
Incompressible Flow Simulation
Using SIMPLE Method
on Parallel Computer

Bukhari Manshoor1*, Mat Nawi Wan Hassan2 and Norma Alias3

1Faculty of Mechanical Manufacturing and Engineering ,
Universiti Tun Hussein Onn Malaysia
2Faculty of Mechanical Engineering,

Universiti Teknologi Malaysia
3Faculty of Science,

Universiti Teknologi Malaysia

*Corresponding email: bukhari@uthm.edu.my

Abstract
This paper is concerned with the development of a parallel algorithm on
cluster of workstation with Parallel Virtual Machine (PVM) for solving
the finite difference Navier-Stokes and energy equations. The numerical
procedure is based on SIMPLE (Semi Implicit Method for Pressure Link
Equations) developed by Spalding. The governing equations are transformed
into finite difference forms using the control volume approach. The hybrid
scheme which is a combination of the central difference and up wind scheme
was used in obtaining a profile assumption for parameter variations between
the grids points. The Domain Decomposition Method (DDM) was used to
decompose the domain into a small domain and each of the domains was
solved by different processors. The accuracy of the parallelization method
was done by comparing with a benchmark solution of a standardized problem
related to the two dimensional buoyancy flow in a square enclosure. The
results are shown in the forms of contour maps of non-dimensional
temperature and velocities.

Keywords: SIMPLE algorithm, Parallel Algorithm, Domain Decomposition
Method, Navier-Stokes Equations

41

Journal of Science and Technology

1	 INTRODUCTION
Parallel computing or also known as parallel processing refers to the concept
of speeding up the excitation of a program using multiple processors by
dividing the program into multiple fragments that can execute simultaneously,
each on its own processor. A program being executed across n processors
might execute n times faster than it would use a single processor. Here we can
say that the parallel processing is differs from multitasking in which a single
processor execute several programs at once.
	 Since a new generation of single processor computer is a costly
enterprise in order to obtain a larger and faster communications, parallel
computing becomes a key for highperformance architecture. All
cotemporary supercomputers are parallel processing computers. Massively
Parallel Processors (MPPs) are now the most powerful computer in the world.
These machines combine a few hundred to a few thousand CPUs in a single
large cabinet connected to hundreds of gigabytes of memory.
	 This project deals with a development of parallel algorithms in order
to solve an incompressible flow simulation using SIMPLE method that
originally put forward by Patankar and Spalding (Davis,1983). The analysis
of an incompressible flow become more complicated and need a high
performance computer to solve the problem. One of the problem during to
solve the complicated problem on incompressible flow is time constraint.
More complicated of the problem means more time should be spend to solve
the problem.
	 To overcome this problem, parallel computer was used and to
determine the performance of this parallel computations, the corresponding
parallel algorithms was developed and it based on method of parallelization
known as Domain Decompositions Method. As the number of the nonlinear
simultaneous equations formed after discretisation of the modelling equations
is large, an iterative technique is used to update the flow variables. Control
volume approach is selected and the matrix formed will solved using matrix
tri-diagonal solver. At the end of this paper, the result of simulation using
parallel algorithms are presented and discussed.

2	 NUMERICAL ANALYSIS
2.1	 Governing equations
Two-dimensional incompressible laminar constant-density flow and energy
equation is governed by set of partial differential equations (Melaaen, 1993).
The continuity, momentum and energy equations in their primitive form are
shown in equations (1-4) where the equation for conservation of mass is given
by:

42

Journal of Science and Technology

 0=
∂
∂

+
∂
∂

y
v

x
u

	 	 	 	 	 	 	 	 (1)

	 The conservation of momentum in x and y directions are governed by
the u-momentum equation expressed as:

 uS
y
u

x
u

x
P

y
uv

x
uu +








∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

2

2

2

21
ρ
µ

ρ
	 	 	 	 (2)

as well as the v-momentum equation:

 vS
y
v

x
v

y
P

y
vv

x
vu +








∂
∂

+
∂
∂

+
∂
∂

−=
∂
∂

+
∂
∂

2

2

2

21 ν
ρ

		 	 	 	 (3)

