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ABSTRACT

180 F4: [fourth filial generation advanced to sixth filial generation] recombinant inbred
lines (RILs) segregating for protein, oil, and fatty acids were produced from a cross
between TN12-4098 and TN13-4303. These lines were grown across three locations
spread horizontally across Tennessee at: Research Education Center at Milan (RECM),
Highland Rim Research and Education Center (HRREC), and East Tennessee Research
and Education Center (ETREC) in 2018 and 2019. 21 quantitative trait loci (QTL)
spanning 7 chromosomes were found using WinQTLCart2.5 for traits, including days

after planting (DAP), height, lodging, yield, protein, oil, linolenic acid, and meal protein.
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INTRODUCTION

Soybean [Glycine max (L.) Merrill] is an annual legume cultivated for its seed products,
specifically protein and oil. Soybean has a high seed protein content, and is the top
cultivated crop used for vegetable oil (Qiu and Chang, 2010). In 2018 alone, Tennessee
farmers planted 687,966 hectares of soybeans (USDA, 2019). Soybean protein is in high
demand, as there is a global shortage in animal feed protein to meet production levels
(Kim et al., 2019). Markets for soybean protein include tofu, edamame, and animal feed,
with animal feed the dominant market. Protein derived from soybean seed is high quality
and captures attention from markets for being plant-based. Partially hydrogenated oils are
currently an issue in the US after it was determined they are not “generally regarded as
safe” (Wayland, 2015). Creation of soybeans with high oleic acid (>80%) and low-
linolenic acid (<3%) allow soybean oil to be trans-fat free. Finding QTL responsible for
the variation in protein, oil and fatty acids would be beneficial to public soybean

breeders, as they can incorporate these genomic regions into elite soybean lines.
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LITERATURE REVIEW



Abstract

Seed protein, oil, linolenic acid, and meal protein are traits of soybeans that breeders are
modifying. These are quantitative traits, controlled by multiple genes. To improve these
traits, plant breeders can utilize quantitative trait loci (QTLs). QTLs are regions of a
chromosome controlling the variation in a quantitative trait. Although QTLs already
exist for these traits, an increased number of novel QTLs can help a breeder by providing
new options for QTL selection. Using marker assisted selection (MAS), breeders can

incorporate QTLs into their soybeans to create lines with improved profiles.

Protein

Soybean protein is an integral component of human and animal diets. In 2018, 44.5
million metric tons of soybean meal were produced by the United States, and of that, 35.1
million metric tons went directly to livestock production (soystats.com). With a
projected exponential growth in human population over time, it is paramount that
soybean protein content meets the needs of the livestock that we consume. According to
a study conducted by Yaklich et al. (2002), soybean seed protein content averaged from
40.4% to 41.4% across maturity groups over a span of 51 years. Recently, it is estimated
that soybean protein content is closer to 39.6% on a dry basis (Brzostowski et al., 2017).
The problem with seed protein content is that it is generally negatively proportional to
seed oil and seed yield (Burton et al., 1987). The yield discourages farmers from using
high protein lines, because soybeans are sold on a basis of weight rather than quality

(Yaklich et al. 2001). Although increased seed protein is generally negatively correlated



with yield, there are some cases where breeders have been able to develop high yielding,
high protein lines. For example, in a 1995 study, Wilcox and Cavins found that protein
content can be increased without sacrificing yield when high protein lines are
backcrossed into high yielding lines. Pantalone and Smallwood (2018) describe the
development of the cultivar TN11-5102 with high yields and 49% meal protein.
Furthermore, Pantalone et al. (2020) describe the new cultivar TN15-5007 with high
yields and 50.5% meal protein.

Seed protein is a quantitative trait, which means that many genes with small and large
effects govern the trait. Molecular strategies for improvement can be helpful. QTL
studies allow researchers to target and use genomic regions that account for some of the
variation in seed protein. Several papers have successfully identified protein QTL across
multiple chromosomes. For example, Zhang et al. (2015) identified 9 protein QTL, 5 of
which were additive QTL, in a population consisting of 147 Fe¢ recombinant inbred lines.
Three of these were considered major additive QTLs. These QTLs spanned across 7
chromosomes. In a 2004 study by Hyten et al., 4 protein QTL were found in a population
of 131 Fe RILSs that spanned 4 chromosomes and explained up to 27.6% of the phenotypic
variation averaged over multiple environments. These QTL were located on chromosome
6,7,9, and 13. Pro-1, the QTL which explained 27.6% of variation combined, was located
on chromosome 6 at 119.8 cM however, the effect was likely due to the E; maturity gene
at this position. Panthee et al. (2005) found a protein QTL associated with marker
Satt570, located on chromosome 18 that explained 20.2% of phenotypic variation in a

population of 101 Fe.derived RILs. The QTL near Satt570 was stable across



environments and was found to be related to seed nitrogen accumulation (Panthee et al.,
2005). Soybean seed protein is often influenced by environmental factors (Cunicelli et
al., 2019), so it is critical to validate QTL in geographically different areas.

Oil
Soybean oil is a useful product for industrial and food applications. 11.1 million metric
tons of soybean oil were produced by the United States in 2018, and out of that, 10.3
million metric tons went to United States vegetable oil consumption (soystats.com). The
average return on each metric ton came out to 661 USD. With approximately 7.34 billion
USD stemming from United States soybean oil production alone, it is worth the effort to
breed for increased seed oil. Seed oil content averaged across all maturity groups is
between 19.8% and 21.2% ('Yaklich et al. 2002). In a study by Li et al. (2018), it was
noted that in a soybean population, a negative correlation (-0.66, P < 0.01) existed
between seed oil and seed protein.
There have been many oil QTL discovered. Pantalone et al. (2004) stated that, at the
time, 53 oil QTL were reported. Currently, Soybase reports there are 322 bi-parental
QTL associated with seed oil. Chapman et al. (2003) discovered 2 oil QTL in a
population of 208 F plants and 177 Fas lines. The first QTL was additive (r> = 0.05) and
located near Satt14 on chromosome 17. The second QTL was additive (r> = 0.04 oil and
0.03 protein) and located near Satt251 on chromosome 11. QTLS such as the one linked
to Satt251 are desirable because they offer the ability to increase protein and oil
simultaneously, in an otherwise negative relationship. Although many oil QTLs have

been discovered, oil QTLs need confirmation. Oil QTL are environmentally sensitive,
5



with oil biosynthesis being affected by factors including temperature, rain, etc. (Pantalone
et al., 2004). For example, an oil QTL discovered in a southern US population may not be
detected in the same population grown in the northern US. Pantalone et al. (2004) states
that confirmed oil QTL would be useful to breeders in targeted geographical areas.
Finding more oil QTLs will increase options available to breeders wanting to create

superior soybean lines.

Linolenic Acid

On average, soybean oil contains 8% linolenic acid (Hoshino et al., 2014). Linolenic acid
IS a primary factor in the instability and oxidative properties of soybean oil (Warner and
Fehr, 2008). Because of these properties, foods produced with unmodified soybean oil
will have a short shelf life. Currently, the industry standard for low linolenic acid
soybean oil is < 3% (Pham et al., 2012; Smallwood et al., 2017). With genetic methods,
breeders have accomplished producing low-linolenic soybean lines (Pham et al., 2012,
Hoshino et al., 2014, Bilyeu et al., 2005). Confirming QTL responsible for linolenic
acid, or the lack thereof, would allow breeders to identify lines containing genes
responsible for low linolenic acid.

Three genes are identified in soybean that control linolenic acid levels: FAD3A
(Glyma.14g194300), FAD3B (Glyma.02g227200), and FAD3C (Glyma.18g06200)
(Bilyeu et al., 2003, Held et al., 2019). In a 2005 study by Bilyeu et al., 107 F. progeny
resulting from a cross between W82 and a mutant FAD3A / FAD3C donor (2721)
showed that mutated alleles of the FAD3 genes significantly reduced seed linolenic acid.

When FAD3A and FAD3C were mutated (denoted aacc), linolenic acid dropped over
6



66% compared to the wild type (AACC) (Bilyeu et al., 2005). When comparing FAD3A
and FAD3C, mutations in FAD3A resulted in larger reductions in linolenic acid than the
latter (Bilyeu et al., 2005). Furthermore, F2 progeny were advanced to the F4 generation
and the fatty acid profile remained, suggesting that F> screening for FAD3A and FAD3C
mutations is a reliable method for identifying low linolenic acid progeny. Mutant alleles
of FAD3B can be incorporated along with mutant FAD3A and FAD3C alleles to produce
~1% linolenic acid in progeny (Bilyeu et al., 2011). Bilyeu et al. found that in F2 progeny
that contained triple homozygous FAD3 alleles (aabbcc), mean linolenic acid percentage
fell below 1.5% (Bilyeu et al., 2011).

