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ABSTRACT 

The electrochemical corrosion property of ternary Al and quaternary Zr added Bell metal in 0.1M Sodium 

Chloride solution has been experimentally conducted at room temperature. Electrochemical impedance 

spectroscopy (EIS) method and Potentiodynamic polarization technique are used to carry out the 

electrochemical investigation. Microhardness test is also conducted for all three alloys and it reveals that Al 

addition increases the hardness of bell metal due to the formation of different intermetallic precipitates of 

Cu and Al. Optical Micrograph as well as Scanning Electron Micrograph have also been studied to 

characterize their surface condition. It is found that Zr addition refines the grain structure of the alloy and 

results in increase of hardness. The EIS study reveals that the corrosion resistance is seem to be augmented 

with the addition of ternary Al and quaternary Zr to bell metal. The potentiodynamic polarization curves 

disclose that both ternary Al added and quaternary Zr added alloy show better corrosion performance than 

the base bell metal alloy due to the formation of stable aluminium oxide film. The current density (Icorr) of 

base bell metal showed higher value than both ternary Al added and quaternary Zr added bell metal alloys. 

The corrosion potential (Ecorr) and the open circuit potential (OCP) were seen to be moved to the more 

positive direction for the Al and Zr added alloys. Microstructure and SEM study of the alloys after corrosion 

revealed a formation of an oxide film on the surface of the ternary Al and quaternary Zr added alloys, the 

probable cause of which is the presence of Al in the respective alloys. 

Copyright © 2021. Journal of Mechanical Engineering Science and Technology. 
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I. Introduction

Bell metal is an alloy of copper where the secondary alloying element is tin. Tin has 

favorable melting point and also has strengthening ability, thereupon when it is added to 

copper its strength increases as well as it helps to attenuate the rate of corrosion [1]. In bell 

metal the compositional ratio of copper to tin is approximately 4:1 for most of the cases. 

Bell metal is famous for its unique resonance of sound and therefore most of the musical 

instruments are made of this promising alloy [2-4]. Other than fabrication of cymbals and 

percussion instruments, this unique metal is used in war industries as well as making 

cannons, weapons, forge tools etc. [5]. Due to its attractive color, this alloy material has also 

a large extent of use in making utensils, pottery, coins, vessels, ornaments, monuments, 

sculptures, statues etc. [6, 7]. Bell metal alloys are conventionally found in gear, bushing or 

bearing type applications due to its ability to endure high strengths and heavy loads [8]. This 
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alloy has also many industrial applications such as production of pump impellers, bridge 

plates, piston rings, seal rings, steam fittings and so on [9].  

Corrosion is a phenomenon where breakdown of the metal occurs due to 

electrochemical reactions. It is degradation of materials’ properties due to interactions with 

environments. Metal is converted into another compound such as oxide or salt by that 

reaction and leads to loss in desirable properties [10-12]. When tin is added to copper it 

forms oxides very rapidly which can perform as a superficial shear-strength film and has the 

ability to attenuate corrosion. However, at accelerated condition the thin oxide layer can be 

penetrated and come off due to the high value of corrosion. For this very reason, the 

corrosion resistance of bell metal can be further improved by alloying with other elements 

[8]. Electrochemical Impedance Spectroscopy analysis is a method of measuring the AC 

impedances with monitoring the current response when a stimulus of AC voltage is applied 

to an electrochemical cell. Tafel polarization technique gives insight of estimating the 

corrosion current (Icorr), corrosion potential (Ecorr) and corrosion rate. With the technological 

advancement of modern era, these two techniques have become widely popular because of 

their fast analysis and non-destructive nature [13-16]. 

The application of bell metal has been extended to variety of above-mentioned industrial 

employments. Particularly in marine based applications such as ship propellers, valve 

components, heat exchangers used in diesel marine engines, seawater-corrosion holds a 

significant issue. It is found from different literature that if different ternary or quaternary 

element is added to copper-based alloys, its property changes significantly. But it is rare to 

find any literature where the effect of both Al and Zr additions has been investigated 

particularly into bell metal, much less so of their electrochemical corrosion behavior. In this 

study ternary Al and quaternary Zr are added to bell metal to investigate its strength and 

density property as well as to find out the effect of these additions on electrochemical 

corrosion behavior in 0.1M NaCl solution through EIS and Tafel polarization techniques. 