	 The conservation of energy express as:

 







∂
∂

+
∂
∂

=
∂
∂

+
∂
∂

2

2

2

2

y
T

x
T

c
k

y
Tv

x
Tu

Pρ
	 	 	 	 	 	 (4)

	 The terms on the left-hand side of equations (2) and (3) are convective
terms and the terms on the right-hand side include the pressure gradient and
viscous terms. In all the above equations, u and v are the x and y components
of the velocity, P is the pressure and ñ is the density.

2.2	 Discretisation
In order to numerically solve the velocity and pressure fields that obey the
discretized momentum and continuity equations, the finite difference method
was applied. This method involves integrating the continuity and momentum
equations over a two-dimensional control volume on a staggered differential
grid shown in Figure 1 (Patankar et al., 1972).

Figure 1 Staggered Grid showing locations of flow variables (staggered forward).

43

Journal of Science and Technology

	 This yields the governing equations in their discretized form as shown
in equations (5-6). The staggered grid evaluates the scalar variables, in this
case only the pressure, which are stored at the scalar nodes and located at
the intersection of two unbroken grid lines. Such points are indicated by the
capital letters P, W, E, N and S. The u-velocity components are stored at the
east and west cell faces of the scalar control volume and are indicated by
the lower case letters e and w. The v-velocity components are stored at the
north and south cell faces of the scalar control volume which are indicated by
the lower case letters n and s. These velocity components are located at the
intersection of a dashed and unbroken line that construct the scalar cell faces
and are indicated by arrows.
	 The horizontal arrows shown indicate the locations of the ue and uw
velocity components and the vertical arrows indicate the locations of the vn
and vs velocity components. After the process of discretization, the discretized
of u-momentum equation becomes:
 () JiJiJIJInbnbJiJi bAppuaua ,,,,1,, **** +−+= ∑ − 	 	 	 	 (5)
and discretized of v-momentum equation becomes:
 () jIjIJIJInbnbjIjI bAppvava ,,,1,,, **** +−+= ∑ − 	 	 	 	 (6)

	 The method of discretizing the momentum and continuity equations is
fully explained by (Malalasekera at al., 1995) where they show how to employ
differencing schemes to successfully interpolate between the node points.

3	 SOLUTION PROCEDURE OF THE SIMPLE ALGORITHM
The SIMPLE method proceeds by a cyclic series of guess and correct
operations. The important operations are described in the following steps
below. The flow chart of the algorithm showed in Figure 2.
i.	 Guess the pressure field, p*.
ii.	 Solve the momentum equation to obtain u* and v*.
iii.	 Solve the pressure correction equation to obtain p’.
iv.	 Calculate p form equation “” by adding p’ to p*.
v.	 Calculate u and v from their starred values using velocity correction
	 equation.
vi.	 Solve the discretization equation for other ø’s (for this case, we solve
	 the energy equation to obtain temperature T)
vii.	 Treat the corrected pressure p as new guessed p*, return to step 2 and
	 repeat the whole procedure until a converged solution is obtained.

44

Journal of Science and Technology

Figure 2 Flow chart for SIMPLE algorithm.

45

Journal of Science and Technology

Figure 3 Flow chart of the parallelized SIMPLE
with Domain Decomposition Method

4	 PARALLEL IMPLEMENTATION
A parallel implementation can provide a further reduction in computing time.
Parallel implementation also makes solution possible to problems that would
require too much memory to solve on a single processor. During to solve this
problem, the parallel implementation is based on message passing (distributed
memory systems) using the Parallel Virtual Machine (PVM) software.
Portability is ensured because PVM is available on many types of parallel
computers.

