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Abstract

The polynomial regression (PR) technique is used to estimate the parameters of the dependent
variable having a polynomial relationship with the independent variable. Normality and non-
linearity exhibit polynomial characterization of power terms greater than 2. Polynomial
Regression models (PRM) with the auxiliary variables are considered up to their third order
interactions. Preliminary, multicollinearity between the independent variables is minimized and
statistical tests involving the Global, Correlation Coefficient, Wald, and Goodness-of-Fit tests,
are carried out to select significant variables with their possible interactions. Comparisons
between the polynomial regression models (PRM) are made using the eight selection criteria
(8SC). The best regression model is identified based on the minimum value of the eight selection
criteria (8SC). The use of an appropriate transformation will increase in the degree of a
statistically valid polynomial, hence, providing a better estimation for the model.

Keywords: stem volume, polynomial regression models (PRM), normality, multicollinearity,
eight selection criteria (8SC).
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1. INTRODUCTION

According to Bechtold (2004), the stem (or bole) diameter was statistically significant and the
strongest predictor in all models of tree estimations, and for some species a quadratic term was
needed for model enhancement. While Hasenaeur (2006) had used modelling to predict future
forest stand development, Noraini et al.(2008) had presented for tree stem biomass prediction and
estimation using multiple regression models.

Stem Biomass Volumetric Equation

The variables considered during field data collection of 130 trees are diameter at the base (Dy),
diameter at the middle (D,,), diameter at the top (Dy), and the stem height (T). The cylindrical area
of log (A) is given by formula 1R, where R is the radius of the tree stem or bole. Hence, at each
respective sections of the log, the area will then be known as A, (at the base), A, (at the middle)
and A, (at the top). Since diameter is twice the radius, the corresponding cross-sectional area will
then be calculated as: A= 1Dy, 2/4, A= 1D,,%/4 and A= 1D, */4 respectively.

Area =1R? /bole where R is radius of stem
=n1D?/4 where D is the diameter R=D/2

T —stem height

Figure 1. Merchantable Tree Log

The volume of the merchantable log will be the stem height multiplied by the area as shown in
Figure 1 above. In this paper, based on these mensuration variables, the volume of the stem
biomass is then calculated using the Newton’s formula as in (1).

T
Newton’s Formula (Fuwape et al., 2001): Vi = z(Ab +44, +A,) (1)

The objective of this study is to compare models based on the Newton’s Formula using the
polynomial regressions (PR) technique with significant attribution to the power terms.

2. METHODOLOGY

2.1 Data Preparation and P-value Method for Normality

In regression analysis, normality and linear relationship of data is of prime importance. Hence,
normality test is initially carried out numerically (Coakes & Steed, 2007), with the graphical
method as supporting evidence (Ashish & Muni, 1990). Normality tests are carried out in SPSS
and the test statistic of the variable is given by the statistic value of Kolmogorov-Smirnov (for
n>50) and Shapiro Wilk (for n<50). The confidence level is set at 95% with significance of o at
5% which is the standard percentage of the normality test.

The type of transformation will be done on any data sets by first plotting a scatter plot of
the dependent variable over the independent variable. For normality and linearity, appropriate
transformation values are taken to form the characterization of the polynomial terms. Driving up
or driving down the ladder will depend on the concavity or convexity of the scatter plot. This
paper will focus on the searching efforts for the best transformations applicable to the data sets,
and optimizes the range of transformation needed. These have also become a part of models’
simulations and optimization.

Transformation will involve: i) identifying the types of curvilinear data, ii) determining
the types of transformation needed, and iii) exercise the procedures for Ladder-Power or Box-Cox
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transformations. The ladder transformation procedure uses the data sets the power of the origin is
employed, which is given by: (Devore & Peck, 1993)

Transform value = (Original Value) " 2

Using the p-value from the F-statistics, data with p-value>0.05are considered as normal. Several
iterations are executed so to determine the best transformation required for normality. Figure 2
depicts the flowchart on the data transformation procedures executed on non-normal or nonlinear

data before any model building can be developed.

