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1. Introduction 

 

Recently, there are some applications of 

electric and electromagnetic systems that use 

polarization tensor (PT). In electrical imaging 

such as for biomedical or industrial purposes, 

the PT is adopted in the algorithm of image 

reconstruction to enhance the quality of the 

image [1,2]. Moreover, by using similar 

technique in electrical imaging, the PT is also 

considered during the investigation of electro- 

sensing by weakly electric fish [3,4,5,6,7,8,9]. 

On the other hand, a slightly different model 

than electrical imaging has been developed to 

apply PT in metal detection for examples in 

security screening [10,11,12] and landmine 

clearance [13,14,15]. In all mentioned 

applications, the PT is investigated based on 

the perturbation of electric [1,3,4,5,6,7,8,9] or 

electromagnetic field [16,17,18,19,20,21] in a 

free space (such as 2D or 3D) due to the 

conductivity contrast between the space itself 

and a conducting object. In this case, the PT 

depends on the geometry and the conductivity 

of the object. Therefore, the PT representing 

the perturbation due to the presence of the 

object is also referred as the PT for that object. 

In the literatures, there are two approaches 

used to determine the PT. In the study of 

electrosensing fish, the PT is mostly 

determined by using analytical formula 

whereas in metal detection, the PT is obtained 

based on data collected during field 

measurements. 

Computing the PT based on both 

approaches are essential in order to effectively 

apply the PT. A few studies focusing on 

computing the PT according to the analytical 

formula can be found for examples in 

[19,22,23,24,25]. Meanwhile, the PT used in 

[11,12,13,14,15] are computed according to 

optimization technique based on a few 

measurements data obtained during 

experiments in the laboratory. In addition, 

other studies such as by [20,26,27] compare 

the PT computed both by analytical formula 

and field measurements. Besides, 

understanding the properties of the PT is also 

important in the related applications. For 

example, in order to describe a conducting 

object based on its PT, we must be able to 

explain how PT represents that object. 

Because of this, many researchers have 

investigated the important properties of  PT 

but, there are some useful properties of PT that 

have not yet been revealed. 

In this study, by examining the analytical 

formula of the first order PT for ellipsoid, we 

will present some properties related to the first 

order PT specifically for spheroid. Previous 

studies have shown that the first order PT for 

most objects are actually also the first order PT 

for spheroid [7,27,28]. Thus, we might 

increase our understanding on the first order 
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PT for many objects by investigating the first 

order PT for the spheroid. 

In the next section, we will briefly review 

the mathematical formula of the first order PT 

for ellipsoid before investigating spheroid. 

 

2. Mathematical Formulation of the 

Polarization Tensor 

 

Let B be a small object presented in the space 
3R . The conductivity  x  is then defined 

such that for any point .3Rx  
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where k is a constant depending on the 

material of B. Equation (1) suggests that there 

exists a conductivity contrast between 
3R  

(conductivity equal to 1) and B (conductivity 

equal to k). According to Ammari and Kang 

[1], if there is an electrical field in 
3R with the 

presence of B, B are then described by the 

terminology called as the Generalized 

Polarization Tensor (GPT). GPT can be 

determined by solving system of integral 

equations and the simplest form of GPT 

denoted by M is called as the first order GPT 

(or simply the first order PT). Here, M for B at 

conductivity k, denoted by M (k, B) where 

0 1k     is a real 3 x 3 matrix and it is 

proven in [1] that M is symmetric. Moreover, 

[1] has also shown that M is positive definite if 

1k  whereas, it is negative definite if 

0 1k  . 
In addition, by adapting [1,29,30,31], 

Mohamad Yunos and Ahmad Khairuddin [32] 

have proposed a slightly different explicit 

formula of the first order PT when B is an 

ellipsoid. If B is an ellipsoid with semi 

principal axes a, b and c )0,,( cba , that can 

be represented by 

2 2 2

2 2 2
1

x y z

a b c
    in the 

Cartesian coordinate system, ( , )M k B  is a 

nonzero matrix given by [32] as 
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where | |B is the volume of B  and for 1,2i   

and 3, 
1
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 id  are nonnegative 

constants called as depolarization or 

demagnetizing factors [29,30,31] given by 
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Previously, depolarization factors were 

classically appeared in the study of composites 

[29] and also had been used by [30,31] to 

study electromagnetism. 

Therefore, equation (2) together with (3), 

(4) and (5) will be used to investigate some 

properties of the first order PT for spheroid. 

 

3. Results 

 

In this section, we will present some properties 

related to the first order PT for spheroid. Here, 

the spheroid is a specific case of the ellipsoid 

given by the previous Cartesian equation, 

where, two of its semi principal axes are equal. 

In order to achieve our purpose, we firstly 

prove the following lemma.  

 

Lemma 1 Let ,a b  and c  be the semi 

principal axes of ellipsoid 

2 2 2

2 2 2
1

x y z

a b c
    

and id  is the depolarization factors for 

1,2,3i  . 

a. ba  ,  if and only if 1 2d d . 

b. ca  ,  if and only if 1 3.d d  

c. cb  ,  if and only if 2 3.d d  

 

Proof : 
We prove part (a) and the prove for part (b) 

and (c) can be obtained by repeating the 

similar steps. 
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Assume that .a b  We need to show that 

1 2.d d  By substituting a b  into both 

1d and 2 ,d we immediately have 1 2.d d  

Now, suppose that 1 2.d d We need to 

show that .a b  Since 1 2 ,d d we will have  
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 Thus, 

2 2b a  that is .b a   Therefore, it is pro- 

ven that a b since , 0.a b    

 

 
 

      Next, for simplification, we rewrite (2) as 
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where ( 1) | | .i iM k B m  For each i=1,2,3, 

im  is given as in the previous section. We now 

propose the next theorem. 

