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ABSTRACT 
 

The interrelationships between vegetation, soil, and water are fundamental in 

evaluating the projected impacts of global climate change. Many predictive models 

require soil hydraulic parameters as inputs. As most hydraulic parameter datasets are 

for repacked soil, the influence of vegetation on hydraulic parameters is not thoroughly 

understood. Living roots and mycorrhizal fungi cause physicochemical alterations in 

soils. Quantifying how vegetation influences soil hydraulic parameters is necessary to 

more accurately simulate soil water dynamics in climate models.  

Laboratory experiments were conducted to test if the presence of roots and roots 

inoculated with mycorrhizal fungi have a significant effect on the saturated and 

unsaturated hydraulic conductivity, and water retention properties of two soils with 

contrasting textures: Flint sand and Hamblen silt loam soil. Cores were seeded with 

Switchgrass (Panicum virgatum) and grown in a greenhouse over three separate growth 

periods. Serendipita indica was injected as liquid inoculant into designated mycorrhizal 

cores. In both soil types, the presence of roots with mycorrhizal fungi increased total 

biomass.  

Saturated hydraulic conductivity measurements were obtained with a soil 

permeameter using the constant head method. Analysis of variance (ANOVA) revealed 

that saturated hydraulic conductivity was reduced (due to pore clogging) by the 

presence of plant roots when grown under nutrient-deficient conditions in comparison to 

bare soil. In contrast, no significant differences were found between treatments for 

unsaturated hydraulic conductivity curve parameters obtained using the evaporation 

method. Soil water retention curves were also obtained using the evaporation method, 
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and supplemented at the dry end for the Hamblen silt loam by water activity meter data. 

Retention curve parameters were obtained by fitting the van Genuchten equation to the 

resulting measurements. ANOVA indicated the presence of roots changed the shape of 

the water retention curve in two ways: (i) by increasing water content at saturation, and 

(ii) and by reducing the slope of the curve. These changes suggested roots created 

additional porosity and broadened the pore size distribution. The presence of 

mycorrhizal fungi further accentuated these effects.  

Future research should investigate the effect of root-mycorrhizal interactions on 

soil hydraulic parameters for more soil types, plant-fungal associates, and time periods.  
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INTRODUCTION AND LITERATURE REVIEW 

1.1 Introduction    

 Research into the unique hydraulic properties of vegetated soil can provide a 

better understanding of the relationship between soil and climatic conditions. Soil near 

roots and fungal hyphae has quite different hydraulic properties than the surrounding 

bulk soil (Carminati et al., 2010; Querejeta, 2017). However, it is difficult to separate the 

impact of roots on hydraulic properties from that due to mycorrhizal fungi because of the 

complexity of their mutualistic relationship (Gehring, 2017). This study compares the 

hydraulic properties of root-permeated soils, with and without mycorrhizal fungi, to 

quantify the relationship between fungal root symbionts and soil hydraulic properties.  

1.2 Motivation  

1.2.1 Soil Water Atmospheric Continuum  

 When studying soil-plant-water relations, it is essential to consider all 

components of the field environment as part of a dynamic system (Scott, 2000). 

Evaluating the relationship between vegetation, soil, and water is critical in 

understanding changes in climate. Climate models account for the relationship between 

plant physiology and hydraulic modeling, where transpiration and photosynthesis 

influence the soil-plant-atmospheric-continuum (Seneviratne et al., 2010). The 

atmosphere and soil are connected through root water uptake, a process by which soil 

water is absorbed by roots and exits through plant leaves via stomatal conductance and 

evapotranspiration (Feddes et al., 2001).  
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1.2.2 Climate Models 

 Although considered a fundamental climate variable, the influence of soil 

moisture on climate is difficult to capture (Robinson et al., 2019). A lack of quantitative 

data concerning soil physical characteristics has resulted in conflicting climate 

predictions. There is a need for the quantitative characterization of biophysical 

processes and validation of soil moisture-vegetation relationships (Seneviratne et al., 

2010). The inability of hydraulic models to consider soil structure, land use, and climate 

factors when estimating hydraulic parameters further compounds predictive error (Jarvis 

et al., 2013). Continuous soil alteration by vegetation poses another difficulty in the 

procurement of soil moisture variables. The biological feedback between soil and 

vegetation makes it challenging to apply static variables to climate models (Robinson et 

al., 2019). By measuring soil hydraulic properties in the presence of roots and fungal 

mycorrhizae, this thesis seeks to provide more meaningful hydraulic parameters for 

inclusion in predictive climate models. 

1.3 Previous Research 

1.3.1 Plant Roots and the Rhizosphere 

 Roots play an essential role in the water balance, where soil-vegetation 

hydrological feedback is dependent upon water availability and depth of infiltration 

(Oswald et al., 2008). Roots alter soil hydraulic properties by changing the pore size 

distribution, with vegetated soil favoring the creation of macropores (Rachman et al., 

2004). Changes in pore space geometry, when compared to bulk soil, are due to: (i) the 

presence of roots in soil pores, (ii) root water retention, and (iii) root exudates (Leung et 
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al., 2015a). The impact of roots on a soil system is also dependent on the age and 

physical characteristics of the root system. Younger, finer, roots have higher water 

uptake per surface area, but older roots have higher water uptake overall due to larger 

root diameter (Dhiman et al., 2018) 

 Water flow from bulk soil to the roots, in mycorrhizal-free soil, is dependent upon 

the rhizosphere, a soil region directly surrounding roots (Carminati et al., 2010). Water 

is drawn from the bulk soil into the rhizosphere by gradients in water potential (Moradi et 

al., 2011). The flow of water from bulk soil to roots is controlled by two aspects: (i) the 

ability of roots to absorb water, and (ii) how fast the soil replaces water that has been 

absorbed (Carminati et al., 2010).  

 The rhizosphere has been shown to have a higher water content than bulk soil 

due to the enhanced water holding capacity of root mucilage (Dhiman et al., 2018). 

There is also evidence that, due to root mucilage, the water content in the rhizosphere 

is inversely related to that of the bulk soil (Carminati et al., 2010). Root mucilage is a 

root exudate that causes chemical, physical, and biological changes in the soil. The 

water holding capacity of the rhizosphere is governed by the pore-size distribution, the 

chemical composition of root mucilage, and the previous wetting and drying history of 

the soil (Czarnes et al., 2000). 

1.3.2 Mycorrhizal Fungi  

Mycorrhizal fungi play a significant ecological role in soils, but little is known 

about the quantitative effects they have on soil and climate relations (Brito et al., 2009). 

There is a symbiotic relationship between roots and mycorrhizal fungi, whereby 

mycorrhizal hyphae provide water and nutrients in return for root assimilates (Van Der 
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Heijden et al., 2006). Mycorrhizal fungi improve rhizosphere root-hydraulic properties by 

redistributing water and nutrients from bulk soil to roots along preferential flow paths 

created by fungal hyphae (Augé et al., 2001).    

Mycorrhizal fungi are known to change soil hydraulic properties by enmeshing 

soil particles with hyphae, promoting the formation of aggregates, and increasing 

aggregate stability. Soil aggregate formation increases the creation of macropores, 

thereby changing the pore-size distribution and reducing bulk density. Fungal hyphae 

exudates increase soil water retention leading to more water availability in soils during 

drying (Augé et al., 2001). These characteristics increase soil water retention and 

transmissive capacity (Querejeta, 2017).  

1.3.3 Influence of Plant Roots and Fungal Hyphae on Soil Hydraulic Properties 

Soils are created through complex physical and chemical interactions via living 

and non-living factors. Coined as the “five-factor model,” interactions between climate, 

parent material, topography, time, and living organisms, shape soil characteristics 

(Johnson and Lehmann, 2006). As living organisms within soils, roots, and their 

associated mycorrhizal fungi, influence soil development.  

Roots and mycorrhizal fungi alter the structural and hydraulic properties of soils 

(Augé et al., 2001; Scanlan and Hinz, 2010). Differences in soil structure produce 

variations in hydraulic properties among soils of the same texture. This causes 

disparities when comparing results from disturbed soils, that were packed in a 

laboratory setting, to undisturbed soils characteristic of natural environments. 

Soil structure differs between disturbed and undisturbed soils, in that undisturbed 

soils have a higher prevalence of macropores. Increasing capillary pressure head 
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causes larger pore spaces to drain before smaller pore spaces (Scott, 2000). Disturbed 

soils have a fewer macropores and therefore have higher water contents at any given 

capillary pressure head, near saturation, than undisturbed soils (Tuli et al., 2005). 

Differences in soil water retention between disturbed and undisturbed soils are 

generally only evident at relatively low capillary pressure heads near saturation. This is 

due to the inverse relationship between pore size and water retention (Scott, 2000). 

1.3.3.1 Porosity and Saturated Water Content 

 The porosity (𝜙) is defined as 𝜙 =  𝑉𝑝 𝑉𝑡⁄ , where 𝑉𝑝 is the volume of pores, and 𝑉𝑡 

is the total soil volume. The volumetric water content (𝜃) is defined as 𝜃 = 𝑉𝑤 𝑉𝑡⁄ , where 

𝑉𝑤 is the volume of water. When the soil is fully saturated with water, 𝑉𝑤 = 𝑉𝑝, and the 

saturated volumetric water 𝜃𝑠, is equivalent to the porosity 𝜙. Laboratory methods for 

measuring 𝜙 and 𝜃𝑠 include calculation from bulk and particle densities, gravimetric 

measurements at saturation, and gas pycnometry (Dane and Topp, 2002). 

 A growing root can radially deform the surrounding soil by cylindrical expansion. 

Dexter (1987) developed a simplified model for this compaction process based on the 

assumption that the volume occupied by the root is accommodated by the loss of an 

equal volume of porosity in the rhizosphere. Whalley et al. (2005) found that the extent 

of root-induced compaction depends upon the particular plant species investigated. 

Aravena et al. (2011, 2014) and Daly et al. (2015) were able to observe localized root-

induced compaction within the rhizosphere using x-ray computed tomography. 

Jotisankasa and Sirirattanachat (2017) report a highly significant inverse linear 

relationship between soil porosity and increasing root biomass. 
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 Several studies have investigated the influence of roots on 𝜃𝑠. Daly et al. (2015) 

found that 𝜃𝑠 is higher in the non-rhizosphere soil than in the rhizosphere. Alternatively, 

Powis et al. (2003), Carminati et al. (2010), Leung et al. (2015b), and Yan et al. (2018), 

suggested that soil with roots has a higher 𝜃𝑠 than unrooted soil. Bodner et al. (2014) 

found that 𝜃𝑠 has a positive logistical relationship to root density, while Shao et al. 

(2017) accounted for a higher 𝜃𝑠 in densely-rooted soil when formulating a dual-

permeability model. Scanlan (2009) found that although wheat roots had a radius large 

enough to influence porosity, there was no difference in 𝜃𝑠 in the 0-20 cm capillary head 

range. The trends reported by the above studies demonstrate that the influence of plant 

roots on 𝜙 is plant and time specific where associated root density and compaction are 

key factors in influencing 𝜃𝑠.  

 The effects of mycorrhizal hyphae on 𝜙 and/or 𝜃𝑠 have been investigated in 

several studies involving controlled pot experiments. The results varied depending upon 

the conditions of the particular study, such as the soil substrate used, and the plant / 

fungus combination. Thomas et al. (1986) looked at onion (Allium cepa L.) roots, not-

inoculated, or inoculated with Glomus macrocarpum, grown in a silty clay loam soil. 