Micrographic analysis of the damaged surfaces of the alloys are also investigated after the 

electrochemical experiment. A conventional microscope and SEM are used to study the 

effect of corrosion on the evolution of microstructures before and after corrosion in the 

experimental alloys due to the change in their chemical history. 

II. Material and Methods

Three samples of bell metal were fabricated individually through continuous casting 
and melting process where the Alloy 1 corresponds to the base bell metal, Alloy 2 represents 

the ternary Al added bell metal and Alloy 3 stands for the ternary Al and quaternary Zr added 

bell metal. In the process of preparation of the bell metal alloys, the commercially pure 

copper, tin, aluminium and zirconium were selected for casting. Melting was done in a clay-

graphite crucible in a natural gas fired pit furnace under suitable flux cover. To fabricate the 

Alloy 1, 2500gm of copper and 700gm of tin were melted in the clay-graphite crucible while 

for Alloy 2, 74gm of aluminium was added by dipping it into another molten metal of 

2500gm copper and 700gm tin. Consecutively Al+10wt% Zr master alloy of 74gm was 

added to another molten copper-tin where the individual composition of copper and tin were 

as same as the Alloy 1 and Alloy 2 for making the Alloy 3. All three alloys were casted 

individually. The terminating melting temperature was maintained at about 1300±15°C 

using Infrared Thermometer. Three molds of stainless steel were preheated at 200°C. The 

size of the molds was 20mm × 150mm × 150mm.  Water with clay mixture was used inside 

of those molds to prepare a coating layer and then the melts were poured into them. 

Khan et al. (Electrochemical Corrosion Properties of Ternary Al and Quaternary Zr Added Bell Metal) 
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Conventional Optical Emission Spectroscopy (OES) method was used to determine the 

chemical composition of the alloys and the analysis are specified in Table 1. 

After that machining was done on the alloys to remove natural oxide film from the 

exterior. Rectangular samples (35mm x 13mm x 4mm) of the alloys were fabricated from 

the cast products. To prepare a smooth and refined surface the samples were polished with 

emery papers of 300, 600, 800 and 1200 grits. Micro Vickers Hardness Tester was used to 

determine the hardness of experimental alloys. Several indentations were taken applied with 

1 Kilogram load for the time duration of 10 seconds through a knoop indenter for each 

sample at different surface locations. A conventional optical microscope OPTIKA was used 

to characterize the microstructures of the alloys. A wet polishing machine with velvet 

clothed wheel with the addition of alumina powder was used to make scratch free polished 

surface. Acetone was applied to clean the surface. Ammonium Hydroxide and 3% Hydrogen 

peroxides were used as etchant which were taken in a ratio of 1:1. The whole experiment 

had been conducted at room temperature. 

Electrochemical Impedance Spectroscopy of the experimental alloys was studied 

through a computerized Gamry Framework TM Series G 300™ and Series G 750™ 

Potentiostat/ Galvanostat/ZRA. To prepare 0.1 Molar concentrated solution of Sodium 

Chloride, demineralized water, and analytical reagent grade NaCl were taken where the pH 

of the solution was kept neutral. To conduct electrochemical experiment three electrode cell 

arrangements had been used. A mercury coated with Hg2Cl2 and KCl as electrolyte type 

conventional calomel electrode is prepared as reference electrode. The other two electrodes 

used were platinum electrode as a counter electrode and experimental alloy sample as 

working electrode. In case of working electrode, a wire was connected to the experimental 

sample and only 6.5mm x 4mm surface was kept open to the NaCl solution while the rest of 

the surfaces were kept protected by Teflon tape. Before creating Open Circuit Potential, the 

sinusoidal voltage amplitude was set for 5mV. The frequency range of the experiment was 

set up for 100kHz to 0.2Hz. For ensuring better accuracy in result, the Sodium Chloride 

solution was refreshed time to time throughout the whole experiment period. The experiment 

was allowed to terminate from Open Circuit Potential and thereupon a data analysis software 

Echem Analyst was used to design equivalent circuits whichever fit the best for them. After 

matching properly with the equivalent circuit from the response data, the value of 

corresponding circuit components: solution resistance (Rs), corrosion resistance (Rp) and 

effective double layer capacitance (Cp-eff) had been calculated. 

