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Article Information  ABSTRACT 
Received:  15th April 2020  Therapeutic cargos which are impermeable to the cell can be delivered by cell penetrating peptides 

(CPPs). CPP-cargo complexes accumulate by endocytosis inside the cells but they fail to reach the 

cytosolic space properly as they are often trapped in the endocytic organelles. Here the CPP mediated 

endosomal escape and some strategies used to increase endosomal escape of CPP-cargo conjugates are 

discussed with evidence. Potential benefits can be obtained by peptides such as reduction in side effects, 

biocompatibility, easier synthesis and can be obtained at lower administered doses. The particular 

peptide known as cell penetrating peptides are able to translocate themselves across membrane with the 

carrier drugs with different mechanisms.  This is of prime importance in drug delivery systems as they 

have capability to cross physiological membranes. This review describes various mechanisms for 

effective drug delivery and associated challenges. 
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INTRODUCTION 
The lipid bilayer is hydrophobic in nature so it is impermeable 
for most hydrophilic molecules and renders protection from 
extracellular matrix. Internalization of large molecules such as 
protein occurs via endocytosis [1]. Some viral and non-viral 
delivery vectors have been developed to increase transport of 
active agent into the cells. Limitations of viral vectors are 
problem in production and immunogenicity [2]. These can be 
overcome by non-viral vectors but they also have some 
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limitations such as cellular toxicity and cargo-vector complex 
instability [3]. In recent years some short, amphipathic or 
cationic peptides called cell penetrating peptides (CPPs) and 
protein transduction domains (PTDs) being able to translocate 
into mammalian cell by energy and receptor independent 
mechanism gained more attention as they have been used 
successfully to transport peptides, protein, siRNAs, antisense 
oligonucleotides, plasmids and large particles like liposomes 
into the cell both in-vivo and in-vitro [4,5]. CPPs were 
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discovered in 1988 from Human immunodeficiency virus type 
1(HIV-1) encoded on trans-activator of transcription (Tat) 
peptide [6,7] which can cross cell membranes. Few years later, 
small exogenous peptide was delivered using penetratin [8–11].  
One Study suggest that the cellular uptake is mainly due to the 
small domains in these peptides so shortening of these 
translocation sequences without losing cellular uptake efficiency 
could be possible [12]. As the selection of CPP mainly depend 
on the application type, the most commonly used peptides are 
Tat, Pep-1, penetratin,  polyarginine, transportan which can 
deliver small bio- molecules [13], nucleic acids [14], proteins 
[15–17].

 
Figure 1 Types of endocytosis mechanisms 

 
CLASSIFICATION 
Based on linkage with cargo: [18][19] 
Covalent bonding between CPP and cargo: 
The covalent linkage present between CPPs and cargo made by 
chemical cross linking or cloning with expression of fusion 
protein of CPP [20] such as polyarginine Arg8 sequence, Tat 
peptide , transportan ,antimicrobial peptides SynB and buforin I, 
VP22 protein from Herpes Simplex Virus(HSV) [17,21,22]. 
Non-covalent bonding between CPP and cargo: 
To improve intracellular delivery, CPPs are non-covalently 
bonded with biomolecules having polar and nonpolar domains. 
 
Based on physicochemical property of CPP [18] 
Cationic 
This class has positive charge and polyarginine groups in 
primary sequence. E.g. Tat in HIV-1 contains lysine and arginine 
residues [23]. 
Amphipathic 
This class has amphipathicity because of lysine residues. E.g. 
Transportan. 

Hydrophobic 
This class has very less importance as carriers and has only non-
polar/hydrophobic sequences E.g. SG3, Pep-7 
 
Based on origin of CPPs 
Chimeric CPPs 
They are made up of two or more motifs from different peptides. 
Example, Transportan derived from mastoparan and galanin. 
Protein derived CPPs 
Transactivators of gene transcription [24], viral envelope protein 
[25,26], antimicrobial peptides [27,28], DNA /RNA binding 
proteins [29], plant skeletal proteins [30] which can cross plasma 
membranes are natural proteins. E.g. Penetratin and Tat are 
derived from natural proteins.  
Artificial CPPs 
They are synthesized and designed on the basis of structure of 
naturally derived CPPs [31,32]. Example, polyarginine which 
mimics with arginine and is made artificially by many arginine 
residues as it helps in transduction mechanism [33]. 
 