They found that soil containing roots and mycorrhizal hyphae significantly increased 𝜙 

compared to soil containing just roots. Akhzari et al. (2015) and Samaei et al. (2015), 

working with Medicago polymorpha L. and barley (Hordeum vulgare L.), respectively, 

also observed increased porosity in the presence of mycorrhizal hyphae compared to 

uninoculated controls. In contrast, Daynes et al. (2013) found no effect of mycorrhizal 

hyphae on 𝜙 in a study involving one grass and two woody species, combined with 

different levels of compost applied to coal mine spoil.  Most recently, a negative effect of 
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mycorrhizal hyphae on 𝜙 has been reported by Bitterlich et al. (2018). These authors 

grew tomato (Solanum lycopersicum), with and without a commercial inoculum 

containing Rhizoglomus irregular, in a mixture of natural sandy soil, fine sand, and 

vermiculite. Both 𝜙 and 𝜃𝑠 were significantly reduced within the mycorrhizal substrates, 

as compared to those containing roots alone.     

1.3.3.2 Soil Water Retention Curve 

 The soil water retention curve, 𝜃(ℎ), is a non-linear function describing the 

relationship between volumetric water content (𝜃) and capillary pressure head (ℎ). 

This relationship depends upon texture, organic matter, and structure, and therefore 

requires characterization for each soil type of interest. Soils are affected by hysteresis, 

whereby the 𝜃(ℎ) varies depending upon the history of wetting and drying (Scott, 2000). 

In the laboratory, 𝜃(ℎ) is commonly  measured during monotonic drying using the 

hanging water column, pressure plate extractor, suction table and/or evaporation 

methods (Dane and Topp, 2002; Peters and Durner, 2008).  

 The 𝜃(ℎ) characterizes the static hydraulic properties of the soil; it does not 

describe the dynamics of soil water flow (Scott, 2000). It provides a measure of water 

availability and is largely dependent upon the pore-size distribution. In fully-saturated 

soil, at atmospheric pressure, the volumetric water content of the soil is equal to the 

porosity (Hillel, 2004). As the soil dries, the capillary pressure increases, and eventually, 

a critical pressure head is reached at which the largest pores drain. This critical value of 

ℎ is known as air-entry pressure. Coarse-textured soils have air-entry pressures close to 

zero cm, while fine-textured soils can have very large air entry values.  
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 The water retention curve is commonly parameterized by fitting a mathematical 

function to the experimental data (Dane and Topp, 2002). Such an approach makes 

data interpolation possible and provides hydraulic parameters for inputs to numerical 

models, or for comparative purposes. Numerous functions have been used to fit soil 

water retention data. Those that have previously been employed in plant root and/or 

fungal mycorrhizal studies are defined and discussed below.  

The van Genuchten model (van Genuchten, 1980) is given by:  

    𝑆𝑒 = [1 + (𝛼ℎ)𝑛]−𝑚                                                           (1) 

where 𝑆𝑒 =
𝜃−𝜃𝑟 

𝜃𝑠−𝜃𝑟
 is the effective saturation, 𝜃𝑟 is the residual water content, and 𝛼, 𝑛, 

and 𝑚 are fitting parameters that control the shape of the curve. The 𝜃𝑟 represents the 

volume fraction of water that remains in the soil after drainage at very high capillary 

pressure head values. The 𝛼 parameter is inversely related to the air entry pressure and 

controls the point at which water content starts to decline rapidly with increasing 

pressure head. The 𝑛 and 𝑚 parameters are related to pore-size distribution and 

influence the slope and inflection point of the 𝜃(ℎ). The following relationship between 

𝑚 and 𝑛 is often employed to reduce the number of fitting parameters: 𝑚 = 1 −
1

𝑛
 (van 

Genuchten, 1980). 

 The Kosugi model (Kosugi, 1996)  is based on the log-normal frequency 

distribution and is given by:   

𝑆𝑒 = 0.5𝑒𝑟𝑓𝑐 (
𝑙𝑜𝑔(

ℎ 

ℎ𝑚
)

√2𝜎
)                                                    (2)   
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where ℎ𝑚 represents the pressure head corresponding to the center of the effective 

saturation range, while 𝜎 parameter is related to the pore-size distribution, as 

manifested in the slope of the 𝜃(ℎ) curve.  

 The Gallipoli model (Gallipoli et al., 2003) was derived from Eq. [1] and assumes 

that 𝜃𝑟 = 0, so that 𝑆𝑒 = 𝑆 =
𝜃 

𝜃𝑠
, where 𝑆 is the relative saturation. It includes the void 

ratio, 𝑒, and has four fitting parameters, i.e.  

𝑆 =  [1 + (
ℎ𝑒𝜓

𝜔
)

𝑛

]
−𝑚

                                                         (3) 

where 𝑛 and 𝑚 are the van Genuchten parameters related to pore-size distribution, and  

𝜓 and 𝜔 are fitting parameters related to the van Genuchten 𝛼 pressure head 

parameter by 𝛼 =
𝜔

𝑒𝜓 .  

 The 𝜃(ℎ) model proposed by Daynes et al. (2013) has two fitting parameters, 𝜒  

and 𝛽, and is given by:  

ℎ =  𝑒[𝜒 + (
𝛽

𝜃
)]

                                                              (4) 

Ln-transforming this model and employing linear regression to estimate its parameters, 

yields 𝜒 as represented by the y-intercept, with 𝛽 given by the slope. 

 Augé et al. (2001, 2004) used non-linear regression and broken line regression 

to fit data to the following power exponential function:     

  ℎ =  𝜆𝑒[𝜇𝜃𝛿 ]                                                              (5)   

where 𝜆 represents the y-intercept, 𝜇 is related to the pore-size distribution and is 

defined as the rate at which the curve approaches the asymptote, while 𝛿 is related to 

the sharpness of the curve. Together 𝜇 and 𝛿 determine the slope of the curve.  
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 Durner et al. (1994) created an adaptation of the van Genuchten model (van 

Genuchten, 1980) for substrate mixes with bimodal pore size distributions. Their model 

is given by: 

       𝑆𝑒(ℎ) = ∑ 𝜈2
𝑖=1  (

1

1+ (𝛼|ℎ|)𝑛
)

1−
1

𝑛
                                                           (6) 

where 𝜈 is the weighing factor of the mixture components.  

 Most of the above models contain 𝜃𝑠 and 𝜃𝑟 and various fitting parameters 

related in some way to a benchmark pressure head and pore-size distribution. The 

various pressure head and pore-size distribution parameters associated with the 

different mathematical models are summarized in Table 1.  

Overall, Plant roots tend to increase 𝜃 values close to saturation. The influence of 

roots on 𝜃𝑠 has already been discussed in the porosity section, and will not be covered 

here.  

In the literature, the effects of roots on 𝜃𝑟 have proven to be either inconsistent or 

unreported. Yan et al. (2014) found that lower density soils, generally associated with 

vegetation, desaturated more than bare soils. Daly et al. (2014) found that root-

permeated soil drained to a lower 𝜃𝑟 than bare soil, but their imaging model for x-ray 

tomography greatly overestimated 𝜃𝑟. Leung et al. (2015) found that 𝜃𝑟 was consistent 

across vegetated and bare soil. In contrast, Carminati et al. (2010) and Ng et al. (2016) 

found that 𝜃𝑟 was higher in vegetated soil due to root mucilage. 

 Powis et al. (2003) found that the presence of plant roots increased the water 

retention capability of the soil in comparison to the soil in which roots were absent. Ng 

et al. (2016) have proposed a simple model to account for the effect of roots on the 
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𝜃(ℎ), based on a root-dependent void ratio term.  These authors developed a modified 

void ratio to account for the change in root volume ratio in root-permeated soil, i.e.   

𝑒𝑟 =  
𝑒− 𝑅𝑣 (1+ 𝑒)

1+ 𝑅𝑣 (1+ 𝑒)
                                                                              (7)  

where 𝑒𝑟 is the void ratio of root-permeated soil, 𝑒 represents the void ratio of the same 

soil without roots, and 𝑅𝑣 is the total volume of roots per unit volume of soil. The lower 

bound on 𝑅𝑣 is 𝑅𝑣 = 0, representing soil with no roots. The upper bound cannot exceed 

the total pore volume (Ng et al., 2016). Equation [7] can then be substituted into Eq. [3] 

to account for root-induced changes in the 𝜃(ℎ). This approach demonstrated that root 

occupation of soil pores changed the pressure head parameter values in Eq. [3].  

 Using analysis of variance and Eq. [2], Scholl et al. (2017) found that ℎ𝑚, 

corresponding to the pressure head at 50% effective saturation, was not statistically 

different for 𝜃(ℎ)’s from unrooted versus rooted soil. In contrast, root density has been 

shown to influence the 𝛼 parameter, which accounts for the vertical break in the 𝜃(ℎ) at 

air entry, through time. Shao et al. (2017) found that the planting density of shrubs in a 

silty sand soil resulted in higher 𝛼 values. In contrast, Leung et al. (2015) and 

Jotisankasa and Sirirattanachat (2017) found that 𝛼 decreased with root density in 

young plants undergoing vegetative growth. Carminati et al. (2010) found that 3-weeks 

after germination 𝛼 was lower in rhizosphere soil than in non-rhizosphere soil.  Scanlan 

(2009) has proposed that soil hydraulic properties change when root density increases 

during reproductive growth.  

 Roots also influence the slope of the 𝜃(ℎ) which is characterized by the pore-size 

distribution parameters in Table 1. Yan et al. (2014), report that the slope of the 𝜃(ℎ) 

correlates with the permeability of the soil. Their study found that vegetation did not 
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influence the slope of the 𝜃(ℎ) in high permeability sandy soil but increased slope 

steepness in cemented low permeability soil due to evapotranspiration. This result is 

supported by Shao et al. (2017), who found that the slope became steeper with planting 

density. Daly et al. (2015) found that, although, 𝜃(ℎ)’s derived from x-ray tomography 

data poorly estimated 𝑛, they were consistent in having higher 𝑛 values and a steeper 

slope in root-permeated soil than in bare soil.  Using analysis of variance, Scholl et al. 

(2014) found that the 𝜎 parameter was statistically higher in root-permeated soil 

compared to bare soil, but not different between plant groups. Leung et al. (2015b) 

found that 𝑛 values were lower for vegetated soil than bulk soil during drying, indicating 

the slope of the 𝜃(ℎ) was less steep for the root-permeated soil. Ranchman et al. 

(2014), reported that the slope of the 𝜃(ℎ) became less steep as plant roots spread, and 

bulk density decreased. Carminati et al. (2010) found that 𝑛 was lower, and the slope 

was less steep in root-permeated soil than in bulk soil, and attributed this to the water 

retention capacity of root mucilage.   