Hyten et al. (2004) identified 3 QTL in a population of 131 Fe:g RILS spanning across
chromosomes 13 (11.4 cM) and 19 (50.6 cM, 82.5 cM). The QTL located on
chromosome 19 (82.5 cM) explained 24.8% of the phenotypic variation in linolenic acid.
Panthee et al. (2006) found two QTL associated with linolenic acid in a population of 101
Fs RILs. The first QTL was found on chromosome 15 near marker Satt263. This QTL
explained 12.3% of variation in the RILs. The second QTL was located on chromosome
18 near marker Satt235. This QTL explained 22.5% of the variation in linolenic acid in
the RILs.

In a study published in 2017, Smallwood et al. discovered multiple QTL explaining a
combined 19% of the variation for linolenic acid in an Fs derived RIL population. These
QTL were discovered after compiling 3 years of data from various environments. 5 QTL
were discovered, which were located on chromosomes 9, 13, 17, and 19 (Smallwood et

al., 2017). QTLs were named Len9.1, Len 9.2, Len13, Len17, and Len19. These QTLs



explained 4%, 6%, 6%, 1% and 2% of variation in linolenic acid, respectively
(Smallwood et al., 2017). These QTL were not associated with FAD3A, FAD3B, or
FAD3C (Smallwood et al., 2017). QTL such as these point to the importance of
identifying and utilizing modifier QTLs for linolenic acid manipulation.

With the industry standard for low linolenic soybeans being set at < 3%, breeders can

identify and use major and minor QTLSs to efficiently meet this objective.



Objectives

Determine various traits of the RILs including seed yield, plant height, lodging,
and relative maturity.

Use near infrared reflectance to analyze seed protein and oil content.

Use gas chromatography to analyze seed fatty acid content.

Extract genomic DNA from RILs to genotype the population.

Detect quantitative trait loci (QTL) influencing seed protein, oil and linolenic acid

content in a soybean population.
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Abstract

200 recombinant inbred lines were created from a cross between TN12-4098 and TN13-
4303. In 2018, field trials were conducted in Knoxville, TN and Springfield, TN. In
2019, field trials were conducted in Knoxville, TN, Springfield, TN, and Milan, TN.
Height, lodging, pubescence, maturity, and flower color were recorded in the growing
season, and yield at harvest. Seed samples from harvested plots were then subject to near
infrared spectroscopy and gas chromatography. The RILs had an average yield of 3161.7
kg ha'l, dry protein content of 40.1%, dry oil content of 22.2%, linolenic acid content of
4.1% (with 23% of lines falling below the 3% threshold), and meal protein of 46.2%.
TN13-4303 (parent) had an average yield of 3426.9 kg ha, protein content of 42.3%, oil
content of 21.6%, linolenic acid of 7.1%, and meal protein of 49.2%. TN12-4098
(parent) had an average yield of 1756.1 kg ha, protein content of 40.1%, oil content of
22.4%, linolenic acid content of 2.7%, and meal protein content of 47.1%. The checks
averaged 3537.5 kg ha yield, 41.0% protein, 21.9% oil, 7.3% linolenic acid, and 47.9%

meal protein.

Introduction

The agronomic qualities of a soybean line and its seed quality characteristics are

paramount to its success. Farm operations want to grow a soybean that is dependable and
up to industry standards. Acceptable soybeans must be competitive in appearance as well
as performance. Breeders will choose to drop lines lacking important characteristics such

as a good lodging score and strong yield.
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World soybean production is expected to reach 371.3 million tons by 2030 (Masuda et
al., 2009). An increase in yield will be a driver for this expected jump. Soybean yield
has been steadily increasing, with the United States average being 3187.7 kg ha* in 2019
compared to 1815.8 kg ha* in 1988 (soystats.com). Soybean yield is the most important
factor considered by a farmer because soybean prices are determined by weight rather
than quality (Yaklich et al., 2001). Yield can be challenging to breed for because it is a
quantitative trait (Diers et al., 1992).

Aside from soybean yield, plant architecture is important to growers. The amount a
soybean line lodges is critical to a successful harvest. Soybeans with a high lodging
score will be difficult to harvest with a combine because the header can have trouble
reaching bent plants. Height can also factor into the ease at which harvest is carried out.
Soybeans that are too tall can become tangled in a combine header.

Seed quality is important to breeders, as global markets demand high quality soy profiles.
Soybean quality must be higher in the United States than that of competitors to
consistently win contracts from soybean importers such as China. In 2014 alone, China
imported over 70 million tons of soybeans (Hairong et al., 2016). Important seed
qualities include seed protein and seed oil. Soybean seed protein averages around 39.6%
protein (Brzostowski et al., 2017) and between 19.8% and 21.2% oil content (Yaklich et
al., 2002). An inverse relationship exists between seed protein and seed oil (Burton et al.,
1987), which presents a challenge to combine both at a high rate in a soybean line.

Soybean lines in this study are analyzed for various agronomic and seed quality traits.
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Population Structure and Field Layout

A mapping population of 200 F4.¢ recombinant inbred lines (RILS) was created from a
cross between TN13-4303 and TN12-4098 (See Table 2.1 in Appendix A). The RILs are
segregating for protein, oil, and fatty acids. TN13-4303 is a line with high seed protein
content and TN12-4098 is a line that is low in linolenic acid (<3%). The mapping
population is MG-4L with white flowers. The mapping population was grown in two
locations in 2018. The locations included Springfield, Tennessee (Highland Rim
Research and Education Center, HRREC) and Knoxville, TN (East Tennessee Research
and Education Center, ETREC). These locations were selected due to the difference in
geographic location. At each location, the population of 200 RILs, two parents, and two
checks was organized into a randomized complete block design with two replications.
Lines that were selected for checks were top performers and were used for comparison of
data. Each line was planted in a two-row plot, with seeding density set at 32.8 seeds per
row meter. Plot length was planted at 6.1-meter rows and harvested in 4.9-meter rows.
Harvest was done with an ALMACO SPC40 combine once soybeans reached maturity
(~13% moisture content). This was repeated in 2019, with an additional location in
Research and Education Center at Milan (RECM) and an additional replication to each
location (totaling 3 replications for each location). The additional replication and

location were not added to the first year of the study due to limited seed.
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Phenotyping

Field Notes

Phenotyping was carried out on the mapping population at every location in 2018 and
2019. Measurements taken included plant height (cm), lodging (1-5), pubescence (grey
or tawny), maturity (Julian calendar), and flower color. TN13-4303 had grey pubescence,
and TN12-4098 had tawny pubescence. Plant height was measured with modified PVC
rulers in inches and converted to cm, and the remaining notes (lodging, pubescence,
maturity) were called with eyesight. Maturity was called up to three days in advance in
the field. Any soybeans that displayed incorrect height, pubescence, maturity, or flower
color within a plot were rouged. Any plot that was missing more than 0.3 m of soybeans

from either row was adjusted for in the statistical analysis.

NIR Analysis (Protein and Qil)

Once harvest was completed, every plot from each location and year was subsampled and
taken to the lab to be analyzed with near infrared reflectance spectroscopy (NIR). A
whole bean analysis was carried out with a 30 g sample on a Perten DA-7250 NIR to
obtain protein and oil. NIR analysis began by making sure that the machine was
calibrated. This was done using a polystyrene sample that was placed under the light and
read. If the machine had a sufficient calibration, subsamples were individually poured
into a metal cup holding the seeds, and this cup was placed onto a tray under the
instrument. Seeds were leveled before insertion under the machine, and each subsample

was required to at least fill the bottom of the sample cup to eliminate misreads. Magnets
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in the base of the instrument aligned the sample directly under the light for analysis. The
sample was then be rotated under the light and analyzed for protein and oil. The data was
relayed on a dry matter basis. The subsamples were then put back into their respective

bags and placed in cold room storage for future use.

Fatty Acid Analysis

Although the NIR equations for fatty acids are improving, we analyze linolenic acid
(18:3) though the primary chemistry method of gas chromatography. A Hewlett-Packard
6890 Gas Chromatograph was used to detect fatty acid levels in the seed. Seeds from all
plots of all locations and years were subsampled into packaging envelopes. Five seeds
were taken from each envelope and crushed with a hammer. The crushed seed was
poured into its respective test tube. This process was repeated for 100 samples, which
comprised a run. The samples were transported to a flow hood and received a 3 mL
pump of extraction solvent. The extraction solvent is a solution of chloroform, hexanes,
and methanol. To make the extraction solvent, 2000 mL chloroform, 1250 mL hexanes,
and 500 mL methanol were mixed into a 4 L amber glass bottle fitted with a pipette
pump. These tubes were then capped and sat for approximately 6-18 hours. The tubes
were then uncapped, and 100 pL solution was pipetted into a 1.8 mL autosampler vial.
The vial then received 0.75 mL of hexanes and 75 pL methylation reagent. Methylation
reagent consisted of 5 mL 0.5M sodium methoxide solution in methanol, 10 mL ethyl
ether, and 2 mL petroleum ether. Vials were then capped with an automatic crimping
machine and placed onto a rack specially designed for the GC autosampler. A file on the

GC was created for each run, producing a complete Excel sheet for each sample. The
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Excel sheet showed a graph of the retention times for each of the five fatty acids.
Underneath the graph, values were displayed for the percentages of each fatty acid. Any
soybean sample that fell below 3% linolenic acid was considered ideal for low linolenic

acid.

