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ABSTRACT 

 

Real-time traffic information is essential to a variety of practical applications. To obtain 

traffic data, various traffic monitoring devices, such as loop detectors, infrastructure-

mounted sensors, and cameras, have been installed on road networks. However, 

transportation agencies have sought alternative data sources to monitor traffic, due to the 

high installation and maintenance cost of conventional data collecting methods. Recently, 

crowdsourced traffic data has become available and is widely considered to have great 

potential in intelligent transportation systems. Waze is a crowdsourcing traffic 

application that enables users to share real-time traffic information. Waze data, including 

passively collected speed data and actively reported user reports, is valuable for traffic 

management but has not been explored or evaluated extensively. This dissertation 

evaluated and explored the potential of Waze data in traffic management from different 

perspectives. 

 First, this dissertation evaluated and explored Waze traffic speed to understand 

the characteristics and reliability of Waze traffic speed data. Second, a calibration-free 

incident detection algorithm with traffic speed data on freeways was proposed, and the 

results were compared with other commonly used algorithms. Third, a spatial and 

temporal quality analysis of Waze accident reports to better understand their quality and 

accuracy was performed. Last, the dissertation proposed a network-based clustering 

algorithm to identify secondary crashes with Waze user reports, and a case study was 

performed to demonstrate the applicability of our method and the potential of 

crowdsourced Waze user reports.  
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INTRODUCTION 

 

Road networks are indispensable parts of transportation infrastructures, playing a crucial 

role in the transport and movement of people, goods, and services. However, as road 

networks become increasingly complex, there are many concerns for traffic and incident 

management. Particularly, traffic incidents and traffic jams challenge roadway system 

efficiency and public safety. Currently, many transportation agencies monitor traffic 

information with infrastructure-mounted sensors, but several limitations exist such as 

high installation and maintenance costs and limited geographical coverage. Therefore, we 

must find alternative data sources that can be integrated into traffic management.  

Several emerging data sources, such as crowdsourced data, are available through 

technological developments. Increasingly, researchers are studying crowdsourced data in 

traffic management, which demonstrates their potential to improve traffic management 

by disseminating real-time traffic information and serving as a complementary data 

source.  

Waze is one notable example of traffic information crowdsourcing. It is a 

crowdsourced platform that enables people to share traffic information (e.g., incidents, 

traffic jams, and construction reports), efficiently and in a timely manner. Every driver is 

both a traffic sensor and a beneficiary of the crowdsourced intelligence. Waze collects 

two types of data, Waze traffic speed and Waze user reports. Waze traffic speed data is 

passively collected, considering vehicles on road to be sensors, and Waze user reports 

data are actively reported by users when they encounter traffic incidents such as 

accidents, traffic jams, and construction areas. The available crowdsourced Waze data 

helps in traffic monitoring and incident management.  

Therefore, it is valuable to efficiently integrate Waze data into traffic management 

strategies. Nevertheless, crowdsourced Waze data has received little independent 

evaluation and exploration in the extant literature. To address these issues, this 

dissertation focuses on using crowdsourced Waze data in traffic management in an 

efficient way, which is composed of the following four chapters. 



2 

 

• Chapter 1 evaluates the probe-based Waze traffic speed from different 

perspectives. To understand the characteristics, Waze traffic speed is compared 

with widely used infrastructure sensor speed.  

• Chapter 2 proposes a calibration-free algorithm to detect incidents with Waze 

traffic speed data on freeways. The results of the proposed algorithm are 

compared with other widely used algorithms.  

• Chapter 3 presents a spatial and temporal quality analysis of Waze accident 

reports, attempting to fully realize the potential of Waze accident reports.  

• Chapter 4 introduces a network-based clustering algorithm to identify secondary 

crashes using Waze user reports. The results are compared with one of the 

commonly used secondary crash identification methods.  
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CHAPTER 1  

EXPLORATION AND EVALUATION OF PROBE-BASED WAZE TRAFFIC 

SPEED 
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Abstract 

 

Real-time traffic information such as traffic speed is essential to a variety of practical 

applications. Because of the high installation and maintenance cost of convention data 

collecting methods, transportation engineers have sought alternative data sources to 

monitor traffic. Probe-based traffic data, such as Waze produces, could serve as 

alternative data sources in traffic management, but this source has not been thoroughly 

explored nor evaluated.  Using the 10.8 mile stretch of I-40 in Knoxville, Tennessee, we 

compared the speed measurements from both Waze and Remote Traffic Microwave 

Sensors (RTMS) over two months and explored the characteristics of Waze traffic speed 

data. These are the main findings: 1) These two datasets showed a similar pattern with 

slight differences. Waze speeds tend to be higher than RTMS speeds for high speed, 

while Waze speeds are more likely to be similar or even lower than RTMS speeds for low 

speed; 2) several factors affecting the speed differences between RTMS speeds and Waze 

speeds were identified, such as Waze speed value, time of day (peak hour vs. non-peak 

hour), AADT (Annual Average Daily Traffic), and segment length; and 3) Waze reported 

the same speed for several successive reporting periods if the real-time speed is not 

available, and Waze speeds had more real-time speed observations during congested 

times, indicating that Waze speeds are more reliable for congested scenarios. The 

findings may lead to a better understanding of this source of data and any resulting 

analysis. 

 

Introduction 

 

The real-time traffic information (e.g., traffic speed and travel time) is valuable for a 

variety of practical applications, such as incident identification, congestion detection, 

route choice decision (1). To obtain traffic data, various traffic monitoring devices, such 

as loop detectors, infrastructure-mounted sensors, and cameras, have been installed on 

road networks. Many state departments of transportation, including Tennessee DOT 

(TDOT), have used infrastructure-mounted radar sensors to collect real-time traffic 

information, such as vehicle occupancy and traffic speed. The data collected from these 
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devices benefit both the public and transportation agencies by informing their decisions. 

However, because of high installation and maintenance costs, these technologies have 

only limited coverage of major arterials and highways. Moreover, infrastructure-mounted 

radar sensors are prone to errors or malfunctions that may cause missing or unreliable 

traffic information (2). 

To address the above issues, transportation engineers seek alternative data sources 

to monitor traffic. Traffic data from several new and promising technologies have 

become available, such as Bluetooth devices, probe vehicles, cellular devices, automated 

license plate recognition (LPR), and even social media (3). Especially with the increasing 

use of mobile phones, crowdsourced probe traffic data like Waze traffic data are now 

available. However, it is not a simple task to extract, collect, and evaluate the traffic data 

from these technologies since they are not created for collecting traffic data. Also, it is 

difficult for us to know the computation algorithms, such as data processing, filtering, 

aggregation, and imputation because private vendors are unwilling to disclose that 

information. This unwillingness makes it difficult to evaluate, improve, and deploy the 

collected traffic data.  

Waze traffic data is one notable example of crowdsourced, probe-based traffic 

data, which is estimated by taking users’ mobile phones as sensors. Waze traffic speed 

has the potential to be an alternative data source; however, it has not been sufficiently 

explored or evaluated. The purpose of this study is to learn about Waze speed data from 

different perspectives. Specifically, we compared the traffic speed measurements 

collected from both radar sensors and Waze over two months in Knoxville, Tennessee, 

and explored the characteristics of Waze traffic speed reports. This rest of this study is 

structured as follows: Section 2 describes related work about comparing and evaluating 

traffic data from different data sources. Section 3 describes the data used in this study. 

Section 4 illustrates the main results obtained from the case study, and the conclusions 

and discussions are presented in Section 5.  
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Related work 

 

The current technologies used to collect traffic data are loop detectors and radar sensors, 

which measure speed at a specific point along the roadway. However, these technologies 

have limitations such as high installation and maintenance fees, limited coverage, and 

malfunction issues. Therefore, transportation professionals in both academia and industry 

have sought alternative approaches to collect traffic data. For example, with the 

increasing penetration of cellular phones, researchers have been attempting to use cellular 

phones as sensors to obtain traffic data. Bar-Gera (1) compared the speed and travel time 

data obtained from cellular phones and dual magnetic loop detectors and demonstrated 

the usefulness of cellular phone-based traffic data for a variety of practical applications. 

Herrera et al. (2) performed a field experiment to demonstrate the effectiveness of GPS-

enabled mobile phones system to collect traffic data and found that a 2-3% penetration of 

cell phones in the driver population is capable of providing accurate measurements of 

traffic speed. Later on, probe vehicle traffic data, measuring traffic speed using the 

vehicles along a certain route, has been actively collected and used. (4; 5).  

 Much research explored probe-based traffic data, especially for measuring 

accuracy and reliability (6-8). For example, Lattimer and Glotzbach (9) measured the 

accuracy of third-party travel time data by comparing them against ground truth data 

obtained through floating car methodology.  Kim and Coifman (6) compared the INRIX 

speed data against the loop detector data and found that INRIX speeds can have up to six 

minutes’ latency compared with the loop detector measurements. Ahsani et al. (8) 

investigated the speed bias, coverage, and congestion detection accuracy of INRIX data. 

Waze is a social navigation application where people can share traffic 

information. Waze provides two kinds of data, passively collected traffic speed data and 

actively reported user reports data such as incident reports and jam reports. Limited yet 

increasing studies have explored the possibility of using Waze data as an alternative 

source in the transportation field thanks to its low cost, real-time capacity, and reasonable 

accuracy (10). For example, to explore the potential of integrating Waze incident data 

into the official incident data, dos Santos, Davis Jr and Smarzaro (11) matched the two 

traffic accident datasets from Waze and BHTRANS (Belo Horizonte Transport and 
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Transit Company). Amin-Naseri et al. (12) explored the characteristics of the Waze 

incident data and compared it with several other common data sources in traffic 

management. 

However, previous studies explored only the crowdsourced Waze user reports, 

including accident reports or jam reports; few explored and evaluated the crowdsourced 

probe-based Waze speed data. To fill this gap, this study examined the characteristics of 

Waze traffic speed and evaluated it by comparing Waze traffic speed against radar sensor 

traffic speed.  

 

Study Area and Data  

 

The study uses traffic speed data from Waze, NPMRDS (National Performance 

Management Research Data Set), and TDOT RTMS (Remote Traffic Microwave 

Sensors) for highway segments in Knoxville, Tennessee. Waze speed data is available at 

a one-minute interval, RTMS speed data is available at a 30-second interval, and 

NPMRDS speed data is available at a five-minute interval. In this study, we compared 

RTMS speeds with Waze speeds, and the NPMRDS speeds were used only for 

visualization purposes.  

RTMS collects traffic information such as traffic count, speed, and occupancy for 

each lane every 30 seconds. In Tennessee, over 200 detector stations are installed on 

interstate highways for both directions, including two major highways, I-40 and I-75. 

Twenty-six stations installed along the 10.8 miles long I-40 eastbound segment, ranging 

from mile marker 374.3 (west end) to 385.1 (east end), were selected. The traffic speed 

data for the selected stations were collected every 30 seconds and were aggregated to one 

minute for consistency of the temporal scale of Waze speed data.  

Waze traffic data was collected from Waze API, a localized JSON GeoRSS feed 

(13). The JSON file contains traffic data for each Waze road link such as traffic speed, 

road segment length, and travel time, and it was downloaded at a one-minute interval. 

Waze provides the functionality to customize the link: Namely, the user can specify the 

start point and end point for each link, which facilitates extracting Waze speed for 

specific road segments. Then, we customized the corresponding Waze links on Interstate 
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40 to compare the traffic speed measurements from Waze and RTMS. Sixteen links were 

found to be associated with the above selected RTMS stations. Table 1-1 presents the 

description of the selected RTMS stations and the corresponding Waze links along I-40 

Eastbound in Knoxville, and Figure 1-1 shows the locations of selected RTMS stations 

and corresponding Waze links, also along with I-40 Eastbound in Knoxville. 

