
Incompressible	Flow	Simulation	
Using	SIMPLE	Method	
on	Parallel	Computer

Bukhari	Manshoor1*,	Mat	Nawi	Wan	Hassan2	and	Norma	Alias3

1Faculty	of	Mechanical	Manufacturing	and	Engineering	,	
Universiti	Tun	Hussein	Onn	Malaysia
2Faculty	of	Mechanical	Engineering,	

Universiti	Teknologi	Malaysia
3Faculty	of	Science,	

Universiti	Teknologi	Malaysia

*Corresponding email: bukhari@uthm.edu.my

Abstract
This	 paper	 is	 concerned	 with	 the	 development	 of	 a	 parallel	 algorithm	 on	
cluster	 of	 workstation	 with	 Parallel	 Virtual	 Machine	 (PVM)	 for	 solving	
the	 finite	 difference	 Navier-Stokes	 and	 energy	 equations.	 	 The	 numerical	
procedure	 is	 based	 on	 SIMPLE	 (Semi	 Implicit	 Method	 for	 Pressure	 Link	
Equations)	developed	by	Spalding.		The	governing	equations	are	transformed	
into	 finite	 difference	 forms	 using	 the	 control	 volume	 approach.	The	 hybrid	
scheme	which	is	a	combination	of	the	central	difference	and	up	wind	scheme	
was	used	in	obtaining	a	profile	assumption	for	parameter	variations	between	
the	 grids	 points.	 	The	Domain	Decomposition	Method	 (DDM)	was	used	 to	
decompose	 the	 domain	 into	 a	 small	 domain	 and	 each	 of	 the	 domains	 was	
solved	 by	 different	 processors.	 The	 accuracy	 of	 the	 parallelization	 method	
was	done	by	comparing	with	a	benchmark	solution	of	a	standardized	problem	
related	 to	 the	 two	 dimensional	 buoyancy	 flow	 in	 a	 square	 enclosure.	 	 The	
results	 are	 shown	 in	 the	 forms	 of	 contour	 maps	 of	 non-dimensional	
temperature	and	velocities.

Keywords:	 SIMPLE	 algorithm,	 Parallel	Algorithm,	Domain	Decomposition	
Method,	Navier-Stokes	Equations
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1 INTRODUCTION
Parallel	computing	or	also	known	as	parallel	processing	refers	to	the	concept	
of	 speeding	 up	 the	 excitation	 of	 a	 program	 using	 multiple	 processors	 by	
dividing	the	program	into	multiple	fragments	that	can	execute	simultaneously,	
each	 on	 its	 own	 processor.	A	 program	 being	 executed	 across	 n	 processors	
might	execute	n	times	faster	than	it	would	use	a	single	processor.	Here	we	can	
say	that	the	parallel	processing	is	differs	from	multitasking	in	which	a	single	
processor	execute	several	programs	at	once.
	 Since	 a	 new	 generation	 of	 single	 processor	 computer	 is	 a	 costly	
enterprise	 in	 order	 to	 obtain	 a	 larger	 and	 faster	 communications,	 parallel	
computing	 becomes	 a	 key	 for	 highperformance	 architecture.	 	 All	
cotemporary	 supercomputers	 are	 parallel	 processing	 computers.	 	Massively	
Parallel	Processors	(MPPs)	are	now	the	most	powerful	computer	in	the	world.		
These	machines	combine	a	few	hundred	to	a	few	thousand	CPUs	in	a	single	
large	cabinet	connected	to	hundreds	of	gigabytes	of	memory.
	 This	project	deals	with	a	development	of	parallel	algorithms	in	order	
to	 solve	 an	 incompressible	 flow	 simulation	 using	 SIMPLE	 method	 that	
originally	put	forward	by	Patankar	and	Spalding	(Davis,1983).		The	analysis	
of	 an	 incompressible	 flow	 become	 more	 complicated	 and	 need	 a	 high	
performance	computer	 to	solve	 the	problem.	 	One	of	 the	problem	during	to	
solve	 the	 complicated	 problem	 on	 incompressible	 flow	 is	 time	 constraint.		
More	complicated	of	the	problem	means	more	time	should	be	spend	to	solve	
the	problem.	
	 To	 overcome	 this	 problem,	 parallel	 computer	 was	 used	 and	 to	
determine	 the	performance	of	 this	parallel	 computations,	 the	 corresponding	
parallel	algorithms	was	developed	and	it	based	on	method	of	parallelization	
known	as	Domain	Decompositions	Method.		As	the	number	of	the	nonlinear	
simultaneous	equations	formed	after	discretisation	of	the	modelling	equations	
is	large,	an	iterative	technique	is	used	to	update	the	flow	variables.		Control	
volume	approach	is	selected	and	the	matrix	formed	will	solved	using	matrix	
tri-diagonal	 solver.	 	At	 the	 end	of	 this	paper,	 the	 result	 of	 simulation	using	
parallel	algorithms	are	presented	and	discussed.	