STRUCTURAL REQUIREMENTS FOR CPPS 
For the cellular entry, the first step is electrostatic interaction 
between proteoglycans charged negatively and phospholipids 
present on the surface of cell with basic CPPs [34][35–39]. 
Membrane binding and insertion can lead to direct translocation 
or endocytic pathways especially for amphipathic CPPs [40–42]. 
Hydrophobic or electrostatic interaction is affected by positive 
charge, hydrogen bonds and density [18,43,44]. 
 
Magic arginine and positive charge  
Studies suggest that the residues of arginine were more effective 
for internalization than lysine residues, so by replacing the 
residues of lysine with arginine enhanced the uptake rates 
[45,46]. But the uptake efficiency is not only because of positive 
charge but also because of guanidinium head group of side chain 
of arginine and also number of residues of arginine. This is 
important as with 7-15 residues, it gives optimal uptake 
[7,45,47,48]. 
 
Hydrophobicity and ‘‘tryptophan power’’ 
Translocation across the plasma membrane bilayer can be 
increased by presence of hydrophobic residues in CPPs [49–51].  
Studies suggest that by adding fluorescein isothiocynate (FITC) 
or tryptophan residue to the Tat peptide will increase 
translocation but caution must be observed because the deep 
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insertion in lipid bilayer membrane may decrease internalization 
as peptide will be stuck in the plasma membrane [52–54]. 
 
CELLULAR UPTAKE MECHANISM OF CPPS 
For cellular uptake, it has been reported that positively charged 
amino acids such as arginine and lysine interact with acidic 
motifs containing proteoglycans of plasma membrane in 
receptor-independent manner [19,55–57]. After this interaction, 
peptides undergo internalization which will be dependent on 
type of CPPs, size and charge of cargo [58,59].  One study has 
indicated that Tat and Antp CPP internalization can be mediated 
by caveolin-dependent endocytosis, clathrin-dependent 
endocytosis, macro pinocytosis and direct intracellular 
translocation [60]. 
 
Endocytosis  
Receptor mediated endocytosis  
In this type of mechanism, the cell surface receptors first 
recognize the ligand and uptake mechanism is mediated by 
invagination of plasma membrane to from vacuole which is the 
energy dependent process and depends on clathrin for mediation 
of invagination process and also involves actin and microtubule 
filaments. 
Pinocytosis 
In this mechanism ions or molecules gain entry in the cytoplasm 
but only small molecules can be engulfed by this mechanism 
which occurs continuously. 
Macropinocytosis  
Larger molecules can be engulfed into the cell without formation 
of endocytic vesicle using RhoGTPases, form the irregular, large 
vesicles at the site of membrane ruffling because of the closure 
of lamellipodia. The ruffling of membrane in this process is 
predominantly actin-driven and so there is no need of clathrin.  
Potocytosis / caveolae mediated uptake 
Flask shaped regions of the plasma membrane characterized by 
the filamentous caveolins coat lining the inner surface known as 
caveolae used to transport both large and small molecules. It is 
not associated with the clathrin and can transport the molecule 
into the cell bypassing the lysosome in that way it differ from 
endosomes [61]. 
Receptor independent uptake 
In this mechanism, specific cell surface receptors are not 
required but the overall charge of peptide is important [62]. Arg 
residues are important in mediating translocation which was 
demonstrated by the structural studies of Tat PTD [34,45]. 