In this study, we analyzed the two month’s worth of traffic speed measurements 

in July and August 2019, along the I-40 interstate highway in Knoxville. Several ways 

have been explored to examine the difference between two large speed datasets (3; 14; 

15); however, more detailed examination (e.g., graph presentation at the time-space 

dimensions) may reveal additional valuable insights, when comparing two huge datasets 

that represent complex phenomena (1). Therefore, in this study, we first compared the 

traffic speed measurements from both Waze and RTMS by time and location using 

heatmap and scatter plot; then, we investigated the factors affecting the speed difference 

between Waze and RTMS with regression analysis. Last, we explored the frequency of 

Waze reporting real-time traffic speed. 
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Figure 1-1 The location of selected RTMS stations and corresponding Waze links 

along I-40 Eastbound in Knoxville, Tennessee 
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Table 1-1 Description of selected RTMS stations and corresponding Waze links 

along I-40 Eastbound in Knoxville, Tennessee 

RTMS Waze 

Station ID Mile Marker Direction Link ID Link length (mile) 

3 374.3 Eastbound E3-4 0.6 

4 374.6 Eastbound 

6 374.9 Eastbound E6 0.5 

9 375.5 Eastbound E9 0.5 

11 375.9 Eastbound E11-13 0.7 

13 376.3 Eastbound 

14 376.6 Eastbound E14 0.4 

17 377.0 Eastbound E17-19 0.9 

19 377.4 Eastbound 

21 377.9 Eastbound E21-23 0.9 

23 378.3 Eastbound 

25 378.8 Eastbound E25 0.4 

27 379.2 Eastbound E27-28 0.8 

28 379.6 Eastbound 

30 380.0 Eastbound E30-33 0.8 

33 380.4 Eastbound 

34 380.8 Eastbound E34 0.5 

36 381.1 Eastbound E36-38 0.7 

38 381.5 Eastbound 

40 381.9 Eastbound E40-41 0.6 

41 382.2 Eastbound 

43 382.5 Eastbound E43 1 

48 383.6 Eastbound E48-52 1.1 

52 384.4 Eastbound 

54 384.7 Eastbound E54-56 0.4 

56 385.1 Eastbound 
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Results 

 

Speed difference  

To compare the speed measurements from Waze and RTMS, we visualized the data at the 

spatial and temporal dimensions. Figure 1-2 shows the speed data by time and location on 

I-40 Eastbound in Knoxville, Tennessee. The figure shows the speed data for two 

different days, in which the left part and right part show the speed for the entire day of 

Wednesday, July 24, 2019, and Saturday, August 3, 2019, respectively. We chose these 

two dates because they are two atypical patterns with traffic incident occurred for both 

weekday and weekend, respectively. The top part shows the speeds from RTMS, while 

the bottom part shows the corresponding speeds from Waze. The horizontal axis 

represents the time of day, from 00:00 to 24:00, and the vertical axis represents the 

selected RTMS stations along I-40 interstate highway. White areas in the figures show 

the missing values, and other colors indicate the corresponding speed. The RTMS speed 

is location-based speed; we aggregated and averaged the speed of all vehicles on all lanes 

at the detector’s location, for a one-minute interval. While the Waze speed is link-based, 

we collected the speed data directly from Waze API. The Waze speed was also collected 

at a one-minute interval. 

As is shown, some values are missing both for RTMS data and Waze data. But 

the missing values are not at the same time and location, allowing us to impute missing 

values for one data source using the other data source (16). For July 24, 2019, the speed 

pattern suggested traffic congestion occurred around 8 AM at milepost 378.8, lasting for 

about one hour.  Another instance of severe congestion was also found starting around 

4:00 PM at milepost 379.2, and later another instance of congestion occurred (perhaps an 

incident) at around 5:30 PM at milepost 382.5. The first congestion dissipated around 

6:00 PM while the second one eventually dissipated at 7:00 PM. Both the RTMS speeds 

and Waze speeds show a similar pattern. Similarly, the right side of Figure 1-2 shows the 

speed pattern for August 3, 2019. Two datasets show a similar pattern, indicating light 

congestion around 10:00 AM, which may have been caused by an incident. 
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Figure 1-2 Speeds (mph) on I-40 Eastbound from both Waze and RTMS, July 24, 

2019 (left) and August 3, 2019 (right) 

 

 

 

Next, we compared and plotted the time-series speeds at several radar sensor 

stations to investigate if there was any difference between Waze and RTMS speeds. 

Figure 1-3 shows the time-series RTMS and Waze speeds for four randomly selected 

stations for both a weekday (July 24, 2019; Wednesday) and a weekend day (August 3, 

2019; Saturday). The NPMRDS speeds are shown in the figure as well for visualization. 

From the figures, RTMS speeds and Waze speeds show a similar pattern but with a 

significant difference. Both on weekday and weekend, Waze speeds are always higher 

than the RTMS speeds when the speed value is high, while for low speeds, Waze speeds 

are similar or even slightly less than RTMS speeds. It may indicate Waze speeds are 

more reliable for congestion scenarios because of the considerable number of sample 

vehicles in the scenario. These findings may suggest that RTMS and Waze have different 

methods of computing velocity, and they have their measurement errors. Meanwhile, 

Waze data is affected significantly by the sample size, and when there are few sample 

vehicles, the Waze speed may have significant measurement error.  
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Figure 1-3 RTMS speed vs. Waze speed data collected at several radar stations on 

both weekday (July 24, 2019, Wednesday) and weekend (August 3, 2019, Saturday) 
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We extracted all the speed observations for the sixteen Waze road links from 

Waze and RTMS in those two months and obtained 1,506,414 observations. Figure 1-4 

shows the scatter plot for the observations. These two datasets, RTMS and Waze, have a 

relatively high correlation (𝑟 = 0.65). From the figure, most of the speed observations in 

both Waze and RTMS speed data are near 60 mph and show a circular shape, and a 

considerable number of repeated values for Waze can be found, suggesting that Waze 

may not able to report real-time speed every minute. Besides, Waze speeds tend to be 

higher than RTMS speeds for high speeds, while RTMS speeds are similar to or even 

higher than Waze speeds for low speeds. It may be caused by sample bias in calculating 

the speed for Waze.  Figure 1-5 shows the speed difference (RTMS speed minus Waze 

speed) for three different ranges (0–45 mph, 45–55 mph, and greater than 55 mph) of 

Waze speed. 45 mph is widely considered as the breakdown speed on highways (8; 17), 

and 55 mph is the speed limit for the road segments. From the figure, we can observe that 

as the Waze speed increase, the interquartile ranges become smaller, meaning less 

variation in speed difference for high Waze speeds. Also, this figure reaffirms that Waze 

speed tends to be greater than RTMS speed for high speeds while it is more likely to be 

less than RTMS speed for low speeds. To determine the effect of Waze speed levels in 

speed difference statistically, we performed the one-way analysis of variance (ANOVA) 

on five predefined groups of Waze speed. Based on ANOVA analysis results (𝐹 =

220,995, 𝑝 < 0.0001), the mean speed difference for all groups differed significantly.  
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Figure 1-4 Scatter plot for all speed observations from both Waze and RTMS 
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A linear regression model was performed to identify the factors affecting speed 

difference. Since the speed difference for Waze speeds greater than 55 mph has a small 

variation (less than 3 mph), we only performed regression analysis to ascertain the effects 

of Waze speed value, time of day (peak hour vs. non-peak hour), AADT (Annual 

Average Daily Traffic), and segment length on the magnitude of the speed difference for 

Waze speeds less than 55 mph. The results are shown in Table 1-2. From the results, we 

can observe that Waze speed value negatively affected the speed difference for two 

models, namely, as Waze speed value increases, the speed difference will decrease, 

confirming the finding observed in Figure 1-5. The effect of traffic volume in terms of 

AADT was examined, and the results showed that Waze links with high traffic volume 

have less speed difference. It can be attributed partly to the fact that high traffic volume 

means many Waze users on the road, thus resulting in a more accurate Waze speed. The 

time of day was also found to negatively affect the speed difference; namely, the smaller 

difference in speed was found during peak hours. Moreover, the effect of time of day on 

speed difference is higher for Waze speeds that are less than 45 mph, which may be 

because observations with high Waze speeds are not significantly affected by peak hours. 

For road segment length, longer road segments tend to have higher speed differences for 

observations with Waze speeds less than 45 mph. We speculate that Waze speed would 

be more sensitive to the change of road segment length for lower Waze speed 

observations.  
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Figure 1-5 Boxplots of the speed difference for three different ranges of Waze speed 

 

 

 

Table 1-2 Factors affecting the speed difference at different Waze speed range  

 Model 1: <=45 mph Model 2: 45-55 mph 

Waze speed value -0.62*** -0.79*** 

AADT -0.0002*** -0.0001*** 

Time of the day (peak hour 

vs. non-peak hour) 
-3.06*** -0.37*** 

Segment Length 1.64** 0.36 

R-squared 0.26 0.28 

Number of observations 44,997 17,212 

Note: * p<.1, ** p<.05, ***p<.01 
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Repeated Waze speed  

While Waze reports speed for a given Waze link every minute, Waze seems to report the 

same speed for several successive reporting periods if the real-time speed is not available. 

Therefore, we investigated the pattern of repeated Waze speed, namely, how often Waze 

would report the real-time speed. Figure 1-6 shows the speed comparison between Waze 

and RTMS speeds at the same RTMS stations on July 24, 2019, and Waze speed samples 

persisting at least five minutes are highlighted. The figure indicates that although Waze 

reports speeds around every minute, there are a significant number of Waze speed 

observations merely repeating from the previous sample. Additionally, more repeated 

Waze speed observations are found to occur during off-peak hours, which makes sense 

since there may not be enough samples to obtain real-time speed during off-peak hours.  
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Figure 1-6 Speed comparison at the same stations on July 24, 2019, with 

highlighting the repeated Waze speed samples persisting at least 5 minutes 
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For any Waze road link, there should be 60 reported speeds per hour since we 

downloaded the Waze speed every minute, although some speeds may be missing. To 

thoroughly investigate the pattern of Waze repeated speeds, we computed the duration of 

repeated Waze speed observations, namely, the number of consecutive same Waze speed 

observations. Similar to (6), if the repeated Waze speed observations fall in different 

hours, then the duration would be the total number of repeated speed observations. For 

example, assume there are ten repeated Waze speed observations with five observations 

in the previous hour and five observations in the following hour, then each hour has five 

observations with a duration of ten minutes.  

We could then plot the distribution of length of time a report is repeated in terms 

of the number of consecutive Waze speed observations per hour for each link. We 

categorized the length of time a Waze speed measurement is repeated into four 

categories, which are one minute (Unique sample), two to five minutes (2-5 minutes), 

greater or equal to six minutes (6+ minutes), and missing value (Missing value). We then 

cumulatively computed the duration of repeated samples for each category for the same 

hour of the day at the same Waze link for the entire two months.  

Figure 1-7 shows the distribution plot for several Waze links for the entire two 

months’ worth of Waze speed data. From the figure, we can observe that the pattern of 

Waze repeated speed observations varies by Waze link, but with several similarities. A 

significant number of unique samples are found during peak hours. The median of 

repeated Waze speed duration is primarily two to five minutes, indicating that Waze may 

not collect the real-time data every minute, but every two to five minutes.  

Another way to measure the sampling period of Waze data is to compute the 

count of speed change in one hour, namely, how many unique speed values occur in one 

hour, including the same, but not consecutive, speed value. Figure 1-8 depicts the 

percentage of speed change per hour plot for several Waze links with the whole two 

months Waze speed data. We found that the percentage is between 25%-50%, which 

means the effective Waze sampling period tends to be two to four minutes.  
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Figure 1-7 The distribution of length of time a report is repeated in terms of the 

number of consecutive Waze samples per hour for each link with the entire two 

months' worth of data. 
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Figure 1-8 The percentage of the number of speed change per hour for each link 

with the entire two months' worth of data. 
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Conclusion 

 

Real-time traffic information such as traffic speed is essential to a variety of practical 

applications, such as incident identification, congestion detection, and route choice 

decision. Because of the high installation and maintenance cost of conventional data 

collecting methods, transportation engineers have sought alternative data sources to 

monitor traffic. Crowdsourced, probe-based traffic data like Waze traffic data could well 

serve as alternative data sources in traffic management, yet these sources have not been 

well explored or evaluated. Over two months, this study compared the speed 

measurements from both Waze and Remote Traffic Microwave Sensors (RTMS) for a 

segment of 10.8 miles of I-40 in Knoxville, Tennessee, and explored the characteristics of 

Waze traffic speed data.  