The Potentiodynamic polarization experiment was also conducted using identical 

experimental setup used for the EIS study. The range of potential was set from -1 to +1V vs 

reference electrode. The selected scan rate was 0.50 mV/s. Hence the setup was allowed to 

generate a steady state Open Circuit Potential. As soon as the experiment was over, the 

corresponding Tafel plot was generated. The corrosion potential (Ecorr) in millivolt, 

corrosion current (Icorr) in micro ampere and corrosion rate in mils penetration per year (mpy) 

were measured from the Tafel polarization plot for all of the experimental alloys. The sample 

surfaces were seen to be damaged after the experiment and so they were characterized under 

both conventional optical microscope and Scanning Electron Microscope. The equation used 

to determine the rate of corrosion rate following ASTM Standard G 102 (equation 1):  

𝐶𝑜𝑟𝑟𝑜𝑠𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 =  
Icorr × K × E. W.

d × A
 … … … … … … … … … … . (1) 

where,  

Icorr = corrosion current in amperes  
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K = constant which designates the units of the rate of corrosion (here, K = 128800 mpy from 

ASTM Standard G 102)  

E. W. = equivalent weight in grams per equivalent   

d = density of the sample in grams per cubic centimeters  

A = exposed surface area in square centimeters 

Table 1. Chemical composition of the experimental alloys (wt%).

Sn Pb Fe Ni Al Si Cr Zr Mn Cu 

Alloy 1 24.935 0.000 0.000 0.019 0.005 0.001 0.004 0.000 0.001 Bal 

Alloy 2 25.444 0.000 0.012 0.018 1.165 0.007 0.003 0.000 0.001 Bal 

Alloy 3 25.008 0.010 0.020 0.018 1.170 0.002 0.004 0.240 0.002 Bal 

III. Results and Discussions

A. Microhardness Test

The microhardness test results of the experimental alloys are shown in Figure 1. The

graph depicts that pure bell metal (Alloy 1) shows the least hardness. The ternary Al added 

bell metal (Alloy 2) shows a bit higher hardness while the ternary Al and quaternary Zr 

added bell metal (Alloy 3) shows the highest value of microhardness. Bell metal shows 

considerable hardness value due to the presence of high tin content [17]. But it is evident 

that the microhardness of the bell metal increases with the ternary addition of aluminium 

and it further increases due to quaternary addition of zirconium. Al is known to cause 

significant hardening when added to Cu-Sn alloys [18]. This hardening is caused by the 

formation of intermetallic precipitates formed by the reaction between Al and Cu during 

solidification of the alloy. Al2Cu, Al4Cu9 and Cu3Al2 are among the intermetallic compounds 

responsible for the increase in hardness of the alloy [19]. Addition of Zr is also known to 

increase the hardness and strength of copper alloys [20]. Through grain refinement the 

formation of intermetallic compounds such as Al3Zr attributes to the increase in hardness of 

the alloy [21].  

Fig. 1. Variation of hardness and density of the alloys at room temperature 
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Figure 1 also shows the density of all three alloys, representing the variation of density 

with the alloying addition of Al and Zr. As the density of Al is less than that of Cu, the 

density of the bell metal decreases due to the ternary addition of Al. The density increases 

slightly with quaternary addition of Zr in Alloy 3, as the density of Zr is a bit higher than 

that of Al. 

B. Impedance Measurement

Table 2 shows the experimental results from Electrochemical Impedance Spectroscopy

(EIS) test. 