2 NUMERICAL ANALYSIS
2.1 Governing equations
Two-dimensional	 incompressible	 laminar	 constant-density	 flow	 and	 energy	
equation	is	governed	by	set	of	partial	differential	equations	(Melaaen,	1993).		
The	continuity,	momentum	and	energy	equations	in	their	primitive	form	are	
shown	in	equations	(1-4)	where	the	equation	for	conservation	of	mass	is	given	
by:
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	 The	conservation	of	momentum	in	x	and	y	directions	are	governed	by	
the	u-momentum	equation	expressed	as:
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as	well	as	the	v-momentum	equation:
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	 The	conservation	of	energy	express	as:
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	 The	terms	on	the	left-hand	side	of	equations	(2)	and	(3)	are	convective	
terms	and	the	terms	on	the	right-hand	side	include	the	pressure	gradient	and	
viscous	terms.		In	all	the	above	equations,	u	and	v	are	the	x	and	y	components	
of	the	velocity,	P	is	the	pressure	and	ñ	is	the	density.

2.2 Discretisation
In	 order	 to	 numerically	 solve	 the	 velocity	 and	pressure	fields	 that	 obey	 the	
discretized	momentum	and	continuity	equations,	the	finite	difference	method	
was	applied.		This	method	involves	integrating	the	continuity	and	momentum	
equations	over	a	two-dimensional	control	volume	on	a	staggered	differential	
grid	shown	in	Figure	1	(Patankar	et	al.,	1972).

Figure	1		Staggered	Grid	showing	locations	of	flow	variables	(staggered	forward).

43

Journal	of	Science	and	Technology



	 This	yields	the	governing	equations	in	their	discretized	form	as	shown	
in	equations	 (5-6).	The	staggered	grid	evaluates	 the	scalar	variables,	 in	 this	
case	 only	 the	 pressure,	which	 are	 stored	 at	 the	 scalar	 nodes	 and	 located	 at	
the	intersection	of	two	unbroken	grid	lines.		Such	points	are	indicated	by	the	
capital	letters	P,	W,	E,	N	and	S.	The	u-velocity	components	are	stored	at	the	
east	 and	west	 cell	 faces	 of	 the	 scalar	 control	 volume	 and	 are	 indicated	 by	
the	lower	case	letters	e	and	w.		The	v-velocity	components	are	stored	at	the	
north	and	south	cell	faces	of	the	scalar	control	volume	which	are	indicated	by	
the	lower	case	letters	n	and	s.		These	velocity	components	are	located	at	the	
intersection	of	a	dashed	and	unbroken	line	that	construct	the	scalar	cell	faces	
and	are	indicated	by	arrows.
	 The	horizontal	arrows	shown	indicate	the	locations	of	the	ue	and	uw	
velocity	components	and	the	vertical	arrows	indicate	the	locations	of	the	vn	
and	vs	velocity	components.		After	the	process	of	discretization,	the	discretized	
of	u-momentum	equation	becomes:
 ( ) JiJiJIJInbnbJiJi bAppuaua ,,,,1,, **** +−+= ∑ − 	 	 	 	 	(5)
and	discretized	of	v-momentum	equation	becomes:
 ( ) jIjIJIJInbnbjIjI bAppvava ,,,1,,, **** +−+= ∑ − 	 	 	 	 	(6)