For the speed comparison, we found these two datasets showed a similar pattern 

with slight differences. Waze speeds tend to be higher than RTMS speeds for high 

speeds, while Waze speeds are more likely to be similar or even lower than RTMS speeds 

for low speeds. Several factors affecting the speed differences between RTMS speeds and 

Waze speeds were identified, such as Waze speed value, time of day (peak hour vs. non-

peak hour), AADT, and segment length. Moreover, Waze reported the same speed for 

several successive reporting periods if the real-time speed was not available, and Waze 

may not collect the real-time data every minute, but every two to four minutes. Also, 

Waze speeds had more real-time speed observations during congested times, indicating 

that Waze speeds are more reliable for congested scenarios. 

The goal of this study is not to identify the most accurate measurement method 

since we do not have the “ground truth”. Waze data provide sampled speed data with a 

high coverage area, influenced by the sample size and measurement equipment accuracy. 

The RTMS data have a limited coverage area, influenced by missing values and the speed 

aggregation method. However, it is expected that the integration of both static (RTMS) 

and mobile sensors (Waze) should be more accurate than each of them individually (2; 

18). Also, the integration of multiple speed datasets can be used for many transportation 

applications and would achieve better performance. Therefore, the exploration and 

evaluation of Waze data are essential to better understand this source of data and any 
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resultant analysis. Moreover, given the positive benefits provided by Waze traffic data, 

such as high coverage, low missing value rate, and further improvements and 

enhancements in data collection and computation, we anticipate the increasing 

application of Waze traffic data in traffic management in the near future.  
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CHAPTER 2  

EVALUATING THE RELIABILITY OF WAZE SPEED DATA IN INCIDENT 

DETECTION ON FREEWAYS 
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Abstract 

 

Early detection of incidents is valuable for incident management, motivating studies to 

develop quick and accurate automatic incident detection (AID) algorithms. As the 

availability of probe traffic data increases, it can be used to detect traffic incidents. In this 

study, we explored and evaluated the reliability of Waze speed data in incident detection 

on freeways. Specifically, we proposed a new calibration-free algorithm to detect 

incident with Waze speed data, and we compared the performance with other AID 

algorithms, in terms of detection rate (DR), false alarm rate (FAR), and mean time to 

detect (MTTD). From the results of the case study on the I-40 freeway in Knoxville, we 

found that Waze speed data is accurate enough to be used in incident detection with a 

high DR of 90.0%. Also, our proposed algorithm performed better in terms of DR and 

FAR, but with a slightly high MTTD. Overall, the results showed the applicability of our 

proposed algorithm and the reliability of Waze speed data in incident detection on 

freeways, which can improve incident management systems operated by transportation 

agencies. 

 

Introduction 

 

Road networks are indispensable components of transportation infrastructures that are 

crucial to the transport and movement of people, goods, and services. Traffic incidents 

have been intensively studied by researchers and traffic engineers, due to the negative 

impacts of traffic incidents on public safety and traffic operation. Consequently, accurate 

incident detection is valuable and a primary objective of the Intelligent Transportation 

System (ITS), which can help reduce congestion, increase safety, and improve daily 

operation efficiency (1; 2). 

Many transportation agencies and state departments of transportation (DOTs) 

have installed fixed-mounted sensors, loop detectors, or cameras to monitor traffic. 

However, the fixed-mounted equipment usually has high installation and maintenance 

costs, thus limiting their coverage in transportation road networks. Researchers and 

practitioners continuously seek alternative data sources to use in traffic monitoring. 
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Advanced technologies have produced applicable probe traffic data, such as INTRIX, 

HERE, and WAZE. Much research has explored and evaluated INRIX and HERE data in 

various aspects (3-5). In incident detection, several studies have found that INRIX has 

relatively high reliability in incident detection (3; 6). This is a compelling reason to 

revisit AID algorithms with the new data source, and Waze speed data is one kind of 

emerging probe vehicle datasets, although it is under-explored and -evaluated.  

Various automatic incident detection (AID) algorithms have been developed by 

researchers, such as pattern recognition algorithms, outlier mining methods, artificial 

neural networks, comparative methods, wavelet transformation, and other machine 

learning methods. However, many of these algorithms are hard to implement by TMCs 

because algorithm calibrations are usually problematic since it is difficult to get the 

historical incident information (7). Moreover, the vast majority of AID algorithms are 

limited in universality or transferability, lacking the ability to obtain satisfactory results at 

different traffic scenarios with little or no recalibration efforts (8; 9). Therefore, it needs 

to revisit the AID algorithms and propose a new calibration-free AID algorithm that can 

perform well universally. 

The main goal of this study is to explore and evaluate the reliability of Waze 

speed data in incident detection on freeways. We proposed a new calibration-free 

algorithm to detect incident with Waze speed data, and compared the performance with 

several other calibration-free AID algorithms, in terms of detection rate (DR), false alarm 

rate (FAR), and mean time to detect (MTTD).  

The next section gives an overview of related work on AID algorithms and 

corresponding performance measures. Section 3 describes the data and methodology used 

in this study. The detailed results are shown in section 4, and the conclusions and future 

work are presented in section 5.  
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Related work  

 

AID algorithms have been researched intensively, and many AID algorithms have been 

developed, such as outlier mining methods (10-14), wavelet theory algorithms (15), 

artificial neural networks (16; 17), fuzzy set theory (18; 19), and machine learning 

methods (20-22). The outlier mining methods are simple yet effective calibration-free 

methods to detect incidents. These have several advantages over other methods: it is a 

segment/station-specific algorithm; namely, each segment and station has its parameters 

of the algorithm, thus making calibration and tuning of the parameters quite easy. This 

algorithm does not need historical incident information, which makes it more attractive 

since it may be difficult to collect historical incident data (23).  For example, the 

California algorithm and its derivatives are commonly used outlier mining methods that 

compute three values based on the occupancy data of vehicle detection stations and then 

compare these three values with the predefined thresholds to determine an incident. 

Dudek, Messer and Nuckles (12) proposed and evaluated the standard normal deviates 

(SND) method to detect incidents, and demonstrated the effectiveness of this method in 

freeway incident detection. Castro-Neto et al. (9) proposed a new, simple, and 

calibration-free incident detection algorithm with traffic occupancy data and achieved 

better performance compared with several other incident detection algorithms. The 

method can also be applied with traffic speed data.  

However, the data used by most of the existing AID algorithms are either 

inductive loop detectors or radar sensors. Limited studies have been conducted to detect 

incident with probe vehicle traffic data, which can compensate for several limitations of 

loop detectors and radar sensors. For example, Balke, Dudek and Mountain (11) used the 

standard normal deviates (SND) to generate incident-free traffic speed thresholds for 

every segment, every time of day and every day of the week and declared traffic incidents 

if the speed observations exceed the computed thresholds. Further studies have improved 

the SND method by considering other information, such as incident reports and spatial-

temporal relationships (24). Chakraborty, Hegde and Sharma (6) detected lane-blocking 

incidents with INRIX data with univariate threshold methods, such as SND (Standard 

Normal Deviates) method and IQD (Inter-Quartile Distance) method. Ahsani et al. (3) 
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investigated the accuracy and reliability of INRIX data in congestion detection and 

investigated the factors affecting the performance of congestion detection. Though 

INRIX is an important probe data source, other alternative data sources, such as Waze, 

also have the potential of being used in incident management.  

Waze is a crowdsourcing platform where people can share traffic information like 

traffic incident reports and traffic jam reports. Also, it can gather and collect the speed 

data from vehicles on the road. Increasing studies have been conducted to use Waze data 

as an alternative source in traffic management, but limited studies have explored and 

evaluated the reliability of Waze traffic speed in incident detection. Therefore, to evaluate 

the reliability of Waze traffic speed data in incident detection, we proposed a new, 

calibration-free algorithm to detect incidents with Waze speed data, and we compared its 

performance with several AID algorithms. We also compared the performance of Waze 

traffic speed data and radar sensor speed data in incident detection with the same AID 

algorithms.  

 

Data and Methodology  

 

Data  

Multiple datasets were used in this study, including traffic speed data, traffic occupancy 

data, and incident data from eastbound Interstate 40 in Knoxville, Tennessee, USA. I-40 

is one of the major freeways in and out of the city of Knoxville, carrying a large volume 

of traffic, especially during peak hours. It is important to detect incidents early to mitigate 

their effects, though it may be difficult to separate the traffic incidents from recurring 

congestion and develop a reliable AID framework. 

Five months’ worth of Waze speed data, collected from June 1, 2019, to 

November 30, 2019, in Knoxville, Tennessee was used in this study. The Waze speed 

data was collected from Waze API, and at a one-minute interval, the XML file containing 

real-time traffic data for each segment was downloaded, totaling 1440 observations per 

day for each road link. In this study, the Waze speed data for 17 segments on I-40 

Eastbound were collected and analyzed, covering 10.81 miles. The length of the 

segments varied from 0.3 miles to 1.1 miles. Waze speed data from July to September (12 
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weeks) 2019 was the historic data used to compute the parameters in AID algorithms. 

The remaining two months’ of data were used as the validation dataset to measure the 

performance of AID algorithms. 

Five months of traffic data, including speed and occupancy data, were collected 

from TDOT (Tennessee Department of Transportation) RTMS (Remote Traffic 

Microwave Sensors). RTMS collects traffic information (e.g., traffic count, speed, and 

vehicle occupancy) for each lane every 30 seconds. In this study, 26 RTMS stations, 

ranging from mile marker 374.3 (west end) to 385.1 (east end), were associated with the 

10.8 miles long Eastbound I-40 segment. RTMS occupancy data for these stations were 

extracted and averaged to be used in AID algorithms for comparison. Also, RTMS speed 

data were extracted and aggregated to one minute for analysis.  

To compare the performance of various calibration-free AID algorithms, we 

needed to obtain the incident data. The incident data on selected I-40 segments from 

September to October 2019 were collected from TDOT’s Region 1 Traffic Management 

Center (TMC) through a web-based archiving tool, LOCATE/IM. The incident data are 

well structured, containing detailed incident information, such as incident duration, 

location, incident type, incident start time, response time, and lane blocked. Since the 

calibration-free AID algorithms used in this study rely on unique traffic variables, traffic 

speed, or occupancy, we chose the incident/crash that caused lane blockage. Finally, a 

total of 20 lane-blocking crashes disrupting traffic were collected in the study. 

 

Methodology 

Proposed algorithm 

In this study, we proposed a new, unique parameter, calibration-free algorithm to detect 

incidents with speed data; it is a simple modification of the Castro-Neto’s algorithm (9). 

Instead of using occupancy data as in Castro-Neto’s algorithm, we modified the 

algorithm so that it can be used with speed data.  For occupancy data, a significant 

increase in occupancy would trigger an incident, while for speed data, a significant 

decrease in speed should be detected to declare an incident. Also, we used multiple 

values of time intervals rather than just a unique value.  
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In the proposed algorithm, we compute the mean and standard deviation of the 

speed difference between two adjacent road links for a specific time interval and a 

specific day. For example, for specific time window (𝑡), and day of the week (𝑑), we 

define 𝑆𝑝𝑒𝑒𝑑𝑑𝑖𝑓𝑓1𝑚𝑖𝑛(𝑖)(𝑡, 𝑑) as the 𝑖th difference of one-minute speed between two 

adjacent road links inside the time window (𝑡). Assume that for a particular (𝑡, 𝑑),  

𝑆𝑝𝑒𝑒𝑑𝑑𝑖𝑓𝑓1𝑚𝑖𝑛(𝑖)(𝑡, 𝑑) ~ 𝑁(𝜇1𝑚𝑖𝑛,𝑑 , 𝜎1𝑚𝑖𝑛,𝑑
2 ) 

Where 𝑁 represents the normal distribution and 𝑖 starts from 1 to 𝑡. The normality of 

speed difference will be tested when we perform the model. 

