
Journal of Science and Technology

49

Prioritized Service Scheme with QoS

Provisioning in a Cloud Computing

System

Vidushi Sharma
1,*

, Kriti Priya Gupta
2

1
School of ICT, Gautam Buddha University, India

2
Symbiosis Centre for Management Studies NOIDA,

Faculty of Management Studies,

Symbiosis International University, India

*Corresponding email: vidushi@gbu.ac.in,svidushee@gmail.com

Abstract

A priority scheme is proposed in which the prioritized customers get guaranteed

Quality of Service (QoS) by the cloud computing system in terms of lesser response

time. The concept of selection probability is introduced according to which the cloud

metascheduler chooses the next query for execution. The prioritized customers are

categorized into different priority queues which are modeled as M/M/1/K/K queues and

an analytical model is developed for the calculation of selection probabilities. Two

algorithms are proposed for explaining the processing at the users’ end and at the cloud

computing server’s end. The results obtained are validated using the numerical

simulations.

Keywords: cloud computing; quality of service; prioritized queue; mean response time

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Journals of Universiti Tun Hussein Onn Malaysia (UTHM)

https://core.ac.uk/display/478583215?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Journal of Science and Technology

50

1. INTRODUCTION

Cloud computing is complete the development in parallel computing, distributed

computing and grid computing, and is the combination and evolution of virtualization,

utility computing, Infrastructure-as-a-Service (IaaS), Platform-as-a-Service (PaaS) and

Software-as-a-Service (SaaS) [1,2]. To users, cloud computing is a Pay-per-Use-On-

Demand mode that can conveniently access shared Information Technology (IT)

resources through internet. The IT resources may include network, server, storage,

application, service etc. which can be deployed in an easy manner and with least

interaction with service providers [1,2,3]. Though Cloud Computing has made a strong

footage in the various transactions but it has to face some of the challenges. One key

issue and challenge to be addressed is the quality of service (QoS). So far little work

has been done in the direction towards measurement of QoS provided to the end users.

There are various parameters such as server delay, connection breakdown, speed etc.,

on which the QoS depends. Aurrecoechea et al. (1998) gave a survey on QoS

architecture[4]. Barford and Crovella (1998) evaluated server performance and its

correlation with website workloads [5]. Traffic intensity is an important parameter

which affects the server delay. Bhatti and Freidrich (1999) studied server QoS which is

a key component in delivering end to end predictable, stable and tired services to the

customers [6]. They demonstrated that through classification, admission control and

scheduling, they can support distinct performance levels for different users and

maintain predictable performance. Load balancing in server helps in increasing the

speed and efficiency of the cloud computing system. Researchers like Aurrecoechea et

al. (1998), Barford and Crowell (1998), and Menansce et al. (1999) addressed these

problems [4,5,7]. Cherkasova and Phaal (2002) discussed how an overloaded web

server can experience a severe loss of throughput [8]. Another important aspect of

performance evaluation is the performance testing studied by Avritzer and Weyuker

(2004) [9]. They discussed the role of modeling in the performance testing of Cloud

Computing applications. Bandwidth optimization through optimal channel allocation is

another important performance parameter discussed by Lin et al. (2005) [10]. Awan

and Singh (2006) studied the performance of cloud computing system in wireless

cellular network [11]. Provost and Sundarajan (2007) discussed various generic models

of the structure of complex networks, and the probabilistic dependencies among

networked entities [12]. Luqun (2010) analysed the differentiated QoS requirements of

cloud computing resources. Kun Li et al. (2011) proposed a cloud task scheduling

policy based on Load Balancing Ant Colony Optimization (LBACO) algorithm [13].

Suresh et al. (2011) proposed an improved backfill algorithm using balanced spiral (BS)

method to achieve QOS in cloud environment [14].

 Scheduling plays a significant role at the backend of cloud computing. How to

use cloud computing resources efficiently and gain the maximum profits with job

scheduling system is one of the cloud computing service providers’ ultimate goals. In

this paper, a differentiated job scheduling algorithm is proposed. We have discussed a

prioritized based model to provide QoS at the server processing end as well as to

provide the information to the user in terms of tentative response time. Sensitivities of

various parameters are analyzed which can be utilized to improve the performance of

the system. The paper is divided into 5 sections. Section 2 gives the brief description of

Journal of Science and Technology

51

the model and its importance. Section 3 presents the mathematical formulation of the

model along with various notations and assumptions. Section 4 provides numerical

illustrations with sensitivity analysis and finally conclusion is drawn in section 5.