	 The	method	of	discretizing	the	momentum	and	continuity	equations	is	
fully	explained	by	(Malalasekera	at	al.,	1995)	where	they	show	how	to	employ	
differencing	schemes	to	successfully	interpolate	between	the	node	points.

3 SOLUTION PROCEDURE OF THE SIMPLE ALGORITHM
The	 SIMPLE	 method	 proceeds	 by	 a	 cyclic	 series	 of	 guess	 and	 correct	
operations.	 	 The	 important	 operations	 are	 described	 in	 the	 following	 steps	
below.		The	flow	chart	of	the	algorithm	showed	in	Figure	2.	
i.	 Guess	the	pressure	field,	p*.
ii.	 Solve	the	momentum	equation	to	obtain	u*	and	v*.
iii.	 Solve	the	pressure	correction	equation	to	obtain	p’.
iv.	 Calculate	p	form	equation	“”	by	adding	p’	to	p*.
v.	 Calculate	u	and	v	from	their	starred	values	using	velocity	correction	
	 equation.
vi.	 Solve	the	discretization	equation	for	other	ø’s	(for	this	case,	we	solve	
	 the	energy	equation	to	obtain	temperature	T)
vii.	 Treat	the	corrected	pressure	p	as	new	guessed	p*,	return	to	step	2	and	
	 repeat	the	whole	procedure	until	a	converged	solution	is	obtained.
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Figure	2		Flow	chart	for	SIMPLE	algorithm.
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Figure	3		Flow	chart	of	the	parallelized	SIMPLE	
with	Domain	Decomposition	Method

4 PARALLEL IMPLEMENTATION
A	parallel	implementation	can	provide	a	further	reduction	in	computing	time.		
Parallel	implementation	also	makes	solution	possible	to	problems	that	would	
require	too	much	memory	to	solve	on	a	single	processor.		During	to	solve	this	
problem,	the	parallel	implementation	is	based	on	message	passing	(distributed	
memory	 systems)	 using	 the	 Parallel	 Virtual	 Machine	 (PVM)	 software.	
Portability	 is	 ensured	 because	 PVM	 is	 available	 on	many	 types	 of	 parallel	
computers.	

46

Journal	of	Science	and	Technology



47

	 The	 implementation	 uses	 a	 layer	 of	 subroutines	 on	 top	 of	 PVM,	
symbolically	denoted	by;	 -	start:	start	entire	parallel	application
	 	 	 	 -	stop:	stop	parallel	application
	 	 	 	 -	send:	send	a	message
	 	 	 	 -	receive:	receive	a	message

4.1 Communication Process

Figure	4		Pseudo	code	solutions.

Communication	 process	 is	 the	 most	 important	 process	 in	 parallel	
implementation.	 	As	 described	 above,	 the	 implementation	 uses	 a	 layer	 of	
subroutines	on	top	of	PVM,	denoted	by	start,	stop,	send	and	receive.		For	the	
send	and	receive	subroutines,	it	consists	of	communication	process	between	
a	data	or	function	that	will	be	send	or	receive.		According	to	the	pseudo	code	
solution	in	Figure	4,	the	communication	process	occurs	between	the	master	
and	slave	during	to	their	sending	and	receiving	the	data	or	function.