Direct penetration 
Direct penetration can be possible only when the concentration 
of CPPs is high, while endocytosis is possible in almost all the 
cases [31,63–65]. It is energy independent process so occurs 
only when there is high concentration of CPPs and even in the 
presence of endocytosis inhibitors and at low temperature (40C). 
It involves interaction of negatively charged cell membrane 
components and positively charged CPPs.   
Barrel stave model  
It requires CPP with helix conformation where hydrophilic 
residue forms the internal environment of pore and hydrophobic 
residue bind with hydrophobic tail of lipid bilayer. Such as 
alamethicin, which forms the trans-membrane pores having 3-11 
parallel helical structure [66]. 
Toroidal pore model 
It also dependent on the helix conformation of CPP but differs 
in the mechanism of pore formation. Pore formation occurs 
because of peptides associated with the polar head groups of the 
lipid inside the cell membrane. The hydrophilic core of the 
toroidal pore is lined with the inserted peptides and hydrophilic 
head group of the phospholipid cell membrane [67]. Magainins, 
protegrins and melittin induce the formation of toroidal pores 
[66].  
Carpet like model  
It is based on the cell membrane destabilization and 
reorganization because of electrostatic interactions between 
cationic charged particles and anionic head groups of 
phospholipids [68]. The concentration of CPPs must be high to 
form the carpet like membrane coating then only permeation 
across the membrane occurs. Main difference is absence of 
peptide internalization into the hydrophobic core which was 
shown in barrel stave model [69]. 
 Inverted micelle formation 
When the lipid bilayer is converted into a micelle, it will lead to 
formation of transient hole. The interaction between 
hydrophobic part of cell membrane and hydrophilic residue of 
CPP and also interaction between cationic charged CPPs and 
anionic charged membrane is responsible [70]. Octa-arginine is 
internalized effectively with inverted micelle formation. 
 
Endosomal escape of CPPs 
The drawbacks of endocytosis include endosomal accumulation 
and degradation in the endosome. The CPP-cargo complex can 
interact with the phospholipid known as Bis (Monoacylglycero) 
Phosphate (BMP), which is a part of endosomal membrane.  
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Strategy to improve endosomal escape  
Multivalent CPPs enhance the endosomolytic activity by strong 
interaction with the BMPs in membranes, and they can escape 
efficiently from the endosomes than monomeric CPPs. This 
approach is based on increasing the local concentration of the 
CPP by presenting large number of copies of CPPs on a delivery 
vector where the peptide interacts with cellular components 
[71,72,81–84,73–80]. Multivalency can be achieved by 
chemical conjugation of CPPs to dendrimers, by conjugating a 

protein oligomerization domain to the CPP, or by attaching CPPs 
to the branched oligopeptides, such as the fork-like structure of 
glutamic acid or lysine. Limitations of this approach are higher 
risk of immunogenic properties and difficulty in chemical 
synthesis of multivalent CPPs. It is important to balance the 
number of branches of CPP, to obtain a strong but not too 
extensive reaction. Cyclization of CPPs rich in arginine led to 
efficient cellular uptake process and delivery to the nucleus and 
cytoplasm [65,85,86]. 

 
Figure 2 Mechanisms of CPP’s entrance through cellular membrane 

[Source of figure: Derakhshankhah H, Jafari S. Cell penetrating peptides: A concise review with emphasis on biomedical 
applications. Biomed Pharmacother 2018; 108:1090–6. https://doi.org/10.1016/j.biopha.2018.09.097.] 
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Figure 4 Schematic models of direct penetration of CPPs through cell membrane. The hydrophilic parts of the peptides are red 

colored and the hydrophobic parts of the peptides are blue colored 
[Source of figure: Böhmová E, Machová D, Pechar M, Pola R, Venclíková K, Janoušková O, et al. Cell-penetrating peptides: A 
useful tool for the delivery of various cargoes into cells. Physiol Res 2018;67:s267–79.] 

