
Knowledge Engineering and Data Science (KEDS) pISSN 2597-4602

Vol 4, No 1, July 2021, pp. 29–37 eISSN 2597-4637

https://doi.org/10.17977/um018v4i12021p29-37

©2021 Knowledge Engineering and Data Science | W : http://journal2.um.ac.id/index.php/keds | E : keds.journal@um.ac.id

This is an open access article under the CC BY-SA license (https://creativecommons.org/licenses/by-sa/4.0/)

KEDS is Sinta 2 Journal (https://sinta.ristekbrin.go.id/journals/detail?id=6662) accredited by Indonesian Ministry of Research & Technology

Do Missing Link Community Smell Affect

Developers Productivity: An Empirical Study

Toukir Ahammed 1, *, Sumon Ahmed 2, Mohammed Shafiul Alam Khan 3

Institute of Information Technology, University of Dhaka

Suhrawardi Udyan Rd, Dhaka, 1000, Bangladesh

1 bsse0806@iit.du.ac.bd *; 2 sumon@du.ac.bd; 3 shafiul@du.ac.bd

* corresponding author

I. Introduction

Community smells can be referred to as organizational and social anti-patterns in a development
community, leading to unforeseen project costs [1]. Although community smells may not be an
immediate obstacle for software development, these can affect software maintenance negatively in the
long run [2]. The missing link is one of the most common community smells that occurred in the
software development community. This smell occurs when developers contribute to the same source
code but do not communicate with each other [3].

The productivity of developers is one of the essential factors of software development since it is
connected to the cost of the software project. The personnel-related factors are among the ones found
to affect productivity most in the literature [4]. Missing link community smell can create the
knowledge gap among developers in the development community due to a lack of communication [5].
As a software product can be thought of as the combined effort of all developers, the lack of
communication and cooperation can negatively affect mutual awareness and trust among developers
[3]. Thus, it can affect the development of software products. This raises the need to understand how
missing link smell relates to productivity to manage development productivity more effectively.

The research community has been studied community smells from different perspectives. Some
studies worked with the definition [1][6], and detection [3][7] of community smells, while others
studied the diffuseness [5] and variability [8] of community smells. A few studies [9][10][11] worked
on the prediction of community smells. The effect of community smells on predicting the intensity of
code smell [2][12], and bug [13] is also studied. The role of gender diversity on community smells is
studied in [14][15]. The refactoring of community smells was investigated in [16]. However, there
has been no study investigating the impact of missing link smell on developers' productivity.

In this context, the current study analyzes the productivity of developers involved in missing link
smell and who is not. Seven open-source projects such as ActiveMQ and Cassandra are selected for
analysis based on several criteria (e.g., availability of developer mailing list). First, missing link smells
are identified in each project, finding cases where a collaboration link does not have its communication

ARTICLE INFO A B S T R A C T

Article history:

Received 05 June 2021

Revised 24 June 2021

Accepted 20 July 2021

Published online 17 August 2021

Missing link smell occurs when developers contribute to the same source code without
communicating with each other. Existing studies have analyzed the relationship of
missing link smells with code smell and developer contribution. However, the
productivity of developers involved in missing link smell has not been explored yet.
This study investigates how productivity differs between smelly and non-smelly
developers. For this purpose, the productivity of smelly and non-smelly developers of
seven open-source projects are analyzed. The result shows that the developers not
involved in missing link smell have more productivity than the developers involved
in smells. The observed difference is also found statistically significant.

This is an open access article under the CC BY-SA license

(https://creativecommons.org/licenses/by-sa/4.0/).

Keywords:

Community Smell

Empirical Study

Missing Link Smell

Productivity

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portal Jurnal Elektronik Universitas Negeri Malang

https://core.ac.uk/display/478581897?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://u.lipi.go.id/1502081730
http://u.lipi.go.id/1502081046
https://doi.org/10.17977/um018v4i12021p29-37
http://journal2.um.ac.id/index.php/keds
mailto:keds.journal@um.ac.id
https://creativecommons.org/licenses/by-sa/4.0/
https://sinta.ristekbrin.go.id/journals/detail?id=6662
https://creativecommons.org/licenses/by-sa/4.0/

30 T. Ahammed et al. / Knowledge Engineering and Data Science 2021, 4 (1): 29–37

counterpart. Then, the developers involved with each smell are identified by extracting the instance
of smell. Then, the developers are categorized into smelly and non-smelly developers. Besides, the
productivity of individual developers is measured by the number of changes per active day. Finally,
statistical analysis is performed on the productivity of smelly and non-smelly developers.