 The 𝜃(ℎ) provides a measure of water availability and is dependent mainly on 

pore-size distribution as influenced by soil texture, structure, and organic matter 

content. The ability of plants and mycorrhizal fungi to influence pore size distribution 

causes 𝜃(ℎ)’s to differ between bare, root-permeated, and mycorrhizal-inoculated root-

permeated soil. Vegetation and mycorrhizal fungi induced differences in the 𝜃(ℎ) are 

best understood by comparing parameters derived from curve-fitted data. However, 

there is limited literature available comparing 𝜃(ℎ) parameters between mycorrhizal and 

non-mycorrhizal samples. Only three mathematical models, Eqs. [3], [4] and [5], have 

been used to curve-fit mycorrhizal specific 𝜃(ℎ) data. The 𝜒 and 𝜆 parameters in Eq. [4] 
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and Eq. [5] can be thought of as air entry type parameters. The pressure head 

parameter, 𝛼, in Eq. [6] is inversely related to the air entry pressure and controls the 

point at which water content starts to decline rapidly with increasing pressure head. The 

𝛼, is closely related to porosity due to the inverse relationship with air entry pressure. 

Soils with larger pore spaces, like sands, have larger 𝛼 values. Using Eq. [6] for bimodal 

porosity, Hosseini et al. (2016) found that 𝛼 was lower in endophyte-fungi inoculated 

plants when compared to non-inoculated plants. Similarly, while statistically comparing 

parameters derived from Eq. [6], Bitterlich et al. (2018) found that total porosity was 

significantly lower in the inoculated samples. The mycorrhizal-derived porosity reduction 

appeared to be two-fold in origin: mycorrhizal fungi were believed to reduce porosity 

through an increase in fungal biomass, thereby clogging pore spaces, as well as 

through the production of water-repellent root exudates. The combination of these two 

factors resulted in an increased slope and shifted the 𝜃(ℎ) curves in mycorrhizal-

inoculated samples (Bitterlich et al., 2018).  

 In Eq. [5], the pore size distribution parameter, 𝜇, determines the slope of the 

𝜃(ℎ) while 𝛿 determines the sharpness of the curve. When applying both parameters, 

Augé et al. (2001, 2004) found that root-permeated soil containing mycorrhizal fungi had 

more water loss during initial pressure head measurements than the non-mycorrhizal 

root-permeated soils. As the soil dried, more water was available in the mycorrhizal 

root-permeated soil than the untreated root-permeated soil. Similarly, Hosseini et al. 

(2016) found that 𝑛, the pore size distribution parameter in Eq. [6], was lower in fungi 

inoculated soil than in untreated samples. When using Eq. [4], Daynes et al. (2013) 

found that 𝛽 was slightly lower for the mycorrhizal fungi plants. The 𝜃(ℎ) for fungi-
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inoculated plants was slightly higher than the non-inoculated samples. However, no 

statistical significance was found, and additional results for nutrient enriched treatments 

showed no correlation.  

1.3.3.3  Saturated Hydraulic Conductivity 

 The saturated hydraulic conductivity (𝐾𝑠𝑎𝑡) is the constant of proportionality in 

Darcy’s equation and is defined in Equation [8]. 

𝐾𝑠𝑎𝑡 = −𝑞
∆ℎ

∆𝑧
                                                                                                          (8) 

In Equation [8], 𝑞 is the steady-state flow rate, and 
∆ℎ

∆𝑧
 is the hydraulic gradient between 

inlet and outlet (Meter Group, 2017). 

In the laboratory, 𝐾𝑠𝑎𝑡 is measured under fully saturated conditions generally using 

either the constant head or falling head methods (Dane and Topp, 2002). 

 The influence of plant roots on 𝐾𝑠𝑎𝑡 has been observed through multiple 

laboratory studies investigating vegetative effects on soil hydraulic properties. In root-

permeated soil, 𝐾𝑠𝑎𝑡 is largely influenced by root density. Barley (1954) observed that 

the infiltration rate decreased in sandy soil due to pore blockage by roots. Leung et al. 

(2015a) found the 𝐾𝑠𝑎𝑡 of root-permeated soil was lower than that of the control soil 

without roots due to pore blockage. Jotisankasa and Siriattanachat  (2017) reported that 

pore-clogging by roots was positively correlated to root biomass. As root density 

increased 𝐾𝑠𝑎𝑡 decreased. Shao et al. (2017) found that 𝐾𝑠𝑎𝑡 is dependent upon planting 

density, with a comparatively lower root density decreasing 𝐾𝑠𝑎𝑡 , and higher root density 

increasing 𝐾𝑠𝑎𝑡.   
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Additionally, the relationship between 𝐾𝑠𝑎𝑡 and root mass appears to be age-

dependent. Scanlan (2009) determined there was a noticeable, but not statistically 

significant, increase in 𝐾𝑠𝑎𝑡 when researching the changeover from vegetative to 

reproductive growth in 7-9-week-old wheat plants. Petersson et al. (1987) found a 

positive linear relationship between increased age and 𝐾𝑠𝑎𝑡 for older roots, while 

younger roots had a less direct, and negative relationship between increased root 

development and 𝐾𝑠𝑎𝑡. These trends were supported by the work of Powis et al. (2003), 

who showed that 𝐾𝑠𝑎𝑡 decreased during root growth, but increased during root decay. Ni 

et al. (2018) modeled the relationship between root growth and decay in soil void space. 

The decay of structural roots from older plants increased macroporosity and thereby 

𝐾𝑠𝑎𝑡. Scholl et al. (2013) estimated 𝐾𝑠𝑎𝑡 inversely from cumulative outflow data and 

found an increase over time in planted soil columns as compared to unplanted columns.  

 𝐾𝑠𝑎𝑡 is soil structure-dependent and is greatly influenced by the occurrence of 

macropores and water-stable aggregates. In a field study, Rachman et al. (2004) found 

a positive correlation between 𝐾𝑠𝑎𝑡 and macroporosity, with the highest abundance of 

macropores and water-stable soil aggregates occurring within the top 20-cm of 

switchgrass-planted soil. Aravena et al. (2010) found that soil aggregate contact area 

and pore connectivity increased due to root-induced radial compaction of the soil. The 

compaction of inter-aggregate pore-space increased 𝐾𝑠𝑎𝑡.  

 Root-mycorrhizal symbiosis can stabilize soil aggregates through chemical and 

physical processes. Roots and mycorrhizal fungi bind soil into aggregates by excreting 

extracellular compounds, like proteins and polysaccharides (Querejeta, 2017). 

Strigolactones are a class of root exudate plant hormones that promote mycorrhizal 
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fungi establishment. Stimulated by these hormones, mycorrhizal fungi extend from the 

plant root into the soil matrix to access nutrients (Besserer et al., 2006). This process 

physically stabilizes the matrix through soil enmeshment by hyphal networks 

(Querejeta, 2017).  

 𝐾𝑠𝑎𝑡 generally decreases with root growth and increases with root decay due to 

changes in total soil porosity and pore-size distribution. Rachman et al. (2004) found 

that a high incidence of inter-aggregate pore spaces (mesopores) corresponded to 

higher 𝐾𝑠𝑎𝑡 values in switchgrass-planted soil. In inoculated samples, the presence of 

mycorrhizal fungi was shown to decrease 𝐾𝑠𝑎𝑡. Samaei et al. (2015) suggest that 

mycorrhizal hyphae reduce 𝐾𝑠𝑎𝑡 in dense soil by increasing intra-aggregate (micropore 

and mesopore) spaces. Their study found that mycorrhizal fungi increased stable 

aggregation by 201% and decreased 𝐾𝑠𝑎𝑡 by 88.2% when compared to non-mycorrhizal 

plants. Likewise, Bitterlich et al. (2018) found that 𝐾𝑠𝑎𝑡 was higher in non-mycorrhizal 

mutants at 1.18 x10-5 m/s when compared to inoculated samples with a 𝐾𝑠𝑎𝑡 of 9.40 x10-

6 m/s. These differences in 𝐾𝑠𝑎𝑡 can be attributed to mycorrhizal derived changes in 

pore-size distribution, as well as the presence of significantly more water-stable 

aggregates in soils with mycorrhizal-plant symbiosis (Hallett et al., 2009). 

1.3.3.4 Unsaturated Hydraulic Conductivity Curve 

 The functional relationship between hydraulic conductivity and volumetric water 

content for unsaturated soil, 𝐾(𝜃), is defined through Buckingham’s extension of 

Darcy’s equation shown in Equation [9]. 

𝐾(𝜃)  =   
−𝑞 
Δℎ

Δ𝑧
 
                                                                                                  (9) 
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In Equation [9] the water flux 𝑞 at the center of the soil sample is divided by the 

average gradient 𝛥ℎ/𝛥𝑧 of the hydraulic head to determine the unsaturated hydraulic 

conductivity (Pertassek et al., 2015). Measurement methods include steady-state 

centrifugation and the evaporation method as detailed in section 2.6 (Dane and Topp, 

2002). The 𝐾(𝜃) function is also commonly calculated from the soil water retention 

curve (Dane and Topp, 2002).  

 The 𝐾(𝜃) is greatly influenced by pore space geometry due to Poiseuille’s law. 

When applied to soil science, this law states that the water flux is proportional to the 

fourth power of the pore radius (Scott, 2000). As a result, larger pores will always 

conduct more water than smaller pores. In saturated flow, all pores are filled with water 

and conducting water. During unsaturated conditions, however, the largest pores are 

the first to desaturate and fill with air. Since macropores desaturate, water is confined to 

contact points between grains and intra-aggregate pores. The pockets of air between 

grains and aggregates become barriers to flow. This reduces the conductive portion of 

the soil as water is forced to flow within smaller pores (Hillel, 2004). The relationship 

between pore space geometry and flux causes 𝐾(𝜃) to decrease at a lower rate in fine-

textured (micropore dominated) soils than in coarse-textured (macropore dominated) 

soils (Scott, 2000).  

 Nearly all soil-water interactions, including the supply of water to roots, take 

place in unsaturated soils (Hillel, 2004). However, relatively few studies have 

investigated the effects of plant roots on soil hydraulic conductivity under partially-

saturated conditions. As mentioned in Section 1.3.3.1, roots change porosity and 

broaden pore-size distributions. Thus, in theory, the ability of root-permeated soils to 
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increase micropore abundance and clog macropores should lead to a higher 

unsaturated hydraulic conductivity when compared to bare soils.  

 When testing plants grown in a synthetic sand-clay mixture, Powis et al. (2003), 

did not observe any relationship between root volume or root length and 𝐾(𝜃).  In 

contrast, Aravena et al. (2011) found that roots increased contact between aggregates, 

primarily through soil compaction. Cylindrical compaction of clay soil by roots reduced 

void spaces and resulted in higher 𝐾(𝜃) when compared to an unrooted control soil. 

Sedgley and Barley (1958), however, observed that a sandy loam planted with grass 

had lower 𝐾(𝜃) compared to control samples. The reduction in 𝐾(𝜃) was theorized to be 

the result of pore-clogging by fine roots and soil compaction by larger roots as well as 

hydrophobic root exudates. Macropores created by root decay were not considered an 

influencing factor because these samples were tested under conditions where larger 

pores would have already drained. The contradicting results between Aravena et al. 

(2011), and Sedgley and Barley (1958), could be related to the differences in soil type 

investigated (much like an interaction in analysis of variance). Unsaturated flow tends to 

be higher in clay soils than in coarse sands, suggesting that roots increase 𝐾(𝜃) under 

high flow conditions, and decrease them under low flow conditions. Further studies are 

needed to fully investigate the full range of root impacts on unsaturated flow.   