Then, if we can estimate the 𝜇1𝑚𝑖𝑛,𝑑 and  𝜎1𝑚𝑖𝑛,𝑑
2  from historical data, we can 

declare an incident if the current observation value of speed difference falls outside the 

one-sided region of normal distribution. For example, for specific time window (𝑡), and 

day of the week (𝑑), let 𝑆𝑝𝑒𝑒𝑑𝑑𝑖𝑓𝑓𝑡𝑚𝑖𝑛(𝑡, 𝑑) as sample observations of one-minute 

speed differences between two adjacent links for a particular period 𝑡. We can calculate 

the mean 𝜇𝑡𝑚𝑖𝑛,𝑑 and variance 𝜎𝑡𝑚𝑖𝑛,𝑑
2  directly from historical observations, then we can 

estimate the population mean and standard deviation from the sample observations of the 

speed difference. We can simply have 𝜇1𝑚𝑖𝑛,𝑑 =  𝜇𝑡𝑚𝑖𝑛,𝑑 = X̅𝑡𝑚𝑖𝑛,𝑑, and 𝜎1𝑚𝑖𝑛,𝑑
2 =

𝑡𝜎𝑡𝑚𝑖𝑛,𝑑
2 =  𝑡𝑆𝑡𝑚𝑖𝑛,𝑑

2 . Thus, the above formula can be converted to,  

𝑆𝑝𝑒𝑒𝑑𝑑𝑖𝑓𝑓1𝑚𝑖𝑛(𝑖)(𝑗, 𝑑) ~ 𝑁(𝜇𝑡𝑚𝑖𝑛,𝑑 , 𝑡𝜎𝑡𝑚𝑖𝑛,𝑑
2 ) ~ 𝑁(X̅𝑡𝑚𝑖𝑛,𝑑, 𝑡𝑆𝑡𝑚𝑖𝑛,𝑑

2 )  

We then can define the one-sided region that contains (1 − 𝛼) ∗ 100% of the 

𝑆𝑝𝑒𝑒𝑑𝑑𝑖𝑓𝑓(𝑖)1𝑚𝑖𝑛 (𝑡, 𝑑), and the upper-limit value is the threshold (Thr) used to 

determine if an incident will be triggered. The 𝛼 is the significance level, which controls 

the threshold of declaring an incident. If a new observation value exceeds the threshold, 

an incident alarm is declared. The threshold is defined as 

𝑇ℎ𝑟 = 𝑁−1(�̅�𝑡𝑚𝑖𝑛,𝑑, 𝑡𝑆𝑡𝑚𝑖𝑛,𝑑
2 , 1 − α) 

Where 𝑁−1 is the inverse of the normal distribution, �̅�𝑡𝑚𝑖𝑛,𝑑 is the estimated 𝜇𝑡𝑚𝑖𝑛,𝑑 , and 

𝑆𝑡𝑚𝑖𝑛
2  is the estimated 𝜎𝑡𝑚𝑖𝑛,𝑑

2 . 

In this study, for the proposed algorithm with speed data, the time window was 

chosen from five different values: 6,8,10,12, and 15, and the false alarm rate α was 

chosen from nine different values: 0.0005, 0.00075, 0.001, 0.0025, 0.005, 0.0075, 0.01, 

0.015, 0.02, 0.025, totaling 50 models to be performed. 



34 

 

California Algorithm  

California algorithm is one of the earliest developed AID algorithms that compares three 

variables based on vehicle occupancy with predefined thresholds. First, It computes 

values of three variables based on the difference of occupancy between two adjacent 

vehicle detection stations, namely OCCDF (spatial differences in occupancies), 

OCCRDF (relative spatial differences in occupancies), DOCCTD (relative temporal 

differences in downstream occupancies). Then the values are compared with three 

predefined thresholds (Thr1, Thr2, Thr3); if all three values exceed the thresholds, then 

an incident alarm is triggered.  

In this study, each threshold was tested from 0.05 through 0.5, with increments of 

0.05, which resulted in a total of 1,000 combinations of thresholds. Given some 

combinations of thresholds may have the same DR, we selected the model result with the 

minimum FAR for each same level of DR ranging from 0.6 to 1.0. If two models have the 

same FAR, the one with the lowest MTTD was chosen. The model performance selection 

process was also applied in the following AID algorithms, and then the performances of 

various AID algorithms were compared. 

Minnesota Algorithm  

Minnesota algorithm is another commonly used AID algorithm that computes the 

statistical variables based on vehicle occupancy and compares the variables with 

predefined thresholds. It computes the moving average of OCCDF (spatial differences in 

occupancies) between two adjacent vehicle detection stations before (yb, 3 minutes) and 

after a particular time interval (ya, 5 minutes) (25). Then, ya and yb are normalized by the 

pre-incident occupancy (mt), which is the maximum value of the 5-min moving average 

of occupancy on both downstream and upstream vehicle detection stations. The 

normalized ya and yb are then compared with pre-defined two thresholds (Thr1 and Thr2): 

if ya/mt exceeds the first threshold (Thr1), then congestion is detected; If the second 

threshold is exceeded by (ya - yb)/mt, an incident alarm is triggered.  

For the Minnesota algorithm, as suggested by (25), the time intervals for ya and yb 

were five minutes (ten observations) and three minutes (six observations), respectively. 

Each threshold (Thr1, Thr2) was tested from 0.05 through 0.5, with increments of 0.05, 

which resulted in a total of 100 combinations of thresholds.  
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SND Algorithm 

The standard normal deviate (SND) algorithm is based on the detection of outliers or 

anomalies in the continuous data stream that declares the incident. It precomputes the 

mean and standard deviation from the historical dataset, and SND is calculated based on 

the mean and standard deviation with traffic variable observations. Then the SND is 

compared with the predefined threshold, and if SND is larger than the predetermined 

threshold (Thr), an incident alarm is triggered. In classical SND method, the SND was 

derived from two parameters: reference value (�̂�) and variation (𝑆). For specific segment 

𝑠, time window (𝑡), and day of the week (𝑑), the SND can be expressed as  

𝑆𝑁𝐷𝑠
𝑡,𝑑 =

|𝑥𝑠
𝑡,𝑑 − �̂�𝑠

𝑡,𝑑|

𝑆𝑠
𝑡,𝑑  

Where 𝑥𝑠
𝑡,𝑑

is the traffic variable observation, �̂�𝑠
𝑡,𝑑

 is the reference value, such as mean, 

and 𝑆𝑠
𝑡,𝑑

 is its variation, e.g., standard deviation. From the literature, the SND algorithm 

can be applied both with traffic occupancy data and speed data, but a slight difference 

exists in this method since an incident will increase the occupancy but decrease the 

speed. In this study, we used the SND algorithm with Waze speed, RTMS speed, and 

RTMS occupancy to detect incidents.  

For the SND algorithm with RTMS occupancy data, the threshold (Thr) was 

chosen in a range from 0.5 to 1.5 with 0.1 increments, and the time window was chosen 

with four different values (4, 6, 8,10, and 12 minutes), totaling 50 models to be 

performed. For the SND method with Waze speed and RTMS speed, the threshold was 

also chosen in a range from 2 to 4 with 0.2 increments, and the time window was chosen 

with five different values (6, 8, 10, 12, and 15 minutes), totaling 50 models to be 

performed.  

 

Results  

 

For the proposed algorithm, we assume that for a particular time window (𝑡) and day of 

the week (𝑑), the speed differences of one-minute speed data (speeddiff1min) are 

normally and independently distributed. To validate our consumption, for each time 

window (𝑡) and each pair of adjacent road links, we performed 1440/𝑡 ∗ 7 chi-square 
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goodness-of-fit tests with a level of significance of 5%; The results showed that the null 

hypothesis can not be rejected in any of them, which demonstrates the applicability of our 

proposed algorithm. 

 From the results of our proposed algorithm, we found the best performance with 

Waze traffic speed was with time window 𝑡 = 8 minutes and α = 1.5%, which gave us 

the highest DR of 90%, with a low FR of 0.58% and an MTTD of 2.40 minutes. Figure 2-

1 shows an example of time-varying thresholds obtained from the proposed algorithm 

and the actual speed difference observations for the Waze link close to the incident 

location with time window 𝑡 = 8 minutes and α = 1.5%. As shown, the proposed 

algorithm can accurately detect the incident that occurred on November 5, 2019 

(Tuesday) near Mile Marker (MM) 379. The incident was detected around 8:08 PM and 

lasted for about 45 minutes. To compare, we also plotted the speed thresholds from the 

proposed algorithm for the incident-free case, on 10/29/1019, MM 379 (Figure 2-2), and 

found that the Waze speed was always below the computed thresholds, indicating our 

algorithm are accurate enough not to trigger false alarms.  

We compared the performances of our proposed algorithm (Waze speed data and 

RTMS speed data) with the previously developed SND algorithm (Waze speed data, 

RTMS speed data and RTMS occupancy data), the California algorithm (RTMS 

occupancy data) and the Minnesota algorithm (RTMS occupancy data), in terms of DR, 

FAR, and MTTD. For each algorithm, we chose the model with the minimum FAR for 

each level of DR from 0.6 to 1. If two models have the same FAR, the one with the 

lowest MTTD was chosen. For our proposed algorithm, we found the best time windows 

for Waze speed and RTMS speed were eight minutes and six minutes, respectively; For 

the SND algorithm, the best time windows for Waze speed, RTMS speed, and RTMS 

occupancy were six minutes, six minutes, and eight minutes, respectively.  
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Figure 2-1 Adaptive thresholds from the proposed algorithm for the incident case on 

11/5/2019, MM 3759 
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Figure 2-2 Adaptive thresholds from the proposed algorithm for the incident-free 

case, on 10/29/2019, MM 379 

 

 

 

We obtained the algorithm performance with the prime time window and various 

thresholds. From the results, the highest DR achieved by all algorithms is 90% (Figure 2-

3), which is acceptable for transportation agencies, demonstrating the reliability of Waze 

speed data in incident detection. The relatively low highest DR can be partly attributed to 

the insensitivity of algorithms to detect incidents that occurred during peak hours since 

we found that the uncaptured incidents occurred during peak hours. 

For DR, our proposed algorithm with Waze speed presented the lowest FAR at all 

levels of DR, followed by the proposed algorithm with RTMS speed. For FAR, the 

highest FAR obtained is around 1.4% by the SND algorithm with RTMS occupancy, with 
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the high DR of 90%, but our proposed algorithm can achieve a FAR smaller than 0.6%. 

For MTTD, it seems that the algorithms with occupancy data presented lower MTTD, 

which can be partly attributed to the higher data resolution compared with Waze speed 

data.  

 

 

 

 

 

Figure 2-3 Comparison of the performances of AID algorithms 
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Conclusion 

 

In this study, we evaluated the reliability of using Waze speed data to detect incidents on 

freeways. We proposed a new calibration-free algorithm based on the speed difference 

between two adjacent road links to detect incidents on freeways, and we compared them 

with several common, other calibration-free AID algorithms. We conducted a case study 

on I-40 Eastbound freeway in Knoxville, Tennessee in which we collected Waze speed 

data, RTMS speed data, and RTMS occupancy data for the 10.8-mile long segment on I-

40 Eastbound.  

From the results, we found the Waze speed data is accurate enough to be used in 

incident detection with a high DR of 90%. Our proposed algorithm achieved better 

performance in terms of DR and FAR compared with other methods. Our proposed 

algorithm with Waze speed presented the lowest FAR at all levels of DR, followed by the 

proposed algorithm with RTMS speed. However, the MTTD for our proposed algorithm 

seems to be slightly higher than that of algorithms with RTMS occupancy, which may be 

related to the data resolution. Overall, the results showed the applicability of our 

proposed algorithm in incident detection with speed data and the reliability of Waze 

speed data in incident detection, which can be helpful for incident management systems 

operated by transportation agencies.  