Statistical Analysis

SAS 9.4

SAS 9.4 (SAS Institute Inc., Cary, NC, USA) was used to analyze the 2018 and 2019
data individually, and then to look at combined data over all locations. PROC
UNIVARIATE function was used to look at normality of data relating to each trait of
interest. For each year, data was combined from locations (2018: HRREC and ETREC;
2019: HRREC, ETREC, and RECM). Normality was checked with the Shapiro-Wilks
value at p < 0.05. After normality was analyzed, data was subject to PROC GLIMMIX
to look at significant factors in the model. Two-year averages of each line were
generated for all traits of interest using the %mmaov DANDA SAS macro developed by
Dr. Arnold Saxton at the University of Tennessee. This macro also generated LSD
values and correlation values between traits of interest. Correlations between traits of
interest are included in Table 2.8 located in Appendix A. To calculate meal protein, the
following formula was used: Meal Protein= [Protein 13% / (1-Oil 13%/100)]/.92. This

formula was used by Pantalone and Smallwood (2018).
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Microsoft Excel

Microsoft Excel was used to create frequency distributions for major traits of interest
(found in figures 2.1-2.4 in Appendix A). Two-year averages were taken for each RIL
and sorted in Excel from smallest to largest. Bin intervals were established for each trait.
This resulted in approximately 7-10 bins per trait. Values falling into each bin were then
counted and assigned appropriately. A histogram was generated for each trait of interest.
Two-year averages were calculated for the parents and arrows above the bins in the
histograms represented their values. The placement of the arrows allowed for visual

representation of transgressive segregation for each trait.

Results and Discussion

Although the study started with 200 RILs, 20 lines had to be dropped from the study due
to contamination or inaccurate genotyping. This brought the total RIL count to 180. It is
also worth noting that 2018 was an abnormally wet field season in East Tennessee.
Lodging was also a problem in this population. Typically, a taller soybean will lead to
increased lodging. An example of this can be seen in a RIL population studied by
Mansur et al. in 1996, where lodging and height had a correlation coefficient of 0.84.
This study had a RIL population with an average height of 101.6 cm, and many plots with
lodging values greater than 4, which led to soybeans lying flat on wet soil. This led to
poor seed quality for the 2019 growing season. 2019 had poor germination related to
seed fungus and dry, warm weather following periods of hard rain at planting. The
germination issues led to re-planting and delayed emergence. In general, less favorable

results came from the 2019 growing season. It is known that later planting dates can
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affect agronomic traits such as seed yield, oil, and protein. An example of this
phenomenon is shown in a study conducted by Beatty et al. in 1982, where soybeans
dropped values in seed yield, oil, and protein when planted on a later date. In our study,
protein content fell from a 2018 average of 405.9 g kg™* to 397.7 g kg* in 2019. Qil fell
from 234.4 g kg™ to 213.6 g kg. Meal protein dropped from 482.2 g kgt in 2018 to
461.9 g kgtin 2019. Yield dropped from 3339.1 kg ha* to 3062.0 kg ha®. Linolenic
acid became more favorable with a decrease from 4.2% in 2018 to 4.1% in 2019. TNPL-
123 was the highest performing RIL in terms of yield with a two-year average of 4037.8
kg ha. This can be found in Table 2.2 located in Appendix A. TNPL-123 outperformed
all checks in the study, including Ellis, which had a two-year average yield of 3854.0 kg
ha. Top performing RILs for protein, oil, linolenic acid, and meal protein can be found
in Appendix A in Table 2.3, 2.4, 2.5, and 2.6, respectively. TNPL-111 was the top RIL
for dry protein content with 42.1%. TNPL-146 was the top performing RIL for oil
content, with dry matter content at 23.3%. TNPL-077 had the lowest linolenic acid
content with an average of 2.3%, which is lower than the 3% standard (Pham et al., 2012;
Smallwood et al., 2017) for low linolenic acid soybean lines. TNPL-146 had the highest
meal protein value at 49.1%. TNPL-146 was in the top 10% of RILs when looking at
protein, oil, and meal protein, ranking 9", 1% and 1%, respectively. TNPL-146 is an
example of a line that was able to achieve high protein and oil concentrations, going
against the typical inverse correlation as described by Burton et al. 1987. The seed yield
of TNPL-146 was 2987.0 kg ha. Although high protein and oil concentrations are not

typically attractive to farmers when compared to yield (Yaklich et al. 2002), lines such as
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TNPL-146 could be backcrossed into a high yielding line to produce an overall superior
line, such as described in a 1995 study by Wilcox and Cavins. Only a small fraction of
soybeans (~2%) are consumed by humans (Goldsmith 2008). This leaves most soybean
production used directly for livestock feed applications. 98% of all soybean meal is used
to feed animals (Hartman et al., 2011), which makes lines such as TNPL-146 (MP =
49.1%) valuable to producers. TNPL-146 did fail to surpass its parent, TN13-4303 and a
check, TN15-5007 (Pantalone et al., 2020), which had meal protein values of 49.2% and
49.5% respectively.

The frequency distribution illustrating the two-year averages of linolenic acid content
(Figure 2.4, Appendix B) is worth noting. Although the distribution is considered normal,
two bins have noticeably higher peaks than others at “3.51-4.00” and “2.51-3.00”. This
is most likely the result of a portion of the population containing the mutant alleles of the
FAD3A or FAD3C gene at the “2.51-3.00” bin, which is known to lower the
concentration of seed linolenic acid significantly (Bilyeu et al., 2003; Bilyeu et al., 2005;
Held et al., 2019). To be positive that these lines contained one or more of the genes,
SNPs would need to be screened using technology such as a light-cycler. This is an
example of how marker-assisted selection can be a powerful tool in screening for traits

that cannot otherwise be seen.
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Table 2.1: History of PRO-LIN Population Development (Personal communication:
Dr. Vince Pantalone)

Year Location Generation Activity Rows
2019 ETREC, Fa:7 Yield trials 14,001-16,606
HRREC,
RECM
2018 ETREC, Fa6 Yield trials 13,001-13,908
HRREC
2017/2018 WN | Santa Isabel, Fas Seed increase VM18-2241-
PR VM18-2588
2017 ETREC Fa Pull Single 41,125-41,170
Plants
2016/2017 WN | Santa Isabel, Fs Pod pick VM17-052-073
PR
2016 ETREC F2 Pod pick 20,070-20,090
2015/2016 WN Isabela, PR F1 Grow F1 VP056-VP065
plants
2015 ETREC P1x P2 Make Cross Cross 15-09
(TN12-4098 x
TN13-4303)
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Table 2.2: Two-year means of all RILs along with parents and checks for various

traits of interest sorted by yield.

Line Yield DAP Lodging Height Protein Oil 18:3 Meal
kg hat 1-5 cm g kg* g kg % g kg*

TNPL-123 4037.8 132.1 2.6 114.8 391.7 226.3 5.7 461.4
TNPL-122 3927.3 130.9 2.0 77.2 387.7 226.4 3.2 456.7
Ellis® 3854.0 129.9 1.7 68.4 403.7 218.5 7.0 471.3
TNPL-136 3816.6 134.4 25 122.5 410.4 226.4 5.8 483.2
TNPL-098 3793.2 131.3 2.0 77.6 402.6 224.2 3.0 473.0
TNPL-115 3729.1 1335 21 76.6 388.5 217.8 2.6 453.4
TNPL-186 3706.5 133.6 2.3 116.2 393.3 225.3 45 462.5
TNPL-052 3695.1 1315 2.3 84.3 386.6 221.4 2.6 452.9
TNPL-108 3677.3 132.6 2.2 87.0 402.8 217.6 2.8 469.3
TNPL-105 3639.3 133.7 2.1 79.2 410.8 218.8 4.7 479.9
TNPL-019 3620.4 132.2 2.0 80.0 409.5 2115 4.2 474.6
TNPL-165 3610.9 134.4 24 120.3 409.0 227.3 5.9 482.2
vsis 3606.7 128.9 20 70.3 4273 211.0 6.8 4948
TNPL-167 3604.6 130.5 2.0 77.3 396.2 223.6 4.8 465.2
TNPL-151 3602.2 131.9 2.0 70.5 397.6 2119 33 460.9
TNPL-059 3599.7 131.2 2.0 721 390.2 223.2 7.0 457.9
TNPL-043 3578.6 131.0 1.9 72.8 406.4 228.7 4.6 479.8
TNPL-154 3578.4 1325 21 81.1 400.0 220.4 31 468.1
TNPL-124 3572.5 133.1 1.9 78.7 401.3 212.8 7.1 465.9
TNPL-006 3553.6 132.6 21 77.1 394.4 220.4 35 461.6
TNPL-028 3548.3 128.8 21 74.2 408.9 221.6 6.7 479.0
TNPL-175 3537.1 132.8 3.2 1231 397.0 229.7 3.0 469.3
TNPL-109 3530.0 132.3 1.8 70.5 407.4 209.6 2.8 471.2
TNPL-101 3529.7 131.0 1.9 73.7 397.8 227.8 6.4 469.3
TNPL-081 3528.4 133.2 3.2 122.2 401.1 2211 2.6 469.7
TNPL-014 3525.8 131.9 1.9 81.4 403.6 219.2 6.3 471.7
TNPL-097 3522.6 131.4 1.9 78.0 411.8 224.4 4.3 483.9
TNPL-155 3501.8 131.0 22 78.1 400.9 220.1 3.8 468.9
TNPL-005 3494.4 132.7 2.0 78.8 393.1 219.0 25 459.3
TNPL-064 3493.4 132.1 21 75.2 398.1 218.2 2.6 464.8
TNPL-118 3490.5 131.2 29 116.9 405.6 2219 53 475.2
TNPL-070 3489.2 130.8 2.0 76.7 410.5 230.7 6.1 485.8
TNPL-022 3483.3 132.2 35 123.3 399.5 2249 3.8 469.8
TNPL-023 3482.9 132.8 3.2 123.2 403.7 222.3 3.9 4735
TNPL-148 3476.3 131.9 22 73.4 397.8 2174 25 464.1
TNPL-080 3461.0 131.8 21 72.2 414.9 214.7 6.5 482.5
TNPL-017 3458.3 132.6 2.0 73.2 407.6 2122 2.7 472.9
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Table 2.2, continued

Line Yield DAP Lodging Height Protein Oil 18: Meal
kg hat 1-5 cm g kgt g kgt % g kg?