Unsaturated flow is determined by the ability of water to move through soil pore 

spaces that retain water at ℎ values greater than zero. When compared to non-

mycorrhizal soils, soils inoculated with mycorrhizal fungi have been shown to have 

greater pore connectivity and flow during unsaturated conditions (Querejeta, 2017). 

Mycorrhizal fungi establishment in soil causes 𝐾(𝜃) to decrease with decreasing water 
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content at a lower rate compared to uninoculated soil. This effect is believed to be 

caused by a combination of three main factors. 

Firstly, mycorrhizal fungi change the shape and organization of soil pores 

towards smaller pore spaces (Samaei et al., 2015). Pore-size distribution 

influences 𝐾(𝜃) due to the relationship between flux and pore space geometry. This 

relationship causes 𝐾(𝜃) to decrease more gradually in micropore dominated soil (Scott, 

2000). Bitterlich et al. (2018) found that the presence of mycorrhizal fungi caused the 

shape and organization of pore systems to change and total porosity to decrease. This 

led to increased 𝐾(𝜃) at a given water content in a sand-clay soil occupied by 

mycorrhizal inoculated tomato plants.  

 Secondly, mycorrhizal fungi influence 𝐾(𝜃) by improving pore connectivity. 

Mycorrhizal fungi establish networks of preferential water flow along and within 

extraradical hyphae (Querejeta, 2017). Preferential flow through hyphal networks allows 

water transport between air-filled pore spaces (Bitterlich et al., 2018). Water flows 

around and within hyphae allows for greater redistribution of water when compared to 

non-mycorrhizal soils (Querejeta, 2017).  

 Thirdly, mycorrhizal fungi influence 𝐾(𝜃) through the exudation of organic 

compounds (Bitterlich et al., 2018). These compounds are strongly hydrophilic when 

wet and increase conductivity within water-filled pore spaces when compared to non-

mycorrhizal soils (Hallet et al., 2008). The combination of these three factors can result 

in a “truly mycorrhizal” effect on 𝐾(𝜃) (Bitterlich et al. 2018). 
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 Much like the soil water retention curve, unsaturated hydraulic conductivity data 

are often curve fitted using the capillary conductivity function from the Mualem pore 

bundle model (Mualem, 1976), i.e.   

𝐾 =  (𝐾𝑠𝑎𝑡
−1𝜃)

𝜏
[(1 − (𝐾𝑠𝑎𝑡

−1𝜃)
𝑛

 )
1

𝑛]

2

                                                           (10) 

In Equation [10], 𝜃 is the volumetric water content. The 𝑛 parameter is related to pore-

size distribution and is a fitting parameter for the van Genuchten equation detailed in 

section 1.3.3.2 (Peters and Durner, 2015). 𝐾𝑠𝑎𝑡, is the saturated hydraulic conductivity, 

detailed in section 1.3.3.3.The other fitting parameter for this function is 𝜏, an empirical 

parameter representing pore tortuosity and pore connectivity (Peters and Durner, 2015).  

To date, no studies have compared unsaturated hydraulic conductivity function 

parameters between bare, rooted, and mycorrhizal rooted soils.  

1.4 Goal, Objectives, and Hypotheses  

 The purpose of this study is to investigate hydraulic parameters that can capture 

the influence of vegetation and mycorrhizal fungi on soil moisture. The overall goal of 

the research is to statistically analyze the impact of plant roots and mycorrhizal hyphae 

on soil hydraulic properties. There are two specific objectives: (i) in the laboratory, 

experimentally investigate how the presence and absence of mycorrhizal fungi, in 

conjunction with plant roots, impact soil hydraulic properties, and (ii) quantify total plant 

biomass and root volume in the presence and absence of fungal hyphae in order to 

seek statistical relationships between these biological parameters and soil hydraulic 

properties.  
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There are five hypotheses to be tested:  
 
 
i. The presence of mycorrhizal fungi will promote growth and result in a greater 

biomass and root volume ratio than roots alone;  

 
ii. the presence of roots and mycorrhizal fungi will partially fill macropores and 

therefore decrease the saturated hydraulic conductivity of the soil;  

 
iii. presence of roots and mycorrhizal fungi will increase the water content at any 

given capillary pressure head near saturation, changing the shape of the soil 

water retention curve, relative to root/mycorrhizal free soil;  

 
iv. The presence of roots and mycorrhizal fungi will increase pore connectivity 

during drying and therefore increase unsaturated hydraulic conductivity of the 

soil; 

v. Roots alone will have less impact on soil hydraulic properties than roots with 

mycorrhizal fungi. 

 
  



 

22 
 

MATERIALS AND METHODS 

2.1  Experimental Design  

 Bench-scale measurements of soil water retention and saturated and 

unsaturated hydraulic conductivity were performed in a laboratory setting using a total of 

42 hand-packed cores. Two different soil types were used: Flint sand and Hamblen silt 

loam. The plant associate was Panicum virgatum “colony type” switchgrass, and the 

mycorrhizal inoculant was Serendipita indica (Piriformospora indica, ATCC 204458) 

(Verma et al., 1998; Weiß et al., 2016). The experimental design was as follows:  

Flint Sand:   5 Treatments x 3 Replicates x 2 Growth Cycles = 30 Cores 

Hamblen Silt Loam: 4 Treatments x 3 Replicates x 1 Growth Cycle = 12 Cores 

 The five treatments associated with Flint sand were: bare soil (control), soil + 

mycorrhizae, soil + roots, soil + roots + fertilizer, and soil + roots + mycorrhizae. The 

experimental design for Flint sand is illustrated schematically in Figure 1. This design 

was repeated over two separate growth cycles. 

Only one growth cycle was investigated for the Hamblen silt loam soil because of 

the slow drainage of this soil type. Additionally, a fertilizer treatment was not included 

due to the presence of naturally-occurring nutrients in this soil with significant organic 

matter. Otherwise, the experimental design for the Hamblin silt loam was similar to that 

for the Flint sand (Figure 2).  

2.2 Soils 

 Flint sand (Flint #13, U.S. Silica Company, Berkeley Springs, WV) was selected 

as an ideal porous medium for these experiments due to its predominately quartz 
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composition; negligible organic matter; high hydraulic conductivity; and rapid drainage 

time (Kang et al., 2013). Hamblen silt loam was selected to represent a naturally-

occurring soil type within East Tennessee. The soil is considered ideal for agriculture 

and is formed from the watersheds of eroded limestone, sandstone, and shale (NRCS, 

2019). The soil was sampled from the B horizon, air-dried, and passed through a 2 mm 

sieve. Selected physical and chemical properties of the two soils are summarized in 

Table 2 in Appendix 1-Tables. 

2.3 Sample Preparation  

2.3.1 Soil Protocols  

 First, the soils were autoclaved, a process in which steam permeates loosely 

packed soil killing microbial cells and spores. Both soils were autoclaved at 111.5 kPa 

and 121˚C for 30 min. After 24 hour they were autoclaved again to ensure the 

neutralization of resilient fungal spores (Brito et al., 2009). The autoclaved soils were 

subsequently oven-dried at 105˚C for 24 hours to remove any moisture before packing 

into sample containers.  

 The sample containers were stainless steel and cylindrical in shape with an inner 

diameter of 4 cm and a height of 5 cm (Meter Co, Munich, Germany). The bottoms of 

cylinders were fitted with 1 μm nylon mesh (ELKO Filtering Co, Miami, Florida) to 

contain the soil and prevent exterior root and hyphal growth. The sample containers and 

accompanying soil were autoclaved independently. As with the soil, the sample 

containers were autoclaved twice at 121 ˚C for 30 min to further neutralize any fungal 

spores (Brito et al., 2009).  The sterilized oven-dried soil was weighed into equal parts 
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and packed into the sterilized sample containers by hand. Soil cores that were not 

selected for mycorrhizal inoculation were then wetted with DI water using a standing 

water table and seeded.   

2.3.2 Mycorrhizae Protocols 

 After hand packing, a sub-set of soil cores were set aside for mycorrhizal 

inoculation. Prior to inoculation of the soil, Serendipita indica (Piriformospora indica, 

ATCC 204458) (Verma et al., 1998; Weiß et al., 2016) was grown from a 0.5-cm agar 

plug in 50 ml of 1x potato dextrose broth (Sigma Aldrich, USA) in the dark at 30 ˚C (120 

rpm shaker) for two weeks. These liquid cultures were then filtered using sterile 

miracloth and rinsed twice with sterile water. The soil was re-autoclaved for 30 min at 

121 ˚C. Stainless steel cylinders were UV sterilized for 30 min. The packed soil 

cylinders were saturated with sterile DI water from below. S. indica liquid inoculant was 

injected into the moistened soil to create a broad matrix of fungi.  

2.3.3 Switchgrass Protocols 

 Soil cores were seeded with 3/8 teaspoon of Panicum virgatum “colony type” 

switchgrass seeds. The seeds were sprinkled uniformly on top of the soil surface. 

Immediately after application, the seeds were misted with DI water to promote 

germination. Germinated seedlings were counted 4 weeks after application of seeds to 

the soil cores. An average plant density of 1.75 seedlings per cm2 was determined.  

 2.3.4 Plant Care and Growth 

 After seeding and/or inoculation, all the cylindrical containers for the benchtop 

experiments were placed in a greenhouse to promote growth. The plants were watered 
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daily with DI water by maintaining a standing water table and through spray bottle 

misting. The standing water table was gradually lowered as the plants matured. The 

plants grown in the Flint sand soil were harvested after 70 days, and the plants grown in 

the Hamblen silt loam were harvested after 80 days.  Average greenhouse conditions 

during the growth cycles are summarized in Table 3. 

2.4 Saturated Hydraulic Conductivity  

 Saturated hydraulic conductivity (𝐾𝑠𝑎𝑡) was measured using a Meter 𝐾𝑠𝑎𝑡  

Permeameter (Meter Co, Munich, Germany); a device that uses a Mariotte bottle 

system and collects real-time data through a software application (Figure 3). Following 

harvesting of the above-ground biomass, the soil cores were saturated from below with 

a standing water table and then fitted into the permeameter.  

 The 𝐾𝑠𝑎𝑡 of the soil was determined using the constant head method. The 

constant head method uses gravitational differences in hydraulic head to determine 𝐾𝑠𝑎𝑡 

(Scott, 2000). 𝐾𝑠𝑎𝑡  is determined mathematically using Darcy’s Law shown in Equation 

[8] in section 1.3.3.3. 

2.5 Soil Water Retention Curve  

 Following the saturated hydraulic conductivity measurements, the saturated soil 

cores were transferred to a Hyprop2 device (Meter Co, Munich, Germany) for soil water 

retention measurements. 

 When preparing the saturated soil sample for the Hyprop2 device, boreholes that 

were 0.5 cm in diameter and 1.25 cm and 3.75 cm deep, were made in the saturated 

soil sample. In the case of the silt loam, the soil extracted from the boreholes was set 
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aside for water retention measurements using a water activity meter (see section 2.7 

below). The two mini tensiometers on the Hyprop2 device were then lowered into the 

boreholes. The combined Hyprop2 and soil core was then vertically rotated to expose 

the open end of the soil to the atmosphere and placed upon an electronic balance. 