Note that several limitations should be addressed for future studies. First, the 

proposed algorithm is based only on traffic speed; other traffic flow fundamentals can be 

incorporated to augment performance. Second, the proposed algorithm can also be tested 

with other speed datasets, and the combination of multiple datasets can be investigated in 

the future to improve performance. Last, the proposed algorithm considered only the 

difference in speed to detect an incident. In future work, the spatial-temporal relationship 

among Waze speed for difference links should be considered to get better performance.  
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CHAPTER 3  

SPATIAL-TEMPORAL QUALITY ANALYSIS OF CROWDSOURCED WAZE 

INCIDENT REPORTS 
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Abstract 

 

Crowdsourced transportation data, such as Waze user reports, have been generated with 

more and more people using mobile phones; these data could help traffic managers make 

better-informed decisions. To understand these traffic data sources, we conducted a 

spatial-temporal quality analysis of crowdsourced Waze accident reports by comparing 

the Waze accident reports with the TDOT crash records from Nashville, Tennessee in 

2018, and explored the reliability of Waze accident reports not found in crash records. 

From the results, we found that 32.8% of TDOT crash records can be found in Waze 

accident reports when allowing for a reasonable time and distance variation. For matched 

crashes, the mean distance difference is 0.08 miles and the mean time difference is -4.0 

minutes, suggesting the relatively high accuracy of Waze accident reports. Several factors 

affecting the likelihood of matching were identified, including the time of day, day of the 

week, weather, and the number of injuries. Moreover, about 56% of unmatched Waze 

accident reports were found to have a significantly higher travel time with the presence of 

accidents at a significant level of 5%, demonstrating the contributions and potential of 

Waze accident reports as an alternative data source in incident management. 

 

Introduction  

 

Road networks are indispensable components of transportation infrastructures that are 

crucial to the transport and movement of people, goods, and services. Traffic incidents 

have significant negative effects on the smooth operation of road networks, challenging 

roadway system efficiency and public safety. For example, every minute a freeway lane 

is blocked as a result of an incident can result in four minutes of travel time delay (1), 

over 1.25 million people die each year by road traffic crashes (2), and approximately 37 

thousand people die on U.S. roads as a result of road traffic accidents (3). Therefore, 

early accident detection can help transportation agencies make quick and timely 

responses to reduce and mitigate the effects of an incident. 

Transportation agencies have various systems to identify and manage incidents, 

and various datasets are used in incident management systems, mainly including radar 
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sensor data, loop detector data, probe vehicle data, and video data. However, these 

datasets may have limitations, such as high installation and maintenance fees, limited 

coverage, and malfunction issues. Nowadays, crowdsourced transportation data has 

become an essential alternative data source in roadway incident management with a 

massive input and output data flow, and this emerging data source has been investigated 

by many researchers. For example, Gu, Qian and Chen (4) developed a methodology to 

extract traffic incident information from Twitter, and they applied the methods in two 

regions, the Pittsburgh and Philadelphia Metropolitan Areas, in September 2014, 

demonstrating that social media data could well be a cost-effective alternative incident 

data source. Crowdsourced transportation data has been explored in depth within various 

topics in the transportation field, such as human mobility tracing (5; 6), sentiment 

analysis (7-10), and incident detection (11-13). Many of these researchers were using 

data extracted from social media platforms such as Twitter, which often contain typos or 

grammatical errors, making it difficult to separate accurate information from noise. 

Fortunately, crowdsourced Waze reports (e.g., accident reports, stopped vehicle reports, 

and jam reports) have become available and provide a large amount of cost-effective, 

real-time, traffic-related information. This new source of data has the potential of being 

an alternative data source that can be used in incident management systems, but it needs 

to be explored and evaluated. 

The objective of this study is to better understand Waze accident reports by 

comparing Waze accident reports with crash records collected by agency officials to 

explore its potential in incident management. This study first measured the spatial-

temporal quality of crowdsourced Waze accident reports, both on and off interstate 

highways. Then, we investigated the factors affecting the matching likelihood between 

the two datasets. Last, we explored the reliability of Waze accident reports not found in 

crash records. In the remainder of this paper, Section 2 reviews extant related studies and 

Section 3 introduces the data and methods used in this study. The main results are 

presented in Section 4, and Section 5 presents the conclusion and future work. 
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Related work  

 

Waze is a crowdsourcing traffic application used for both navigation and for users to 

share the real-time traffic information, such reports of accidents, stopped vehicles, traffic 

jams, road construction, and police reports. Waze accident reports can be helpful in 

incident management since they may detect or identify accident faster than the existing 

methods. There are several sequential processes in incident management, including 

incident detection, incident verification, incident response, incident clearance (14). The 

reduction of incident detection and verification time can lead to a quick response from 

transportation agencies. Using conventional methods, an incident may not be instantly 

detected and reported to the transportation agency. Thus, early incident detection using a 

variety of datasets allows for timely response to reduce and mitigate the effects of an 

incident. Moreover, as road networks become more complex and incidents may occur at 

any time and location, transportation agencies need more efficient and effective ways to 

detect incidents. 

 Much research has been devoted to exploring the potential of using crowdsourced 

traffic data in incident management because it provides large amounts of cost-effective 

and real-time traffic-related information (15-17). Mai and Hranac (17), for example, 

investigated the relationships between the occurrence of traffic incidents and the related 

social media message numbers and found that they are highly associated, demonstrating 

the power of social media to analyze traffic-related information. Waze data have been 

explored in areas such as user behavior (18), traffic conditions (19), and incident 

detection (20; 21). For example, to explore the potential of integrating Waze incident 

data into the official incident data, dos Santos, Davis Jr and Smarzaro (22) matched the 

two traffic accident datasets from Waze and Belo Horizonte Transport and Transit 

Company (BHTRANS). Amin-Naseri et al. (23) investigated the validity and coverage of 

crowdsourced Waze incident reports and found that Waze helps monitor traffic on the 

road with broad coverage, timely reporting, and reasonable geographic accuracy.  

Despite the invaluable information that previous works provide, they often do not 

address the spatial-temporal quality of crowdsourced Waze accident reports on interstates 

and other roadways and highways. Also, the Waze accident reports that do not have the 
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corresponding official crash records received little exploration but could be a major 

contribution of crowdsourced Waze data. In response, this study explored Waze accident 

reports from these less considered perspectives to gain an in-depth understanding of 

Waze data. We compared the Waze accident reports with the crash records for Nashville, 

Tennessee in 2018 to see if the crash records can be found in Waze accident reports, 

allowing for small variations of incident time and location. In addition, we investigated 

the factors affecting the matching likelihood of these two datasets and explored the 

reliability of unmatched Waze accident reports.  

  

Data and methods 

 

Data 

Waze accident reports were collected from a localized XML feed (Waze API). This feed 

is not publicly accessible but is available for Waze Connected Citizens Program partners 

(24). At a one-minute interval, the XML file containing real-time accident reports 

information is downloaded. Given that XML file collection is re-executed frequently, the 

series of XML files were processed to eliminate duplicate incident reports. After 

removing the duplicate incident data, we obtained 29,802 Waze accident reports for 

Nashville in 2018; because of missing data, 326 days were logged. These accident reports 

covered both highways and local streets, which is valuable to rural areas since incidents 

in a rural area cannot be detected quickly by agency officials. The obtained reports 

contain rich information, such as the accident location coordinates, the accident start 

time, and the accident type. 

The official crash data were obtained from TDOT’s Tennessee Enhanced 

Tennessee Roadway Information Management System (E-TRIMS, https://e-

trims.tdot.tn.gov). We collected the City of Nashville crash records for the corresponding 

days of the year 2018. The crash data are well structured, containing detailed crash 

information, such as crash location, date and time of the crash, road type, type of crash, 

total injuries, total vehicles, weather, and light conditions. TDOT crash data also covers 

the crashes off the roadway, which may not have corresponding Waze accident reports; 

thus, the crashes not on the roadway were removed. Finally, we obtained 13,547 crashes 
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in Nashville for 2018. Since the same road crash might be reported multiple times, the 

number of Waze accident reports is much higher than the number of E-TRIMS crash 

records.  

Figure 3-1 presents the spatial distributions of both TDOT crash records and 

Waze accident reports. As shown, both TDOT crashes and Waze accident reports are 

concentrated along with the major road segments, which makes sense since those 

segments are always carrying heavy traffic. But a significant number of TDOT crashes 

are also concentrated in the city center, and these receive fewer Waze accident reports. 

 

 

 

 

 

Figure 3-1 Spatial distribution of TDOT Crashes (left) and Waze accident reports 

(right), in Nashville, TN, 2018 
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Methods 

Based on the assumption that if a traffic crash occurs, there should be corresponding 

Waze accident reports, we compared the two crash datasets to determine the relationships 

between them, if any. Note that the time and location of an accident from Waze data and 

TDOT crash data may not be precisely identical; thus, when matching the two datasets, 

we referred to the accident records from two datasets as the same accident if they were 

reported within a certain time interval of each other and occurred within a certain 

distance from each other. 

 Previous studies have used different time and distance thresholds (21; 22), for 

example, 20 minutes and 2.5 miles, or 60 minutes and 150 meters, which are determined 

subjectively. In this study, we attempted to obtain suitable thresholds semi-subjectively. 

To get the suitable distance and time threshold for matching, we obtained the number of 

matches by allowing distance varying from 0 to 1 mile and time varying from 0 to 30 

minutes (Figure 3-2). From the figure, we can observe that for each level of distance 

difference, the number of matches would not increase significantly after 20 minutes. For 

distance difference, it seems that the number of matched crashes increases as the distance 

difference increases, but it would not increase significantly after 0.3 miles. Therefore, we 

may assume 0.3 miles and 20 minutes as the suitable thresholds for matching the two 

datasets, and 4,452 TDOT crash records were found in Waze accident reports with the 

selected thresholds.  
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Figure 3-2 Number of crash matches with varying time and distance difference 
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Results 

 

Allowing for a small variation of incident time and location (20 minutes and 0.3 

miles), we generated a set of all possible matched crashes. Out of 13,574 TDOT crash 

records, 4,452 (32.8%) were found in Waze accident reports, of which 1,776 out of 3,293 

(53.9%) TDOT crash records were on interstate highways and 2,676 out of 10,281 

(26.0%) TDOT crash records were on other roadways and highways. This means that the 

crashes that occurred on highways are more likely to be reported by Waze users, which 

may due to the large volumes of traffic on interstate highways. For Waze accidents, 7,019 

out of 29,802 (23.6%) Waze accident reports were matched to TDOT crash records, and 

more than one Waze accident report can be matched to the same crash. Figure 3-3 shows 

the spatial distribution of TDOT crash records and matched crashes between these two 

datasets. The matched accidents are more likely to be concentrated along the major 

arterials in Nashville, which is expected since Waze accident reports are concentrated 

along the major arterials because of the relatively high traffic on major arterials. 
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Figure 3-3 The spatial distribution of matched crashes and the total crashes  

 

 

 

 

Table 3-1 The descriptive analysis of time and distance difference for matched 

TDOT crashes 

Matched TDOT 

Crashes 

Distance Difference (miles) Time Difference (minutes) 

Number Mean Std 50% 75% Mean Std 50% 75% 

All crashes 4452 0.08 0.08 0.05 0.13 -3.97 8.93 -3.93 1.53 

Crashes on 

interstate 

highways 

1776 0.09 0.08 0.06 0.14 -2.91 8.88 -2.23 2.45 

Crashes not on 

interstate 

highways 

2676 0.08 0.08 0.04 0.14 -4.67 8.90 -4.92 0.63 
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Matched crashes between TDOT crash records and Waze accident reports  

To investigate the spatial and temporal quality of Waze accident reports, we conducted an 

in-depth exploration of the spatial and temporal patterns of matched crashes. Figure 3-4 

presents the joint hexagonal histogram of the time difference and distance difference 

between Waze accident reports and TDOT crash records for the matched crashes. Since 

each matched crash may have more than one Waze accident report, the Waze accident 

report with the smallest time difference was selected to compute the time difference and 

distance difference. From the figure, we can observe that the majority matched accidents 

have a small distance difference and a negative time difference, showing the high 

accuracy of Waze accident reports.  