46

Journal of Science and Technology

47

	 The implementation uses a layer of subroutines on top of PVM,
symbolically denoted by;	 - start: start entire parallel application
	 	 	 	 - stop: stop parallel application
	 	 	 	 - send: send a message
	 	 	 	 - receive: receive a message

4.1	 Communication Process

Figure 4 Pseudo code solutions.

Communication process is the most important process in parallel
implementation. As described above, the implementation uses a layer of
subroutines on top of PVM, denoted by start, stop, send and receive. For the
send and receive subroutines, it consists of communication process between
a data or function that will be send or receive. According to the pseudo code
solution in Figure 4, the communication process occurs between the master
and slave during to their sending and receiving the data or function.

4.2	 Communication
Basically this finite difference problem is same with the solution of the
problem in this project.
	 From top to bottom of the Figure 5; the one-dimensional vector X,
where N=4; the task structure, showing the 4 tasks, each encapsulating a
single data value and connected to left and right neighbors via channels; and
the structure of a single task, showing its two inports and outports.

Journal of Science and Technology

Figure 5 A parallel algorithms for the finite difference problem.

	 We first consider a one-dimensional finite difference problem, in
which we have a vector of size N and must compute, where;
	 That is, we must repeatedly update each element of X, with no
element being updated in step t+1 until its neighbors have been updated in step
t. A parallel algorithm for this problem creates N tasks, one for each point in
X. The ith task is given the value and is responsible for computing, in T steps,
the values.
	 Hence, at step t, it must obtain the values and from tasks i-1 and i+1.
We specify this data transfer by defining channels that link each task with
“left” and “right” neighbors, as shown in Figure 5, and requiring that at step t,
each task i other than task 0 and task N-1.
i. sends its data on its left and right outports,
ii. receives and from its left and right inports, and
iii. use these values to compute .
	 Notice that the N tasks can execute independently, with the only
constraint on execution order being the synchronization enforced by the
receive operations. This synchronization ensures that no data value is updated
at step t+1 until the data values in neighboring tasks have been updated at step
t. Hence, execution is deterministic.
	 Figure 6 and 7 below showed the algorithms for the sending and
receiving data from master and slaves.

48

Journal of Science and Technology

Figure 6 Algorithm master to send and receive data to and from slaves.

Figure 7 Algorithm slaves to receive and send data from and to master.

49

Journal of Science and Technology

4.3	 Physical Model
The above algorithm has been tested for the problem of natural convection that
occurred in a square cavity with specified boundary conditions. The flow in a
square cavity considered here is that has a hot left vertical wall temperature
and cold right vertical wall. The upper and lower walls are adiabatic. The
fluid used is air with a Prandtl number of 0.71. The aspect ratio L/H is 1.
	 The flow is described by the Navier-Stokes equations under the
Boussinesq approximation that will discuss later. The summary of the
boundary condition that was chosen are as below:
i.	 Adiabatic at both upper and lower wall.
ii.	 For the vertical wall, the boundary condition is isothermal with hot at
	 left vertical wall and cold at right vertical wall.
iii.	 Velocities at the boundary are zero.

Figure 8 Model of square cavity

5	 DISCUSSION
5.1	 Validation of the Results
Tables 1 to 3 show the comparison between the results from the present
simulation and the literature results obtained by Davis (1983). The results of
Davis are the standards against which all other codes are evaluated. Maximum
horizontal velocity on the vertical midplane of the cavity, Umax, maximum
vertical velocity on the horizontal midplane of the cavity, Vmax, and an
average of Nusselt number were compared at Rayleigh numbers of 103, 104,
105 and 106. The comparison had been done between the benchmarking
results obtained by Davis which in serial processor and the present study
that are simulation using serial processor and parallel processor or parallel
computer.

50

Journal of Science and Technology

	 From the tables, it showed that all these results are in excellent
agreement with the benchmark results of Davis. Percentage error for the
three methods of solution was below than 3% compare with benchmark result.
Besides that, the result that was showed in the forms of contour maps of non-
dimensional temperature and velocities was also compared with the results
that obtained by Davis.
	 Figures 9 to 20 showed the contour maps of non-dimensional
temperature and velocities. The thermal and flow fields also agree very well
with those reported by Davis (1983).