Capillary pressure head measurements were collected as the moisture evaporated from 

the soil, and water was drawn from the tensiometers. As data were collected the 

changes in weight were recorded as volumetric water content (𝜃) and log10 capillary 

pressure head (ℎ) in pF units from the tensiometers. These data points were used in 

conjunction with Meter Hyprop-Fit software to produce high-resolution soil water 

retention curves (Peters and Durner, 2008; Peters et al., 2015) 

 The Hyprop fitting software, Shypfit2.0, uses a modified version of the 

evaporation method (Schindler et al., 2010) to produce a 𝜃(ℎ) curve. The evaporation 

method measures pressure head at two separate depths in the soil. This method 

created two pressure head measurements for every recorded water content. To adjust 

for this, the geometric mean of the two pressure head measurements is taken so that 

each water content value is associated with a mean pressure head at a given time as 

detailed in Equation [11]:  

                                                                                                                           (11) 

In Equation [11] ℎ is the geometric mean of the pressure heads, ℎ1  is the pressure head 

measured from the first tensiometer at a given time, and ℎ2 is the pressure head 

measured from the second tensiometer at a given time (Pertassek et al., 2015).  

 The evaporation method is modified to account for the non-linear water content 

distribution in some soil samples near saturation. At the beginning of the evaporation 

ℎ = √(ℎ1, ∙ ℎ2, ) 
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process, small but systematic errors are associated with soil samples that are coarse-

textured or have well-structured secondary pore systems. The bias in the estimated 

retention function is caused by the uneven distribution of water at hydrostatic 

equilibrium. Correcting non-linear water content distribution is also vital to accurately 

determine the unsaturated hydraulic conductivity. An unsaturated hydraulic conductivity 

prediction based on an incorrect retention function can significantly vary from the true 

function (Peters and Durner, 2006). This error is avoided by using the integral 

evaluation of the measurement, as shown in Equation [12]:  

𝜃̅(𝑏) =
1

ℎ𝑙𝑏−ℎ𝑢𝑏
∫ 𝜃(𝑏, ℎ)𝑑ℎ 

ℎ𝑢𝑏

ℎ𝑙𝑏
                                                                          (12) 

Equation [12] is used to determine the corrected mean water content, (𝜃̅), where 𝜃(𝑏, ℎ) 

is the parametric retention function, 𝑏 is the parameter vector, ℎ𝑙𝑏 is the pressure head 

at the lower boundary of the soil column and ℎ𝑢𝑏 is the pressure head at the upper 

boundary of the soil column (Peters and Durner, 2008).  

  Equation [1], the van Genuchten equation, was the function used for curve fitting 

the 𝜃(ℎ) data. The equation includes four parameters. The first parameter, the saturated 

water content, 𝜃𝑠, was a known value for every soil core. 𝜃𝑠 was calculated from each 

sample’s bulk density using an assumed specific gravity of 2.65. The other three 

parameters 𝛼, 𝑛 (=
1

1−𝑚
), and 𝜃𝑟 were best estimates obtained by fitting the van 

Genuncten equation to the data using Shypfit2.0 software (see Section 2.12). The fitting 

parameter 𝛼 represents the inverse of the air entry point of the soil. The 𝛼 values were 

found to be log-normally distributed and so they were log10-transformed prior to 

statistical analysis. The fitting parameter 𝜃𝑟 represents the residual water content; the 
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water content remaining at the end of the drying cycle. A more detailed description of 

the van Genuchten equation is available in section 1.3.3.2  

2.6  Unsaturated Hydraulic Conductivity  

 Unsaturated hydraulic conductivity parameters were calculated using Shiftfit2.0 

software from 𝐾(𝜃) data gathered by the Hyprop2 device. The Hyprop2 device provides 

measurements of the water flux at the center of the soil sample and the mean gradient 

of the hydraulic head. These parameters are required inputs for the Darcy-Buckingham 

Equation, Equation [9] from section 1.3.3.4 (Pertassek et al., 2015).  

 The water flux at the center of the soil core for a given time is approximated 

using Equation [13].  

𝑞 =  
𝐿 

2

𝜃𝑖−𝜃𝑖−1

∆𝑡
                                                                                                 (13)            

The parameter 𝐿 is the core length and 𝜃 is the water content. The water content at the 

center of the sample is measured at two points in time, 𝜃𝑖 and 𝜃𝑖−1.The variable  ∆𝑡 

represents time as half of the evaporation rate (Pertassek et al., 2015).  

 The average gradient of the hydraulic head at the center of the sample is 

evaluated using equation [14]:  

∆ℎ =  
ℎ̅1 −  ℎ̅2,

𝑧2−𝑧1
− 1                                                                                     (14) 

The variables ℎ̅1 and ℎ̅2 represent mean pressure head at two separate depths. The 

variables 𝑧1and 𝑧2 characterize the two separate depths of the tensiometers associated 

with the Hyprop2 device (Pertassek et al., 2015).  
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 Using the Darcy-Buckingham relationship given in Equation [9], the water flux at 

the center of the soil sample is divided by the average gradient of the hydraulic head to 

determine unsaturated hydraulic conductivity.  

 The unsaturated hydraulic conductivity data were fitted using Equation [10], the 

capillary conductivity function from the Mualem pore bundle model (Mualem, 1976). The 

Shypfit2.0 program was used and the fitting was done simultaneously with the water 

retention fitting, yielding with single estimate of 𝑛 (see Section 2.13). Analyses were 

then conducted on 𝜏 and the estimated 𝐾𝑠𝑎𝑡, the two unique parameters estimated by 

fitting the unsaturated hydraulic conductivity curve (see Section 2.12).  

2.7 Water Activity Meter 

 For fine-textured soils, the Hyprop2 device cannot measure the full range of soil 

capillary pressure heads needed to form a full soil water retention curve. For such soils, 

the dry range of the measurement can be measured using a water activity meter 

(Campbell et al., 2017). Therefore, water activity meter measurements were performed 

on the Hamblen silt loam soil.   

 Approximately 1 g of soil was sub-sampled from the center of each of the water-

saturated silt loam cores. The moist soil was then uniformly spread into a circular 

sample container. The samples were exposed to the atmosphere for approximate 1-

hour intervals. Following each drying period, samples were capped to stop atmospheric 

evaporation and allowed to equilibrate. The samples were then individually placed in a 

Novasina Labmaster-aw (Novasina-Ag, Lachen, Switzerland) to measure the activity of 

the soil water. After the measurement was recorded, each sample was capped and then 

weighed to measure soil moisture content. The process was repeated until there were 
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no changes in the water content over time. The soil samples were then oven-dried at 

105 ℃ for 24 hr. The oven dry weights were used, along with the soil bulk density 

values, to determine volumetric water contents (𝜃). 

 The water activity measurements were converted from water activity (aw), the 

measure of the water vapor pressure of a substance over the vapor pressure of water, 

to total water potential. The total potential measurements were first corrected for 

calibration error. A best-fit line was plotted to measured calibration points determined 

from salt standards. The equation of the best-fit line was used to correct all of the 

measured total potential values. 

The Novasina Labmaster- aw includes both matric and osmotic potentials when 

measuring total potential. Total potential is dominated by the osmotic potential in the 

wet range leading to erroneous measurements of matric potential. To correct for this 

error, the osmotic potential was calculated and removed from the total potential as 

follows:   

𝜓𝑚 = 𝜓𝑡 −  𝜓𝑜 (
𝜃

𝜃𝑠
)                                                                                             (15) 

In Equation [15], 𝜓𝑚 is the matric potential, 𝜓𝑡 is the total potential, and 𝜓𝑜 is the 

osmotic potential. The variable 𝜃 is the volumetric water content and 𝜃𝑠 is the volumetric 

water content at saturation. The matric potential measurements were then converted to 

pF values, i.e., the base ten logarithm of capillary pressure head in cm. Together the 𝜃 

and pF measurements were used to determine the soil water retention curve near 

residual water content.  
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2.8. Above Ground Biomass  

 The shoot biomass was removed from the cores prior to measuring the soil 

hydraulic properties. It was oven-dried for three days at 60 ˚C and then weighed.  

2.9 Below Ground Biomass   

 The presence of mycorrhizal fungi in the inoculated cores was confirmed using 

microscopy, as seen in Figure 5. For this process a sub-section of mycorrhizal root was 

clipped from the exposed bottom of the soil core. The root sub section was taken from 

the bottom of the soil core, rather than the center, to ensure the physical integrity of the 

extracellular mycorrhizal hyphae.  

 Below ground biomass was separated from the soil medium through root floating 

using DI water. The roots were gently picked from the soil and untangled. Then the root 

nodes were removed. The total root mass was weighed. A sub-sample of the processed 

roots was set aside for root scanning and analysis. The roots, including the sub-sample 

used for root scanning, were then oven-dried for three days at 60˚C.  

2.10 Total Biomass  

 Total biomass was calculated as the sum of the oven dry weight from the 

calculated above ground and below ground biomass.  

2.11 Root Scanning   

 A sub-sample of clean roots was scanned. The sub-sample size was determined 

by scanning the entire root mass of one sample. To uniformly scan the root volume, 

each scanning tray was filled to the same extent. The scanning trays were filled to 
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capacity while not allowing for overlap of root material or extension passed the 

dimensions of the scanner.   

 The root volume ratio (𝑅𝑣) is the ratio of total root volume to the total volume of 

soil. 𝑅𝑣 was determined from the total root volume of each scan. The data were log-

normally distributed, so the base-ten logarithm (log10) of 𝑅𝑣 was determined and the 

mean log10𝑅𝑣 value (population mean) calculated from those results. The standard 

deviation of the population mean was determined. The sample number needed was 

calculated using Equation [16]:  

𝑛𝑎 = (
𝑡𝛼,n−1𝑠

𝛥
)

2

− 𝑛                                                                                             (16)                                         

Where 𝑛𝑎 is the number of scans required to be 95% ((1 − 𝛼) 𝑥 100%) sure of obtaining 

a sample mean within 5% (𝛥) of the population mean. The variable 𝑡𝑎,𝑛−1 is the two-

tailed t-statistic for a significance level of 𝛼 at 𝑛 − 1 degrees of freedom. The variable 𝑠  

is the standard deviation of the population mean (Davis, 2002). It was found that when 

log-normally distributed, the sample number needed to estimate the true mean within 

95% was four scans.  

 The sub-sampled roots were selected at random from the total mass of clean and 

processed roots. Roots were uniformly placed on a tray, and that tray was placed on a 

scanner. The root scans were analyzed using WinRHIZO root scanning software. The 

scanned roots were then oven-dried for three days at 60℃ and weighed. The sub-

sampled roots were added to the total root biomass weight. Total root volume was 

estimated through a ratio comparing the weight of the scanned roots to the unscanned 

roots. 
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2.12 Predictive Models  

 Predictive models were developed to investigate the influence of roots on the soil 

water retention curve. The predictive models utilized the 𝑅𝑣 values calculated from the 

scanned root volume. The models are dependent upon varying assumptions about the 

effects of roots on porosity. As depicted in Table 4, Root-Model 1 assumed that roots 

reduce porosity and is from the work of Ng (2016) and Assouline (2006). Root-Model 2 

assumed that roots reduce macroporosity (𝜙𝑚𝑎𝑐𝑟𝑜) and is derived from the work of Ng 

(2016) and Assouline and Or (2014). Root-Model 3 assumed that roots increase 

macroporosity and is derived from Ng (2016) and Assouline and Or (2014). Root-Model 

4 assumed roots increase porosity and is from the work of Ng (2016), and Assouline 

(2006).  