 
Figure 5 Schematic Representation of Proposed Mechanisms for Cell-Penetrating Peptide (CPP) Internalization 

[Source of figure: Guidotti G, Brambilla L, Rossi D. Cell-Penetrating Peptides : From Basic Research to Clinics. Trends Pharmacol 
Sci 2017;38:406–24. https://doi.org/10.1016/j.tips.2017.01.003.] 
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METHODS TO STUDY MECHANISM OF CPPS 
Various biophysical and biological methods are used to quantify 
CPPs and cargos inside the cell and to study the internalization 
mechanism.  
In cellulo approaches 
These methods are indirect and used to detect the biological 
activity of the cargos by fluorescence [87]. Direct method had 
been developed for quantification of intact CPPs bound to the 
cellular membranes or inside the cells, based on matrix-assisted 
laser desorption-time of flight mass spectrometry(MALDI-TOF 
MS) [88,89]. Other biophysical methods are also used in the 
living cells, like electron microscopy to study the distribution of 
peptides and membrane structures induced by CPPs [90,91] and 
in cell Raman spectroscopy to know the secondary structure of 
peptide in the cellular compartments [92]. 
 
Fluorescence-based protocols 
These are the most commonly used methods. In fluorimetry the 
fluorophore is covalently attached with the peptides and the 
measurement of fluorescence will directly quantify the peptides. 
In the confocal microscopy there is localization of the probes 
inside the living cells. It is convenient but has some limitations 
such as quenching of the fluorescence because of the 
accumulation in the subcellular compartments therefore may 
give inaccurate results [93].  
 
Functional assays in cells 
These methods are used to detect the biological activity of 
cargoes or conjugated molecules [94,95]. These approaches are 
very useful for the biotechnological and therapeutic applications 
[96,97].  
 
APPLICATIONS 
Cell-penetrating peptides as delivery vectors 
Major challenge in the drug delivery is often the inability of drug 
to cross the lipid membrane of the cell but CPP can transport 
different cargos across the lipid membrane.  
Peptides as cargo 
Use of small peptide is better than the full length protein in 
several ways, such as purification of peptide is easy as can be 
synthesized daily while purification of protein is money and time 
consuming process. Peptides have great therapeutic potential in 
the treatment of several diseases such as diabetes, cancer, 
influenza, neurodegenerative disorders with less side effects 
[16,98]. Therefore, in future impermeable bioactive peptides can 

be used for therapy both in vivo and vitro using CPPs for the 
delivery [17,99]. 
Delivery of other cargo by CPP 
Liposomes have been used to enhance the solubility and half-life 
and reduce the toxicity but the cell penetration is very slow 
which limits their use. Conjugation of Antp or Tatp on the 
surface of the liposomes improves the cellular delivery and show 
efficient and fast translocation into cytoplasm [100–102]. 
Fluorescent microscopic observation of the markers trapped 
inside the liposomes showed the liposomes remain intact for few 
hours in the cytoplasm and then migrate towards the nucleus 
slowly and release the contents into cytoplasm. Tatp-liposomes 
used as vectors for gene delivery, result as with high in-vitro 
transfection efficiency and are less cytotoxic [102]. Peptide-
based imaging agents OxorheniumV and Oxotechnetium V can 
be delivered by CPPs into the cellular compartments to achieve 
high intracellular concentrations to carry out radio therapy and 
imaging [103]. The intracellular uptake of the paramagnetic 
nanoparticles can be significantly improved by Tatp which can 
be detected easily through magnetic resonance imaging (MRI) 
[34,104,105]. 
 