Table 2. Electrochemical Impedance Spectroscopy (EIS) test results 

Alloy 

Composition 

Solution 

Resistance 

[Rs in Ω] 

Polarization 

Resistance 

[Rp in Ω] 

Effective 

Double Layer 

Capacitance 

[Cp(eff) in µF] 

Open Circuit 

Potential 

[OCP in 

V/SCE] 

Goodness 

of Fit 

Alloy 1 46.93 551.2 12.15 -0.0698 0.0039 

Alloy 2 39.76 714.1 9.33 -0.0457 0.0174 

Alloy 3 40.81 789.7 8.47 -0.0431 0.0209 

The experimental data obtained from the Potentiostatic EIS test were simulated through 

Echem Analyst data analysis software thereupon several equivalent circuits were modeled 

from which the best fitted one is presented in Figure 2. Rs denotes the ohmic solution 

resistance of the electrolyte where Rct represents the charge transfer resistance which is also 

equivalent to the polarization or corrosion resistance [22]. CPE represents the Constant 

Phase Element from which effective electrical double layer capacitance value has been 

obtained [23].  

The Nyquist plots of the corresponding equivalent circuit model are represented in 

Figure 3 for all three experimental bell metal alloys. In Figure 3 the imaginary part of the 

impedance component (Z") corresponds to the y-axis where the real part of the impedance 

(Z') corresponds to the x-axis. The responses are obtained in the model of capacitive-

resistive semicircle for the experimental alloys. 

Fig. 2. Electrical equivalent circuit diagram of the impedance 

data for experimental alloys 
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Fig. 3. Nyquist plots for experimental bell metal alloys in 0.1M NaCl 

solution at room temperature 

Bode plots for all three bell metal alloys are shown in Figure 4 where the curves are 

drawn Zmod against applied frequency. Zmod represents the total impedance behavior. From 

Table 2 it is found that the range of Rs varies between 39-47Ω. Therefore, it can be said that 

there is no significant change observed for Rs values while EIS testing. In fact, the solution 

resistance values are seemed quite minor compared to that of polarization resistance. 

Polarization resistance depends on the working electrode while the solution resistance 

depends on the solution used for the electrochemical experiment. Table 2 reveals that in 0.1 

M NaCl solution, addition of ternary Al and quaternary Zr in the bell metal alloy enhanced 

the polarization resistance (Rp). For Alloy 1, the polarization resistance (Rp) value is 551.2Ω 

and increased to the value of 714.1Ω through the addition of ternary Al to the bell metal 

(Alloy 2). Alloy 3 showed slightly increased value of polarization resistance (Rp) compared 

to Alloy 2 which is almost 789.7Ω. It is reasonable to assume that the enhanced polarization 

resistance depicts an increment in the corrosion resistance of bell metal through the ternary 

and quaternary additions [24, 25].  

Fig. 4. Bode plots for the experimental alloys in 0.1M NaCl solution at room temperature 
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The effective double layer capacitance (Cp-eff) of Alloy 1 is 12.15µF. With ternary 

addition of Al and quaternary addition of Zr, the value of effective double layer capacitance 

was decreased for both cases. The steady state open circuit potential of base bell metal is 

-0.0698V which is the most negative among all three of them. The OCP value of Alloy 2 is

-0.0475V while Alloy 3 shows slightly more positive value of -0.0431V. It is reasonable to

assume that the variation of the open circuit voltage is caused by both of the ternary Al and

quaternary Zr additions.

C. Potentiodynamic Polarization Analysis

The results of potentiodynamic polarization analysis conducted from the 

electrochemical tests is shown in Table 3. 

Table 3. Potentiodynamic polarization analysis results

Alloy 

Composition 

Icorr 

[µA] 

Ecorr 

[mV] 

Corrosion Rate 

[mpy] 

Alloy 1 16.9 -213 27.92 

Alloy 2 3.4 -171 5.72 

Alloy 3 3.02 -72.3 4.99 

Figure 5 represents the potentiodynamic polarization curves of bell metal alloys in 0.1M 

NaCl solution. With the addition of both ternary Al and quaternary Zr, anodic current density 

of bell metal alloys were seen to be attenuated due to the deceleration of the anodic reaction. 

