31]. 
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Fig. 3 - The electron wave function ψ(z) as a function of the distance from 0.21 0.79 /Al Ga N GaN interface under 

different 2Dn  (here 2Dn corresponds to the electron density under the gate region as a function of gate bias). 
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Fig. 4 - Calculated specific  as a function of the forward gate-source voltage for PCF, POP, AP, IFR, ALLOY 

and DIS scatterings as well as the total  (TOTAL) and the measured values (the MEASURED) at room 

temperature in comparison with experimental data [10].  
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Fig. 5 - Calculated specific  as a function of the forward gate-source voltage for PCF, POP, AP, IFR, ALLOY 

and DIS scatterings as well as the total  (TOTAL) and the measured  values (the MEASURED) at room 

temperature in comparison with experimental data [10].  
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Fig. 5 - Source-drains channel resistance without PCF scattering effect (dot line), with a multi sub-band effect 

(dashed line) and with all effect (solid line) in comparison with experimental data for 0.21 0.79 /Al Ga N GaN  

HEMTs [31]. 

 

 

4. Conclusions 

In this paper, an accurate numerical model for source-drain channel resistance has been developed for the AlGaN/GaN-

based HEMTs. This model is able to accurately predict the dependence of source-drain channel resistance on the PCF  

scattering, multi sub-band. Calculated specific SR and DR  as a function of forward gate-source voltage and PCF 

scattering and multi sub-band effect are not ignorable in source-drain channel resistance AlGaN/GaN HEMTs. 

According to the numerical calculations, the effect of multi sub-band and PCF scattering on the increase of source-

drain channel resistance is 35% and 65%, respectively, with the effect of PCF being almost twice as high as multi sub-

band. If most electrons are in the first sub-band, the effect of the multi sub-band will be 5% and PCF % 95, and the 

PCF scattering will have the greatest effect on total resistance.  
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