Cell penetrating peptides in biopharmaceuticals 
The membrane of the cell prevents the entry of peptides, proteins 
and drug carriers into the cell unless transported by an active 
transport [106]. So CPPs are used to promote the delivery of 
biopharmaceutical agents into the Cell which includes SiRNA 
delivery, Antisense oligonucleotide delivery and delivery of 
drug carriers. 
SiRNA delivery 
CPPs and siRNA can be conjugated non-covalently or 
covalently easily. Covalently linked siRNAs to Penetratin or 
Transportan associated with the silencing response have high 
reproducibility [107]. Non-covalent complexes with siRNA 
have net positive charge [108]. However the non-covalent 
strategy is more efficient for delivery of siRNA [109,110]. 
Antisense oligonucleotide delivery 
Antisense technology is based on the use of oligonucleotides 
(ONs) specific to sequence that can hybridize with the 
complementary mRNA strands lead to mRNA degradation by 
activation of the cellular enzymes belongs to the RNaseH family 
or translational arrest and prevent the gene expression [111]. The 
therapeutically potential ONs include aptamers, ribozymes, 
antisense ONs, triplex-forming ONs, immunostimulatory CpG 
motifs. CPPs can be used for the delivery of ONs with the 
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therapeutic agent by either a non-covalent or covalent linkage 
[111,112]. 
Delivery of drug carriers 
Nanoparticles, liposomes, and other different types of 
nanocarriers have been used to modulate their biodistribution 
and pharmacokinetics, improve the drugs stability, decrease 
side-effects and increase efficacy [106]. However, the main 
challenge is intracellular delivery of these large molecules 
because of their hydrophobic/hydrophilic nature and three-
dimensional structure [113]. CPPs have been used to deliver the 
therapeutic molecules which are 200 times larger than the 
current bioavailability size restriction [114].  
 
Imaging applications 
The technology is similar to that used for cancer therapeutics. 
CPPs having peptide with the transduction ability labeled 
fluorescently and attached with the cleavable linker for example, 
proteases expressed by tumor tissue recognize the cleavable site 
present in the linker. The neutralizing peptide is cleaved off 
when exposed to tumor tissue and its associated proteases, 
giving high concentration of CPP locally which leads to 
increased uptake by the tumor tissue [115,116]. Quantum dots 
(QD) are photostable, semiconductor nanocrystals, having 
diameter of 1–6 nm, brightly fluorescent, used mainly for 
biological imaging. Benefits of QDs over the traditional dyes are 
narrow emission peak, high quantum yield, resistance to the 
photo-bleaching and dependent on the size, broad 
photoluminescence. But major limitation is their inability to 
cross the plasma membrane. To overcome this limitation, CPPs, 
most commonly Tat, has been used. Dynamic confocal imaging 
studies suggested that Tat-QD conjugates were internalized by 
macropinocytosis which was triggered by the binding of the 
conjugate to the negatively charged cell membranes [117–119]. 
 
Application of CPPs in gene therapy 
CPPs offer many advantages for cellular delivery, for example 
in-vivo efficacy, applicability in various types of cell, favorable 
nuclear targeting, no restriction for cargo size, non-
immunogenic [62]. CPPs can also able to deliver nucleic acids, 
peptides into the bacterial cells. For treatment of genetic 
disorders therapeutically active genes are incorporated to cure 
the mutation. The major challenge is DNA delivery across the 
biological membranes- plasma membrane and nuclear 
membrane with minimum cell toxicity. Viral gene delivery 
vectors have efficient capability of gene transfer but some 

drawbacks which limit their use are oncogenicity, pathogenicity 
and stimulate ions of immunological responses in the host [111]. 
Non-viral gene delivery vectors are safe but the limitation is their 
inefficiency. With the use of CPP based delivery systems 
problems with non-viral gene therapy can be solved and also 
there is improvement in the viral gene therapy to some extent 
[120–123]. 
Delivery of DNA to the intracellular environment through 
synthetic CPPs   
Oligonucleotides have been modified in many ways, such as 
with modification of chemical group, changes in the sequence, 
and the use of analogues of nucleotide show varying antisense 
activity. Modification in the sugar-phosphate backbone of the 
oligonucleotides is very important as it plays a role in gene 
silencing and membrane translocation [120]. Improvements to 
ON modifications are constantly being developed [124]. The 
degradation issues of naturally occurring oligonucleotides can 
be overcome by using ONs containing nucleotide analogues. For 
example, morpholinos, which are modified ONs, having 
standard nucleic acid bases, but are bound to the morpholine 
rings instead of deoxyribose rings and attached through the 
phosphorodiamidate groups instead of phosphates [125]. These 
changes make them resistant to the nuclease degradation and 
prevent immune responses. Synthetic CPPs have been 
developed to overcome the problem of inefficient gene transfer 
by non-viral vectors. Synthetic CPPs have been designed in the 
way that they can condense the DNA and transport it into the 
cell through the bilayer of lipid, either via endosome where CPP 
destabilize the endosomal lipid bilayer at low pH and mediate 
the plasmid release or directly in the case of amphipathic CPPs 
[126].  
Suicidal gene therapy approaches 
It is widely used for treating hyperproliferative disorders and 
cancer. It is based on introduction of gene into the target cells 
which encode the enzyme that converts inactive prodrug to the 
potent cytotoxic agent. Various prodrug /enzyme combinations 
have been developed, but the most commonly used is HSV-1 
thymidine kinase (TK)/ganciclovir (GCV) combination 
[34,127]. 
 