2.13 Data Analysis 

 Equations [1] and [9] from section 1.3.3 were fitted to the water retention and 

unsaturated hydraulic conductivity data sets simultaneously using the Shypfit2.0 

software package. This program uses a non-linear regression algorithm to minimize the 

sum of the weighted square residuals between the model predictions and actual data 

(Pertassek et al., 2015). The root mean square error, RMSE was calculated to 

determine the goodness of fit between the model and measured data for 𝜃(ℎ) and 𝐾(𝜃). 

The RMSE was calculated using Equation [16]:  

𝑅𝑀𝑆𝐸 = √
1

𝑘
 ∑ [𝑦 − 𝑦̂]2𝑘

𝑖=1                                                                              (16) 

In Equation [16], the variables 𝑦 and 𝑦̂ are the measured and model-predicted values, 

and 𝑘 is the number of observations. The RMSE was calculated for both the measured 
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and predicted values of the soil water retention curve as well as the measured and 

predicted values of the saturated hydraulic conductivity curve.  

Analyses of Variance, ANOVA, were conducted to analyze differences in the 

various fitted and measured parameters within and between the datasets. This analysis 

also determined differences between the treatment means using Tukey’s honestly 

significant difference (HSD) test. ANOVA’s were conducted on saturated hydraulic 

conductivity, unsaturated hydraulic conductivity parameters, soil water retention 

parameters, and plant growth parameters. The analyses were conducted using the SAS 

statistical software (SAS Institute Inc., 2012) with statistical significance always 

assessed at the p < 0.05 level. 
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RESULTS  

3.1 Plant Growth Parameters 

 The shoot and root biomass were harvested from the soil samples at the end of 

the growing period. The shoot and root biomass were dried and weighed to calculate 

total biomass. The scaled root volume, determined from the dried root weight, was used 

to calculate 𝑅𝑣. The 𝑅𝑣 values were analyzed as log10 𝑅𝑣 to align with their log-normal 

distribution and the sample estimation method outlined in section 2.11.  

3.1.1 Plant Growth Parameters for Flint Sand  

 The total biomass for the Flint sand treatments was statistically analyzed using a 

two-way ANOVA. There was an experimental effect but no interaction between 

treatment and experiment. The biomass from the separate growth periods was 

combined so that the experimental effect was averaged across both experiments. A 

Tukey’s HSD test showed that the fertilizer rooted and mycorrhizal rooted treatments 

were significantly different from the rooted treatment, as seen in Figure 6 found in 

Appendix 2-Figures. Additionally, the mycorrhizal rooted treatment had much less 

variation among samples than the fertilizer rooted and rooted treatments. 

 A two-way ANOVA and a Tukey’s HSD test were run on the log10 𝑅𝑣 values. The 

ANOVA did not show an interaction or experimental effect within the data at the 95% 

confidence interval. As such, the data from both experiments were combined and a 

significant treatment effect on the log10 𝑅𝑣 values was found. Tukey’s HSD test showed 

that the rooted and mycorrhizal rooted treatments were significantly different, as can be 
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seen in Figure 7 found in Appendix 2-Figures, while the fertilizer rooted treatment was 

not significantly different from either of these treatments.  

3.1.2 Plant Growth Parameters for Hamblen Silt Loam  

 A one-way ANOVA was conducted on the silt loam samples grown from 

November to January. The ANOVA and accompanying Tukey’s HSD test showed that 

the above-ground biomass from the fall growth period was not statistically significant 

between treatments at the 95% confidence interval, as seen in Figure 8 found in 

Appendix 2-Figures. However, the mean total biomass value for the mycorrhizal rooted 

treatment was 2.56 g, over ten times the mean value, 0.24 g, for the rooted treatment. 

Total biomass displayed a trend whereby the variation of the rooted treatment resulted 

in a much narrower distribution than the distribution of the mycorrhizal rooted treatment.  

 A one-way ANOVA and Tukey’s HSD test were run on the log10 𝑅𝑣 values. These 

analyses showed that the 𝑅𝑣 values were statistically different at the 95% confidence 

interval. The mean log10 𝑅𝑣 values for the mycorrhizal treatment were statistically 

greater than the values for the rooted treatment, as seen in Figure 9 found in Appendix 

2-Figures.  

3.2  Saturated Hydraulic Conductivity  

 𝐾𝑠𝑎𝑡 was measured with a permeameter using the constant head method. This 

method relied on gravitational differences in hydraulic head to determine 𝐾𝑠𝑎𝑡 (Scott, 

2000). 𝐾𝑠𝑎𝑡 was calculated with Meter 𝐾𝑠𝑎𝑡  Permeameter Software (Meter Co, Munich, 

Germany) via an application of Darcy’s Law as shown in Equation [8]. The constant 

head method and Darcy’s law are detailed in section 2.4. The measured 𝐾𝑠𝑎𝑡 values 
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were log10-transformed prior to analysis because this property is generally considered to 

be log-normally distributed. 

3.2.1 Flint Sand Measured 𝐾𝑠𝑎𝑡   

 Three replicate measurements of 𝐾𝑠𝑎𝑡 were taken on each Flint sand soil core. 

The base-ten logarithm (log10) of each replicate 𝐾𝑠𝑎𝑡 value was calculated. The replicate 

values were then averaged to determine the mean log10 𝐾𝑠𝑎𝑡  of each sample. These 

values were statistically compared using a two-way ANOVA, as seen in Figure 10, 

found in Appendix 2-Figures. The ANOVA was statistically significant and showed a 

significant effect between treatment and experiment but no interaction. Thus, the values 

from both experimental periods were combined and run in the same ANOVA. There 

were statistical differences between treatments at the 95% confidence interval. A 

Tukey’s HSD test showed the data had two statistically different treatments: the control 

treatment was statistically different from the rooted treatment. The other treatments 

(mycorrhizal control, fertilizer rooted, and mycorrhizal rooted), were not significantly 

different from either of these two treatments.  

3.2.2 Hamblen Silt Loam Measured 𝐾𝑠𝑎𝑡 

 One 𝐾𝑠𝑎𝑡 measurement was taken for each natural soil sample with three 

replicate samples per treatment. The log10 𝐾𝑠𝑎𝑡  was calculated for each measurement. 

These values were then statistically compared using a one-way ANOVA, as seen in 

Figure 11, found in Appendix 2-Figures. There were no statistically significant 

differences between treatments at the 95% confidence interval. Although not statistically 

significant, the log10 𝐾𝑠𝑎𝑡 values do show a trend, as seen in Figure 11. The control 
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treatment had the smallest variation amongst sample results, followed by the rooted 

treatment, the mycorrhizal rooted treatment, and then the mycorrhizal control treatment.  

3.3 RMSE Values from Curve Fitting the Soil Water Retention and Unsaturated 

Hydraulic Conductivity Data  

 The root mean square error, RMSE, values were determined by the Shypfit2.0 

software using Equation [1] for the soil water retention curve 𝜃(ℎ) (SWRC) and 

Equation [10] for the unsaturated hydraulic conductivity curve 𝐾(𝜃)  (Peters and Durner, 

2015). The fitting was done simultaneously, yielding separate RMSE’s for the water 

retention and unsaturated conductivity curves. The RMSE values for the Flint sand 

ranged from 0.0018 to 0.0105 for the 𝜃(ℎ) curves and between 0.0673 and 0.3719 for 

the 𝐾(𝜃) curves.  The RMSE values for the silt loam ranged from 0.0034 to 0.0163 for 

the 𝜃(ℎ) curves and between 0.1105 and 0.2358 for the 𝐾(𝜃) curves.  The complete 

listing of RMSE values is in Table 7 found in Appendix 1-Tables. 

3.3.1 Fitted 𝜃(ℎ) and 𝐾(𝜃) Curves with Median RMSE Values for Flint Sand 

 The RMSE values for 𝜃(ℎ) curves were calculated for the Flint sand treatments. 

The median RMSE value for the curves fitted to the 𝜃(ℎ) data was 0.0038. The fit of the 

median RMSE for 𝜃(ℎ) is shown in Figure 12, found in Appendix 2-Figures. The curve-

fit shown in Figure 12 represents the case for which one-half of the curve-fits were 

better, and the other half of the curve-fits were worse for this soil.  

  The RMSE values for the fitted 𝐾(𝜃) curves were calculated for the Flint sand 

treatments. The median RMSE value for the model curve-fitted to 𝐾(𝜃) data was 

0.2872. The fit of the median RMSE for 𝐾(𝜃)  is shown in Figure 13, found in Appendix 
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2-Figures. The fitted curve shown in Figure 13 represents the case for which one-half of 

the fitted curves had a better fit, and one-half of fitted curves had a worse fit. In general, 

these median fit curves show that Equations [1] and [10] provided good fits to the 

experimental datasets, with the observed and predicted values for the SWRC closer 

than those for the unsaturated hydraulic conductivity curve.   

3.3.2 Fitted 𝜃(ℎ) and 𝐾(𝜃) Curves with Median RMSE Values for Hamblen Silt Loam   

 The RMSE values for the curve-fitted 𝜃(ℎ) and 𝐾(𝜃) data were calculated for the 

Hamblen Silt Loam treatments. The median RMSE value for the curve fitted to 𝜃(ℎ) data 

was 0.0095. The fit corresponding to the median RMSE for 𝜃(ℎ) is shown in Figure 14 

found in Appendix 2-Figures. The median RMSE value from the curves fit to 𝐾(𝜃) data 

was 0.1479. The fit associated with the median RMSE is shown in Figure 16, found in 

Appendix 2-Figures. Figures 14 and 15 represent typical fits, i.e., the RMSE for which 

one-half of the curves had a better fit and one-half of the curves had a poorer fit. Again, 

the goodness of fit was reasonable, with Equation [1] providing a better match to the 

data than Equation [10]. 

3.4 Soil Water Retention Curve Parameters  

 SWRC parameters were obtained by fitting a hydraulic function to the 𝜃(ℎ) data 

collected using the evaporation method. The van Genuchten equation (van Genuchten, 

1980), Equation [1], was used, and its parameters were estimated using the Shypfit2.0 

software (Peters and Durner, 2015). The saturated water content (𝜃𝑠) was included in 

the fits as a known (measured) parameter, while the other parameters in Equation [1] 
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(𝛼, 𝑛, and  𝜃𝑟) were estimated. The 𝛼 values were found to be log-normally distributed, 

and so they were log10-transformed prior to conducting the ANOVA’s. 

3.4.1 Flint Sand 𝜃(ℎ) Parameters  

 Statistically significant differences between treatments were found for the 

saturated water content (𝜃𝑠) at a 95% confidence interval using a two-way ANOVA. The 

ANOVA did not show an interaction between treatment and experiment, however, there 

was an experimental effect. Hence, mean values were averaged over both growth 

periods. As seen in Figure 16, the control treatment had the lowest mean 𝜃𝑠 value, 

sequentially followed by the mycorrhizal control, rooted, fertilizer rooted, and 

mycorrhizal rooted treatments. A Tukey’s HSD test was run on these data. The 

treatments were sorted into three Tukey groups. Figure 16, in Appendix 2-Figures, 

displays significant differences between the control and mycorrhizal control; the rooted 

and fertilizer rooted; and the mycorrhizal rooted treatments.  