The study results show that there is a significant difference between the productivity of smelly and
non-smelly developers. The average productivity of non-smelly developers is significantly higher than
smelly developers.

II. Methods

A. Missing Link Community Smell.

Missing link community smell refers to when two developers collaborate in a part of source code
but do not communicate with each other [3]. This smell can be detected by finding those collaborations
for which no communication is found in the defined communication channel, e.g., mailing list. The
occurrence of missing link smell is described below with a sample software development community.

A sample software development community of six developers is illustrated in Figure 1. The
example is taken from [17]. Developers are connected through the solid line in the network if they
communicate with each other. The dashed lines connect developers to the source code on which they
work. The development community can be used to generate two types of Developer Social Network
(DSN), such as communication DSN and collaboration DSN. Firstly, the communication DSN can be
generated from Figure 1 by considering only communication links, which are displayed in Figure 2.
Then, the collaboration network can be generated by linking developers who work in the same part of
the source code. Figure 3 represents the collaboration DSN for the considered development
community. For example, developer A and developer B work in the same source code file (Figure 1),
so they are connected in the collaboration DSN (Figure 3).

Missing link smell now can be detected by comparing the collaboration network with the

communication network. It can be easily observed that one link, EF, in the collaboration network
(Figure 3) does not have the corresponding counterpart in the communication network (Figure 2).
Hence, it represents an instance of a missing link smell between developer E and developer F.

In recent times, community smells are studied to incorporate the organizational and social aspects
of the software development community in software engineering research. Some studies [1][6]

Fig. 1. Software development community

Fig. 2. Communication Network

 T. Ahammed et al. / Knowledge Engineering and Data Science 2021, 4 (1): 29–37 31

focused on defining different types of community smell, while others focused on identifying [3][5]
and predicting [9][10][11] these smells in open-source projects. Besides, a few studies investigated
the relationship and the impact of community smells on different software artifacts such as code smell
and bug [2][13][18].

The concept of community smell is first introduced in an industrial case study [1]. The authors
defined nine different community smells and proposed a list of possible mitigations of these smells,
such as learning community, cultural conveyor, stand-up voting, etc. Later, Magnoni [3] proposed the
identification pattern of four community smells and developed a tool named Codeface4Smells
(https://github.com/maelstromdat/CodeFace4Smells), extending an existing socio-technical network
analysis tool Codeface (http://siemens.github.io/codeface). The enhanced tool detected both
communities smells and code smells in an automated approach [7]. Besides detection, a few studies
[9][10][11] tried to predict the community smells. Palomba et al. [9] worked on the prediction of
community smells from socio-technical factors. Almarimi et al. [11] also built a model to predict
community smells using Ensemble Classifier Chain (ECC) and Genetic Programming (GP)
techniques.

Tamburri et al. [5] explored the diffuseness of community smells and developer's perception about
the presence and effect of community smells. The authors found that the diffuseness of community
smells high in open-source projects, and developers recognized community smells as an obstacle that
may hinder software evolution. The authors also analyzed the relationship between community smells
and different socio-technical factors, such as socio-technical congruence, turnover, and truck factor.

Catolino et al. [14] investigated the role of gender diversity and women's participation in
community smells. The authors found that gender-diverse teams had fewer community smells than
non-gender-diverse teams, and the involvement of women in teams can reduce the number of
community smells. In another study, Catolino et al. [16] suggested some refactoring strategies to deal
with community smells in practice, such as mentoring, creating communication plans, and
restructuring the development community. In a recent study, Catolino et al. [8] investigated the impact
of socio-technical factors on community smells and found that communicability is essential in most
cases to prevent the increase of community smells.