Transdermal delivery with CPPs 
Skin act as barrier for the macromolecules to deliver across the 
skin [128]. The barrier function of skin is because the stratum 
corneum has highly organized structure [129]. It protects the 
body from the outside environment, but also acts as epidermal 
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permeability barrier for the delivery of therapeutic agents for 
treatment of skin diseases. The drugs for the treatment of 
primary cutaneous disease are administered systemically 
because of poor absorption of drug through skin and very low 
topical bioavailability [130]. Topical delivery of peptides has 
been studied because these compounds are important in the 
treatment of skin diseases and improvement in the skin 
properties in case of cosmeceuticals. Administration of several 
peptides by topical route would be better, such as TGF-b, IGF-
1, leptin for wound healing, interferon as antiviral, bacitracin for 
the skin infection, cyclosporine for the treatment of autoimmune 
diseases [130,131]. Several peptides have been studied as 
antigens by applying to the skin for the development of topical 
vaccines [132].  
 
Anti-inflammation therapy 
Antisense peptide nucleic acids (PNAs) have been demonstrated 
to prevent the growth of E. coli and gene expression and are good 
anti-inflammatory agent. For the efficient delivery of PNAs, 
PNAs are conjugated with the CPPs (CPP-PNA complex) [133]. 
For example, administration of acpP-targeting PNA conjugated 
with the CPP into E. coli K-12-infected BALB/c mice enhanced 

survival of the infected mice, prevented the fatal infection and 
reduced bacterial blood counts [134].  
 
Tumor therapy 
Conventional chemotherapy cause severe side effects because of 
lack of specificity to the tumor cell and has low concentration of 
drug at the local tumor areas. Efficient strategies for targeting 
tumor have been developed to overcome these limitations. 
Conjugation of antitumor agents with the CPPs has increased the 
efficiency of tumor therapy. CPPs can be used in tumor therapy 
as the conjugated antitumor therapeutics have increased 
permeability through the cellular membrane so targeting of 
tumor cells can be possible [135]. Bleomycin (BLM) is 
extensively used as an anticancer agent, but its effect is 
dependent on the cytosolic accumulation. The artificial 
R8-DOPE-BLM conjugate can enter into cytosol resulting in 
strong induction of tumor cell death and in vitro DNA damage 
compared to BLM. Similar results have been obtained by 
combination of CPP with Taxol, doxorubicin, methotrexate 
[136–138]. These data indicate that CPP conjugated antitumor 
agents can improve the treatment by increase in the 
concentration of drug at the tumor tissue. 

 
Figure 6 Schematic diagram of routes for topical delivery of cell-penetrating peptides (CPP) ⁄ Cargo complexes via human skin 

[Source of figure: Nasrollahi SA, Taghibiglou C, Azizi E, Farboud ES. Cell-penetrating Peptides as a Novel Transdermal Drug 
Delivery System. Chem Biol Drug Des 2012;80:639–46. https://doi.org/10.1111/cbdd.12008.] 