2. MODEL DESCRIPTION

We consider a cloud computing environment, which consists of many datacenters.

Datacenter is a collection of many resources viz. hardware, software, infrastructure and

platform etc. Each datacenter has one or more Virtual Machines (VM) which in turn

have one or more processing elements. Metascheduler maps the jobs/ requests of the

user with the VM, where the jobs are scheduled to the processing element by a local

scheduler. Figure 1 depicts the cloud metascheduler architecture. Three main tasks are

involved in this architecture:

1. The request for the completion of the task is submitted to the metascheduler.

2. Metascheduler maps and schedules the job with the cloud cluster.

3. After scheduling the jobs are handed to the VM, which has processing elements .

Local scheduler schedules jobs to the processing elements

Job scheduling is a challenging task in cloud computing systems and needs to be

managed with utmost importance. The aim of job scheduling systems in cloud

computing is to ensure the QoS. The two types of schedulers are available in a cloud

are global metascheduler and local scheduler. Local scheduler focuses on determining

how the processes reside on a single CPU and are allocated and executed whereas the

global metascheduler interacts with the user and schedules jobs to VM. It uses

information about the system to allocate processes among the clusters. It is impossible

to predict the job execution time in cloud, hence scheduler need to be dynamic. In our

model we have consider the above cloud computing architecture and proposed two

algorithms to make the metascheduler dynamic providing the guaranteed QoS in terms

of response time to the user. All the tasks received by the metascheduler and the

decision for scheduling is made by querying the cloud about the time required to be

served. This is done by finding out the length of the queue i.e. the number of requests

pending in the category requested. Based on the number of requests lying in the

category which user requested, selection probability is computed and the decision

whether the customer can be served with that guaranteed response time is made. If the

customer cannot be served then he can be given an option of being served as a non

prioritized customer. Therefore, to predict the job execution time, the scheduler finds

out the selection probability based on the type of request.

Journal of Science and Technology

52

Figure 1: Cloud computing system architecture

Figure 2: Selection probability mechanism for the Cloud Computing server

In this model user can demand QoS for his request. When a user comes to the website,

he opts for a particular request/task (see Figure 2). The system provides him the option

for prioritized/non-prioritized service. A prioritized service guarantees the QoS in terms

of lower response time. Every request/task has a pre-specified priority in the system. If

the user opts for the prioritized service, system notifies the user whether the user can be

guaranteed the QoS or not. In case the system can provide QoS then he/she will be

served with that pre-specified priority as per the availability of server otherwise he/she

is served as a non-prioritized user after notification. In our model, we have categorized

the requests into k different priority sets. A separate queue for each priority set (queues

1, 2... k) and one queue for the non-prioritized users (queue NP) is formed. Hence,

there are total k+1 queues in the Cloud Computing system. At the server side, the

requests are fetched for processing from the k priority queues according to a particular

selection probability pi (i=1,2,…,k) which helps in ensuring QoS.

Requests

Queue 1

Queue 2

Queue 3

Queue n

Queue non priority

Meta

Schedu

ler

Selection

probability

Cloud
Cluster

Metascheduler

Cloud Datacenter

Applicati

on
services

Platform

services
Software

V

M

Journal of Science and Technology

53

3. MATHEMATICAL FORMULATION

For the mathematical formulation, we assume that the requests in each of the k+1

queues originate from a finite population source of size Mi (i=1,2,…,k+1) and are

distributed in a Poission fashion with rate λ. The capacities Ci (i=1,2,..k+1) of each of

the k+1 queues are also supposed to be finite. The command execution time D of the

server is a random variable with exponential distribution. Let Ri (i=1,2,…,k+1) denote

the mean response time of the users of the i
th

 queue.

 Let us consider a particular queue r with selection probability pr = p. Let Mr = Cr

be equal to K. Then the queue can be modeled as M/M/1/K/K where the mean

command execution rate equals p/D and the mean response time is Rr=R. The steady

state probability that there are n requests in the queueing system can be obtained using

the product type solution as

 







1

0

0
/

)(n

i

n
Dp

iK
PP


, Kn 0 (1)

 or
)!(

!
0

nK

K

p

D
PP

n

n












 (2)

where P0 is the probability that there are no requests in the system i.e. the server is idle

and is obtained using normalizing condition 



K

n

np
0

1 , as


 










K

n

n

nK

K

p

D
P

0

0

)!(

!