Ahammed et al. [18] investigated how missing link community smell was related to the
introduction of bugs, i.e., Fix-Inducing Changes (FIC) in the system. The authors found that the
number of smelly commits (developers involved in community smells) and FIC commits are
positively correlated. The authors also found that the severity of bugs was most significant that were
introduced by developers involved in missing link smells. In another study [17], the same authors
made an exploratory study on seven projects from Apache on the engagement of developers in missing
link community smell. They found that the contribution activities of developers are positively
correlated with their involvement in missing link smell.

The existing studies investigated the impact of community smell on technical artifacts such as code
smell intensity [2] or bug [13] by employing a community-aware prediction model. Palomba et al. [2]
conducted an empirical study on nine open-source projects. They also measured how community
smells impact the code smell intensity by proposing a code of smell intensity prediction model. They
found that community smells contribute to the intensity of code smell. Eken et al. [13] conducted an
empirical investigation on ten open-source projects to find how community smells can predict bugs.

Fig. 3. Collaboration Network

32 T. Ahammed et al. / Knowledge Engineering and Data Science 2021, 4 (1): 29–37

The authors found the impact of community smells as a contributing factor in predicting bug-prone
classes. The current study aims at understanding the impact of community smell from the perspective
of developers on how they perform in the software project. The study performs an empirical
investigation on 1004 developers from 7 open-source projects where the projects are divided into a
six-month window. The study reveals how missing link community smell affects the productivity of
developers in open-source projects by measuring the productivity in terms of the number of changes
per active day.

B. Proposed Framework

This study aims to understand how missing link smell affects the productivity of developers. First,
missing link smells are detected from the project repository and mailing list. Then, the developers
were involved with extracted missing link smells. Thus, the developers of the project can be divided
into two categories: smelly and non-smelly developers. Next, the number of changes made by
individual developers to the repository is computed. The productivity of individual developers is
calculated as the number of changes per active day. Finally, the productivity of smelly and non-smelly
developers is compared to identify the effect of missing link smell. The overview of the methodology
is illustrated in Figure 4.

1) Data collection

The data is collected from 7 open-source projects for the analysis of the study. The choice of these
projects is guided by the availability of source code and developer mailing list archive. The source
code of the selected projects is available in Github, and the development mailing list archive is
available in Gmane, a mailing list archive. The name of the projects, source code repository, number
of commits, number of files, lines of code, analyzed periods, project ages, number of developers are
reported in Table 1. The analyzed projects have different sizes in terms of KLOC (ranging from 483
to 1392 KLOCs) and different community sizes (from 44 to 438 developers).

2) Missing link smell detection

Missing link smells are detected in the projects according to the identification pattern introduced
by [3]. First, the source code repository of a project is cloned locally from Github (https://github.com/),
and the mailing list archive is downloaded from Gmane (http://gmane.io/). The projects are analyzed
using a six-month window. For each window, a collaboration DSN is generated by analyzing the
project's repository. All commits are analyzed. Developers who contribute to the same part of source
code within that window are connected through an edge. Next, a communication DSN is constructed
analyzing the mailing list of the project. All emails in the mailing list are analyzed, and developers
who replied in the same email within a given window are connected. Finally, collaboration DSN and
communication DSN are compared to find missing link smell. For each edge in the collaboration
network, the corresponding communication part is searched in the communication DSN. Any edge
that is present in collaboration DSN but absent in communication DSN is identified as missing link
smell.

Fig. 4. Proposed framework

 T. Ahammed et al. / Knowledge Engineering and Data Science 2021, 4 (1): 29–37 33

The steps mentioned above are performed on selected projects using Codeface4Smells tool. The
tool preprocesses the provided artifacts, i.e., source code repository and mailing list, and generates
developers' collaboration and communication network [3]. The generated networks are then used to
detect the occurrence of missing link smells. The tool returns the list of missing link smells along with
the corresponding developers involved with these smells for each evaluated project. The developers
involved in at least one missing link smell are identified as smelly developers, and the rest are
considered non-smelly developers.