 
Protein and nucleic acid delivery 
Large macromolecules, such as proteins and nucleic acids are 
not able to penetrate the plasma membrane so are unable to enter 
into the cells. CPPs can be used as a delivery tool for proteins 

and nucleic acids as they enhance the cellular uptake of the large 
molecules. For the treatment of infectious diseases, cancer and 
genetic disorders, siRNA can be used for gene silencing [139]. 
CPPs can overcome the problem of low permeability and may 



Journal of Applied Pharmaceutical Research 9 (1); 2021: 08 – 24  Athalye et. al  
 

 
  Journal of Applied Pharmaceutical Research (JOAPR)| January – March 2021 | Volume 9 Issue 1 |   16 

lead to the internalization of siRNA [140]. A CPP-siRNA 
complex was synthesized by disulfide shown to efficiently 
decrease the expression of reporter transgenes in several 
mammalian cells [141]. 
 
Biomedical applications of CPPs 
The cell membrane act as barrier for peptides, proteins and drug 
carriers and prevent them from entering into the cells except an 
active transport mechanism is involved. CPPs can easily deliver 
the drugs intracellularly as they can carry cargos without injury 
to the cell. CPPs can also be used in biomedical applications 
such as direct action as antifungal, antimicrobials, imaging, and 
anti-parasitic and as a carrier to deliver the drugs, nucleotides, 
small interfering RNA (siRNA), peptides and proteins 
[114,142]. 
Antifungal and antimicrobial action of CPPs 
From studies it is found that the CPPs have capability to disrupt 
the cell membranes of fungi and bacteria. Antimicrobial peptides 
and CPPs have similar structural features such as positive charge 
and size which increases their interactions with anionic bio-
membranes. Antimicrobial activity of CPPs and their derivatives 
is because of arginine residue in the peptide sequence. The 
antimicrobial activity and uptake of CPPs can be enhanced in the 
presence of multiple guanidinum groups. Number of studies has 
been investigated for the antibiotic activity of penetratin and Tat 
against Gram-negative and Gram-positive bacteria [143]. 
 
CPPs improving intracellular delivery of anti-parasitic 
drugs 
Protozoan parasites cause serious human infections such as 
leishmaniasis, malaria.  The therapeutic application of anti-
parasitic drugs is limited by increasing levels of resistance and 
poor intracellular access. Here, CPPs have been used to carry the 
active compounds across the parasite membranes, for improving 
the efficacy of anti-parasitic drugs.  Miltefosine was the first 
orally active leishmanicidal drug but its clinical application is 
limited because of resistance mechanisms. But leishmaniasis 
resistance to miltefosine can be treated by conjugation to Tat in 
which the conjugate was internalized into the R40 Leishmania 
strain efficiently where Miltefosine alone was not permeable, 
resulting in fast killing of parasites [144,145]. 
 
CPPs-modified pH-sensitive delivery 
The exploitation of the acidic pH can improve the cytoplasmic 
delivery of cargo molecules performed with CPPs. CPPs with 

nanocarriers have triggered exposure mechanisms, such as 
degradation of enzyme of the protective coat, acid degradable 
cross-links, allows their controlled effect at the site of tumor 
microenvironment, because of the presence of pH gradient 
between physiological environment and the tumor milieu. So the 
therapeutic efficiency of nanocarriers enhanced and reduced 
toxicity [146].  
 
ADVANCES IN CELL PENETRATING PEPTIDE 
DEVELOPMENT 
Chemical modification of CPP for enhanced delivery 
Amino acid substitution 
By the amino acid substitution in the cell penetrating peptides, 
desired properties of peptide like cationic nature or 
hydrophobicity can be achieved. This strategy has resulted in 
increased intracellular internalization by certain CPPs. Kaeko et 
al. conducted a comprehensive search for novel CPPs using an 
in vitro virus library of peptides consisting of 15 amino acids and 
reported improved intracellular translocation efficiency at low 
concentrations due to the effect of cationic amino acids. As the 
amino acid Arginine has strong affinity to the surface of the cell, 
substituting it with another amino acid in the peptide chain such 
as Lysine improved the intracellular translocation significantly 
even at low concentration[147,148]. 
 