Data is not fit for Ladder or Box- M

Cox Transformation

T Scatter Plot
Is it No Is it
monotonic? - Curvilinear?
Yes
Yes +
Ladder Transformation
Box-Cox Transformation * *
l Convex Concave
Drive-Up Ladder Drive-Down Ladder
Identify Parameter, A P
l Identify the Best Ladder
Choose Maximum A l
¢ Yes No

dl —
- Test v

Figure 2. Flow Chart on the Procedures of Data Transformations
2.2 Modelling and Model-Building Approach
Figure 3 depicts the modelling flowchart. Preliminary with the conceptual development of the

importance of modelling, its estimations, and contributions to the real world problems,
mathematical theories are applied for model building.
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Conceptual Development

v

Theoretical Application

v

Model-Building Development

v
Model Validation

v

Model Simulation

v

Optimization

Figure 3: Modelling Flowchart

Phase 1: All Possible Models
Single independent variables and all possible product of
single independent variable (interaction variables)

— =

Phase 2: Selected Models
- Remedial techniques of multicollinearity removal
- Elimination procedures of insignificant variables

— =

Phase 3: Best Model
Using 8SC: Minimise for each criterion and mark the
chosen model. The most preferred model is the best

— =

Phase 4: Goodness-of-Fit Test
Randomness test and Normality test on residuals.
Residual analysis satisfies regression assumptions.

Figure 4. The Four Phases in Model-Building Development

Figure 4 shows the four phases of the Model-building development. Model-building
techniques are exemplified and validated through tests and hypotheses. Model’s validation is
enhanced by simulation and optimization of values, expected to be characterized as optimal
values. In this paper, the phases in model development will not be illustrated since the elimination
procedures had been shown by Noraini ef al., (2008) and the multicollinearity removal techniques
(Noraini et al., 2010(a)).
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2.3 Polynomial Regression Models (PRM)

Phase 1 of Model-building in Figure 4, consists of the all possible models which are made up of
variables that have been prepared after undergoing the data preparation procedures of Figure 2.
For simplicity, these variables are then known as the defined transformed variables.

The PR models are made of a dependent variable, V, the stem volume and single
independent variables, taken from field data mensuration. The model-building is developed based
on the method of multiple regressions, a statistical method of more than two independent
variables as in (3),

Y, =B+ BX, + 5,Xy +.+ B X & 3)
, where i=1, 2, ..., n; Y; is the dependent variable; X;;, Xy;, ..., Xi; are the independent variables;
B.'sare the regression coefficients with k parameters and ¢ are the residuals. As with

polynomials of the order 2 (parabolic curve with quadratic terms), the model equation can be
written as:

Y, =, + B X, "':anli2 +ot+ B Xy +ﬁkakiz T & (4)
Based on say four single independent variables, the number of models then is 32 models (as
shown in Table 1).

Table 1: Total Number of Possible Models

Order of Interactions | Total number
Single Independent of models
Number of Variables Variables Ist 2nd 3rd
1 4 - - - 4
2 6 6 - - 12
3 4 4 4 - 12
4 1 1 1 1 4
Total 15 11 5 1 32

Examples of possible PRM’s are shown in Table 2 whereby models from P1-P15 are without
interactions, P16-P26 (1% order interactions), P27-P31 (2™ order interactions) and P32 (3™ order
interactions). The all possible PR models are listed as in the Appendix.

Table 2: All Possible Models of Four single independent Variables.

PL 1y, =B, +B,X, +B,,X,” +¢,

P2 1 v, =B, +B,X, +B,X," +&,
P31 v, =B, +B:X, + By X5 +¢,
P4 1y, =B, +B.X, +P.X, +¢,

PIS |V, =8,+B,X, +B,X, +B,X; +B, X, +
BiX, 2 +BpX,” +PuX, +BuX, +e
PI6 1 v =B, +B,X, +B,X, +B,X,” +B,X,’
+B,X, €5
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P27 vV, = Bo +31X1 +52X2 +Bz‘Xs +B11X12
2 2
+Bzzxz +B33X3 +612X12 +B13X13 +

BrXys +B 15X s +8y

2
P32V, =B, +B, X, 4+ B X+ 4B Xy, + o

+B34X34 +B123X123 +"'+B1234X1234 + 832

One of the possible models with different variables’ attributes is given by model P27:
2 2 2
Vi =Bo + B X +B,X, + B3 X5 +B, X"+ X, + P35 X
FPuXp +P Xy +BuXy +B1n Xy ey

)

, with X, X,, and X3 as the single independent variables, X;,, X3 and X,; as the Ist order
interactions, X,23 is the 2nd order interaction, and X,%, X,”and X3 as the polynomial term of power
2 (or also known as the quadratic terms).