Figure 5 illustrates the collaboration network and the instances of missing link smell for a six-
month window of Mahout Project. There are 15 developers in the collaboration network for this
specific window. The original name of the developers is not disclosed due to privacy reasons. The
instances of missing links are marked in the network, and the developers involved with missing link
smells are marked with red. There are three instances of missing link smell, i.e., B-I, B-G, K-L. There
are five developers involved with these smells, i.e., developer B, I, G, K, L. These five developers are
considered smelly developers.

Table 1. List of analyzed projects

Project Repository Commits Files KLOC Analysis

Period

Authors Age

(year)

1 ActiveMQ github.com/apache/activemq 10771 5454 970 Apr 2006

to Jan 2021

143 15

2 Cassandra github.com/apache/cassandra 25896 3989 989 Oct 2009

to Sep 2020

438 11

3 Cayenne github.com/apache/cayenne 6644 5093 539 Nov 2007

to Aug 2020

62 13

4 CXF github.com/apache/cxf 16080 11701 1392 Nov 2010

to Sep 2020

203 10

5 Jackrabbit github.com/apache/jackrabbit 8848 3610 660 Dec 2005

to Aep 2020

50 15

6 Mahout github.com/apache/mahout 4480 2095 483 Oct 2008

to Aug 2020

64 12

7 Pig github.com/apache/pig 3696 2458 591 Oct 2010

to Aug 2020

44 10

 Average 10916 4914 803 143 12

Fig. 5. Instances of Missing Link Smells in a window of Mahout Project

34 T. Ahammed et al. / Knowledge Engineering and Data Science 2021, 4 (1): 29–37

3) Measuring productivity

The productivity of an individual can be measured as the amount of output generated per unit time
[19]. The most straightforward approach to measure the contribution of a developer is to count the
number of commits. However, assessing the contribution of developers using the number of commits
is not a viable measurement because all commits are not equal in size. Therefore, the size of commits
should be taken into account while measuring the developer's contribution. The total of modified lines
in a commit is used to measure the size of that commit. The previous study also used a similar approach
to measure the developer's contribution [20].

The contribution of a developer is extracted from the project repository. First, all the commits of
an individual developer and all the files modified in these commits are identified. Then the number of
changes, i.e., the sum of added and deleted lines, in the modified files are calculated. Then, the total
number of changes is computed as the sum of all changes of a developer. Next, the number of active
days of the individual developer is measured by analyzing the commit history of that developer. The
number of active days is the count of days the developer made at least one commit in the repository.
Then the productivity is calculated as the number of changes per active day by a developer. Equation
(1) shows how productivity is measured.

Productivity NumberOfTotalChangesActiveDays (1)

4) Data analysis

This study aims at understanding whether smelly developers exhibit different productivity
compared to non-smelly developers. The following null hypothesis is formulated to investigate the
impact of missing link smell on developers productivity:

H0: The productivity of smelly and non-smelly developers is not significantly different.

To attempt rejecting H0, Wilcoxon Rank Sum Test, a non-parametric statistical test, is used. This
test can determine whether the difference of two ordinal or interval non-parametric distributions is
significantly different. The test statistic (W) indicates a significant difference between two sample sets
if the ranks of the two sets significantly differ. The test is used to assess whether the productivity of
developers differs between smelly and non-smelly developer groups. The test will also reveal whether
the observed difference between the productivity of smelly developers and non-smelly developers is
statistically significant. The result is considered significant if the p-value is less than 0.01.

III. Results and Discussions

This section presents and discusses the results obtained through the experimentation on the selected
projects. The experimentation is performed according to the methodology stated above. The resulting
dataset consists of 1004 developers from seven different projects. The number of smelly and non-
smelly developers of all evaluated projects is reported in Table 2. The total number of smelly
developers is 468, and the number of non-smelly developers is 536 in the evaluated projects. Figure 6
illustrates the project-wise ratio of smelly and non-smelly developers.