TNPL-078 3454.1 131.7 2.6 116.5 399.6 224.4 38 469.7
TNPL-048 3451.3 131.7 3.2 118.6 398.8 228.6 39 470.9
TNPL-119 3450.2 131.9 3.2 119.5 4159 2205 4.7 486.8
TNPL-012 3439.3 132.1 2.6 115.2 392.9 220.3 4.0 459.8
TNPL-082 3439.1 130.4 2.0 67.1 413.0 2135 5.8 479.6
TNPL-053 3435.3 132.3 21 80.4 380.8 2212 36 446.2
TNPL-152 3430.1 132.2 2.7 1175 405.5 2138 43 4712
Zg(g; 3426.9 130.3 18 72.6 422.5 215.7 7.1 491.8
TNPL-111 3423.9 132.7 2.0 73.3 420.5 2134 6.0 488.4
TNPL-049 3416.9 134.7 2.9 126.0 399.8 219.8 24 467.6
TNPL-160 3407.3 132.1 25 115.8 389.9 219.4 3.2 455.9
TNPL-163 3405.7 133.2 24 110.1 403.2 223.0 6.1 473.1
TNPL-185 3405.2 133.3 2.3 116.4 399.9 222.1 44 468.7
TNPL-087 3405.0 130.4 2.0 711 405.2 2135 2.7 470.6
TNPL-135 3404.1 1325 2.9 116.5 395.9 230.2 3.0 468.2
TNPL-062 3402.5 128.3 2.9 1145 405.5 2275 35 478.4
TNPL-069 3395.0 133.0 2.7 123.4 400.6 226.4 4.8 471.8
TNPL-073 3386.0 1345 29 120.1 390.9 218.4 3.8 456.5
TNPL-025 3383.9 131.9 2.8 122.5 406.0 224.4 4.7 477.1
TNPL-100 3367.4 133.0 2.6 116.1 397.3 218.4 2.7 464.0
TNPL-077 3359.6 134.9 3.6 121.4 392.6 223.6 2.3 460.9
TNPL-040 33495 132.1 2.0 79.6 394.0 219.9 3.6 461.0
TNPL-107 3347.9 132.4 2.1 76.9 412.7 224.7 3.1 485.2
TNPL-027 3342.0 129.4 2.0 69.9 410.7 225.2 6.6 483.1
TNPL-090 3340.6 131.4 2.0 72.8 395.0 226.3 41 467.4
TNPL-161 3339.5 132.0 2.0 79.6 399.4 2231 3.9 468.8
TNPL-169 3328.3 134.3 2.8 116.5 398.9 218.5 25 465.8
TNPL-128 3322.1 131.0 3.0 118.8 405.4 219.0 53 473.6
TNPL-192 3316.4 1335 24 112.7 401.5 220.1 3.6 471.7
TNPL-066 33154 132.2 3.3 120.1 397.0 226.5 4.0 467.6
TNPL-021 3308.6 130.5 2.6 111.0 409.9 225.6 5.6 482.4
TNPL-054 3308.4 1315 3.0 107.0 386.8 219.2 2.6 452.1
TNPL-103 3307.3 1315 24 110.4 397.0 227.3 4.8 468.0
TNPL-178 3305.3 134.3 2.7 120.4 408.5 221.1 4.6 478.4
TNPL-129 3299.9 131.6 24 104.7 398.7 226.4 5.4 469.7
TNPL-150 3299.0 132.3 2.1 69.8 390.7 221.3 24 457.7
TNPL-127 3284.1 132.2 2.0 76.3 396.9 225.9 4.2 467.2
TNPL-149 3284.0 129.6 3.2 116.1 3935 223.6 3.9 461.1
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Table 2.2, continued

Line Yield DAP Lodging Height Protein Oil 18: Meal
kg ha* 1-5 cm g kg™ g kg* % g kg™

TNPL-067 3277.4 132.0 2.0 80.7 400.1 216.4 5.7 466.2
TNPL-176 3276.8 130.3 34 120.1 401.9 230.7 4.9 475.6
TNPL-162 3275.2 132.2 2.8 113.2 400.7 2209 5.6 469.1
TNPL-195 32718 132.6 31 119.3 398.9 228.7 4.9 471.0
TNPL-034 3265.4 134.1 25 1115 395.5 2156 27 460.5
TNPL-200 3263.1 130.8 2.0 7.7 4074 224.4 37 4794
TNPL-196 3262.0 131.2 2.0 68.7 392.6 218.3 4.0 4584
TNPL-141 3254.1 133.2 25 115.4 395.3 219.8 27 462.3
TNPL-060 3252.7 132.9 35 116.6 400.1 2255 27 470.7
TNPL-114 32455 134.2 2.6 109.9 409.9 218.2 32 4785
TNPL-033 3242.2 133.9 25 115.4 398.8 216.4 2.7 464.7
TNPL-002 3237.1 131.8 3.2 1125 404.0 2275 4.6 476.4
TNPL-003 3236.2 133.2 2.0 77.0 402.3 216.7 36 468.9
TNPL-031 3233.7 134.3 3.0 116.2 385.3 2220 25 4517
TNPL-158 3229.6 132.2 2.0 76.6 4113 216.9 53 479.5
TNPL-172 3228.7 134.8 25 114.2 411.0 219.1 3.8 479.7
TNPL-038 3225.6 131.0 31 1211 401.0 225.0 5.9 4716
TNPL-011 3224.9 133.9 29 114.3 403.6 2158 32 470.0
TNPL-007 3219.7 134.6 25 105.5 398.9 2225 2.8 467.8
TNPL-121 3219.2 1335 2.3 109.9 402.0 2221 51 470.6
TNPL-157 3218.8 134.2 33 125.2 391.7 220.1 31 456.1
TNPL-182 32135 130.9 1.9 67.9 396.7 220.2 35 464.1
TNPL-051 3205.8 133.2 33 118.4 394.3 219.7 37 461.1
TNPL-020 3203.3 132.1 31 118.6 399.3 2253 37 469.8
TNPL-039 3201.5 133.1 1.9 69.5 401.2 222.4 29 4705
TNPL-010 3199.6 130.4 3.0 117.5 403.9 2234 5.7 475.9
TNPL-083 3187.3 132.1 2.6 105.5 400.5 228.3 4.6 4727
TNPL-047 3187.0 131.1 22 75.8 406.4 220.7 5.0 475.8
TNPL-024 3167.7 132.7 34 117.0 404.3 224.8 34 475.3
TNPL-032 3163.1 130.6 21 74.6 387.0 219.3 4.0 4525
TNPL-093 3157.2 134.7 31 120.8 387.4 220.2 24 4533
—IA;TO:LOZK’_ 3151.7 127.3 2.0 65.2 398.6 227.7 7.9 470.3
TNPL-188 3142.0 129.4 1.9 721 397.8 217.0 3.7 463.8
TNPL-164 3133.7 130.1 25 103.6 403.9 229.8 44 4775
TNPL-191 31315 132.6 3.0 109.2 394.9 227.0 2.8 466.0
TNPL-001 3126.4 129.9 2.8 109.7 409.1 222.5 6.1 479.7
TNPL-193 31134 133.1 3.3 110.0 388.8 224.3 55 456.9
TNPL-086 3099.5 133.2 29 114.3 396.5 221.4 3.1 464.5
TNPL-153 3093.1 132.4 3.0 120.8 414.7 2254 4.7 488.0
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Table 2.2, continued

Line Yield DAP Lodging Height Protein Oil 18: Meal
kg ha* 1-5 cm g kg™ g kg* % g kg™