The models can then be written in a general form as:

Vi =Q) +QW, +Q, W, +...+Q, Wk+u, (6)

, where Vpy is the volume, ‘W’ is an independent variable which represents one of these types of
variables, namely, single independent, interactive, generated, transformed, quadratic terms or
even dummy variables, Q’s are the newly defined regression coefficients, and ‘u’ as the error
terms for each respective transformed model. The number of models will depend on the number

q

of single independent variables, given by the formulaz jc j) where ‘g’ is the number of
j=1

single independent variables.

2.4 Multicollinearity Removal and Insignificant Variable Elimination

Multicollinearity is a phenomenon where there exists very strong linear or perfect relationships
between the independent variables (Gujarati, 2006), and collinearity between the variables can be
identified by examining the values of the correlation matrix of the independent variables. High
correlation coefficients of absolute values in the range of 0.75>]r|>0.95 are considered to exhibit
multicollinearity effects. These multicollinearity source variables have to be dealt with first before
modelling can be done, as indicated in Phase 2 of model development in Figure 3. The
elimination of insignificant variables from the models is carried out using the backward
elimination method. Illustrations of the backward elimination method had also been shown by
Noraini et al. (2008). In this paper, multicollinearity source variables with high correlation
coefficient of absolute values greater than 0.95 (|r[>0.95) are removed. The Case Types for
multicollinearity removal procedures had also been illustrated by Noraini et al. (2010)(b).

2.5 Best Model Selection and Goodness-of-Fit Tests

Many criteria have been presented in order to select the best regression model, but none can be
considered as the best one. Table 3 depicts the selection of the eight criteria (8SC) of Phase 3,
used in identifying the best regression model (Ramanathan, 2002). The criteria are based on the
value of sum of square error (SSE) where n is the number of samples or observations, and k+1) is
the number of parameters in each respective model. The model having the least value in majority
of the criteria will be chosen as the best model.
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Table 3. Eight Selection Criteria (§8SC) for Best Model Identification

AIC (Akaike, 1974) (ssg j 2k+1)/m) RICE (Rice, 1984) (SSE j{ (m s l)ﬂl

SSE L, [ Ak D
FPE (Akaike,1970) SSE )+ (k+1) SCHWARZ (Schwarz, SSE \ (k+1)/n

1978) !
n—(k+1) n

GCV (Golub et al., o SGMASQ ss «ksn]”
1979) ( j[ ( H (Ramanathan, 2002) ( j{‘ - }
HQ (Hannan & SSE (k1) /n SHIBATA (Shibata, SSE \ n + 2(k + 1)
Quinn, 1979) T Inn 1981) . .

The best model will undergo the goodness-of-fit tests of Phase 4 in Figure 4, which comprises of
the normality and randomness tests on the models’ residuals. Without violating the assumptions in
regression analysis, further simulations of the best model will provide a better prediction for
future forest planning strategy and management.

3. MODELING RESULTS AND ANALYSES

3.1 Normality and Descriptive Statistics

The data variables are measured from 130 trees non-destructively, as defined in Table 3.
Normality tests are done and transformations are carried out using Ladder-Power on the non-
normal data. Table 4 depicted the defined variables, before and after transformations.

Table 4. Definition of Variables Before and After Transformation
Variable Definition Transformation Transformed Variables
Vaw Stem  Volume.(m’):  Nw- Viw VvV
Newton
D, Diameter at top of trunk D>’ X1
Dy, Diameter at middle of trunk D, X2
D, Diameter at the base of trunk D,/T X3
T Tree height (m) T Xy

From Table 5, the p-values of variable D, increase in the variable power range of 1.5-3.5,
before decreases to the value of 4.5. The optimal (highest) p-value is 0.034, and the variable
power is thus focused at 3.5.