1


 …(3)

The server utilization U is 1-P0 and the average rate of request completion E[T] is (1-

P0)p/D = Up/D. Now, on an average, a request is generated by a user in R + 1/λ

seconds. Thus, the average request-generation rate of the web-server is K/(R + 1/λ). In

the steady state, the request generation and completion (execution) rates must be equal.

Thus we have,

D

Up

R

K


 /1
 …(4)

 or
)1(


RU

KD
p




 …(5)

When a new user enters the website and requests a specified priority, the appropriate

selection probability is recalculated and the inequality 1
1




k

i

ip is checked. If it is true

after the selection probability recalculation, the user is guaranteed appropriate QoS

(response time) during the whole session. If the inequality becomes false, after the

selection probability recalculation, he will not be guaranteed QoS and he enters the

website as a non priority user. The processing at the user’s side is discussed below in

algorithm 1.

Journal of Science and Technology

54

Algorithm 1

when a new user arrives and makes a request

if the user is a prioritized user

 the appropriate priority related to the user’s request is obtained;

the length of the corresponding priority queue is updated and its capacity

is checked;

 if the queue can still accommodate more users

 the selection probabilities pi (i=1,2,…k) are recalculated;

 if 1
1




k

i

ip

 the user is guaranteed the appropriate response time;

 else

 the user is served as a non-prioritized user;

 endif

 else

 the user is served as a non-prioritized user;

 endif

 else

 the user is served as a non-prioritized user;

 endif

end

At the server side, when the command execution is over, the next query has to be

fetched form one of the k+1 queues. In order to make a decision from what queue the

next query will be chosen, the selection probabilities are used. The queue having

maximum choice probability is chosen for fetching the next query. The processing at

the server’s side is discussed below in algorithm 2.

Algorithm 2

When the command execution is over

 the length of the corresponding queue is updated;

the selection probabilities are recalculated;

the queue with maximum selection probability is selected and the query form

this selected queue is executed;

 the length of the queue is decremented by 1;

End

4. NUMERICAL ILLUSTRATIONS

Sensitivity analysis, based on the algorithms proposed in the previous section are

performed to validate the authenticity of the analytical results. For the illustration

purpose, 5 priority queues are assumed i.e. k=5 and one non priority queue is

considered. The response times, and the capacities and population sizes of the queues

are respectively fixed as

R1=5,R2=10,R3=15,R4=20,R5=25,R6=30 and

C1=M1=30,C2=M2=25,C3=M3=20,C4=M4=15,

Journal of Science and Technology

55

C5=M5=10,C6=M6=50.

 Sensitivity analysis for various parameters is carried out to validate the

analytical model. Figure 3 shows the deviation in the total number of users requesting

various priority/ non priority services and the actual number of priority/ non priority

requests served by taking 500 and 1000 users in the system. The figure reveals that for

both the instances, the deviation in the total number of requests vs. served priorities is

very less. This holds that the algorithm works for a large number of users without any

deviation.

Figure 3: Priorities requested vs. priorities served

 Figure 4 shows the effect on selection probabilities by varying the response

time for different values of M for a particular queue. As the response time increases,

the selection probability decreases which is quite obvious since greater response time

indicates that the service can be delayed. This further means that the particular queue

can be selected later i.e. a decreased selection probability. Further, selection probability

for higher population size is greater as compared to the lower population size.

Figure 4: Effect of response time (R) on selection probability (p)

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 NP

Priority Queue

T
o

ta
l

p
ri

o
ri

ty
 r

e
q

u
e
s
te

d
 v

s
 s

e
rv

e
d

requested

priority

served priority

M=1000

1 2 3 4 5 NP

Priority Queue

T
o

ta
l

p
ri

o
ri

ty
 r

eq
u

es
te

d
 v

s
se

rv
ed

200

180

160

140

120

100

80

60

40

20

0

M=1000
Requested

priority

Served

priority

0

0.05

0.1

0.15

0.2

0.25

5 10 15 20 25 30

Response Time

S
e
le

c
ti

o
n

 P
ro

b
a
b

il
it

y M=100

M=200

M=300

5 10 15 20 25 30

Response Time

S
el

ec
ti

o
n

 P
ro

b
ab

il
it

y

0.25

0.2

0.15

0.1

0.05

0

M = 100

M = 200

M = 300

Journal of Science and Technology

56

 Figure 5 reveals the effect of varying λ on the selection probability for different

values of D for a particular queue by assuming R=10 and M=C=100. As the arrival

rate increases the selection probability of the queue increases. Also the selection

probability increases with the command execution time D of the server.