This ternary and quaternary additions caused the formation of micro-galvanic cells in alpha 

matrix. The intermetallic precipitates of Al2Cu, Cu3Al2 and Al4Cu9 are most likely to be 

formed in ternary Al added alloys [26]. In case of quaternary Zr addition, Cu9Zr2 and Al3Zr 

intermetallics are formed [27, 28]. Corrosion potential difference between alpha matrix and 

secondary constituents can create due to the formation of those intermetallics which leads 

to the generation of different micro-galvanic cells [29]. For the base bell metal Alloy 1 

corrosion potential (Ecorr) is -213mV, which is the most negative potential among the alloys 

investigated. In case of Alloy 2, ternary Al addition made the corrosion potential (Ecorr) 

shifted towards positive value, following that with the addition of quaternary Zr for Alloy 

3, corrosion potential (Ecorr) is seemed to be gone to more noble direction. It is also found 

from the potentiodynamic analysis that the addition of Al and Zr in bell metal reduced the 

corrosion current (Icorr). The corrosion current (Icorr) value of bell metal Alloy 1 in 0.1 Molar 

sodium chloride solution was 16.9 µA, and in case of Alloy 2 this value decreased to 3.4 µA 

with the addition of ternary Al. Alloy 3 showed the lowest corrosion current (Icorr) value of 

3.02 µA among all three alloys. Potentiodynamic polarization test also offers the 

corresponding corrosion rate in mpy for all three alloys, and it is seen that the corrosion 

performance of both ternary Al and quaternary Zr added alloys were found to be higher than 

that of base bell metal. It is seen that the Alloy 1 showed corrosion rate of 27.92mpy where 

it is decreased to 5.72mpy for Alloy 2. In case of base bell metal Alloy 1 a thin film of 

Copper Oxide forms while on the other hand for Alloy 2, along with Copper Oxide film, a 

film of Aluminium Oxide also forms because of additional ternary Al component [30]. 

Aluminium Oxide is more stable and works as a protective layer where copper shows weaker 

interaction with oxygen [31]. Moreover, the enthalpy of formation of Aluminium Oxide is 

less than that of Copper Oxide. The lower the enthalpy of formation of a substance, the lower 

the energy level of the substance and the lower the energy level of the substance, the more 

Khan et al. (Electrochemical Corrosion Properties of Ternary Al and Quaternary Zr Added Bell Metal) 
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stable the substance is. That is why Aluminium Oxide can be said to be more stable than 

Copper Oxide. Vargel [32] has reported that aluminium as a naturally passive metal, forms 

two superimposed colorless oxide layers: the first one is internal-compact-amorphous 

barrier layer which forms within a few milliseconds and the other one is external layer, 

generally called protective layer which grows on top of the first one. All these result in 

increased strength of the protective film layer for Alloy 2 where the ternary Al addition plays 

the key role. This is the reason behind the better corrosion performance of Alloy 2. In case 

of Alloy 3 the corrosion rate is found to be 4.99mpy. The quaternary addition of Zr 

accelerated the alloy to more positive corrosion performance than Alloy 2. It is because the 

corroded elements which tend to present in grain boundaries are refined due to the grain 

refining ability of Zr and the grains became well distributed [33]. So ternary Al added Alloy 

2 and quaternary Zr added Alloy 3 both seemed to be less prone to corrosion than that of 

base bell metal Alloy 1. 

Fig. 5. Tafel polarization curves of the experimental alloys in 0.1M NaCl Solution 

D. Optical Micrographic Investigation

Figure 6a, 6b and 6c show the optical micrographs of the polished and etched surface 
of the experimental alloys. From the micrograph it is seen that the microstructure of Alloy 

1 consists of island-like grains of alpha (α) phase particles with Beta (β) phase along the 

grain boundaries (Figure 6a). This is the typical microstructure of a bell metal alloy. The tin 

content in the bell metal is not high enough to form a complete Beta (β) phase [34]. Figure 

6b shows the optical micrograph of the polished and etched ternary Al added Alloy 2. The 

addition of Al changes the island-like grain structure of bell metal. Instead, long dendritic 

arm structure is seen in the alloy. The presence of aluminium causes the formation of this 

long dendritic arm microstructure in Alloy 2 [35, 36]. Addition of Zr also influences the 

microstructure of the alloy, as we see visible changes in the micrograph of Alloy 3. Figure 