Spatially, the distance difference has a highly skewed distribution, and most of the 

matched crashes have a distance difference of fewer than 0.1 miles. The mean distance 

difference is 0.08 miles, showing the relatively high spatial accuracy of Waze accident 

reports. Also, the mean distance difference for matched crashes on highways is slightly 

higher than that of matched crashes not on highways (Table 3-1), which makes sense 

since the vehicles on interstate highways travel at high speeds. Temporally, for the 

majority of the matched crashes (about 67%), the time differences are negative, which 

means that Waze accident reports detect the accident earlier than the TDOT crash 

records. The mean time difference is -4.0 minutes, indicating that Waze reports seem to 

be more accurate than TDOT crash records in terms of accident reporting time. 

Additionally, the time difference for matched crashes on interstate highways (-2.91 

minutes) is slightly greater than that of matched crashes not occurring on interstate 

highways (-4.67 minutes). It can be attributed to the quicker response by transportation 

agencies for crashes on interstate highways, thus making the time difference smaller for 

crashes on interstate highways.  
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Figure 3-4 The joint hexagonal histogram of the time difference and distance 

difference between Waze incident reports and TDOT crash records 
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To investigate the factors affecting the matching likelihood between TDOT crash 

records and Waze accident reports, we performed a logistic regression analysis. The 

following variables were selected: time of day (peak-hours and non-peak hours), day of 

the week (weekday and weekend), location (interstate highway and other roadways), light 

conditions, weather, and the number of injuries. Table 3-2 presents the estimated results 

for the logistic regression. From the results, the number of injuries positively affects the 

likelihood of matching, which makes sense since the number of injuries is indicative of 

the severity of the injury, and the more severe the crash is, the more likely that users will 

report it. The interstate highway yields a higher likelihood of matching, owing to the 

huge volumes of traffic on interstate highways. Poor light conditions and bad weather 

yield a lower likelihood of matching. This may be because drivers need to be more 

focused in bad weather conditions, making it difficult for them to report accidents on 

Waze. Crashes with injuries or fatalities are more likely to match, compared to crashes 

with only property damage. The time of day and day of the week also significantly affect 

the likelihood of matching, as do peak hours and weekdays, compared to non-peak hours 

and weekends, which may relate to a large number of Waze users on the road during peak 

hours on weekdays.  
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Table 3-2 Significant factors in the likelihood of TDOT crash record being matched 

by Waze accident reports 

Variable  Estimate P-value  Interpretation  

Number of injuries   0.1702 0.0000 Higher number of injuries 

yields higher matching 

likelihood 

 

Road type  

(Base: Not interstate 

highway) 

Interstate 

highway 

1.0861 0.0000 On the interstate highway, 

the likelihood of matching 

is higher compared to other 

types of road 

 

Light conditions 

(Base: Daylight) 

Dark -0.8253 0.0000 Compared to daylight, bad 

light conditions negatively 

affect the incident matching 

likelihood 

Dawn -0.8319 0.0001 

Dusk -1.2743 0.0000 

Other -0.5119 0.2937  
Time of day 

(Base: Non-peak hour) 

Peak 

hour 

0.6461 0.0000 Peak hour yields higher 

matching likelihood 

 

Weather  

(Base: Clear) 

Snow -0.3913 0.5551 Compared to clear weather, 

bad weather conditions 

negatively affect the 

incident matching 

likelihood 

Fog -2.1579 0.0364 

Cloudy -0.2372 0.0001 

Rain -0.1033 0.1104 

Other -1.3203 0.0069  
Crash type  

(Base: Property 

damage) 

 

Injury 0.3895 0.0000 Severe crash yields higher 

matching likelihood Fatal 0.7489 0.0292 

Day of week 

(Base: weekend) 

weekday 0.3519 0.0000 Weekday yields higher 

matching likelihood  

     

Log-Likelihood: -6923.0; p-value: 0.0000; sample size: 13,574 
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Unmatched Waze accident reports  

Exploring unmatched Waze accident reports can help in understanding how to use them 

as an alternative data source in incident management. We found 21,613 Waze accident 

reports that could not be matched to TDOT crash records. Considering that multiple 

Waze accident reports can refer to the same accident, we kept only one report for each 

accident and obtained 16,057 unique Waze accident reports by allowing a small variation 

of time and distance (0.3 miles and 20 minutes).  

 Unmatched Waze accident reports were validated by investigating the travel time 

near the accident location using the National Performance Management Research Data 

Set (NPMRDS). The assumption here is that, when a traffic accident occurs, the actual 

travel time will vary significantly from the typical travel time. The NPMRDS data were 

downloaded from INRIX (https://npmrds.ritis.org/). By comparing the actual travel time 

near the location of an accident with the typical travel time at the same place, the same 

time-of-day and the same day-of-week, we can determine if the travel time shows a 

significant change with the presence of accidents, thus inferring whether the Waze 

accident reports are reliable. The typical travel time near the location of an accident was 

computed by averaging the travel times at the same place, the same time-of-day, and the 

same day-of-week over eight weeks (four weeks before and after the accident). We 

obtained 10,079 unmatched Waze accident reports within 10 meters of NPMRDS road 

segments, in which 1,817 were Waze major accident reports, 5505 were Waze minor 

accident reports, and 2,757 were Waze accident reports without accident type 

information.  

Figure 3-5 depicts the actual travel time and typical travel time for each Waze 

accident report where the actual travel time of each accident is sorted in ascending order. 

As is shown, the majority of travel times with the presence of an accident are 

substantially higher than the travel times without the presence of an accident. To 

statistically test the hypothesis, we conducted the Mann-Whitney U-test, which compares 

the means of two groups that do not follow a normal distribution to test if the mean of 

travel times is significantly different with or without the presence of an accident (Table 3-

3). The mean actual travel time for all accidents was 3.4 minutes, while the mean typical 
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travel time was 1.6 minutes. The Mann-Whitney U-test result (p-value = 0.0000) suggests 

a significant difference between these two travel times.  

Moreover, for each Waze accident report, we performed a hypothesis test with the 

null hypothesis that the actual travel time is not significantly different from the typical 

travel time. Assume the typical travel time population follows a normal distribution, and 

the eight travel times extracted are samples from the population. For each Waze accident, 

consider 𝑡𝑖 the typical travel time inside the eight weeks’ travel times 𝑇, the typical travel 

time 𝑡 should have the following distribution. 

𝑡 ~ 𝑁(�̅�, 8𝑆2) 

Where 𝑁 represent the normal distribution, �̅� is the mean of the sampled travel 

times, and 𝑆2 is the variance of sampled travel times. Then, for the desired level of 

significance 𝛼, a one-sided region that contains (1 − 𝛼) ∗ 100% of the typical travel 

times can be defined, and the upper-limit value is the threshold (Thr) used to determine if 

actual travel time 𝑡′ is significantly different from typical travel time. The threshold can 

be computed as 

Thr~ 𝑁−1(�̅�, 8𝑆2, 1 − 𝛼) 

If actual travel time 𝑡′ exceeds the threshold, we consider the actual travel time is 

significantly higher than the typical travel time, suggesting that the accident report is 

reliable. Figure 3-6 shows the percentage of reliable Waze accident reports with varying 

levels of significance 𝛼. From the figure, we observe that at least 56% of Waze accident 

reports have a significantly higher travel time with the presence of accidents. 

Furthermore, for Waze major accident reports, the percentage can be up to 72%. The 

results suggest that many accidents are reported by Waze users, especially Waze major 

accident reports, yet the accidents receive no response from transportation agencies; this 

demonstrates the contributions and potential of Waze accident reports in traffic incident 

management.  
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Figure 3-5 Typical travel time and Actual travel time for Waze accidents (sorted by 

actual travel time) 

 

 

 

Table 3-3 Results of Mann-Whitney U-test 

 
Actual travel time Typical travel time 

Mean 3.339 1.616 

Standard deviation 4.659 1.613 

Observations 10,079 10,079 

Pearson Correlation 0.540 

U Statistic 22480415.0 

P-value 0.0000 

Alternative hypothesis True location shift is not equal to 0 
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Figure 3-6 The percentage of reliable Waze accident reports with varying level of 

significance 𝜶 
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Conclusion  

 

In this study, we conducted a spatial-temporal quality analysis of Waze accident reports 

to better understanding this source of data and any resultant analysis. First, we compared 

the Waze accident reports and TDOT crash records spatially and temporally. We 

collected and matched these two datasets (13,574 TDOT crash records and 29,802 Waze 

accident reports in Nashville, Tennessee in 2018) by allowing a reasonable variation in 

time and distance. Then, we investigated the factors affecting the likelihood of TDOT 

crash records also being reported in Waze. In addition, we measured the reliability of 

unmatched Waze accident reports by comparing the travel time with and without the 

presence of accidents obtained from NPMRDS travel time data.  

From the results, when allowing a small variation of 0.3 miles and 20 minutes to 

suggest the same accident, 32.8% of TDOT crash records can be matched in Waze 

accident reports, in which 53.9% of TDOT crash records on interstate highways and 

26.0% of TDOT crash records on other roadways were matched. A large number of 

matched crashes have a small distance difference with a negative time difference. The 

distance difference has a highly skewed distribution, and most of the matched crashes 

have a distance difference smaller than 0.1 miles. The mean distance difference is 0.08 

miles, demonstrating the relatively high spatial accuracy of Waze accident reports. The 

mean time difference for the matched crashes is -4.0 minutes, indicating that Waze 

reports seem more accurate than TDOT crash records in terms of accident reporting time. 

Several factors affecting the likelihood of TDOT crash records being matched in Waze 

accident reports were identified, including the number of injuries, the time of day, day of 

the week, weather, and location. Moreover, the unmatched Waze major accident reports 

were verified using NPMRDS travel time data, and a significant increase in travel time 

was found with the presence of accidents. We observed that at least 56% of Waze 

accident reports have a significantly higher travel time with the presence of accidents at a 

significant level of 5%. This shows the contributions and potential of Waze accident 

reports as an alternative data source in incident management.  

Several limitations should be noted for future major efforts. First, the matching 

methodology can be further improved, as well as the determination of the matching 



63 

 

threshold; for example, the matching algorithm can be improved by considering the road 

directions. However, we believe that the thresholds may not meaningfully impact our 

findings. Second, incident data covering a broader region and a larger time range should 

be analyzed in the future to gain a more in-depth understanding of the relationships 

between Waze accident reports and official crash data. Last, but not least, we compared 

only the accident reports with TDOT crash data, and multiple other incident data sources 

can be used together to measure the accuracy and reliability of Waze accident reports. 

Besides, the integration of multiple incident datasets would increase the accuracy of 

incident detection, thus assisting transportation agencies and road users to make timely 

responses that could reduce and mitigate the effects of an incident. 
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CHAPTER 4  

SECONDARY CRASH IDENTIFICATION USING CROWDSOURCED WAZE 

USER REPORTS 
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Abstract 

 

Secondary crashes are considered to be crashes that occur as a result of the noncurrent 

congestion originating from primary crashes, which always has a greater impact on safety 

and traffic than a single crash. A better understanding of secondary crashes would benefit 

traffic incident management, and this requires accurate identification of secondary 

crashes. In this study, we explored using crowdsourced Waze user reports to identify 

secondary crashes. A network-based clustering algorithm was proposed to extract the 

primary crash cluster, including all user reports originating from the primary crash, and 

any crash that occurred within the cluster would be the secondary crash. This method 

worked as a filter to select accurate primary-secondary relationships, thus identifying the 

exact secondary crashes. Then, we performed a case study for crashes occurring from 

June to December 2019 on a 30-mile stretch of I-40 in Knoxville. A static threshold 

method (crash duration and 10 miles), was used to pre-select the potential primary-

secondary crash pairs. We pre-selected 75 out of 708 crashes as potential secondary 

crashes. Based on the pre-selected primary-secondary crash pairs, 17 secondary crashes 

were obtained with our method. We compared the results of our method with one of the 

commonly used methods, the speed contour plot method. Though our method captured 

fewer secondary crashes, it did identify several secondary crashes that could not be 

observed with the speed contour plot method. The results showed the applicability of our 

method and the potential of crowdsourced Waze user reports.  