The productivity of both smelly and non-smelly developers is measured; the number of changes
per active day. Thus, the dataset contains two developer groups, i.e., smelly and non-smelly, with their

Table 2. Number of Smelly and Non-Smelly Developers

Project #Committers #Non-smelly #Smelly

1 ActiveMQ 143 74 69

2 Cassandra 438 233 205

3 Cayenne 62 25 37

4 CXF 203 116 87

5 Jackrabbit 50 26 24

6 Mahout 64 40 24

7 Pig 44 22 22

 Average 143 536 468

 T. Ahammed et al. / Knowledge Engineering and Data Science 2021, 4 (1): 29–37 35

corresponding productivity value. Then the Wilcoxon Rank Sum Test is performed to assess the null
hypothesis, H0, which states the productivity does not differ between these two groups. The p-value
obtained from the test is used to accept or reject the null hypothesis. The mean productivity of these
two groups is also calculated.

The productivity of smelly and non-smelly developers is reported in Table 3. The mean
productivity of smelly developers is 333.90, whereas the mean productivity of non-smelly developers
is 445.84. The observed difference is identified significant from Wilcoxon Rank Sum Test (W =
72374, p-value < 0.01). The p-value indicates that the null hypothesis H0 can be rejected. Thus, the
result implies that the productivity of smelly developers and non-smelly developers is significantly
different. The productivity (mean) of non-smelly developers is significantly higher than smelly
developers.

Table 3. Mean Productivity of Smelly and Non-Smelly Developers

Developer Productivity (Mean) p-value Decision

Smelly 333.90
< 0.01 Effect Exist

Non-smelly 445.84

Fig. 6. Number of Smelly and Non-Smelly Developers

36 T. Ahammed et al. / Knowledge Engineering and Data Science 2021, 4 (1): 29–37

The result suggests that the developers involved in missing link smell show lower productivity in
terms of the number of changes per active day than the developers who are not involved in missing
link smell. These results indicate that missing link smell affects the productivity of developers
negatively. The lower productivity of developers can increase the cost of the software project. Hence,
missing links should be monitored carefully, and steps are taken to mitigate these smells if necessary.

IV. Conclusion

This study investigates the effect of missing link smell on developers' productivity. The
productivity of 1004 developers from seven open-source projects is analyzed. Missing link smells are
identified in these projects, and the developers are categorized into two groups, i.e., smelly and non-
smelly. Productivity is measured as the number of changes performed by a developer per active day.

The Wilcoxon Rank Sum Test result shows that the productivity differs significantly between
smelly and non-smelly developers. The developers who are not involved in any missing link smell
show higher productivity than the developers involved in smell. The result suggests that missing link
smells should be taken care of to manage development productivity effectively. Missing link smell
should be monitored, and necessary steps should be taken to mitigate this smell to maintain
productivity and software cost.

The missing link smells detected by Codeface4Smells are directly included in the study without
further verification. Moreover, this tool uses a mailing list to generate the communication network as
the source of communication data. The result can be different if other communication channels exist,
such as Skype and Slack. However, according to contribution guidelines of evaluated projects, a
mailing list is the primary communication channel in these communities.

In the future, more open-source projects can be analyzed to generalize the result. Moreover, other
types of community smell such as Organizational Silo, Radio Silence can also be considered to see
their effect on productivity.

Acknowledgment

Bangladesh Research and Education Network (BdREN) provides the virtual machine facility used
in this research.

Declarations

Author contribution

All authors contributed equally as the main contributor of this paper. All authors read and approved the final paper.

Funding statement

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest

The authors declare no known conflict of financial interest or personal relationships that could have appeared to influence
the work reported in this paper.

Additional information

Reprints and permission information is available at http://journal2.um.ac.id/index.php/keds.

Publisher’s Note: Department of Electrical Engineering - Unversitas Negeri Malang remains neutral with regard to
jurisdictional claims and institutional affiliations.

References

[1] D. A. Tamburri, P. Kruchten, P. Lago, and H. Van Vliet, “Social debt in software engineering: insights from industry,”
J. Internet Serv. Appl., vol. 6, no. 1, pp. 1–17, 2015.

[2] F. Palomba, D. Andrew Tamburri, F. Arcelli Fontana, R. Oliveto, A. Zaidman, and A. Serebrenik, “Beyond Technical
Aspects: How Do Community Smells Influence the Intensity of Code Smells?,” IEEE Trans. Softw. Eng., vol. 47, no.
1, pp. 108–129, 2018, doi: 10.1109/TSE.2018.2883603.