TNPL-179 3091.8 131.0 19 66.4 401.9 2223 48 4713
TNPL-046 3088.8 132.4 2.8 115.8 3915 227.2 31 4615
TNPL-091 3075.0 129.7 2.0 69.1 401.7 2212 6.3 4705
TNPL-138 3074.7 132.9 2.7 109.4 388.7 2254 3.0 4574
TNPL-089 3068.6 131.9 3.0 114.0 391.8 2252 4.0 460.8
TNPL-189 3067.1 133.9 2.2 110.7 393.0 2235 41 4614
TNPL-104 3059.5 1333 2.2 78.2 404.9 2137 5.7 470.3
TNPL-197 3051.7 132.1 31 1155 396.3 226.7 4.0 467.0
TNPL-058 3051.5 128.9 21 735 405.4 217.6 4.7 473.0
TNPL-068 3045.0 131.6 29 104.6 383.6 219.6 2.8 4485
TNPL-018 3044.8 133.8 24 110.1 398.9 220.6 4.7 467.0
TNPL-139 3026.7 132.7 24 100.0 406.4 218.0 5.6 4743
TNPL-088 3021.8 131.1 31 115.5 414.8 225.7 6.0 488.2
TNPL-110 3017.8 132.1 2.0 76.1 392.7 2213 36 460.1
TNPL-143 3000.4 134.2 2.8 114.2 395.3 2219 2.6 4634
TNPL-187 2993.6 133.4 23 102.3 398.0 2214 4.7 466.7
TNPL-044 2992.8 132.0 29 1145 387.2 2226 2.7 4542
TNPL-140 2988.7 132.6 2.0 80.1 396.0 218.8 39 462.5
TNPL-117 2987.1 1325 29 112.3 406.3 230.8 35 480.9
TNPL-029 2985.2 130.3 34 115.1 4133 224.0 5.2 4855
TNPL-016 2979.8 128.9 1.9 66.5 414.9 2155 55 482.9
TNPL-035 2971.0 132.3 3.0 116.9 411.0 222.8 37 4822
TNPL-084 2970.1 131.6 37 1115 389.6 226.2 3.0 458.7
TNPL-131 2966.9 132.2 3.0 115.2 406.4 2251 45 478.2
TNPL-171 2963.2 129.6 28 117.5 401.5 228.4 5.2 471.4
TNPL-147 2953.1 129.3 2.0 76.5 408.3 218.7 6.0 477.0
TNPL-146 2947.0 131.8 29 104.5 413.9 2334 55 491.0
TNPL-145 2946.6 132.9 23 107.1 396.7 218.2 39 4634
TNPL-092 2935.0 1335 2.8 112.4 399.6 2158 2.7 465.6
TNPL-042 2909.5 132.2 25 102.8 3937 2127 29 457.0
TNPL-065 2908.6 132.8 33 128.3 409.8 2229 4.7 480.7
TNPL-166 2904.5 134.0 3.0 118.4 403.1 2214 3.0 472.4
TNPL-063 2904.5 131.7 3.0 1105 3894 226.5 3.0 458.7
TNPL-096 2902.4 130.3 2.0 75.9 400.1 2205 32 468.3
TNPL-057 2901.6 132.0 31 116.8 409.1 221.3 5.7 479.2
TNPL-095 2894.1 130.7 2.0 70.8 4105 219.0 5.8 479.6
TNPL-071 2889.5 132.6 3.0 122.2 406.7 2245 54 478.1
TNPL-112 2874.1 131.8 28 110.2 409.4 221.2 45 479.6
TNPL-076 2855.5 132.9 3.0 1131 400.2 220.5 5.4 468.5
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Table 2.2, continued

Line Yield DAP Lodging Height Protein Oil 18: Meal
kg ha* 1-5 cm g kg™ g kg* % g kg™
TNPL-198 2850.4 129.9 25 120.3 398.0 217.2 37 464.3
TNPL-113 2846.6 132.9 3.0 1145 409.2 2216 38 4795
TNPL-116 28454 133.6 31 118.2 397.0 216.8 39 462.7
TNPL-170 2845.3 128.4 24 101.6 406.1 220.0 5.1 475.1
TNPL-156 2823.8 131.4 31 120.3 394.6 226.8 4.4 465.0
TNPL-130 2815.9 134.1 25 125.7 3925 228.0 23 463.3
TNPL-055 2804.9 131.8 33 115.9 406.7 2233 38 4775
TNPL-045 2801.3 131.3 2.6 106.2 379.9 220.4 2.6 4447
TNPL-030 2760.4 133.3 3.0 119.6 409.2 219.2 39 478.1
TNPL-168 27213 131.7 3.2 110.8 399.1 216.6 5.7 465.2
TNPL-126 2719.4 133.1 25 111.8 402.2 226.1 5.9 474.4
TNPL-159 2707.5 132.0 26 1135 393.7 227.6 35 464.4
TNPL-106 2704.5 130.7 3.2 128.9 408.2 224.4 5.8 479.7
TNPL-072 2703.1 132.3 31 1211 390.7 2205 37 457.3
TNPL-174 2702.0 130.4 2.7 109.5 403.6 219.0 5.8 471.6
TNPL-015 2680.4 128.7 4.0 123.9 395.2 224.0 2.8 464.2
TNPL-004 2660.7 134.1 35 116.4 390.7 219.7 32 456.9
TNPL-061 2659.9 130.4 2.6 107.5 409.2 226.5 29 482.1
TNPL-074 2648.9 130.9 2.6 101.4 396.5 2221 4.8 465.1
TNPL-134 2637.9 130.6 31 104.8 403.3 228.8 4.4 476.3
TNPL-075 2618.5 131.9 3.0 105.8 408.4 221.7 5.9 478.6
TNPL-177 2530.5 130.2 25 110.3 405.3 227.1 5.6 477.7
TNPL-102 2529.0 132.6 23 98.3 405.1 2229 32 4775
TNPL-133 2478.0 1337 3.6 116.5 390.2 2127 3.0 4529
TNPL-008 2476.3 130.6 2.7 112.7 414.1 220.7 5.2 485.4
TNPL-099 2382.6 131.0 2.0 80.8 417.9 220.4 2.7 488.3
TNPL-142 2374.7 128.9 25 107.5 403.4 229.0 4.8 476.6
TNPL-199 2336.3 131.0 34 121.8 398.7 22717 3.0 470.3
TNPL-184 2043.3 132.2 3.2 106.7 402.1 2258 32 4733
TNPL-183 1905.7 1245 2.7 95.7 403.1 227.9 29 475.2
—223-823 1756.1 124.1 25 91.6 400.6 224.0 2.7 470.8
TNPL-094 1737.0 127.6 2.2 75.7 406.1 222.0 35 476.2
LSD (0.05) 549.3 18 0.5 115 7.1 4.4 0.5 7.6

2 Parent of the RIL population.
b Check in field trials. Ellis and TN12-4100 used in 2018. Ellis and TN15-5007 used in 2019.
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Table 2.3: Top 10% of RILs sorted by two-year mean protein content on a dry
matter basis.

Line Protein  Qil Meal Yield
% % % kg ha™

TNPL-111 42.1 21.3 48.8 3423.9
TNPL-099 41.8 22.0 48.8 2382.6
TNPL-119 41.6 22.1 48.7 3450.2
TNPL-080 41.5 21.5 48.2 3461.0
TNPL-016 41.5 21.6 48.3 2979.8
TNPL-088 41.5 22.6 48.8 3021.8
TNPL-153 41.5 22.5 48.8 3093.1
TNPL-008 41.4 22.1 48.5 2476.3
TNPL-146 41.4 23.3 49.1 2947.0
TNPL-029 41.3 22.4 48.6 2985.2
TNPL-082 41.3 21.3 48.0 3439.1
TNPL-107 41.3 22.5 48.5 33479
TNPL-097 41.2 22.4 48.4 3522.6
TNPL-158 41.1 21.7 47.9 3229.6
TNPL-035 41.1 22.3 48.2 2971.0
TNPL-172 41.1 21.9 48.0 3228.7
TNPL-105 41.1 21.9 48.0 3639.3
TNPL-027 41.1 22.5 48.3 3342.0
LSD (0.05) 0.7 0.4 0.8 549.3
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Table 2.4: Top 10% of RILs sorted by two-year mean oil content on a dry matter

basis.
Line Oil Protein Meal Yield
% % % kg ha™

TNPL-146  23.3 41.4 49.1 2947.0
TNPL-117  23.1 40.6 48.1 2987.1
TNPL-176  23.1 40.2 47.6 3276.8
TNPL-070 23.1 41.1 48.6 3489.2
TNPL-135 23.0 39.6 46.8 3404.1
TNPL-164  23.0 40.4 47.8 3133.7
TNPL-175  23.0 39.7 46.9 3537.1
TNPL-142  22.9 40.3 47.7 2374.7
TNPL-134 229 40.3 47.6 2637.9
TNPL-043  22.9 40.6 48.0 3578.6
TNPL-195 229 39.9 47.1 3271.8
TNPL-048  22.9 39.9 47.1 3451.3
TNPL-171 228 40.1 47.1 2963.2
TNPL-083 22.8 40.0 47.3 3187.3
TNPL-130 22.8 39.3 46.3 2815.9
TNPL-183  22.8 40.3 47.5 1905.7
TNPL-101  22.8 39.8 46.9 3529.7
TNPL-199 228 39.9 47.0 2336.3
LSD (0.05) 0.4 0.7 0.8 549.3
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Table 2.5: Top 10% of RILs for two-year mean linolenic acid content sorted from
smallest to largest.