Table 1 Comparison of the numerical result of present study for Umax

Table 2 Comparison of the numerical result of present study for Vmax

Table 3 Comparison of the numerical result of present study for

Nu

51

Journal of Science and Technology

 			 	
Figure 9 Contour maps of	 	 	 	 Figure 10 Contour maps of
temperature, Ra = 103	 	 	 	 temperature, Ra = 104

			

Figure 11 Contour maps of	 	 	 Figure 12 Contour maps of
temperature, Ra = 105	 	 	 	 temperature, Ra = 106

			

Figure 13 Contour maps of	 	 	 Figure 14 Contour maps of
temperature, Ra = 103	 	 	 	 temperature, Ra = 106

			

Figure 15 Contour maps of	 	 	 Figure 16 Contour maps of
horizontal velocity u, Ra = 105	 	 	 horizontal velocity u, Ra = 106

52

Journal of Science and Technology

			
Figure 17 Contour maps of	 	 	 Figure 18 Contour maps of
vertical velocity v, Ra = 103	 	 	 vertical velocity v, Ra = 10

			

Figure 19 Contour maps of	 	 	 Figure 20 Contour maps of
vertical velocity v, Ra = 105	 	 	 vertical velocity v, Ra = 106

6	 CONCLUSION
A parallel algorithm has been developed to simulate an incompressible
flow for the problem of natural convection that occurred in a square cavity
with specified boundary conditions. The simulations of the incompressible
flow using SIMPLE method on parallel computer are agreement with the
benchmark result. Thus, the simulation is successful. Percentage errors
for the two computational solutions which are simulation by serial and
parallel computer are below than 3% compare with benchmark result by
Davis. Besides that, the contour maps of temperature T, contour maps of
horizontal velocity u and contour maps of vertical velocity v also agree
very well with those reported in the literature. Therefore it has proved that
clustering personal computers together can provide adequate computing power
for large engineering problems.

53

Journal of Science and Technology

REFERENCES
[1]	 Date A. W (1985). “Numerical Prediction of Natural Convection
	 Heat Transfer in Horizontal Annulus.” Int. J. Heat Mass Trasfer.
[2]	 Davis G. de Vahl (1983). “Natural convection of air in a square
	 cavity: a benchmark numerical solution”. Int. Journal Numerical
	 Mech. Fluid (3): 249-264.
[3]	 Dongarra, J. & Eijkhout, U. (2000). “Numerical linear algebra
	 algorithms and software.” Journal of Computational and Applied
	 mathematics. 123 (2):489-514.
[4]	 Geist, A. et al. (1994). “PVM: Parallel Virtual Machine. A Users’
	 Guide and Tutorial for Networked Parallel Computing”.
	 Massachusetts: The MIT Press.
[5]	 Melaaen M. C (1993). “Nonstaggered Calculation of Laminar and
	 Turbulent Flows using Nonorthogonal Coordinates.” Int. J. Num.
	 Heat Transfer: 375-392.
[6]	 Patankar S. V (1980). “Numerical Heat Transfer 	and Fluid Flow.”
	 McGraw-Hill Inc, New York.
[7]	 Patankar S.V and Spalding D. B (1972). “A Calculation Procedure for
	 Heat, Mass and Momentum Transfer in 3-Dimensional Parabolic
	 Flows.” Int. J. Heat Mass Trasfer.
[8]	 Spalding D. B (1972). “A Novel Finite Difference Formulation for
	 Differential Expressions Involving Both First and Second
	 Derivatives.” Int. J. Num. Methods Eng. (3): 551-559.
[9]	 Versteeg H. K and Malalasekera M. (1995). “An Introduction to
	 Computational Fluid Dynamics.” Pearson, Prentice Hall.

54

Journal of Science and Technology

	journal of science& technology.pdf