4.2 Communication
Basically	 this	 finite	 difference	 problem	 is	 same	 with	 the	 solution	 of	 the	
problem	in	this	project.
	 From	top	 to	bottom	of	 the	Figure	5;	 the	one-dimensional	vector	X,	
where	 N=4;	 the	 task	 structure,	 showing	 the	 4	 tasks,	 each	 encapsulating	 a	
single	data	value	and	connected	to	left	and	right	neighbors	via	channels;	and	
the	structure	of	a	single	task,	showing	its	two	inports	and	outports.
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Figure	5		A	parallel	algorithms	for	the	finite	difference	problem.

	 We	 first	 consider	 a	 one-dimensional	 finite	 difference	 problem,	 in	
which	we	have	a	vector	of	size	N	and	must	compute,	where;	
	 That	 is,	 we	 must	 repeatedly	 update	 each	 element	 of	 X,	 with	 no	
element	being	updated	in	step	t+1	until	its	neighbors	have	been	updated	in	step	
t.		A	parallel	algorithm	for	this	problem	creates	N	tasks,	one	for	each	point	in	
X.		The	ith	task	is	given	the	value	and	is	responsible	for	computing,	in	T	steps,	
the	values.
	 Hence,	at	step	t,	it	must	obtain	the	values		and	from	tasks	i-1	and	i+1.	
We	 specify	 this	 data	 transfer	 by	 defining	 channels	 that	 link	 each	 task	with	
“left”	and	“right”	neighbors,	as	shown	in	Figure	5,	and	requiring	that	at	step	t,	
each	task	i	other	than	task	0	and	task	N-1.
i.			sends	its	data	on	its	left	and	right	outports,	
ii.			receives	and		from	its	left	and	right	inports,	and
iii.			use	these	values	to	compute	.	
	 Notice	 that	 the	 N	 tasks	 can	 execute	 independently,	 with	 the	 only		
constraint	 on	 execution	 order	 being	 the	 synchronization	 enforced	 by	 the	
receive	operations.		This	synchronization	ensures	that	no	data	value	is	updated	
at	step	t+1	until	the	data	values	in	neighboring	tasks	have	been	updated	at	step	
t.		Hence,	execution	is	deterministic.		
	 Figure	 6	 and	 7	 below	 showed	 the	 algorithms	 for	 the	 sending	 and	
receiving	data	from	master	and	slaves.
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Figure	6		Algorithm	master	to	send	and	receive	data	to	and	from	slaves.

 
Figure	7		Algorithm	slaves	to	receive	and	send	data	from	and	to	master.
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4.3 Physical Model
The	above	algorithm	has	been	tested	for	the	problem	of	natural	convection	that	
occurred	in	a	square	cavity	with	specified	boundary	conditions.		The	flow	in	a	
square	cavity		considered	here	is	that	has	a	hot	left	vertical	wall	temperature	
and	cold	right	vertical	wall.	 	The	upper	and	lower	walls	are	adiabatic.	 	The	
fluid	used	is	air	with	a	Prandtl	number	of	0.71.	The	aspect	ratio	L/H	is	1.	
	 The	 flow	 is	 described	 by	 the	 Navier-Stokes	 equations	 under	 the	
Boussinesq	 approximation	 that	 will	 discuss	 later.	 	 The	 summary	 of	 the	
boundary	condition	that	was	chosen	are	as	below:
i.	 Adiabatic	at	both	upper	and	lower	wall.
ii.	 For	the	vertical	wall,	the	boundary	condition	is	isothermal	with	hot	at	
	 left	vertical	wall	and	cold	at	right	vertical	wall.
iii.	 Velocities	at	the	boundary	are	zero.