6c shows the optical micrograph of polished and etched quaternary Zr added Alloy 3. In the 

micrograph it is seen that the dendritic arm structure appears to be more refined, due to the 

presence of Zr. Zirconium is a grain refiner [37]. It is commonly known to cause grain 

refinement of copper alloys when added in small amount [38]. The zirconium present in 

Alloy 3 reacted with the Cu and Al to form Cu9Zr2 and Al3Zr intermetallic compounds 

respectively [25, 26]. Grain growth of the alloy is restricted due to the formation of these 

Khan et al. (Electrochemical Corrosion Properties of Ternary Al and Quaternary Zr Added Bell Metal) 



ISSN: 2580-0817  Journal of Mechanical Engineering Science and Technology 9 
 Vol. 5, No. 1, July 2021, pp. 1-16 

intermetallic precipitates [39]. This causes the grain structure to be refined and more evenly 

distributed.  

Fig. 6. Optical micrograph of the experimental polished cast alloys a) Alloy 1, 

b) Alloy and c) Alloy 3

The optical micrographs in Figure 7a, 7b and 7c show the scratched surface of the 

experimental alloys before immersion into the corrosion medium. Figure 7a and 7b show 

the micrographs of the scratched surface of Alloy 1 and Alloy 2 respectively. The addition 

of Al changes the island-like grain structure of Alloy 1 and transforms it to a long dendritic 

arm structure. This change in microstructure can be characterized by the increased dark tone 

in the micrograph of Alloy 2. Figure 7c shows the optical micrograph of the scratched 

surface of Alloy 3. In this micrograph the refined grain structure of the alloy can be 

characterized through the even distribution of the dark tones or patches on the scratched 

surface of Alloy 3.  

Figure 8a, 8b and 8c show the optical micrograph of the alloy surfaces after corrosion. 

Significant corrosion was observed after the electrochemical corrosion study. In Figure 8a 

the micrograph of Alloy 1 after corrosion shows the evidence of concentrated attack at 

different locations of the surface caused by dissolution of the corrosion products into the 

surrounding environment. In comparison Figure 8b and 8c show that the corrosion taking 

place on the surface of Alloy 2 and Alloy 3 respectively were much more uniform with less 

localized pit formation. Further investigation of the micrographs of Alloy 2 and 3 show a 

complete disappearance of the polished marks which suggests a formation of oxide film 

layer on their surfaces. It is evident that the corrosion product remains on the surface of the 

alloy because of the lack of dissolution into the surrounding environment. It can be seen 

from the micrograph of Alloy 3 that the corrosion products are much evenly distributed. The 

probable cause behind this is the refined grain structure of the quaternary Zr added Alloy 

3. 

Khan et al. (Electrochemical Corrosion Properties of Ternary Al and Quaternary Zr Added Bell Metal) 
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Fig. 7. Microstructure of experimental alloys a) Alloy 1, b) Alloy 2 and c) Alloy 3 before 

corrosion 

Fig. 8. Microstructure of experimental alloys a) Alloy 1, b) Alloy 2 and c) Alloy 3 after 

corrosion [The circled zones indicate the formation of localized pits on the alloy surfaces after 

corrosion. As it can be seen Alloy 2 and 3 show less localized pit formation.] 
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The micrographs suggest that Alloy 2 and 3 show better resistances to corrosion and 

one possible cause of this could be the formation of aluminium oxide at the corroding 

interface [40]. As it is seen from literature, due to aluminum addition, the formation of dense 

aluminium oxide layer at the corroding surface can effectively enhance the corrosion 

resistance of the alloy [41]. In addition, the corrosion resistance of Alloy 3 can be attributed 

to the microstructural variations caused by the presence of Zr in the alloy [42, 43].   