Line 18:3
%

TNPL-077 2.3
TNPL-130 2.3
TNPL-093 2.4
TNPL-150 2.4
TNPL-049 2.4
TNPL-005 2.5
TNPL-169 2.5
TNPL-148 2.5
TNPL-031 2.5
TNPL-115 2.6
TNPL-081 2.6
TNPL-052 2.6
TNPL-054 2.6
TNPL-045 2.6
TNPL-064 2.6
TNPL-143 2.6
TNPL-099 2.7
TNPL-044 2.7
LSD (0.05) 05
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Table 2.6: Top 10% of RILs sorted by two-year mean meal protein content.

Line  Meal Protein Protein Oil Yield

% % % kg ha™

TNPL-146 49.1 41.4 23.3 2947.0
TNPL-111 48.8 42.1 21.3 3423.9
TNPL-099 48.8 41.8 22.0 2382.6
TNPL-088 48.8 41.5 22.6 3021.8
TNPL-153 48.8 415 22.5 3093.1
TNPL-119 48.7 41.6 22.1 3450.2
TNPL-070 48.6 41.1 23.1 3489.2
TNPL-029 48.6 41.3 22.4 2985.2
TNPL-008 48.5 414 22.1 2476.3
TNPL-107 48.5 41.3 22.5 3347.9
TNPL-097 48.4 41.2 22.4 3522.6
TNPL-136 48.3 41.0 22.6 3816.6
TNPL-027 48.3 41.1 22.5 3342.0
TNPL-016 48.3 41.5 21.6 2979.8
TNPL-080 48.2 415 21.5 3461.0
TNPL-021 48.2 41.0 22.6 3308.6
TNPL-165 48.2 40.9 22.7 3610.9
TNPL-035 48.2 41.1 22.3 2971.0
LSD (0.05) 0.8 0.7 0.4 549.3
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Table 2.7: Top 10% of RILs sorted by two-year mean seed yield.

Line Yield  Protein Oil Meal
kghat % % %

TNPL-123  4037.8 39.2 22.6 46.1
TNPL-122  3927.3 38.8 22.6 45.7
TNPL-136 3816.6 41.0 22.6 48.3
TNPL-098 3793.2 40.3 22.4 47.3
TNPL-115 3729.1 38.9 21.8 45.3
TNPL-186 3706.5 39.3 22.5 46.3
TNPL-052 3695.1 38.7 22.1 45.3
TNPL-108 3677.3 40.3 21.8 46.9
TNPL-105 3639.3 41.1 21.9 48.0
TNPL-019 3620.4 41.0 21.1 475
TNPL-165 3610.9 40.9 22.7 48.2
TNPL-167 3604.6 39.6 22.4 46.5
TNPL-151  3602.2 39.8 21.2 46.1
TNPL-059  3599.7 39.0 22.3 45.8
TNPL-043 3578.6 40.6 22.9 48.0
TNPL-154 3578.4 40.0 22.0 46.8
TNPL-124 35725 40.1 21.3 46.6
TNPL-006 3553.6 39.4 22.0 46.2
LSD (0.05) 549.3 0.7 0.4 0.8
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Figure 2.1: Frequency distribution of two-year average NIR oil data (whole bean
analysis) on a dry weight basis.
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Figure 2.2: Frequency distribution of two-year average NIR protein data (whole bean
analysis) on a dry weight basis.
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Figure 2.3: Frequency distribution of two-year average NIR meal protein data (whole
bean analysis) on a dry weight basis.
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Figure 2.4: Frequency distribution of two-year average gas chromatography linolenic
acid data. Bins represent percent of total fatty acids present.
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Table 2.8: Correlation between yield, protein, oil, linolenic acid, and meal protein.
Within each cell, correlation value is listed on the top and correlation significance is
listed on the bottom. Correlation significance falling below 0.05 is shown in bold
font.

Correlation Between Major Traits of Interest

Yield Protein Oil Linolenic Meal Protein
Acid

Yield -0.24 0.23 0.05 -0.14
<.0001 <.0001 0.03 <.0001

Protein -0.01 0.29 0.93
0.60 <.0001 <.0001

Oil 0.03 0.37
0.17 <.0001

Linolenic 0.28
Acid <.0001
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CHAPTER THREE
QTL ANALYSIS
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Abstract

Quantitative traits such as seed protein, seed oil, yield, etc. are challenging to breed for
because they are controlled by multiple genes. Quantitative trait loci (QTL) offer
breeders a tool to target and incorporate quantitative traits into desired lines. QTL can be
screened for by scanning a line for a SNP that flanks the locus of interest. After
screening the population of 180 RILs, 21 QTL were identified using WinQTLCart2.5. 1
QTL for DAP, 2 for lodging, 1 for plant height, 1 for seed yield, 6 for seed protein, 3 for
seed oil, 3 for seed linolenic acid, and 4 for meal protein were detected. Of the 21 QTL,

9 loci were considered novel after scanning SoyBase.

Introduction

Quantitative traits such as yield, seed oil, and seed protein content are not easily bred for
because they are controlled by multiple genes throughout the soybean genome. Classical
methods of breeding such as phenotypic selection can be extremely slow and
unpredictable for these traits of interest, considering the large genetic and environmental
uncertainty surrounding them. lIdentifying quantitative trait loci allows researchers to use
marker assisted selection to target and utilize genomic regions of a chromosome
controlling much of the variability in a trait. Quantitative trait loci are regions of a
genome that control quantitative traits and are commonly identified by positioning of
molecular markers adjacent to or within their reach (Collard et al., 2005). A QTL can
either be “minor” or “major” depending on how much of the variability the loci explains

for a trait of interest in a certain population. For example, in a 2005 study, Panthee et al.

45



found a protein QTL responsible for over 20% of the variation in the mapping
population. This would be categorized as a major QTL. QTLs are commonly identified
by crossing parents that differ in traits of interest, creating linkage maps after genotyping
the resulting population, and then running analyses on computer programs such as QTL
Cartographer (Collard et al., 2005). Composite interval mapping is the analysis method
most used in research, as it gives the most accurate results and accounts for linked QTLs
(Collard et al., 2005). Many QTLs exist for a range of soybean characteristics. As of
2020, there are 248 bi-parental QTL identified for seed protein content alone
(soybase.org). Although many QTLs exist, most have yet to be confirmed (Collard et al.,
2005). QTLs benefit from confirmation because they can be unstable across populations
and environmental conditions. Although, environmental uncertainty can be minimized if
the QTL study is conducted with multiple replications across multiple environments.
Breeders can effectively target traits of interest by selecting for lines containing markers
associated with QTLs. This study outlines the process of QTL analysis for multiple
agronomic and seed quality traits of interest in a recombinant inbred line soybean

population.

Materials and Methods

Genotyping

Genotyping was conducted by extracting genomic DNA from young trifoliate leaves
using a Qiagen Plant Mini Kit (Qiagen Crawley, UK). Leaves from each RIL and both

parents were collected in the first growing season prior to phenotyping. The samples
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were collected in the field, placed in 2 ml Eppendorf tubes, and placed into a liquid
nitrogen container. These tubes were then placed in a freezer set at -80° C. Extractions
were done using the protocol included in the kit, apart from including vigorous vortexing
after adding AP1 buffer and RNase to the samples. The genomic DNA that was extracted
was analyzed with a Fisher Scientific Nanodrop using the dsDNA function to find its
concentration. Concentrations over 100 microliters were kept and imaged on an
electrophoresis gel. Genomic DNA that looked clean in the gel imaging was sent to the
USDA Soybean Genomics and Improvement lab located in Beltsville, MD for

genotyping with a 6k BARCSoy SNP chip (Illumina).

GenomeStudio 2.0

GenomeStudio 2.0 software was used to call SNPs and exclude any markers when
necessary. After genotyping was completed using the 6k BARCSoy SNP chip, data was
compiled by Dr. Qijian Song and sent back to Knoxville in the form of a GenomeStudio
2.0 ZIP file. From here, the GenomeStudio 2.0 project was opened and the auto-called
SNPs were revealed. Although the software is mostly accurate, each of the 6000 markers
needed to be checked for accuracy. An example of a bad SNP call is shown in Figure 3.1
(Appendix B). Each black dot represents a recombinant inbred line that could not be
accurately called for that marker. Grey dots represent lines that failed at all 6000 SNPs
on the SNP chip. Depending on how badly the SNP was called, it could either be adjusted
or completely excluded. A SNP was considered salvageable if most of the the black dots
could be fit into homozygous dominant (red region), heterozygous (pink region), or

homozygous recessive (blue region). If more than a couple black dots remained
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unaccounted for, then the SNP was “excluded” or removed from further use in the
experiment. An example of a correctly called SNP is shown in Figure 3.2 (Appendix B).

Out of 6000 SNPs, 63 needed to be excluded, leaving 5937 markers for linkage mapping.