 

Introduction 

 

Traffic crashes are a critical issue that harms people’s lives and negatively affects daily 

traffic operation (1). Secondary crashes occur as a result of primary crashes, which 

always result in more severe traffic congestion and road safety issues than a single crash. 

Therefore, an in-depth understanding of secondary crashes that benefits traffic incident 

management requires the accurate identification of secondary crashes.  

Identifying secondary crashes is not a trivial task. Much research has been 

conducted and various methods have been developed to identify secondary crashes (2-8). 
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However, the data exploited in most of the previous studies are either collected from 

fixed infrastructure sensors placed on the road, such as video recognition cameras, 

inductive loop sensors, and radar sensors or obtained from sensor technology within the 

vehicle. These days, traffic information can be collected in a variety of ways owing to the 

development of advanced technologies. Among the existing traffic information collecting 

methods, crowdsourcing is a relatively reliable and cost-effective tool to collect traffic 

information covering a wide range of road networks, and it could be used as a 

complementary data source in addressing traffic issues.  

Waze (https://www.waze.com/) is a widely-used example of traffic information 

crowdsourcing. It is a platform that enables people to share traffic information (e.g., 

incident reports, jam reports, construction reports) efficiently and in a timely manner. 

Waze user reports, generated when users encounter traffic congestion or road accidents, 

can provide insights into secondary crash identification. When a crash occurred on road, 

Waze users would report corresponding accident reports; if a secondary crash occurred as 

a result of the primary crash, there would be traffic jam reports reported to Waze. Thus, 

Waze user reports can be clustered to define the impact area of the primary crash, and 

any crash within the cluster of the primary crash can be considered as the secondary 

crash.   

The objective of this study is to develop a framework for secondary crash 

identification with crowdsourced Waze user reports. Specifically, a network-based 

spatial-temporal clustering approach was proposed that adopts the knowledge of map-

matching algorithms, ST-DBSCAN, and Dijkstra’s algorithm. the methodology was then 

validated through a case study in Knoxville, Tennessee with crowdsourced Waze user 

reports. The results were also compared with a commonly used secondary crash 

identification method, the speed contour plot method.  

In the remainder of this study, Section 2 presents the extant literature related to 

secondary crashes identification. Section 3 describes the proposed method for secondary 

crashes identification. To validate the proposed approach, a case study of Knoxville, TN 

was performed in Section 4. Section 5 presents the conclusion and future work. 
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Literature Review  

 

Various methods have been developed for secondary crash identification such as static 

methods, dynamic methods, and speed contour plot methods. In the early stage, 

researchers used straightforward static and predefined temporal and spatial thresholds to 

identify secondary crashes. The assumption was that secondary crashes would occur 

within a certain spatial and temporal range of the primary crash. For example, Raub (9) 

defined the secondary incident as any incident that occurred within one mile upstream 

and incident duration of the primary incident plus 15 minutes. Hirunyanitiwattana and 

Mattingly (10) explored the characteristics of the secondary crash in which they defined 

the secondary crash as any crash that occurs in the same direction within 60 minutes and 

2 miles upstream of the primary crash. Khattak, Wang and Zhang (11) investigated the 

relationships between primary incident duration and secondary incident occurrence, and 

they considered secondary incidents as incidents that occur on the same road segment and 

within the actual incident duration of the primary incident. Similarly, Moore, Giuliano 

and Cho (12) defined the secondary incident as any incident that occurs within two hours 

and two miles upstream in both directions of the primary incident. Despite the difference 

in the threshold used in the abovementioned studies, they are static and predefined 

regardless of the specific crash characteristics. These static approaches are not capable of 

accurately identifying secondary crashes with varying characteristics.  

 To overcome the limitations of static methods, many studies have developed 

diverse dynamic methods for secondary crash identification (3; 4; 6; 13), such as incident 

progression curve, queue length estimations, and shock wave theory. For example, based 

on the cumulative arrival and departure queuing model, Zhan, Gan and Hadi (4) proposed 

a model to estimate the maximum queue length and queue dissipation time and assumed 

that any incident that occurring within the above spatial and temporal range of the 

primary incident to be the secondary incident. Sun and Chilukuri (13) used the incident 

progression curve to dynamically identify secondary incidents and found that the incident 

progression curve method has a higher performance than the static method. Zheng et al. 

(3) applied shock-wave theory to estimate the dynamic impact of a primary incident, and 
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then an incident that occurred within the impact area was considered a secondary 

incident.  

Much research has been conducted to develop a method to define the impact area 

of primary crashes dynamically and assume the crashes within the impact area of primary 

crashes to be the secondary crashes (8; 14-17). For example, Yang, Bartin and Ozbay (8) 

used the speed contour plot to identify secondary crashes on freeways and explored the 

characteristics of secondary crashes. Junhua et al. (6) determined the spatial-temporal 

impact area of the primary crash with a shock wave boundary filtering (SWBF) method 

and assumed that any crash that occurred within the impact area was a secondary crash.  

Based on the speed contour plot, Xu et al. (15) identified the secondary crashes and found 

that about 1.23% of the crashes were secondary crashes. Park and Haghani (17) used the 

bayesian structure equation model to define the impact area of the primary incident thus 

identifying the secondary incidents.  

However, most previous secondary crash identification studies are based mainly 

on traffic speed data or travel time data, collecting from loop detectors, radar sensors, or 

probe vehicles, which may have several limitations such as limited coverage or 

malfunction issues. Hence, new data sources, such as crowdsourced data, are sought to 

identify secondary crashes. The integration of different data sources would results in 

more accurate secondary crash identification than each of them individually. Therefore, 

this study used the crowdsourced Waze user reports to identify secondary crashes with 

the proposed new network-based spatial-temporal clustering method.  

 

Network-based spatial-temporal clustering  

 

In this section, we propose a novel, network-based spatial-temporal clustering framework 

to cluster crowdsourced Waze user reports. The proposed approach is based on the 

knowledge of the map matching algorithm, ST-DBSCAN (Spatial-temporal density-

based spatial clustering of applications with noise), Dijkstra’s shortest path algorithm. 

 First, positioning technologies like GPS may produce different kinds of errors, 

making the location data not entirely accurate. In this study, the position of a user report 

may not be located exactly on the road network, so a process known as map matching is 
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used to determine the actual position of the report on the road. In the literature, various 

map-matching algorithms have been developed, which can be divided into four 

categories: geometric map-matching algorithms, topological map-matching algorithms, 

probabilistic map-matching algorithms, and other advanced map-matching algorithms 

(18). Two common datasets, location data and spatial road network data, are required in 

the majority of map-matching algorithms. The geometric map-matching algorithms are 

simple and easy to implement, and point-to-curve matching is a commonly used 

geometric map-matching algorithm that matches the position of a point onto its closest 

curve in the road networks. In this study, the point-to-curve matching methodology was 

applied. Basically, for each point obtained from a navigation system, a buffer zone is first 

created, and the road segments that intersect with the buffer zone are considered to be the 

candidate segments. Next, the distance from the point to the candidate segments are 

calculated. Finally, we project the point to the road segment with the shortest distance. 

Next, the ST-DBSCAN clustering algorithm was used to cluster the Waze user 

reports. DBSCAN (Density-based spatial clustering of applications with noise), 

introduced by Ester et al. (19) in 1996, is one of the most widely used density-based 

clustering algorithms. It requires two parameters, neighborhood radius (𝜀) and the 

minimum number of points (minPts). DBSCAN defines clusters by examining the 

neighborhood points of a point p within the neighborhood radius (𝜀) iteratively. A point 

is considered to be a core point if it has at least minPts neighbors. A point q is defined as 

directly reachable from p if p is a core point and q is in the 𝜀-neighborhood of p. A point 

q is defined as density-reachable from point p if there exists a path p1, ..., pn with p1 = p 

and pn = q, where each pi+1 is directly reachable from pi. A density cluster contains the 

core point and all its density connected neighbors.  

The ST-DBSCAN algorithm is a variation and extension of DBSACN, taking into 

account both spatial and non-spatial (e.g., time) aspects (20; 21). The difference between 

ST-DBSCAN and DBSCAN is that the neighborhood radius 𝜀 in DBSCAN is separated 

into two radii: the spatial neighborhood radius 𝜀𝑠 and temporal neighborhood radius 𝜀𝑡 . 

Therefore, a point 𝑞 is the 𝜀-neighborhood of point 𝑝 if and only if the point 𝑞 is within 

the 𝜀𝑠-neighborhood and 𝜀𝑡-neighborhood of point 𝑝. Similarly, the other concepts in ST-

DBSCAN should be also extended accordingly based on DBSCAN.  
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Figure 4-1 depicts the pseudocode of ST-DBSCAN implemented in this study. 

First, for each data points, the (𝜀𝑡, 𝜀𝑠)-neighborhood is obtained. If a point has at least 

minPts neighbors including itself, this point is considered a core point, which is qualified 

for starting up a cluster. Then, the core point is expanded with its directly reachable core 

points on the neighboring graph, ignoring the non-core points; Lastly, the non-core points 

within the (𝜀𝑡, 𝜀𝑠)-neighborhood of a cluster are assigned to the nearby cluster, and other 

non-core points are assigned to noise. 

Obtaining 𝜀-neighborhoods is a major cost for density-based clustering 

algorithms, especially in transportation-related applications where road network distance 

is often required rather than Euclidean distance. In this study, gathering the 𝜀𝑡-

neighborhood is quite simple. The 𝜀𝑡-neighborhood of p can be obtained by filtering out 

the points that are within the 𝜀𝑡 the point p. However, getting the 𝜀𝑠-neighborhood may 

be complex. The computational complexity for obtaining road network distance using a 

shortest-path algorithm is much higher than that of euclidean distance. Hence, the 

modified Dijkstra’s algorithm is used to improve the efficiency of obtaining 𝜀𝑠-

neighborhood in the algorithm (22; 23). For each point p, we want to find the shortest 

path between p and every other point. But, instead of traversing the entire road network, 

we control the algorithm by comparing the most lately determined shortest distance with 

the distance threshold 𝜀𝑠. Because if the shortest distance between a point q and the point 

p is greater than 𝜀𝑠, there is no need to evaluate other points since the distance to the 

source is increasing. Therefore, the modified Dijkstra’s algorithm returns exactly the 𝜀𝑠-

neighborhood that is required in ST-DBSCAN. 

Finally, we obtained the cluster for each primary crash, and we could check if 

there are traffic jam reports associated with the primary crash and if another crash is in 

the cluster due to the impact of the primary crash. If so, the latter crash could be the 

secondary crash. 
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Figure 4-1 ST-DBSCAN implementation 
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Case Study: The City of  Knoxville, Tennessee 

 

Study Area and Data 

In this study, multiple datasets were obtained from the 30-mile (MM368.0 to MM398.0) 

segment on I-40 in Knoxville, Tennessee from June to December 2019, including Waze 

traffic jam and accident reports, traffic speed data, and shapefile of the road network. The 

shapefile of the I-40 freeway was obtained from Topologically Integrated Geographic 

Encoding and Referencing (TIGER) shapefile data developed by United States Census 

Bureau. The crash data were obtained from TDOT’s Region 1 Traffic Management 

Center (TMC) through a web-based archiving tool, LOCATE/IM. The crash data are well 

structured, containing detailed incident information, such as incident duration, incident 

location (milepost), incident type, incident start time, response time, and the number of 

lanes blocked. A total of 708 crashes was obtained and used for the analysis, in which 

337 crashes were on I-40 Eastbound and 471 crashes were on I-40 Westbound.  