 The log10 𝛼  values were analyzed using a two-way ANOVA. The model was not 

significant at the 95% confidence interval. As a result, there were no statistically 

significant differences between treatments based on Tukey’s HSD test (Figure 17 found 

in Appendix 2-Figures). However, the amount of variation among the log10 𝛼 values for 

the planted treatments was qualitatively higher than for the unplanted treatments, as 

can be seen in Figure 17.   

 The fitting parameter 𝑛 had statistically significant differences between 

treatments when compared using a two-way ANOVA at the 95% confidence interval. 

The ANOVA did not show an experiment effect or a significant interaction between 

treatment and experiment. As seen in Figure 18, in Appendix 2-Figures, the mean 
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values for the 𝑛 parameter (averaged over both experiments) followed a trend where 

the control treatment had the highest mean value, and the mycorrhizal rooted treatment 

had the lowest mean value. When analyzed with a Tukey’s HSD test, the data were 

separated into three groups, as presented in Figure 18. As the only value in the first 

Tukey group, the control treatment had the highest value for the 𝑛 parameter. The 

second group had lower values and consisted of the mycorrhizal control and rooted 

treatments. The fertilizer treatment had slightly lower values and shared characteristics 

with both the mycorrhizal control and rooted treatment as well as the third Tukey group. 

The third Tukey group, which had the lowest values, was the mycorrhizal rooted group.  

 The residual water content (𝜃𝑟) was tested with a two-way ANOVA and did not 

have any significant differences between the treatments at the 95% confidence interval 

as shown in Figure 19; found in Appendix 2-Figures. There were no apparent visual 

trends in these data.  

3.4.2 Hamblen Silt Loam 𝜃(ℎ) Parameters  

 The 𝜃𝑠 parameter did not show any statistical differences between treatments at 

the 95% confidence interval. Although not statistically significant, the control treatment 

had the least variation among samples within the treatment. The mycorrhizal control, 

rooted, fertilizer rooted, and mycorrhizal rooted treatments had a noticeably greater 

variation in their distributions, as seen in Figure 20, found in Appendix 2-Figures.  

 The log10 𝛼  values were analyzed using a one-way ANOVA. As seen in Figure 

21 found in Appendix 2-Figures, the log10 𝛼 values did not have statistically significant 

differences at the 95% confidence interval. Although not statistically significant, the 

log10 𝛼 values do show a recognizable visual trend: the lowest mean log10 𝛼 value 
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belonged to the control treatment, followed sequentially by the mycorrhizal control, 

rooted, fertilizer rooted, and mycorrhizal rooted treatments (Figure 21).  

 The fitting parameter 𝑛 did not have any statistically significant differences 

between treatments at the 95% confidence interval when compared using a one-way 

ANOVA and Tukey’s HSD test, as seen in Figure 22 found in Appendix 2-Figures. 

Although not statistically significant, the 𝑛 parameter does show a qualitative trend that 

is meaningful. The unplanted treatments had higher mean 𝑛 values and greater 

variation than the planted treatments, as seen in Figure 22.   

 The 𝜃𝑟 curve fitting parameter for the Hamblen silt loam soil was estimated as 

zero for all samples. This was because the water activity measurements taken near 

zero were included in an effort to constrain the dry end of the SWRC. As a result, the 

𝜃𝑟 values were excluded from statistical analysis for this soil type.  

3.5 Predictive Models for the Soil Water Retention Curve 

 Four predictive models were selected to represent the range of behavior possible 

in root permeated Flint sand and Hamblen silt loam, as seen in Figures 23 and 24 in 

Appendix 2-Figures. For the predictive models, Rooted-model 1 assumed that roots 

reduced porosity; Rooted-model 2 assumed that roots reduced macroporosity; Rooted-

model 3 assumed that roots increased macroporosity, and Rooted-model 4 assumed 

roots increased porosity.  

 Model-4 for describing the impact of roots on the SWRC was the predictive 

model that best predicted the 𝜃(ℎ) curves for the rooted treatments.  Rooted-model 4 

used fitting parameters from the average of the unrooted treatments as well as the 

largest measured 𝑅𝑣 value from the root permeated treatments. The highest 𝑅𝑣 value 
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was used to show the greatest difference between the control treatments and the 

predictive model. 

 The forward predictions of Rooted-model 4 were compared to actual 𝜃(ℎ) data 

from the Flint sand and Hamblen silt loam soils, as seen in Figures 25 and 26 in 

Appendix 2-Figures. A comparison between the parameters for Rooted-model 4 and the 

curves fit to the real 𝜃(ℎ) data from the Flint sand and Hamblen silt loam soils is listed 

Table 10.  Rooted-model 4 was plotted against data for the unrooted and fertilizer 

rooted treatments. The fertilizer rooted treatment from the Flint sand soil was used for 

comparison purposes to better align with the influence of naturally-occurring nutrients 

on the rooted treatment from the silt loam soil. Rooted-model 4 suggests that the Flint 

sand rooted treatment increased total porosity, and slightly decreased the air entry 

value (i.e., increasing 𝛼), by shifting the rooted SWRC to the left as compared to the 

unrooted control SWRC.  

 For the Hamblen silt loam, the presence of roots and roots with mycorrhizal fungi 

had no significant influence on the 𝜃(ℎ) parameters as compared to the controls. The 

minimal impact of roots on the SWRC’s for this soil was reflected in the performance of 

the predictive models. Rooted-model 4 was plotted against the measured 𝜃(ℎ) data for 

the unrooted and rooted treatments from the Hamblen silt loam soil (Figure 26), and 

there was no identifiable effect of the presence of roots in either the measured data or 

the forward predictions. 

3.6 Unsaturated Hydraulic Conductivity Curve Parameters   

 The fitting software Shiftfit2.0 recommends tying the fitting of the 𝜃(ℎ) and 𝐾(𝜃) 

curves to improve soil hydraulic estimations of the 𝐾(𝜃) curve (Pertassek et al., 2015). 
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This approach was followed. Initially, the 𝐾(𝜃) data were fitted using the measured 𝐾𝑠𝑎𝑡 

values. However, these values resulted in poor overall fits. Therefore, 𝐾𝑠𝑎𝑡 was treated 

as a fitting parameter, along with 𝜏, when fitting the 𝐾(𝜃) data in conjunction with the 

fitting parameters for the SWRC.  

3.6.1 Flint Sand 𝐾(𝜃) Parameters 

 The mean values and standard deviations of the estimated log10 𝐾𝑠𝑎𝑡 values are 

listed in Table 11, found in Appendix 1-Tables. The estimated log10 𝐾𝑠𝑎𝑡 values were 

statistically analyzed using a two-way ANOVA and Tukey’s HSD test. The mean 

log10 𝐾𝑠𝑎𝑡 values did not have any significant differences amongst treatments at the 95% 

confidence interval. Similarly, when tested with a two-way ANOVA and Tukey’s HSD 

test, 𝜏 did not exhibit any significant differences amongst treatments at the 95% 

confidence interval, as shown in Figure 27 in Appendix 2-Figures. No clear trends were 

visible in the means or distributions of the 𝜏  values for Flint sand.  

3.6.2 Hamblen Silt Loam 𝐾(𝜃) Parameters 

 The log10 𝐾𝑠𝑎𝑡 values for the unsaturated hydraulic conductivity function, 

Equation [10], were estimated from the evaporation method. The mean values and 

accompanying standard deviation of the estimated log10 𝐾𝑠𝑎𝑡  are listed in Table 9, found 

in Appendix 1-Tables. These values did not follow a trend, and when analyzed with a 

one-way ANOVA, no significant differences were found between treatments.  

The curve fitting parameter 𝜏 was also tested with a one-way ANOVA. There was 

no significant difference between the treatments at the 95% confidence interval, as 

shown in Figure 27 found in Appendix 2-Figures. Although not statistically significant, 
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the variation of sample values across treatments showed an apparent trend. The 

unplanted treatments had a greater variation among samples and, therefore, wider a 

distribution than the planted treatments. The mycorrhizal rooted samples had the 

narrowest variation among treatments.   
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DISCUSSION 

4.1 Plant Growth Parameters  

 The relationship between biological material and soil hydraulic properties was 

studied through the quantification of plant biomass. Plant biomass was measured in a 

laboratory environment; shoot biomass was dried and weighed, and root biomass was 

scanned, dried, and weighed to estimate root volume as well as total biomass. The 

results from the total biomass and root volume ratio (𝑅𝑣) were statistically analyzed 

using ANOVA and comparison of means tests.  

4.1.1 Total Biomass 

 The total biomass is the sum of the weighed shoot biomass and root biomass. 

For Flint sand, the total biomass was averaged over the two growth periods ranging 

from April to June and August to October. When analyzed with an ANOVA, there was a 

statistically significant difference between treatments. A Tukey’s HSD test showed there 

was a difference between the rooted treatment and the fertilizer rooted and mycorrhizal 

rooted treatments grown in the Flint sand soil. The nonmycorrhizal plants had less 

above-ground biomass resulting in less total biomass. The rooted treatment had less 

biomass than the fertilizer rooted and mycorrhizal rooted treatments. The presence of 

mycorrhizal fungi increased plant growth, equivalent to the addition of fertilizer and 

significantly more than the untreated plants. As mutualistic symbionts, mycorrhizal fungi 

have been shown to increase primary elongation and radial expansion of roots by 

accessing nutrients that the plant roots could not acquire otherwise (Hetrick, 1991). 

Greater nutrient access likely allowed the mycorrhizal and fertilized plants to grow more 
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above-ground biomass. Contrarily, the nutrient-stressed plants tended to grow finer 

thinner roots with more lateral offshoots and root hairs as supported by (López-Bucio et 

al., 2003).  

 The total biomass for the silt loam was harvested from samples grown from 

November to January. The silt loam soil was naturally nutrient-rich due to its organic 

composition. As such, the fertilizer treatment was not included in the experimental 

setup. The results for the comparison of means between the rooted and mycorrhizal 

rooted treatments for the silt loam soil were not statistically significant at the 95% 

confidence interval. Although not statistically significant, the results from the silt loam 

soil mirror those of the Flint sand. The mean value of the rooted treatment was much 

less than the mean value for the mycorrhizal rooted treatment. The mycorrhizal rooted 

treatment had more variation in results and, therefore, a wider distribution of total dry 

weights than the rooted treatment. Some of the mycorrhizal rooted samples did not 

grow as consistently as the other samples in this treatment, thereby increasing variation 

and extending the distribution. Variablity in mycorrhizal inoculation could have 

influenced the growth and caused the uneven distribution of dry weights. Although 

inconsistent, the presence of inoculated mycorrhizal fungi increased the above-ground 

biomass when compared to the untreated samples. The mutualistic relationship 

between mycorrhizal fungi and roots has been shown to help plants gain additional 

nutrients in already nutrient-rich soil (Van Der Heijden et al., 2006).  

 In both the Flint sand and the Hamblen silt loam, the presence of mycorrhizal 

fungi enabled plants to grow more biomass than the non-mycorrhizal treated samples. 

In the nutrient-free soil, the mycorrhizal fungi performed as well as the fertilized 
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treatment. In the nutrient-rich organic soil, the presence of mycorrhizal fungi increased 

the distribution of biomass growth, with some cores achieving much better growth than 

others. The statistical analysis of plant biomass supported the first hypothesis that the 

biomass of plants with mycorrhizae fungi would be greater than the biomass of plants  

without mycorrhizae fungi. The effect of mycorrhizal fungi on total biomass growth has 

potentially far-reaching implications for enhancing sustainable agriculture practices and 

decreasing our reliance on supplementary fertilizer applications.  