[3] S. Magnoni, “An approach to measure community smellsin software development communities,” Politecnico di Milano,
Italy, 2016.

http://journal2.um.ac.id/index.php/keds
https://doi.org/10.1186/s13174-015-0024-6
https://doi.org/10.1186/s13174-015-0024-6
https://doi.org/10.1109/tse.2018.2883603
https://doi.org/10.1109/tse.2018.2883603
https://doi.org/10.1109/tse.2018.2883603
https://www.politesi.polimi.it/bitstream/10589/123826/3/2016_07_Magnoni.pdf
https://www.politesi.polimi.it/bitstream/10589/123826/3/2016_07_Magnoni.pdf

 T. Ahammed et al. / Knowledge Engineering and Data Science 2021, 4 (1): 29–37 37

[4] A. Trendowicz and J. Münch, “Factors Influencing Software Development Productivity-State-of-the-Art and Industrial
Experiences,” Advances in Computers, vol. 77. Elsevier, pp. 185–241, 2009, doi: 10.1016/S0065-2458(09)01206-6.

[5] D. A. Tamburri, F. Palomba, and R. Kazman, “Exploring Community Smells in Open-Source: An Automated
Approach,” IEEE Trans. Softw. Eng., vol. 47, no. 3, pp. 630–652, 2021, doi: 10.1109/TSE.2019.2901490.

[6] D. A. Tamburri, “Software Architecture Social Debt: Managing the Incommunicability Factor,” IEEE Trans. Comput.
Soc. Syst., vol. 6, no. 1, pp. 20–37, 2019, doi: 10.1109/TCSS.2018.2886433.

[7] F. Giarola, “Detecting code and community smells in open-source: an automated approach,” Politecnico di Milano,
Italy, 2018.

[8] G. Catolino, F. Palomba, D. A. Tamburri, and A. Serebrenik, “Understanding Community Smells Variability: A
Statistical Approach,” in 2021 IEEE/ACM 43rd International Conference on Software Engineering: Software
Engineering in Society (ICSE-SEIS), 2021, pp. 77–86, doi: 10.1109/ICSE-SEIS52602.2021.00017.

[9] F. Palomba and D. A. Tamburri, “Predicting the emergence of community smells using socio-technical metrics: A
machine-learning approach,” J. Syst. Softw., vol. 171, p. 110847, 2021, doi: 10.1016/j.jss.2020.110847.

[10] N. Almarimi, A. Ouni, and M. W. Mkaouer, “Learning to detect community smells in open source software projects,”
Knowledge-Based Syst., vol. 204, p. 106201, 2020, doi: 10.1016/j.knosys.2020.106201.

[11] N. Almarimi, A. Ouni, M. Chouchen, I. Saidani, and M. W. Mkaouer, “On the detection of community smells using
genetic programming-based ensemble classifier chain,” in Proceedings - 2020 ACM/IEEE 15th International
Conference on Global Software Engineering, ICGSE 2020, 2020, pp. 43–54, doi: 10.1145/3372787.3390439.

[12] F. Palomba, D. A. Tamburri, A. Serebrenik, A. Zaidman, F. A. Fontana, and R. Oliveto, “How do community smells
influence code smells?,” in Proceedings - International Conference on Software Engineering, 2018, pp. 240–241, doi:
10.1145/3183440.3194950.

[13] B. Eken, F. Palma, B. Ayşe, and T. Ayşe, “An empirical study on the effect of community smells on bug prediction,”
Softw. Qual. J., vol. 29, no. 1, pp. 159–194, 2021.

[14] G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik, and F. Ferrucci, “Gender diversity and women in software
teams: How do they affect community smells?,” in Proceedings - 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Society, ICSE-SEIS 2019, 2019, pp. 11–20, doi: 10.1109/ICSE-
SEIS.2019.00010.

[15] G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik, and F. Ferrucci, “Gender Diversity and Community Smells:
Insights from the Trenches,” IEEE Softw., vol. 37, no. 1, pp. 10–16, 2020, doi: 10.1109/MS.2019.2944594.