Table 5. Normality Test Using Table 6. Normality Test on Focus Optimal
Kolmogorov Smirnov on Variable D, value of Variable D
Transformed | Kolmogorov-Smirnov Transformed Kolmogorov-Smirnov
Variable Statistics | df p- Variable Statistics | df | p-value
value D** 0.078 | 130 | 0.049
D - 0.148 | 130 | 0.000 | | P57 0076 | 130 | 0,061
Dt&5 0.115 130 | 0.000 D.* 0078 130 | 0.051
Dy 0.082 | 130 | 0.034 79
D3 009 1130 10011 Dy 0.080 130 | 0.043

Transformation power range is then chosen between 3.5- 4.5. Referring to Table 6,
variable D; has reached the optimal normality value of 0.061(highest) at the transformation value
of 3.7. The second decimal digit will lie between 3.7-3.8. Similar procedures are executed on the
other variable, D,,, and a generated variable, D,/T}, has been created for normality. Table 7 below
depicts the descriptive statistics of the models’ transformed variables. All the transformed
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variables have turned to normal since the significant p-value are more than 0.05. The data sets can
then be used for further regression analysis.

Table 7. Descriptive Statistics of Transformed Variables

Defined Variables Transformed Variables

\% X1 X2 X3 X4
Mean 0.9215 | 0.1360 | 0.1081 | 0.1070 | 6.1303
Variance 0.133 0.005 0.004 | 0.000 0.896
Std. Deviation 0.3643 | 0.0713 | 0.0628 | 0.0144 | 0.9466
Minimum 0.18 0.01 0.00 0.07 3.78
Maximum 1.96 0.40 0.33 0.15 8.23
Skewness -0.020 | 0.331 0.332 | 0.624 -0.257
Kurtosis -0.147 | 0.602 0.158 | 0.905 -0.378
Kolmogorov-Smirnov 0.068 0.076 0.060 0.065 0.043
Kolmogorov-Smirnov (sig. p-value) | 0.200 0.061 0.200 0.200 0.200
Standard error (s.e.) of Skewness is 0.212. Standard error (s.e.) of kurtosis is
0.422.

3.2  Multicollinearity Removal and Backward Elimination Method

In Phase 2 of model-building, multicollinearity source variables with high correlation coefficient
of absolute values greater than 0.95 (jr>0.95) are thus removed. The Case Types for
multicollinearity removal procedures had been illustrated by Noraini et al. (2010)(b).The
elimination of insignificant variables from the models is carried out using the backward
elimination method.

These procedures employed in Phase 2 will not be dealt with in detail, but then suffices to
include the coefficient correlation matrix of the best model before and after multicollinearity
removal and elimination of insignificant variables being carried out (Table 8, Table 9 and Table
10) respectively. The highlighted values in Table 8 indicate examples of high correlation values
exhibiting multicollinearity effects of the independent variables (X1, X2, X12) which then result
in the first multicollinearity removal of variable X12.

Table 8: Correlation Coefficient Matrix of Model P26.0

Y X1 X2 X3 X4 X12 Xi3 X14 X23 X24 X34 X11 X22 X33 X44

X1 0.897 1

X2 0.884 0917 1

X3 0.116 0219 0.225 1

X4 0.859 0.641 0.619 -0.332 1

X12 0807 0904 0.922 0.224 0.522 1

X13  0.841 0969 0.896 0.413 0.503  0.908 1

X14 0940 0979 0.904 0.101 0.747 0904 0919 1

X23 0.834 0901 0975 0.393 0.497 0927 0934 0.861 1

X24 0924 0.908 = 0.982 0.117 0.714 0924 0.859 0931 0.932 1

X34 0905 0.786 0.770 0.459 0.677 0.689 0814 0.791 0.794 0.773 1
X11 0789 0936  0.838 0.211 0516 0954 0931 0929 0.848 0.844 0.673 1
X22  0.783 0.849 0.937 0.210 0.505 0981 0.853 0853 0934 0937 0.662 0.888 1

X33 0.095 0200 0.202  0.995 -0.342 0.209 0399 0.082 0374 0.094 0441 0.199 0.194 1

X44  0.855 0.626  0.604  -0.334 0995 0.518 0485 0.742 0479 0.709 0.666 0.512 0.501  -0.341 1
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Subsequent five multicollinearity source variables (X1, X2, X12, X11,X44) are being removed
have resulted in the correlation coefficient matrix of model P26.5.0 as shown in Table 9. Table 9
also shows the absence of high multicollinearity variables in the model where there are no more
correlation coefficients of more than 0.95 exist in the model. The next step will be the process of
eliminating insignificant variables from the model using the backward elimination method.