 
Figure	8		Model	of	square	cavity

5 DISCUSSION
5.1 Validation of the Results
Tables	 1	 to	 3	 show	 the	 comparison	 between	 the	 results	 from	 the	 present	
simulation	and	the	literature	results	obtained	by	Davis	(1983).		The	results	of	
Davis	are	the	standards	against	which	all	other	codes	are	evaluated.		Maximum	
horizontal	velocity	on	the	vertical	midplane	of	 the	cavity,	Umax,	maximum	
vertical	 velocity	 on	 the	 horizontal	 midplane	 of	 the	 cavity,	 Vmax,	 and	 an	
average	of	Nusselt	number	were	compared	at	Rayleigh	numbers	of	103,	104,	
105	 and	 106.	 	 The	 comparison	 had	 been	 done	 between	 the	 benchmarking	
results	 obtained	 by	 	Davis	which	 in	 serial	 processor	 and	 the	 present	 study	
that	 are	 simulation	 using	 serial	 processor	 and	 parallel	 processor	 or	 parallel	
computer.
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	 From	 the	 tables,	 it	 showed	 that	 all	 these	 results	 are	 in	 excellent	
agreement	with	 the	 benchmark	 results	 of	 	Davis.	 	 Percentage	 error	 for	 the	
three	methods	of	solution	was	below	than	3%	compare	with	benchmark	result.		
Besides	that,	the	result	that	was	showed	in	the	forms	of	contour	maps	of	non-
dimensional	 temperature	 and	 velocities	was	 also	 compared	with	 the	 results	
that	obtained	by		Davis.
	 Figures	 9	 to	 20	 showed	 the	 contour	 maps	 of	 non-dimensional	
temperature	and	velocities.		The	thermal	and	flow	fields	also	agree	very	well	
with	those	reported	by	Davis	(1983).

Table	1		Comparison	of	the	numerical	result	of	present	study	for	Umax

Table	2		Comparison	of	the	numerical	result	of	present	study	for	Vmax

Table	3		Comparison	of	the	numerical	result	of	present	study	for		
____

Nu
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Figure	9	Contour	maps	of	 	 	 	 Figure	10	Contour	maps	of
temperature,	Ra	=	103	 	 	 	 temperature,	Ra	=	104

   

Figure	11	Contour	maps	of	 	 	 Figure	12		Contour	maps	of
temperature,	Ra	=	105	 	 	 	 temperature,	Ra	=	106

   

Figure	13	Contour	maps	of	 	 	 Figure	14		Contour	maps	of
temperature,	Ra	=	103	 	 	 	 temperature,	Ra	=	106

   

Figure	15		Contour	maps	of	 	 	 Figure	16	Contour	maps	of
horizontal	velocity	u,	Ra	=	105	 	 	 horizontal	velocity	u,	Ra	=	106
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Figure	17	Contour	maps	of	 	 	 Figure	18	Contour	maps	of
vertical	velocity	v,	Ra	=	103	 	 	 vertical	velocity	v,	Ra	=	10

   

Figure	19	Contour	maps	of	 	 	 Figure	20	Contour	maps	of
vertical	velocity	v,	Ra	=	105	 	 	 vertical	velocity	v,	Ra	=	106

6 CONCLUSION
A	 parallel	 algorithm	 has	 been	 developed	 to	 simulate	 an	 incompressible	
flow	for	 the	problem	of	natural	convection	 that	occurred	 in	a	 square	cavity	
with	 specified	boundary	conditions.	 	The	 simulations	of	 the	 incompressible	
flow	 using	 SIMPLE	 method	 on	 parallel	 computer	 are	 agreement	 with	 the	
benchmark	 result.	 	 Thus,	 the	 simulation	 is	 successful.	 	 Percentage	 errors	
for	 the	 two	 computational	 solutions	 which	 are	 simulation	 by	 serial	 and	
parallel	 computer	 are	 below	 than	 3%	 compare	 with	 benchmark	 result	 by	
Davis.	 Besides	 that,	 the	 contour	 maps	 of	 temperature	 T,	 contour	 maps	 of	
horizontal	 velocity	 u	 and	 contour	 maps	 of	 vertical	 velocity	 v	 also	 agree	
very	well	with	 those	 reported	 in	 the	 literature.	Therefore	 it	 has	proved	 that	
clustering	personal	computers	together	can	provide	adequate	computing	power	
for	large	engineering	problems.
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