Linkage Mapping

Linkage mapping was done using JoinMap 4.1. The population was entered into
JoinMap as an RI6, due to the population being at the F4.¢ stage of development during
genotyping. Genotypic data was arranged in Microsoft Excel and then converted to a .txt
file that was entered into the program. 5937 individual loci were retained from the
original 6000. Loci were then doubled using a method called “dummy coding” which
takes each marker and converts it to the exact opposite allele call and then denotes the
marker as “markerx_1” compared to the original “marker 1”. The dummy coding was
done using the program EMeditor. After dummy coding, the JoinMap project had 11,874
loci to be used. Genotype frequencies were then calculated for each locus. Any locus
that was insignificant (> *** or 0.01) was excluded from the mapping program.
Similarity of loci and individuals was then calculated. Any loci or individuals that were
an exact match to one another (1.0) were excluded from the program. Finally, grouping
trees were made for each of the 20 chromosomes, adjusting for LOD threshold values.
The correct value was reached when most of the loci in a tree corresponded to the same
chromosome. 20 trees were made in total. Maps were then created that revealed where

each marker’s position was on a chromosome. This position was given in centimorgans.
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Microsoft Excel

After determining marker positions on each of the 20 chromosomes, the data was
exported to Microsoft Excel for creation of heatmaps. The heatmap code was created by
Dr. Bode Olukolu and uses recombination frequencies and LOD values for each locus in
the map. The heatmaps would create a mosaic ranging from an excellent fit (red) to a
moderate fit (blue). The heatmap is designed to have the colors group with one another,
flowing from red to orange, to yellow, to green, and finally to blue. Any colors that are
out of place are likely caused by incorrect marker positioning on a linkage map. If a
marker was out of place, it was excluded from JoinMap, and a new linkage map was
calculated. An example of an unedited heatmap for chromosome 18 is included with
Figure 3.3 (Appendix B). A modified heatmap after the removal of incorrect markers is
included in Figure 3.4 (Appendix B). After the 20 heatmaps were finished, 638 of the

original 11,874 markers remained across the 20 chromosomes.

WinQTLCart2.5

Once accurate linkage maps were generated for each chromosome, five files were
generated for input into WinQTLCart2.5. The files included a chromosome, label,
position, phenotype, and genotype file. The “chromosome” file listed how many markers
were in each chromosome’s linkage map. The “label” file listed the marker names in each
chromosome. The “position” file listed the centimorgan positions of each of the markers
on each chromosome. The “phenotype” file listed values for traits of interest for each of
the 180 RILs in sequential order. Finally, the “genotype” file listed SNP calls for each of

the markers present in the linkage maps. All the files were generated in Microsoft Excel
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and then converted to .txt format for input into WinQTLCart2.5. These files comprised
the project named “PROLINR1”. Inside of this program, composite interval mapping
(CIM) was selected. LOD threshold was determined by 1000 permutations at 0.05
significance threshold and a walking speed of 1cM. The permutations automatically
updated to the program as it finished running. Controls for CIM were Model 6

“Standard”, 5 control markers, forward regression, and a window size of 10 cM.

Results and Discussion

The 21 QTL that were found span 7 different chromosomes, including chromosome 1, 3,
5,7, 14,18, and 19 (Table 3.1 Appendix B). A DAP QTL, dap-1, was found on
chromosome 19 at 0.0 cM. This QTL is associated with marker Gm19 3343257 G T
and has a LOD score of 5.0. Its flanking marker was Gm19 34840388 C_A. Dap-1 had
an r? value of 11.7, and its additive effect is 0.6. TN13-4303 was associated with positive
additive affects, and TN12-4098 with the negative effects. Dap-1 is in the same area as
previously discovered QTL “Pod Maturity 24-3,” which is associated with marker
Satt495 (Bachlava et al., 2009). Two lodging QTL were discovered, both located on
chromosome 19. The first lodging QTL, lodg-1, (marker Gm19_ 36641660 _G_A) is
located at 12.4 ¢cM and has a LOD score of 5.5 with an additive effect of -0.1. This QTL
has flanking markers of Gm19 35744912 C T and Gm19 36780878 _G_T. Lodg-1isin
the same cM window as “Lodging 5-11” associated with marker EV2 1 (Lee et al.,
1996). The second lodging QTL, lodg-2, on chromosome 19 is located at 28.5 cM and is
associated with marker Gm19_37631304_T_G. The flanking markers for this QTL

include Gm19 36780878 _G_T and Gmx19 39433067_C_T. Lodg-2 has an additive
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effect of -0.3 and is in the same cM region as “Lodging 28-5,” which is associated with
marker BARC-041643-08051 (Lee et al., 2015). One plant height QTL, hgt-1, associated
with marker Gm19_ 40219547 C_T, was found at 41.1 cM. The flanking markers for
this QTL include Gm19_40053178_G_A and Gmx19 40508288 _C_T. Hgt-1 had an r
value of 31.5 and an additive effect of -11.1. No previously discovered QTL was located
at this region, making this a “novel” locus. One yield QTL, yld-1, associated with
marker Gm14_ 2597934 A_G with flanking markers at Gm14_ 2480875 A _C and
Gm14 2762103 T_C, was found at 15.9 cM on chromosome 14. This QTL has an
additive effect of 104.7 and is novel. Two protein QTL were found on chromosome 1.
The first QTL, pro-1, at marker Gm01_ 1887205 G_A was found at 20.1 cM, with
flanking markers of Gm01_ 1744951 C A and GmO1 1936523 T _C. This QTL has an
additive effect of 2.0 and is novel. The second QTL, pro-2, associated with
Gmx01_1428598 T_G was found at 24.2 cM with flanking markers at
Gmx01_1344976 A _G and GmO01 1502816 _G_A. Pro-2 has an additive effect of 1.9
and is novel. Two protein QTL were found on chromosome 3. The first QTL, pro-3,
associated with marker Gm03_44118764 C_T was found at 17.4 cM. This QTL was
flanked by Gm03_44019995 G_A and Gmx03_ 44171693 A_C. Pro-3 has an additive
effect of -2.1 and is found in the same region as “cqSeed protein-010" associated with
marker BARC-055149-13089 (Pathan et al., 2013). The second protein QTL, pro-4, on
chromosome 3 is associated with marker Gmx03_ 43599557 T_C and is found at 22.2
cM. Flanking markers for this QTL include Gmx03_43355787 _C_T and

Gmx03_43707104_A_G. Pro-4 has an additive effect of -1.9 and is also found in the
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same area as “cqSeed protein-010”. Chromosome 7 had a protein QTL associated with
marker Gm07_35194991 A G at 0.0 cM, and had one flanking marker,
GmO07_35142318 A _G. This QTL, pro-5, had an additive effect of -1.9 and was novel.
Chromosome 14 contained a protein QTL, pro-6, near marker Gm14 41187024 T _C at
71.7 cM. Flanking markers for this QTL included Gm14 31348204 T C and

Gm14 46289371 C T. Pro-6 has an additive effect of 3.3 and is in the same cM range
as “Seed protein 39-1,” which is located at BARC-056587-14511 (Warrington et al.,
2015). An oil QTL on chromosome 1 associated with marker Gmx01_ 3016694 A G
was found at 13.8 cM, and had flanking markers of Gm01_2708722 C T and
Gmx01_3063603 T_G. This QTL is oil-1 and had a -1.9 additive effect and was
considered novel. Chromosome 3 had an oil QTL, oil-2, at 0.0 cM associated with
marker Gm03_47320906_C_T and had one flanking marker at Gmx03_47039930 T _C.
This QTL was novel and had an additive effect of -1.3. A third oil QTL, oil-3, was
located on chromosome 14 at 33.5 cM. Oil-3 was closest to marker

Gmx14 5347242 _G_A and had an additive effect of 1.3. This QTL was flanked by
markers Gmx14 4889916 T C and Gm14 6829154 T C. Oil-3 aligned with
previously discovered QTL “Seed oil 45-6” flanked by 5248275088 and ss248293401
(Akond et al., 2014). A linolenic acid QTL, lin-1, was found on chromosome 5 at 32.2
cM. This QTL was associated with marker Gm05 34939267 A_G and had an additive
effect of -0.3. Lin-1 was flanked by markers Gm05 33576968 A G and
Gmx05_35039076_C_T. This was a novel locus. A major QTL for linolenic acid, lin-2,

was found on chromosome 14 at 78.7 cM. This QTL was associated with marker
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Gmx14 5347242 _G_A and had an R? value of 56.3. Lin-2 had flanking markers of
Gmx14 4889916 T _Cand Gm14 6829154 T _C. This locus has an additive effect of
0.9 and aligns with “Seed linolenic 7-6 at Satt066 (Bachlava et al., 2009). Chromosome
18 contained a linolenic acid QTL, lin-3, at 53.3 ¢cM associated with marker

Gmx18 8777288 A_G. Flanking markers for this QTL included Gm18 5522831 A C
and Gmx18 9678773 _T_C. This is a novel QTL with an additive effect of 0.5. LOD
thresholds were 3.1, 3.0, 3.0, 3.0, 3.0, 2.9, 3.1, and 3.1 for protein, oil, meal protein,
linolenic acid, yield, DAP, lodging, and height, respectively. A mix of major and minor
QTL were found in this study. One QTL of interest is the linolenic acid QTL on
chromosome 14 associated with marker Gm14 46289371 _C_T, which had an r? value of
56.3. This means that 56.3% of the variation in the linolenic acid content of the
population could be explained by this locus. This QTL could contain the known gene
“FAD3A”, which is responsible for controlling linolenic acid content (Bilyeu et al.,
2003). The QTL for linolenic acid located on chromosome 5 could be extremely useful
to breeders. The presence of this QTL resulted in a lower linolenic acid level in the
mapping population. Breeders could target soybeans containing this QTL and pair them
with lines containing mutant FAD genes (Bilyeu et al., 2003; Bilyeu et al., 2005., Held et
al., 2019) for extremely low linolenic acid lines that maintain stable linolenic acid levels
across multiple environments.