Table 9: Correlation Coefficient Matrix of Model P26.5.0

Y X3 X4 X3  Xl4 X23 X24 X34 X1l Xx22

Y 1

X3 0.115 1

X4 0.858 -0.331 1

X13 0.840 0412 0.502 1

X14 0.940 0.101 0.746 0.919 1

X23 0.834 0393 0.497 0934 0.861 1

X24 0923 0.116 0.714 0.859 0.931 0.932 1

X34 0905 0459 0.677 0.814 0.791 0.794 0.773 1

X11 0.788 0.210 0.516 0.931 0.929 0.848 0.844 0.673 1

X22 0.782 0.210 0.505 0.853 0.853 0.934 0.937 0.662 0.888 1

The procedures of eliminating insignificant variables are then carried out as indicated in Table 10
below. Insignificant variables having the highest p-value or the least absolute value of the t-
statistics will be eliminated. It can be seen that variables (X3, X4, and X;,) are subsequently to be
removed since having p-values of more than 0.05, and hence they are not significant. Table 11
depicts the final matrix for the best model whereby all the remaining variables in the model are
significant with their p-values less than 0.05 (a < 5%).

Table 10: Insignificant Variables Eliminated From Model P26.5.0

Unstandardized
Coefficients .
Std. Action
Models B Error t Sig. Taken
(Constant) 113 101 -1.120 265
Highest p-
X3 -4.953 891  -5.561 .000 value
X4 -.021 018  -1.122 264 (0.795) or
X13 -993 3807  -26l 795 ) 1TatSt
absolute
pres X4 254 072 3.533 001 ot
X23 2707  4.385 -617 538 (iatistics
X24 343 .083 4.158 .000 10.261].
X34 2.067 164 12.634 000  Variable
X11 -.949 751 -1.264 209  X13is
eliminated
X22 3.126 1.033  -3.024 .003
(Constant) -112 101 -1.115 267
X3 -4.975 883  -5.631 000 Highest p-
P26.52 x4 020 018 -1.116 m V2lve
(0.267) or
X14 239 043 5.621 .000
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X23 3786 1.453 -2.605 010 least
X24 360 052 6.949 000 absolute
X34 2066 163 12.681 000 Yalueoft-
statistics
X11 -.960 747 -1.285 201 11116
X22 3.121 1.029  -3.032 .003  Variable
X4 is then
eliminated.
P26.5.3 (Constant) 2222 023 -9.786 .000
X3 -4.042 286  -14.115 .000 nghlestp-
value
X14 232 042 5511 .000 (0.256) or
X23 -3.165 1.344  -2.355 020 loast
X24 350 051  6.853 000  absolute
X34 1.893 049 38.683 000 Vvalue of t-
X11 -.844 740 -1.140 256 s‘tf‘tllzt(l)‘rs
X22 -3.095  1.030  -3.005 003 Variable
X11 is
eliminated

It can also be seen from Table 11 that only one single variable (X3), four first order interaction
variables (X14, X23, X24, X34), and one variable of the polynomial (quadratic) term (X22).

Table 11: Correlation Coefficient Matrix of Best Model P26.5.3

Unstandardized
Coefficients
Model Std.
P26.5.3 B Error t Sig.
(Constant) | -0.222 0.023 -9.776
4.752x10
17
X3 -4.090 0.284 | -14.418 | 3.352x10°
28
X14 0.186 0.011 16.601 | 3.389x10°
33
X23 -3.452 1.321 -2.613 1x107
X24 0.400 0.026 | 15.297 | 3.067x10"
30
X34 1.909 0.047 | 40.677 | 3.436x10°
73
X22 -4.136 0.477 -8.667 | 2.135x10°
14

