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1. Introduction

Calculus of Variations (CoV) gives the 

mathematical theory to take care of 

extremizing functional issues for which a 

given functional has a stationary value either 

minimum or maximum [8]. Optimal control is 

an expansion of CoV and it is a mathematical 

optimization method for determining optimal 

control strategies. A couple of standard cases 

that mirror the utilization of optimal control 

are the medication bust technique, optimal 

generation, optimal control in discrete 

mechanics, strategy plan and the royalty 

installment issue [3,4,7]. Consider the 

framework in the time area displayed by the 

differential equation 

   y t u t  ,  0y  known  1

with the unknown endpoint of state value 

 y T  at time .t T  We wish to decide the

control function  u t  for  0,t T  that

maximizes 

        
0

, , ,

T

J u f t y t u t y T dt      2

Note that the integrand relies on the priori 

unknown final value,  y T . This paper is

sorted out as follows. In Section 2, we build up 

the necessary conditions for the extremizing 

solution. Then in Section 3, we consider a 

simple illustrative example. We finish the last 

section with conclusions. 

2. The Non-Classical Optimal Control

Problem

We start by building up the necessary 

conditions for the extremizing solution. 

Suppose J  be a functional of the form 

        , , ,

T

a

J y f t y t y t y T dt      3

where .T a  We consider the issue of 

deciding the functions   1y C   with the end 

goal that  J   has an extremum. An

underlying condition  y a   is forced on

  ,y   however  y T  is unknown.

Assume that  J   has an extremum at

 .y %  We can continue as Lagrange did [2],

by considering the estimation of J  at a close-
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by function y y h % , where   is a small 

parameter,   1h C   and   0.h a   Since 

 y T  is unknown, we do not expect  h   to 

vanish at .T  Let 

 

    

       

   

, , ,T

a

J y h

t y t h t y t h t
f dt

y T h T
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A fundamental condition for  y %  to be an 

extremizer is given by 
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where         , , ,t y t y t y T % % %L .  

Integration by parts gives 

 

   

        

T

y

a

T
T

y ya
a

f h t dt

d
f h t f h t dt

dt



 



 





L

L L
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Since   0,h a   the necessary condition 

(4) can be then composed as 
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for all   1h C   with the end goal that 

  0.h a   Specifically, condition (8) holds for 

the subclass of function   1h C   that do 

vanish at  .h T Hence, the classical 

arguments apply, and in this way 

 

    0y y

d
f f

dt
 L L

     
 8

 
 

Condition (7) must be fulfilled for all 

  1h C   with   0,h a   which incorporates 

functions  h   that do not vanish at .T  Thus, 

conditions (7) and (8) infer that 

 

      
   

        

, , ,
0

, , 0

T
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y z

a

f T y T y T y T
f h T dt

T a

h T f T y T y T f dt
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That is, 

 

        , , , 0

T

y z

a

f T y T y T y T f dt
  % % % L

 10  

 

Note that in the function f  does not 

depend on  y T  in the classical setting, 

which is, 0.zf   All things considered (10) 

lessens to the outstanding normal boundary 

condition     , , 0yf T y T y T
 % %  (or, from 

a Hamiltonian optimal control point of view, 

  0).p T  We have quite recently 

demonstrated the accompanying outcome: 

 

Theorem 2.1: Let a  and T  be given real 

numbers, .a T  If  y %  is a solution of the 

problem 
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a

J y f t y t y t y T dt

y a y T free

y C
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then 

 

      

      

, , ,

, , ,
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d
f t y t y t y T

dt

f t y t y t y T






% % %
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for all  , .t a T  Moreover, 

 

      

      

, , ,

, , ,

y

T

z

a

f T y T y T y T

f t y t y t y T dt




 

% % %

% % %
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From an optimal control point of view one has 

 

        , , ,yp T f T y T y T y T
 % % %

    
 14

 
 

where  p t  is the Hamiltonian multiplier. 

Theorem 2.1 states that the standard necessary 

optimality conditions (the Euler-Lagrange 

equation [2] or the Pontryagin maximum 

principle [5] hold for issue (11) by substituting 

the classical transversality condition 

  0p T   with 

 

      ( ) , , ,

T

z

a

p T f t y t y t y T dt  % % %

 

 15

 

3. Numerical Example 

 

Consider the Ordinary Differential Equation 

system below 

 

   y t u t  ,  0 0y  .                     16  

 

We wish to maximize 

 

      
0

, , ,

T

J u f t y t u t z dt    
  

 17

 

 

where 

 

 
1

, , , sin
2 10

t
f t y u z a u z u

  
     

    

 18

  

is a continuous function. The initial known 

state is  0 0y   and final state value 

 z y T  is unknown. In this paper, we set 

50.T  The Hamiltonian is 

 , , ,H t y u p f p u    and 

 

        
        

, , ,

, , , .

p

y

y t H t y t u t p t

p t H t y t u t p t

  


       

 19

 
 

Function f  does not rely upon y  and for 

an ideal (maximum in this illustration) the 

costate fulfills 

 

0.yp H p    
                          

 20
 

 

The stationary condition is 

 

0uH 
                                                

 21
 

 

and this yields 

 

   
2

1
sin

4 10

t
u t z p t

  
   

            

 22

 
From (15) 

 

        
50

0

, , ,zp T f t y t y t y T dt  % % %

 

 23

 Holds 

   
50

0

sin
10

t
p T u t dt

 
  

 


               

 24

 

4. Results 

 

Let us consider the necessary condition that 

should be fulfilled. For the system of Ordinary 

Differential Equations (16) and (20) with 

control (22), the known zero initial condition 
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 0y  and a guessed initial value  0 ,p  we 

have to guarantee that the normal boundary 

condition (24) is fulfilled. 

The two point boundary value problem 

need to be solved. The value of z  that has 

been used in (22) also need to iterate so that 

the z  value obtained will be the same as  y t  

at .t T  When one has gotten convergence in 

regards to the values  y T  utilized as a part 

of (22) and  p T  (24), at that point the 

necessary condition is fulfilled and we ought 

to have the optimal solution. 

Utilize the Newton shooting technique with 

two guessed value 1v  and 2v
 
[1]. We want 

 1 0v p  and  2v p T  as determined by 

condition (24). At the point when the program 

acquires the outcome with these two 

conditions holding to a high level of accuracy, 

the necessary conditions hold and we ought to 

have the optimal solution. We have tackled the 

shooting technique issue utilizing C++ and the 

profoundly precise Numerical Formulas 

library routines [6]. 

Integrate the system of Ordinary 

Differential Equations  (16) and (20), and 

 

 sin
10

p

t
g u t

 
   

                              

 25

 
 

J g                                                    26  
The outcomes are ( ) 0.900000,y T   

( ) 0.015431p T  ,   3.275093pg T    and 

  6.25257J T 
                                

 

5. Conclusions 

 

In this paper we have demonstrated to 

solve a nonstandard optimal control issue. We 

have introduced the fundamental conditions 

and computational techniques so as to acquire 

optimal solutions. A shooting method together 

with an expanding approach was utilized to 

acquire an exceedingly precise solution and 

compared with a discrete-time nonlinear 

programming solution. Our systems can be 

connected to the real problem rather more 

entangled financial matters issue where the 

Lagrangian integrand is piecewise constant in 

many stages and relies on the  y T  which is 

priori unknown. 
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