Modification in functional group 
It involves the formation of linkage or masking groups to the 
highly reactive sites in the peptide chain. The peptide bonds 
formed should be weak and so that can be easily broken by 
simple variation of physiological conditions for regeneration of 
the cell penetrating peptide [114,149]. 
 
CHALLENGES OF CPPS 
Biosafety and cytotoxicity are the main challenges for CPPs. The 
studies have been found that CPPs are less cytotoxic; but it 
should be considered that everything can become cytotoxic in a 
certain dose threshold. CPPs generally show two types of 
cytotoxic effects: 1) cytotoxic effects arising from the specific 
interaction of CPPs with cellular components 2) cytotoxic effect 
on the cell and also organelle membranes [150,151]. 
 
LIMITATIONS AND FUTURE DIRECTION OF CELL-
PENETRATING PEPTIDE-BASED STRATEGIES 
CPPs based therapies pose three main limitations. The first 
limitation is the absence of specificity to the tumor cells over 
normal cells in case of anticancer therapy. Most anticancer drugs 
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interfere with the replication of cell therefore show similar 
effects on the proliferating tissues. The interaction with targeted 
tumor cells would result in therapeutic functions of the drug, but 
interaction with normal cells can cause toxic side effects. The 
second limitation is the rapid clearance of water soluble drugs 
having low molecular weight from the bloodstream, and 
immunogenicity and/or proteolytic degradation of large protein 
or nucleic acid -type drugs. The third limitation is the difficulty 
in penetrating through cell membrane. The first limitation of 
insufficient tumor selectivity can be overcome by attaching the 
drug to the targeting component such as a peptide ligand or an 
antibody. A combination of prodrug and targeted delivery 
system is a solution to this limitation, as drug remains in inactive 
form during the targeting and delivery process and then 
converted to the active form at the targeted site [112]. The 
second limitation, which is related to the pharmacokinetic 
properties of the drugs, can be managed. In the natural systems, 
the pharmacokinetic behavior of many small drugs is regulated 
by series of transport proteins [152]. So, binding of such drugs 
to the macromolecule or a carrier would prolong their circulation 
time [99]. 
 
CONCLUSION 
CPPs can transport the wide range of therapeutic agents and 
macromolecules across the biomembranes, enabling their 
localization to the cell nucleus, cytoplasm and various tissues for 
execution of their different functions: permeation through the 
skin mucosa to develop percutaneous delivery of nucleic-acid 
and protein drugs for clinical use, penetration through intestinal 
mucosa to increase oral bioavailability and the rate of drug 
absorption. The penetration capacity of the CPPs can be used for 
the study of the functional effects and intracellular mechanisms 
of biomolecules.  
 
The main limitations of CPPs are easy degradation by plasma 
proteases, and lack of specificity, which may lead to loss of 
membrane permeation ability of CPPs. Modified CPPs can 
facilitate the endosomal escape, increase drug permeating 
efficiency, improve the tumor targeting and stimulus responsive 
controlled release of drug specific for the tumor 
microenvironment. Use of CPPs will lead to convenient and 
effective multifunctional drug delivery system which is 
important in the clinical applications and promote the research 
of new drugs.  
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CPPs = Cell-penetrating peptides 
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ON = Oligonucleotide 
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PNA = Peptide nucleic acid 
PTD = Protein transduction domain 
siRNA = Small interferring RNA 
TP = Transportan 
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DNA = Deoxyribonucleic Acid 
FITC = Fluorescein Isothiocyanate 
MRI = Magnetic Resonance Imaging 
mRNA = Messenger Ribonucleic Acid 
RNA = Ribonucleic Acid 
Tatp = Trans-activator of transcription (Tat) peptide 
US = Ultrasound 
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