Figure 5: Effect of arrival rate (λ) on selection probability (p)

5. CONCLUSION

In this paper we have proposed a cloud computing model to handle the prioritized and

non prioritized requests of users. Quality of service is guaranteed to the prioritized

requests after checking whether the server is capable of serving the request in priority

at that instance or not. If the QoS cannot be guaranteed the user is intimated of that and

he is served as a non prioritized user. A queueing model is developed for QoS

provisioning based on the selection probability mechanism. The algorithms for the

user’s side priority validation and the server’s side computation of selection probability

to serve the incoming requests, so as to maintain QoS, are developed and illustrated

numerically. The results reveal that the system can work efficiently as a large user base

and is also a demand based system which ensures QoS. The model developed can be

easily deployed in the Cloud Computing frontend and backend solutions. The system

will enable the organization to provide services at a pre-specified response time and

thus increasing the system reliability. Extension of our work can be done by developing

a cloud computing multi server queueing model.

REFERENCES

[1] Wolski, R. , Grzegorczyk, C., Obertelli, G. , Soman, S. ,Youseff, L.,

Zagorodnov, D.(2009). The eucalyptus open-source cloud computing system, In

Proceedings of 9th IEEE/ACM International Symposium on Cluster Computing

and the Grid, Shanghai, 124-131.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8



S
e
le

c
ti

o
n

 P
ro

b
a
b

il
it

y

D=.001

D=.005

D=.009

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

λ

S
el

ec
ti

o
n

 P
ro

b
ab

il
it

y

0.08

0.06

0.04

0.02

0

D = 0.001

D = 0.005

D = 0.009

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wolski,%20R..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Grzegorczyk,%20C..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Obertelli,%20G..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Soman,%20S..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Youseff,%20L..QT.&newsearch=partialPref
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zagorodnov,%20D..QT.&newsearch=partialPref

Journal of Science and Technology

57

[2] Sotomayor, B., Keahey, K., Foster, I. (2008). Combining batch execution and

leasing using virtual machines, HPDC 2008, Boston, MA, 1-9.

[3] Keahey, K. and Freeman, T. (2008). Science Clouds: early experiences in cloud

computing for scientific applications, In Proceedings of First workshop on

Cloud Computing and its Applications, Chicago, IL.

[4] Aurrecoechea, C., Campbell, A. and Hauw, L. (1998). A survey of QoS

architectures, ACM/Springer-Verlag Multimedia Systems J., special issue on

QoS architecture, 6(3),138-151.

[5] Barford, P. and Crowell, M. (1998). Generating representative web workloads

for network and server performance evaluation, In Proceedings of ACM

SIGMETRICS '98, 151-160.

[6] Bhatti, N. and Friedrich, R. (1999). Web server support for tiered services,

IEEE Network J., 13 (5), 1186-1200.

[7] Menansce, D., Almeida, V., Fonseca, R. and Mendes, M. (1999). Resource

management policies for Cloud Computing servers, In Proceedings of Second

Workshop Internet Server Performance, 295-296.

[8] Cherkasova, L. and Phaal P. (2002). Session-based admission control: A

mechanism for peak load management of commercial web site, IEEE Trans. On

Computers, 51 (6), 669-685.

[9] Avritzer, A. and Weyuker, E. J.(2004). The role of modeling in the performance

testing of cloud computing applications, IEEE Trans. on Soft. Engg. ,

30(12), 1072-1083.

[10] Lin, M., Liu, Z., Xia, C.H. and Zhang, L. (2005). Optimal capacity allocation

for web systems with end-to-end delay guarantees, Performance Evaluation, 62

(1-4), 400-416.

[11] Awan, I. and Singh, S. (2006). Performance evaluation of cloud computing

requests in wireless cellular networks, Information and Software Technology,

48 (6), 393-401.

[12] Provost, F., Sundarajan, A. (2007). Modeling complex networks for electronic

commerce, In Proceedings of 8
th

 ACM Conference on Electronic Commerce,

368-368.

[13] Kun Li, Gaochao, X. Guangyu Z. Yushuang, D., Wang, D. (2011). Cloud Task

scheduling based on Load Balancing Ant Colony Optimization, In Proceedings

of Sixth Annual China Grid Conference, 3-9.

Journal of Science and Technology

58

[14] Suresh, A. Vijayakarthick, P. (2011). Improving scheduling of backfill

algorithms using balanced spiral method for cloud metascheduler, In

Proceedings of International Conference on Recent Trends in Information

Technology, IEEE Explore, 624-627.