3.3 Best Model Regression Equation

The best model from the 8SC is based on the (k+1) parameters, and fulfills the least value of most
of the criteria (Ramanathan, 2002). Table 12 signifies the comparisons of the PR models based on
the eight selection criteria. It can be seen the best PR model is represented by the model P26.5.3
with five multicollinearity removals and three insignificant variables eliminated.
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Tablel2. Comparisons of the Best PR Models Using Newton’s Equation

Model k+1 SSE AIC FPE GCV HQ RICE | SCHWARZ | SGMASQ SHIBATA
P26.5.3 7 0.059 5.058 5.059 5.073 5.386 5.090 5.903 4.800 5.031
Y o o o % % % o
P31.94 6 0.078 6.582 6.583 6.597 6.946 6.612 7.514 6.292 6.556
B4 B4 B0 B0 B4 B g™ B0
P32.10. 7 0.063 5.375 5.376 5.391 5.723 5.409 6.273 5.101 5.346
3 B0 B0 B0 B0 B0 B0 g B0

The goodness-of-fit tests comprises of the randomness test and normality test.
Randomness test is to determine that the residuals are normally distributed and normality test on
the Kolmogorov-Smirnov statistics is to ensure that the normality assumptions are not violated.
Since the sample size is 130, the random statistic, R is based on the normal (z) distribution. The
null hypothesis is accepted since model P26.5.3 has zero mean of the residuals as shown by the
scatterplot of the standardized residuals in Table 13. This implies that the residuals are
independent and randomly distributed.

Table 13: Scatterplot and Histogram of the Regression Standardized Residuals.

Scatterplot Histogram

Dependent Variable: Y Dependent Variable: Y

Mean =-5.95E-15
Std. Dev. =0976
N=130

g

Frequency
3

Regression Standardized Residual

P
3
|

Value ] ! y

gl ion Standardized

With a significance level of more than 0.05 (¢>0.05), the normality test on the residuals
gave the Kolmogorov-Smirnov statistics (0.192) of p-value (0.052) >0.05. From the good-of-fit
tests and the plots, the assumptions of randomness and normality of the residuals have therefore
been satisfied.

The best polynomial regression model is thus given by Table 11 as:-
2
P26.5.3 =-0.22- 4.09X3 - 4.136X2 + 0.186X14 - 3.452X23 + 0.400X24 - 1.909X34 @)
Substituting the defined variables back into equation (7), the best model equation is thus:
452 3.7 4.5 45
P26.5.3= -0.22- 4.09]%/T- 4.136(1}, )" +0.1860y  T-3.452D), Db/T+ 0.4000y, T-I .909]% (8)

Equation (8) signifies the appropriateness of the power transformation used in normalizing the
variables before regression analysis. The range of integers in the model equation is mathematically
from 3.7-9.0.
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4. DISCUSSIONS AND CONCLUSIONS

Power Transformation in the form of integers is executed to normalize and linearize the data sets.
The resultant model equation has polynomial characterization greater than 2. Previous studies had
indicated that complexities of using polynomial regression in regression algorithm where higher
orders of the polynomials are concerned (Dam et al., 2000; Ekpenyong et al., 2008). The
polynomial relationships of the independent variables with the dependent can be transformed
using the p-value method of the normality tests on the variables. Remedial techniques in
minimizing multicollinearity effects are applied to obtain a robust model, further followed by the
elimination of insignificant variables in the model. The eight selection criteria is effective in
identifying the best model, where formally the criteria used is based on the R* or the adjusted-R*
for model selection. Comparisons between the Newton’s multiple regression models by Noraini et
al.(2008) and Noraini et al.(2010(b)), based on the least 8SC, have appeared to represent an
improved estimation using polynomial regression models (PRM) for volumetric stem biomass.
Diameters at the base, middle, top and tree height have again signified as the main contributors
towards the stem volume estimation.
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APPENDIX
All Possible Polynomial Models