 

Theorem 2 Let ( , )M k B  be the first order PT 

for ellipsoid 

2 2 2

2 2 2
1

x y z

a b c
    at any conduc- 

tivity k, where 0 1 .k     

 

a. ,a b  if and only if 1 2M M . 

b. ,a c  if and only if 1 3.M M  

c. ,b c  if and only if 2 3.M M  

 

Proof : 

 

We prove part (a) first. 

     Suppose that .a b We need to show 

that 1 2M M . According to Lemma 1, we 

know that a b implies 1 2d d . Thus, by 

substituting 1 2d d  into 1M and 2M , we 

immediately obtain 1 2M M . 

     Now, assume 1 2M M . We need to 

prove that a b . Since 1 2M M , we have 

1 1
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2 2 1 1,kd d kd d    

2 1( )( 1) 0.d d k    

So, we have either 2 1( ) 0d d  or 

( 1) 0k    or both. However, 1k  and 

thus 1 2d d . Therefore, a b  by Lemma 

1. 

     The same steps can be repeated to 

prove part (b) and (c). 

 
 

4. Discussion 

  

In the previous section, we have shown that 

the first order PT (in the form of (6)) for a 

spheroid, given by 

2 2 2

2 2 2
1

x y z

a b c
    where 

either ,a b a c  or ,b c has two distinct 

diagonals. Numerical examples to validate this 

can be found for examples in [7], [27], [28] 

and [32]. Here, all the first order PT for the 

spheroids at any conductivity k  are positive 

definite matrices when 1k  whereas they are 

negative definite matrices when 1k  , as 

suggested by [1]. 

In addition, we have also shown that either 

,a b a c or b c when the first order PT 

for a spheroid in the form of (6) has two 

distinct diagonals. Given the first order PT for 

a spheroid with two distinct diagonals in the 

form of (6), finding the values of a,b and c is 

not straightforward. For example, we have to 

solve (2) equal to a given (known) first order 

PT (usually in the form of (6)). A method to 

solve (2) from a given first order PT actually 

has been discussed in [27] and [28]. This 

technique is used during the investigation of 

the first order PT in electrosensing fish by [7], 

[27] and [33]. 

Recently, Ahmad Khairuddin et al. [34] 

have shown that when a b c   or 
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,a b c   the conductivity 1k   if the first 

order PT of a spheroid is positive definite 

matrix whereas 1k   if the first order PT of a 

spheroid is negative definite matrix. This is a 

rule that has to be followed to find the value a 

and b=c from a given first order PT. The next 

two examples given in this study will follow 

the results in [34] and also Theorem 2 part (c). 

Table 1 shows the values for a and b=c 

when (2) is solved equal to 

 

















4400

0440

0032

, (7) 

 

by the method proposed in [27] for three 

different conductivities, k . Here, 1k  since 

(7) is a positive definite matrix. The diagonal 

matrix (7) is actually the first order PT at 
510k   for a pyramid with length, width and 

height all equal to 3, as given in [5].  

 

Table 1. The value for semi principal axes 

,  a b c  of a positive definite first order PT 

when 1k  . 
Conductivity, k  Principal axes, a,b=c 

1.5 
0.6308a   

5.8770b   

50 
1.2311a   

1.6379b   

100 
1.2257a   

1.6175b   

 

     In contrast, the values for a  and b c  in 

Table 2 are obtained when (2) is solved equal 

to 

 


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
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81.3300

081.330

0053.33

, (8) 

 

by the same method for three different 

conductivities, k where 1k   since (8) is a 

negative definite matrix. Here, matrix (8) as 

given in [28] is the first order PT for a cylinder 

with diameter and length both are equal to 3 at 
55 10 .k    

     For all a  and b c  in Table 1 and Table 

2, the first order PT (7) and (8) can be 

determined back by using (2) with the 

corresponding k  given in the same table. 

Thus, the first order PT for the spheroids 

obtained, given by either (7) or (8) are also the 

first order PT for pyramid or cylinder. In the 

future, we might be able to increase our 

understanding about the first order PT for   

 
Table 2. The value for semi principal axes 

,a b c  of a negative definite first order PT 

when 1k  . 
Conductivity, k Principal axes, a,b=c 

0.5 
2.4320a   

2.3486b   

0.001 
1.7679a   

1.7435b   

0.00003 
1.7671a   

1.7427b   

 

pyramid and cylinder by investigating the first 

order PT for these spheroids. 

     Finally, numerical examples for semi 

principal axes a b  and c  (or a c and b ) 
from a given first order PT, as required by 

Theorem 2 part (a) and (b), can be found in 

[7], [27], [28] and [33]. In those particular 

studies, the values of ,a b  and c  do not follow 

the theories proposed in [34]. However, the 

same rule for k is applied when solving (2) 

equal to a given first order PT to obtain 

,  a b c  or ,  a c b . 

 

5. Conclusion 

 

In this study, we have investigated some 

properties which are related to the first order 

PT for spheroids. By investigating the first 

order PT for ellipsoid, we can describe and 

also identify a spheroid based on its first order 

PT. Moreover, some numerical examples are 

also given to further discuss our findings. 
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