[16] G. Catolino, F. Palomba, D. A. Tamburri, A. Serebrenik, and F. Ferrucci, “Refactoring Community Smells in the Wild:
The Practitioner’s Field Manual,” in Proceedings of the ACM/IEEE 42nd International Conference on Software
Engineering: Software Engineering in Society, 2020, pp. 25–34.

[17] T. Ahammed, M. Asad, and K. Sakib, “Understanding the Involvement of Developers in Missing Link
CommunitySmell: An exploratory Study on Apache Projects,” in Proceedings of the 8th International Workshop on
Quantitative Approachesto Software Quality co-located with APSEC 2020, Singapore (virtual), 2020, pp. 64–70.

[18] T. Ahammed., M. Asad., and K. Sakib., “Understanding the Relationship between Missing Link Community Smell and
Fix-inducing Changes,” in Proceedings of the 16th International Conference on Evaluation of Novel Approaches to
Software Engineering - ENASE, 2021, pp. 469–475, doi: 10.5220/0010500604690475.

[19] S. Wagner and F. Deissenboeck, “Defining productivity in software engineering,” in Rethinking Productivity in
Software Engineering, Springer, 2019, pp. 29–38.

[20] G. Gousios, E. Kalliamvakou, and D. Spinellis, “Measuring developer contribution from software repository data,” in
Proceedings - International Conference on Software Engineering, 2008, pp. 129–132, doi: 10.1145/1370750.1370781.

https://doi.org/10.1016/s0065-2458(09)01206-6
https://doi.org/10.1016/s0065-2458(09)01206-6
https://doi.org/10.1109/tse.2019.2901490
https://doi.org/10.1109/tse.2019.2901490
https://doi.org/10.1109/tcss.2018.2886433
https://doi.org/10.1109/tcss.2018.2886433
https://www.politesi.polimi.it/handle/10589/140195
https://www.politesi.polimi.it/handle/10589/140195
https://doi.org/10.1109/icse-seis52602.2021.00017
https://doi.org/10.1109/icse-seis52602.2021.00017
https://doi.org/10.1109/icse-seis52602.2021.00017
https://doi.org/10.1016/j.jss.2020.110847
https://doi.org/10.1016/j.jss.2020.110847
https://doi.org/10.1016/j.knosys.2020.106201
https://doi.org/10.1016/j.knosys.2020.106201
https://doi.org/10.1145/3372787.3390439
https://doi.org/10.1145/3372787.3390439
https://doi.org/10.1145/3372787.3390439
https://doi.org/10.1145/3183440.3194950
https://doi.org/10.1145/3183440.3194950
https://doi.org/10.1145/3183440.3194950
https://doi.org/10.1007/s11219-020-09538-7
https://doi.org/10.1007/s11219-020-09538-7
https://doi.org/10.1109/icse-seis.2019.00010
https://doi.org/10.1109/icse-seis.2019.00010
https://doi.org/10.1109/icse-seis.2019.00010
https://doi.org/10.1109/icse-seis.2019.00010
https://doi.org/10.1109/ms.2019.2944594
https://doi.org/10.1109/ms.2019.2944594
https://ieeexplore.ieee.org/document/9276528
https://ieeexplore.ieee.org/document/9276528
https://ieeexplore.ieee.org/document/9276528
http://ceur-ws.org/Vol-2767/08-QuASoQ-2020.pdf
http://ceur-ws.org/Vol-2767/08-QuASoQ-2020.pdf
http://ceur-ws.org/Vol-2767/08-QuASoQ-2020.pdf
https://doi.org/10.5220/0010500604690475
https://doi.org/10.5220/0010500604690475
https://doi.org/10.5220/0010500604690475
https://doi.org/10.1007/978-1-4842-4221-6_4
https://doi.org/10.1007/978-1-4842-4221-6_4
https://doi.org/10.1145/1370750.1370781
https://doi.org/10.1145/1370750.1370781

	I. Introduction
	II. Methods
	A. Missing Link Community Smell.
	B. Proposed Framework
	1) Data collection
	2) Missing link smell detection
	3) Measuring productivity
	4) Data analysis

	III. Results and Discussions
	IV. Conclusion
	Acknowledgment
	Declarations
	Author contribution
	Funding statement
	Conflict of interest
	Additional information

	References