Pl Vlzﬁ0+ﬂ1X1+ﬁ”X12+gl

P2 szﬁ0+ﬁ2X2+ﬁ22X22+32

P3 v, =g, + B.X,+ f,X," +¢,

P4 V4:ﬂ0+ﬂ4X4+ﬂ44X42+g4

PS 1w =B, + B X, + B, X, +f, X, +B,X," +¢&,

Po 1y = B+ BX, + B X+ B, X, + B X, + &,

P7 V7=ﬂ0+ﬂ1X1+,[;’4X4+,B“X12+,B44X42+g7

P8 V8=[30+B2X2+[33X3+[322X22+[333X32+38

P9 Vg=,80+,82X2+,84X4+,822X22+ﬂ44X42+g9

P10 Vi :ﬁ’o+ﬂ3X3+ﬁ4X4+ﬂ33X32+ﬂ44X42+510

P11 Vi, =p0,+0,X,+0,X,+ 5,X,+ ﬁ’nXl2 + ﬂszzz + ﬂ33X32 + &,

PI2 = B+ BX, + B,X, + B X, + B, X+ B X, +BuX, +e,

P13 Vs = B0+ 68, X, + B:X,+6,X, + ﬁllxlz +/333X32 + /344X42 + &5,

P14 Vie = Bo + B,X, + B:X, + 6, X, + ﬂ22X22 + ,833X32 + ,844X42 + &

PIS | v =B, +B,X, +B,X, +BX, +B, X, +B, X,  +B,X,  +B,X,
+B LX) e

PI6 1y = B+ B X, + S, X, + B X"+ B X, + X, + 64

P17 Vl7 :ﬂO +ﬂlX1 +ﬂ3X3 +ﬁllX12 +ﬂ33X32 +ﬂl3X13 +gl7

P18 V18 :ﬁO +ﬂ1X1 +ﬁ4X4 +ﬂllX12 -i_ﬂ44>(42 +ﬂ14X14 +818

P19 V19 zﬂO +ﬂ2X2 +ﬂ3X3 +1822X22 +IBS3X32 +ﬂ23X23 +£19

P20 VZO :ﬂO +IBZX2 +ﬂ4X4 +ﬂ22X22 +ﬂ44X42 +ﬂ24X24 +820

P2l VZI zﬂO +ﬂ3X3 + IB4X4 + IB33X32 + 1844)(42 + ﬂ34X34 + 834

P22 Vo =By +BX, +BoX, B X, B X+ B X, X
+B12X12 +B13X13 +B23X23 +BIZ3X123 +822

P23 V23 :BO +B1X1 +B2X2 +B4X4 +B11X12 +B22X22 +B44X42
FBuXp B Xy +B Xy Ty

P Vo= B+ BXH B X+ BX G+ LX)+ BuX X+
ﬂl3X13 +ﬂl4Xl4 +ﬂ34X34 + 524

P23 Vog =By +Bo X, +Ba Xy + X, + B Xy +BuX, +BuX,]
+B23X23 +B24X24 +B34X34 +825

P200 Vag =By +BiX, +BoX, +BoX, + B X, 4B X7 4B, X,
+B33X32 -i-ﬁ44)(42 +B12X12 +B13X13 +B14X14 +B23X23 +
BZ4X24 +B34X34 +B123X123 +826

P27 Vg =By +BX, + B X, 4B X, + B X, B, X, 4B X
+B12X12 +B13X13 +B23X23 +B123X123 +827

P28

Vy, =By + B, X, +B,X, +B,X, + B X,  +B X,  +BuX,°
+B12X12 +B14X14 +B24X24 +B124X124 +828
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P29 Vy = Bo +B,X, + B3X3 +B,X, + BI]X12 "'ﬁs3X32 + [3’44X42
+B13X13 +BI4X14 +B34X34 +Bl34X134 +829

P30 V27 = BO +B2X2 +B3X3 +B4X4 +B22X22 +B33X32 +B44X42
+B23X23 +B24X24 +B34X34 +B234X234 +830

PV, =By + B X, B X, + B X, + B, X, + B X" + B X,
B X B X P Xy, +BaX s B X  + B X,
B24X24 +B34X34 +B123X123 + B124X124 +B134X134 +B234X234 +832

P32

V37 = BO +BIXI +B2X2 +B3X3 +B4X4 +B11X12 +BZZX22

2 2
+B33X3 +B44X4 +B12X12 +B13X13 +B14X14 +BZSX23 +
B24X24 +B34X34 +[3123X123 +'B124X124 +B134X134 +[3234X234 +

Biosa Xy €3
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