The high-resolution traffic data was obtained from the Remote Traffic Microwave 

Sensors (RTMS), maintained by TDOT. RTMS collects traffic information (e.g., traffic 

count, speed, and occupancy) for each lane every 30 seconds. Ninety-two RTMS stations 

are installed along the 30-mile long I-40 segment in both directions in which 47 RTMS 

stations are on I-40 Westbound and 45 RTMS stations are on I-40 Eastbound. The traffic 

speeds were aggregated into one-minute interval values for the analysis in this study.  

The Waze user reports were obtained from Waze API, which is not publicly 

accessible but is available for Waze Connected Citizens Program partners. Once each 

minute we downloaded the XML file containing the real-time Waze user reports. Given 

that the XML file collection is re-executed frequently, the series of XML files need to be 

processed to eliminate duplicate user reports. After removing the duplicate reports, 

113,508 Waze user reports were obtained within five meters of the 30-mile long I-40 

freeway from June to December 2019. The user reports have four major categories: 

accident reports, traffic jam reports, weather hazard reports, and road construction 

reports. The four categories can then be further divided into subgroups, such as major 

accident reports, minor accident reports, weather reports (fog, rain, flood, snow), and 

construction reports. Since this study aims to identify secondary crashes with Waze user 
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reports, accident reports, traffic jam reports, weather reports, and construction reports 

were used, totaling 49,833 user reports. Each report contains detailed information 

including location (longitude and latitude), timestamp, a unique report ID, report type 

(accident or traffic jam report), and other information.   

   

Secondary crash identification   

For ST-DBSCAN, the important yet difficult task is to determine the parameters. The 

easier-to-set parameter is the minPts parameter. As a rule of thumb, the minPts should be 

set to at least twice the dataset dimensionality, but for high-dimensional data, noisy data, 

or for data has many duplicates, the minPts need to set larger (19; 24). In our study, the 

minPts was chosen as four. The radius parameter 𝜀 is often harder to set. It is preferred 

that this parameter is chosen based on the application domain knowledge (25). Therefore, 

one mile and 30 minutes were chosen as the distance radius and time radius to perform 

ST-DBSCAN clustering in our dataset because we were clustering the Waze traffic jam 

and accident reports on the freeway, and these reports disappeared after 30 minutes 

without further user feedback.  

From the clustering results, we obtained 795 clusters with at least one accident 

report inside, which can be considered as crash events. In these clusters, 31 crash events 

contained weather reports, 51 crash events contained construction reports, and 366 crash 

events had at least two accident reports and jam reports. These 366 crash events could 

have had secondary crashes and were studied further for secondary crash identification. 

Figure 4-2 shows some examples of the clusters, demonstrating the capability and high 

routing flexibility of our proposed approach.  
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Figure 4-2 some examples of the obtained clusters 
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Since we obtained many crashes records from TDOT crash data, we performed a 

pre-selection process to get the potential primary-secondary relationships. Based on what 

we learned in previous research, we choose the static thresholds, actual incident duration, 

and 10 miles, to pre-select the possible primary and secondary crash pairs, and we 

obtained 62 possible primary-secondary crash pairs containing 75 secondary crashes from 

the original 708 crashes. Each crash pair may include multiple secondary crashes. 

We then implemented the network-based clustering algorithm for secondary 

crashes identification as a filter to obtain accurate secondary crashes. Finally, from the 

pre-selected primary-secondary crash pairs, we observed 17 secondary crashes from 15 

primary crashes. Figure 4-3 presents an example of the primary crash cluster in which 

queue formations and a secondary crash were observed after the primary crash. Though 

multiple reports were made hours after the primary crash, we could still observe that the 

primary crash occurred at the time of 14:14 on December 14, 2019, at milepost 391.0 of 

I-40 Eastbound and a queue was formed and propagated because of the primary crash. 

Any crash that occurred due to the primary crash was identified as a secondary crash. 

From the figure, one secondary crash was observed at the time of 14:29 on December 14, 

2019, and the milepost of I-40 389.0 Eastbound. In addition, the primary crash and 

secondary crash occurred at 14:15 on December 14, 2019, and 14:32 on December 14, 

2019, respectively in the TDOT crash data. The times of crashes in Waze accident reports 

are slightly earlier than the times in TDOT crash data, suggesting the temporal accuracy 

of Waze accident reports.  
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Figure 4-3 An example of a primary-secondary crash relationship captured by the 

proposed method 
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Comparison with the speed contour plot method 

To validate our proposed method, we compared our results with the speed contour plot 

method for secondary crashes identification. First, if we used the static fixed spatial and 

temporal threshold, the above-mentioned incident duration and 10 miles upstream of the 

primary crash, we identified 75 secondary crashes from 708 crashes. This would be the 

rough pre-selection process, which can cause several false identifications.  

Then, the speed contour plot method was used for secondary crashes identification to 

compensate for the limitation of static thresholds. The speed contour plot method has the 

following steps:  

• We plotted the speed contour map for the primary crash with the RTMS one-

minute speed data. In this study, the RTMS speed data was extracted at six-hour 

time intervals before and after the primary crash and five miles downstream and 

10 miles upstream from the corresponding nearest RTMS station of the primary 

crash. Figure 4-4(a) demonstrates an example of the speed contour plot for a 

primary crash that occurred at 14:15 on December 14, 2019. We could observe 

that the congestion occurred around 14:15, but we were not able to determine if 

the congestion was recurrent or caused by the primary crash.  

• To compensate for the effect of recurrent congestion, we further extracted the 

RTMS one-minute speed data from crash-free days in our study period for the 

same time intervals, locations, and day of the week. Then, for each time and 

location, we subtracted the average speed values of crash-free days from the 

extracted speed values of the crash day. A new speed contour plot was developed 

with the speed difference for various times and locations, which defined the 

spatial and temporal impact area of the primary crash. Figure 4-4(b) depicts the 

new speed contour plot for the same primary crash. From the figure, we can 

observe the spatial and temporal impact ranges of the primary crash, then if any 

crash occurred in the impact area of the primary crash, we could assume it to be 

the secondary crash. Using the speed contour plot method, we identified 39 

secondary crashes associated with 32 primary crashes from the pre-selected 

primary-secondary crash pairs.   
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Table 4-1 summarizes the secondary crash identification results from different 

methods. As shown, using static thresholds, 75 (10.6%) out of 708 crashes were 

identified as secondary crashes; with the speed contour plot method, we obtained 39 

(5.5%) secondary crashes out of 708 crashes, and 17 (2.4%) secondary crashes were 

obtained with our proposed network-based clustering algorithm. The speed contour plot 

method and our method worked as filters to eliminate false identification and obtain 

accurate secondary crashes. It seems that only a few secondary crashes were identified 

with crowdsourced Waze data, which may because of the insufficient Waze accident or 

jam reports of the crash since it depends on the number of Waze users on road. In the 17 

secondary crashes identified by our method, 14 secondary crashes were also identified by 

the speed contour plot method, but three secondary crashes were only observed with 

Waze data using our method.  The results demonstrated the potential of crowdsourced 

Waze data, which can serve as an alternative data source thus being incorporated into 

traffic management to improve the secondary crash identification performance.  

 

 

 

Table 4-1 The results of secondary crash identification with different methods 

Method  Data Total 

number of 

crashes  

Number of 

secondary 

crashes  

Percentage 

of secondary 

crashes  

Static Threshold: 

incident duration 

and 10 miles  

NA 708 75 10.6% 

Speed contour plot High-resolution 

RTMS speed data 

708 39 5.5% 

ST-DBSCAN  Waze traffic 

accident and jam 

reports  

708 17 2.4% 
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Figure 4-4 An example of the speed contour plot without (a) and with (b) accounting 

for the recurrent congestion  
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Conclusion  

 

Secondary crashes are crashes that occur as a result of noncurrent congestion originating 

from primary crashes, which usually have a greater impact on safety and traffic than a 

single crash. A better understanding of secondary crashes would benefit traffic incident 

management, which requires accurate identification of secondary crashes. However, most 

previous studies focus on identifying secondary crashes with traffic speed or travel time 

data obtained either from fixed mounted sensors or probe vehicles, which may have 

several limitations such as limited coverage, missing data, and malfunction issues. To 

address these issues, this study explored using crowdsourced Waze user reports to 

identify secondary crashes.  

We propose a network-based clustering algorithm to extract the primary crash 

cluster, including Waze user reports originating from the primary crash and assume any 

crash that occurs within the cluster of the primary crash is the secondary crash. This 

method filtered the data to select accurate primary-secondary relationships, thus 

identifying the correct secondary crashes. Then, we performed a case study of crashes 

occurring from June to December 2019 on a 30-mile segment of the I-40 freeway in 

Knoxville, Tennessee. A static threshold method (crash duration and 10 miles) was used 

to pre-select the possible primary-secondary crash pairs. Seventy-five out of 708 crashes 

were pre-selected as secondary crashes. Based on the pre-selected primary-secondary 

crash pairs, 17 secondary crashes were obtained with our method. Also, we compared the 

results of our method with the commonly used speed contour plot method. Though our 

method captured fewer secondary crashes, it also identified several secondary crashes 

that could not be identified using the speed contour plot method. Our method provides 

the potential of integrating these two datasets for secondary crash identification. The 

results showed the applicability of our method and the potential of crowdsourced Waze 

user reports in secondary crash identification.  

Several limitations should be mentioned since these could be major efforts for 

future work. First, our methods used the pre-defined time and distance thresholds for ST-

DBSCAN, which may be subjective and require advanced methods to determine the 

optimum parameters. Second, to comprehensively understand the secondary crashes, 
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more years of data and data from multiple locations should be collected to establish a 

greater sample of secondary crashes. Finally, crowdsourced Waze reports could be an 

important alternative data source in identifying secondary crashes and may be relevant 

for other transportation applications.  
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CONCLUSION 

 

This dissertation compiled a series of studies on evaluating and exploring crowdsourced 

Waze data and on using Waze data in traffic management. These studies were conducted 

to propose multiple applications to detect incidents on freeways with Waze traffic data, 

integrate Waze accident reports into incident management, and identify secondary 

crashes with Waze user reports. 

First, we evaluated and explored the Waze traffic speed. Waze traffic speed is 

compared with commonly used infrastructure sensor speed data, and the effective 

sampling period of Waze speed is estimated. Waze traffic speed improves conventional 

traffic data in traffic monitoring with suggested control strategies. The results are 

important for understanding this data source and future resultant analysis.  

Second, we proposed a calibration-free algorithm in automatic incident detection 

with Waze speed data. The algorithm is transferable and requires no calibration. The 

algorithm outperformed the benchmark algorithms in terms of detection rate (DR) and 

false alarm rate (FAR).  

Third, we measured the quality of crowdsourced Waze accident reports spatially 

and temporally. The Waze accident reports were found to detect incidents earlier than the 

official incident dataset. Also, many of Waze accident reports are reliable but not found 

the corresponding record in the official crash dataset.  

Last, a network-based clustering framework for secondary crashes identification 

with Waze user reports was proposed. The proposed framework captured several 

secondary crashes that cannot be observed by other secondary crashes identification 

methods, augmenting the accuracy of identifying accurate secondary crashes.   

Overall, this dissertation provides multiple analysis frameworks and tools for 

practical applications with crowdsourced Waze data in traffic management. In terms of 

Waze traffic speed, Waze was found reliable to serve as an alternative dataset to augment 

the infrastructure sensor data. Knowing the characteristics and reliability of Waze traffic 

speed facilitates developing and building models to assist traffic managers to improve 

efficiency and effectiveness in traffic management. Waze user reports help in detecting 

incidents on road timely, thus mitigating traffic congestion and improving safety. 
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Moreover, the analysis frameworks in the dissertation are not limited to Waze data, but 

applicable to other crowdsourced data. For example, Google has been started collecting 

crowdsourced data, providing large volumes of data. Therefore, the future study can not 

only focus on investigating this data from different perspectives but on applying our 

analysis frameworks in the dissertation with other emerging datasets. 
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