As previously mentioned, some of the QTL found in this study overlap with QTL
recorded in SoyBase. QTL can be volatile across populations and environments, so much

so that confirmation of a QTL must be deemed valid by the Soybean Genetics Committee
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(Fox et al., 2015). Per Soybean Genetics Committee guidelines, a QTL must be
confirmed in a population at an error rate of 0.01 containing meiotic events separate from
the original population (Fox et al., 2015). Although the QTL in this study have not
received an official confirmation from the Soybean Genetics Committee, they can instill

confidence in breeders to use the overlapped loci for MAS.
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Figure 3.1: GenomeStudio 2.0 SNP called incorrectly. Black dots represent individual
RILs without a call at the SNP location. Grey dots represent failed samples.
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Figure 3.2: GenomeStudio 2.0 SNP called correctly. Red shading represents
homozygous dominant, purple represents heterozygous, and blue represents homozygous
recessive. Grey dots represent failed samples.
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Flgure 3.4: Chromosome 18 heatmap after 5 rounds of revisions.
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Figure 3.5: Linkage map of chromosome 1.
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Figure 3.6: Linkage map of chromosome 2.
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Figure 3.8: Linkage map of chromosome 4.
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Figure 3.10: Linkage map of chromosome 6.
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Figure 3.15: Linkage map of chromosome 11.
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Figure 3.20: Linkage map of chromosome 16.
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Figure 3.21: Linkage map of chromosome 17.
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Figure 3.22: Linkage map of chromosome 18.
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Figure 3.25: Two protein QTL located on chromosome 1. Pro-1 is located at 20.1 cM and
pro-2 is located at 24.2 cM.
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Figure 3.26: One oil QTL on chromosome 1. Oil-1 is located at 13.8 cM.
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Figure 3.27: Two protein QTL on chromosome 3. Pro-3 is located at 17.4 cM and pro-4
is located at 22.2 cM.

84



5.0 !LODD & - Qil

404

3.0

0.0 ==

o2

0.0 9.0 17.0 26.0Ch 34.0 3 (CB“‘BIU 51.0 60.0 68.0 77.0 85
3 romosome-, )]
1291 afH1})

065
0.00
-0.651
-1.28+

Figure 3.28: One oil QTL on chromosome 3. Oil-2 is located at 0.0 cM.
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Figure 3.30: One linolenic acid QTL on chromosome 5. Lin-1 is located at 32.2 cM.
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Figure 3.31: One protein QTL on chromosome 7. Pro-5 is located at 0.0 cM.
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Figure 3.33: One protein QTL on chromosome 14. Pro-6 is located at 71.7 cM.
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Figure 3.34: One oil QTL on chromosome 14. Oil-3 is located at 33.5 cM.
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Figure 3.35: One linolenic acid QTL on chromosome 14. Lin-2 is located at 78.7 cM.
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Figure 3.42: Chromosome 3 linkage map with QTL positions in red. Oil-2 is located at
0.0 cM, mpro-1is at 1.4 cM, mpro-2 at 2.6 cM, mpro-3 at 11.0 cM, pro-3 at 17.4 cM, and
pro-4 at 22.2 cM.
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Figure 3.43: Chromosome 5 linkage map with QTL positions in red. Lin-1 is located at

32.2 cM.
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Figure 3.44: Chromosome 7 linkage map with QTL positions in red. Pro-5 is located at
0.0 cM.
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Figure 3.45: Chromosome 14 linkage map with QTL positions in red. Yld-1 is located at
15.9 cM, oil-3 at 33.5 cM, pro-6 at 71.7 cM, lin-2 at 78.7 cM, and mpro-4 at 78.7 cM.
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Figure 3.46: Chromosome 18 linkage map with QTL positions in red. Lin-3 is located at
53.3cM.
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Figure 3.47: Chromosome 19 linkage map with QTL positions in red. Dap-1 is located at
0.0 cM, lodg-1 at 12.4 cM, lodg-2 at 28.5 cM, and hgt-1 at 41.1 cM.

Table 3.1: QTLs with respective traits and attributes.

Name Trait  Chromosome Marker Name ssID cM LOD R2 Effect’
dap-1 DAP 19 Gm19_3343257_G_T |715634003| 0.0 5.0 117 0.5
lodg-1 | Lodging 19 Gm19 36641660 G_A |715634509| 12.4 3.1 55 -0.1
lodg-2 | Lodging 19 Gm19 37631304_T_G |715634639| 28.5 8.6 23.6 -0.2
hgt-1 Height 19 Gm19_40219547_C_T |715634990| 41.1 15.7 315 -11.1
yld-1 Yield 14 Gml4_2597934_A G |715618125| 15.9 4.1 8.2 104.7
pro-1 Protein 1 GmO01_1887205_G_A |715578642| 20.1 3.2 6.1 2.0
pro-2 Protein 1 Gmx01_1428598 T_G |715578509| 24.2 3.2 59 1.9
pro-3 Protein 3 GmO03_44118764 _C_T |715586280| 17.4 4.0 7.2 -2.1
pro-4 Protein 3 Gmx03_43599557 T _C|715586248| 22.2 3.2 5.8 -1.9
pro-5 Protein 7 GmO07_35194991 A G |715597298| 0.0 3.1 5.7 -1.9
pro-6 Protein 14 Gml4_41187024_T_C |715618716| 71.7 7.4 17.6 33
oil-1 Qil 1 Gmx01_3016694_A_G |715578942| 13.8 34 6.6 -1.2
oil-2 Qil 3 Gm03_47320906_C_T |715586637| 0.0 4.2 8.2 -1.3
oil-3 Qil 14 Gmx14 5347242 _G_A |715619662| 33.5 33 8.0 1.3
lin-1 Linolenic 5 GmO05_34939267_A_G (715591126 32.2 34 3.9 -0.3
lin-2 Linolenic 14 Gml4_46289371_C_T |715619121| 78.7 329 56.3 0.9
lin-3 Linolenic 18 Gmx18_8777288_A_G |715632812| 53.3 113 14.5 0.5
mpro-1 [Meal Protein 3 GmO03_46889507_T_C |715586578| 1.4 3.2 55 -2.4
mpro-2 |Meal Protein 3 Gm03_46508111 A C (715586541 2.6 3.1 53 24
mpro-3 |Meal Protein 3 GmO03_45416367_C_T |715586421| 11.0 5.7 12.2 -3.3
mpro-4 |Meal Protein 14 Gml4 46289371 _C T |715619121| 78.7 8.6 20.2 4.3

@ TN13-4303 represents positive additive effects, and TN12-4098 represents the negative additive effects

97



CONCLUSION

180 recombinant inbred lines were created from a cross between TN12-4098 and TN13-
4303 to create the project named “PRO-LIN”. These lines were studied for two years in
three locations (ETREC, HRREC, and RECM). The aim for the project was to find
quantitative trait loci responsible for traits of interest including yield, seed protein, seed
oil, meal protein, and seed linolenic acid content. In total, 21 QTL were found, and of
those, 17 were for major traits of interest. One QTL was found for yield, six for seed
protein, three for seed oil, four for meal protein, and three for seed linolenic acid content.
QTLs discovered in this project need to be entered into SoyBase for future use by
research teams. With the decreasing price of genomic screening, researchers will be able
to utilize these loci in their elite soybean lines. Also, it would be wise to set up future
experiments to confirm these QTLs, especially the QTLs considered to be novel.
Although most lines showed little hope for future use in a breeding program, TNPL-146
did stand out from the rest. Of the RILSs, this line ranked 9™ in seed protein content, 1%t in
seed oil content, and 1% in meal protein content. This is a line that could be considered
ideal for crossing into a high yielding line in the future. A modifier QTL located on
chromosome 5 could be used in the future to help lower linolenic acid levels. This QTL
has an additive effect of -0.3, associated with TN12-4098. Only 638 of the 11,874
markers were retained in the linkage maps used for the QTL detection. It would be
interesting to see this project employ higher resolution linkage maps for a more accurate

QTL detection. Many more minor QTL may be discovered with this method.
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Nevertheless, QTLs discovered in this project should prove useful to researchers for

years to come.
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