E. SEM Observation

The SEM images showing the damage surface morphology of the experimental 

alloys. Alloy 1, 2 and 3 are presented in Figure 9a, 9b and 9c respectively. From the SEM 

images it is seen that there are evidence of corrosion of intermetallic compounds on the 

surface of all examined samples. The SEM image of the bell metal Alloy 1 shows the 

evidence of localized corrosion and discrete pits can be seen on the sample surface. It is also 

observed that the rough polish marks before immersion into the corrosion medium are 

visible in the SEM images of Alloy 1. It is probable that the pit formation occurred due to 

the intermetallic compounds dissolving out of the alloy surface into the surrounding 

environment. This is the same reason behind the visibility of the rough polish marks on the 

surface of the alloy. It can also be concluded that the pit formation was caused by selective 

dissipation of the second phase particles of the alloy.  

Fig. 9. SEM images show the damage surface morphology of as-corroded (a) Alloy 1, 

(b) Alloy 2 and c) Alloy 3 [The red circles in (a) indicate the pit formation in Alloy 1

after corrosion. The red arrows in (a) indicate the rough polish mark on the surface of

Alloy 1. The red rectangular zones in ‘b’ and ‘c’ indicate the corrosion products and

oxide films remaining on the surface of Alloy 2 and Alloy 3 respectively. As it is seen

the oxide film in Alloy 3 is much denser and more uniformly distributed.] 
(

c

 (c) 

 (a)  (b) 
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One of the main corrosion product of Alloy 1 is copper oxide [44]. It is reasonable to 

assume that the copper oxide formed during corrosion did not work as a protective layer for 

the alloy and was dissolved into the solution. SEM images of ternary Al added Alloy 2 and 

quaternary Zr added Alloy 3 shows a more uniform form of corrosion. In Figure 9b the SEM 

image of Alloy 2 shows that the polish marks are less visible on the surface of the alloy. It 

is also seen from the SEM image that most of the corrosion products remain on the sample 

surface and there were no dissolution of corrosion products into the surrounding matrix. It 

is reasonable to opine on the basis of literature and previous works that due to small amount 

of ternary Al addition, aluminium oxide was formed on the surface of the alloy [45]. This 

aluminium oxide acted as a protective layer on the corroding interface, causing the corrosion 

rate to be less than that of Alloy 1 [41]. It is also suggested that the aluminium oxide formed 

was stable and it remained on the surface. The SEM image of Alloy 3 shows a similar case 

of corrosion products remaining on the surface of the alloy due to presence of ternary Al. In 

addition, due to grain refinement effect of Zr, the corrosion product formation were more 

evenly distributed on the surface of Alloy 3. The finer grain size also improved the corrosion 

resistance of the alloy [46]. It can be concluded from the SEM images that Alloy 2 and 3 

showed better corrosion resistance than Alloy 1, while Alloy 3 showed a more uniform 

corrosion on its surface. These changes in corrosion performances of the alloys can be 

attributed to their respective alloying additions. 

IV. Conclusions

The effect of ternary Al and quaternary Zr addition on the electrochemical corrosion 
behavior of bell metal has been conducted. The alloying addition of ternary Al decreased 

the density of bell metal alloy because Al itself has a low value of density compared to Cu 

and Sn. But the hardness value was increased due to the formation of Al2Cu, Cu3Al2, Al4Cu9 

intermetallic precipitates. Quaternary Zr addition accelerated the hardness even more due to 

its grain refining effect. The EIS result shows that higher charge transfer resistance (Rct) has 

been obtained in case of both Al and Zr added alloys. From Tafel Polarization Curve it is 

found that the ternary Al and quaternary Zr addition reduced the corrosion rate (mpy) of bell 

metal by creating stable film of aluminium oxide. Following that they also showed very low 

value of current density (Icorr) compared with the base bell metal alloy. The corrosion 

potential (Ecorr) and the magnitude of open circuit potential (OCP) were found to be gone to 

more noble direction for them. The microstructure and SEM study showed that the base 

alloy suffered a more severe form of corrosion, as there were evidence of localized corrosion 

taking place. Due to dissolution of corrosion product into the surrounding matrix, there were 

formation of pits on the alloy surface. In contrast the ternary Al added alloy and quaternary 

Zr added alloy showed better resistance to corrosion, characterized by the corrosion products 

still remaining on the alloy surfaces and a lack of dissolution into the surrounding matrix. 

Moreover, the Zr added alloy showed a more uniform form of corrosion due to its more 

refined grain structure. 
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