4.1.2 Root Volume Ratio (𝑅𝑣)  

 The root volume ratio (𝑅𝑣) is the ratio of total root volume to the total volume of 

soil. The void ratio of a root permeated soil is calculated from the input parameter 𝑅𝑣. 

The void ratio is applied in some 𝜃(ℎ) models to better capture the effect of roots on soil 

water retention (Ng et al., 2016).  

 The treatment means of the log10 𝑅𝑣 values for Flint sand and Hamblen silt loam 

were statistically different at the 95% confidence level. For the Flint sand the highest 

log10 𝑅𝑣 values were for the mycorrhizal rooted treatment followed by the fertilizer rooted 

and rooted treatments. When analyzed with a Tukey’s HSD test, the rooted and 

mycorrhizal rooted treatments were significantly different and in separate Tukey groups. 

The fertilizer treatment, the intermediate value, shared characteristics with the rooted 

treatment, and the mycorrhizal rooted treatment.  

 The log10 𝑅𝑣 values for the Hamblen silt loam were also analyzed with an ANOVA 

and a Tukey’s HSD test. These tests revealed two statistically different groupings: 

rooted (the lower values) and mycorrhizal rooted (the higher values). The mycorrhizal 

rooted treatment had the highest log10 𝑅𝑣 values across both soil types.  
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 The presence of mycorrhizal fungi increased total root growth, thereby increasing 

the root volume ratio in both soil types. These results also supported the first 

hypothesis, in that the presence of mycorrhizal fungi promoted overall growth and 

resulted in a greater 𝑅𝑣 than in the rooted treatment alone.  

 As 𝑅𝑣 is a primary component in calculating void ratio; the results imply that the 

mycorrhizal roots filled more total pore space than the untreated roots. The ability of 

mycorrhizal fungi to access nutrients may have caused the inoculated roots to focus 

growth on primary elongation and radial expansion (Hetrick, 1991). This led to visually 

longer (in the vertical direction) and radially-thicker roots associated with the 

mycorrhizae-inoculated plants. The longer and thicker roots rearranged soil aggregates 

as the roots radially expanded into available macropores.   

4.2 Impact of Plant Roots and Mycorrhizal Fungi on Soil Hydraulic Properties  

 Soil hydraulic properties were measured in a laboratory environment to 

experimentally investigate the impact of plant roots and mycorrhizal fungi on soil water 

relations. The research found that the impact of roots and mycorrhizal fungi on soil 

hydraulic properties was soil dependent.  

 The Flint sand soil had statistically significant treatment effects for 𝐾𝑠𝑎𝑡 and for 

the SWRC parameters 𝜃𝑠 and 𝑛 from the van Genuchten equation detailed in Equation 

[1] (van Genuchten, 1980). The constant head flow experiments conducted on Flint 

sand verified previous research (Barley, 1954; Leung et al., 2015a; Scanlan and Hinz, 

2010)  that the presence of living roots decreased 𝐾𝑠𝑎𝑡 in comparison to the unplanted 

treatment. The significant differences among the 𝜃𝑠  and 𝑛 van Genuchten equation 

parameters indicated that the shape of the SWRC differed between the unplanted and 
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planted treatments. Although not statistically significant at the 95% confidence level, the 

results for the fitted 𝐾(𝜃) curve provided insight into the impact of vegetation on 

unsaturated flow in sandy soil.  

 The Hamblen silt loam soil had no significant treatment effects at the 95% 

confidence level.  However, the results from this soil showed qualitative trends 

suggesting an influence of plant roots and mycorrhizal fungi on soil hydraulic properties. 

The presence of roots and mycorrhizal fungi increased the variation of sample results 

within treatments. Although less clearly defined than the Flint sand soil, the results from 

the natural soil samples do show the influence of roots and mycorrhizal fungi on soil 

hydraulic properties.  

4.2.1 Saturated Hydraulic Conductivity, 𝐾𝑠𝑎𝑡 

 The saturated hydraulic conductivity, 𝐾𝑠𝑎𝑡, is a measure of the rate of water 

conductance through a saturated medium. It was hypothesized that the presence of 

roots and mycorrhizal fungi would partially fill macropores and therefore decrease the 

saturated hydraulic conductivity of the soil. This hypothesis was tested through a 

statistical comparison of treatment means with an ANOVA. This analysis demonstrated 

how the presence and absence of mycorrhizal fungi, in conjunction with plant roots, 

impacted 𝐾𝑠𝑎𝑡. 

  It was found that the log10  𝐾𝑠𝑎𝑡 measurements for the Flint sand soil supported 

the premise of our hypothesis, i.e., the presence of roots resulted in statistically lower 

mean log10  𝐾𝑠𝑎𝑡 values in comparison to the other treatments.  

 Although not statistically significant the 𝐾𝑠𝑎𝑡 results for the natural silt loam soil 

offered insight into the intricate relationships between soil, vegetation, and 𝐾𝑠𝑎𝑡. For the 
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Hamblen silt loam soil the log10 𝐾𝑠𝑎𝑡 measurements from the mycorrhizal and root-

permeated treatments resulted in greater variation among the replicate sample cores. 

As a result, the measurements for this soil did not support the hypothesis of a reduction 

in mean saturated hydraulic conductivity due to the presence of roots and mycorrhizal.  

 The disparity in the 𝐾𝑠𝑎𝑡 results between the two soil types were likely due to the 

different textures and nutrient statuses of the two soil types. The 𝐾𝑠𝑎𝑡 values for the 

Hamblen silt loam were between 2 and 4 orders of magnitude lower than those for the 

Flint sand. The Hamblen soil loam soil was repacked and had few macropores and low 

inherent conductivity, whereas the coarse-grained Flint sand had many macropores and 

was highly conductive. As a result, roots and fungal hyphae were able to readily fill 

these macropores and reduce the saturated hydraulic conductivity of the Flint sand. 

With the silt loam soil, the presence of roots and mycorrhizal fungi simply increased the 

variation of the treated samples.   

 The impact of roots on 𝐾𝑠𝑎𝑡 is soil dependent and is influenced by how roots 

change soil structure as they grow. As a root develops, the root tip of the growing root is 

forced into similarly-sized soil pores. Over time, the growing root swells and causes a 

shift in the arrangement of soil particles (Hillel, 2004). This process either increases soil 

porosity and thereby reduces bulk density or causes soil pores to become plugged, 

thereby reducing porosity. The statistically lower 𝐾𝑠𝑎𝑡 values for the rooted treatment in 

the Flint sand soil suggested that the roots reduced macroporosity via pore plugging 

(Sedgley and Barley, 1954). 

  The growth pattern of roots is nutrient-dependent. Nutrient deficiency causes the 

growth of plant roots to change from primary root elongation to the formation of lateral 
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roots and root hairs (López-Bucio et al., 2003).  In order to access limited nutrients, the 

roots in the nutrient-deficient Flint sand treatment had to increase the growth of lateral 

roots and root hairs. The greater lateral growth observed with the rooted treatment likely 

also increased pore blocking in comparison to fertilizer rooted and mycorrhizal rooted 

treatments. The pore-blocking effect was not seen in the fertilizer treatment due to the 

addition of supplementary nutrients. Additionally, the pore blocking effect was not seen 

in the mycorrhizal rooted treatment due to the ability of mycorrhizal to access additional 

nutrients not available to the nonmycorrhizal treatment (Figure 10).  

 The lack of statistical significance between treatments in the Hamblen silt loam 

was likely due to the increased availability of nutrients in the fine-textured soil. With 

access to available nutrients, the rooted treatment from the silt loam soil did not have to 

sacrifice primary root elongation for lateral root growth. The lack of substantial pore 

plugging resulted in little difference between the planted treatments and unplanted 

treatments in this soil.  

4.2.3  RMSE from Fitting SWRC and Unsaturated Hydraulic Conductivity  

 The root mean square error (RMSE) is a measure of the average deviation 

between the fitted model and measured data. There was no statistical difference 

between the fit of the RMSE values by treatment. However, the RMSE values for Flint 

sand indicated a more accurate fit than the RMSE values for the Hamblen silt loam.  

The fits with the median RMSE values for 𝜃(ℎ) and 𝐾(𝜃) for the Flint sand and 

Hamblen, silt loam were selected for detailed scrutiny. In the Flint sand, the van 

Genuchten model tended to underestimate 𝜃𝑠 values and over predict 𝜃𝑟 values. In the 

silt loam soil, the van Genuchten model failed to capture the shape of the break in the 
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SWRC, related inversely to 𝛼, while underpredicting 𝜃𝑠 values. Additionally, the fit of the 

𝜃(ℎ) curve for the silt loam soil was impacted by the water activity measurements which 

resulted in estimated 𝜃𝑟 values of zero. The slight contrast between the fitted curve and 

the actual data could be due to the simultaneous fitting of curves to the 𝜃(ℎ) and 𝐾(𝜃) 

data by the Shiftfit2.0 software. Although the curve-fit applied to 𝐾(𝜃) data improved 

when tied to the fit of the 𝜃(ℎ), it resulted in slightly poorer fits for 𝜃(ℎ) data.  

4.2.4 SWRC Parameters  

 The SWRC characterized the static hydraulic properties of the Flint sand and 

Hamblen silt loam soils by providing a measure of water availability. The shape of the 

SWRC is dependent upon the relationship between soil porosity and vegetation, which 

influences water retention (Ni et al., 2018). The third hypothesis stated that the 

presence of roots and mycorrhizal fungi would change the shape of the SWRC near 

saturation. The hypothesis was tested through a statistical comparison of group means 

with an ANOVA and a Tukey’s HSD test.  Analysis of the 𝜃𝑠, 𝛼, 𝑛, and 𝜃𝑟 parameters 

from the van Genuchten equation, Equation [1], demonstrated how the presence and 

absence of mycorrhizal fungi, in conjunction with plant roots, impacted soil water 

retention. 

 The water content of the sample at saturation (𝜃𝑠) was experimentally determined 

using the sample bulk density and an assumed specific gravity of 2.65 for the Flint sand 

and silt loam soils. When analyzed with a Tukey’s HSD test, the mean 𝜃𝑠 values for the 

three rooted treatments in the Flint sand were found to be statistically different from the 

two control treatments. The presence of roots, fertilizer + roots, and mycorrhizae + roots 

all increased 𝜃𝑠 in Flint sand soil relative to the controls with no roots. The mean 𝜃𝑠 
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values for the silt loam treatments were not statistically different at the 95% confidence 

interval. Although not a statistically significant result, the presence of roots and 

mycorrhizal fungi in silt loam soil appeared to increase the variability of the 𝜃𝑠  results.  

 Assuming complete water saturation (i.e., no trapped air), the 𝜃𝑠 is equivalent to 

the porosity, which is inversely related to the dry bulk density. Therefore, roots impacted 

the porosity and soil structure as they grew in the Flint sand. As roots filled pore spaces, 

they radially expanded. In consolidated porous media, the growing roots would clog the 

open pore space and cause a reduction in porosity and 𝜃𝑠. In the unconsolidated Flint 

sand, however, the growing roots caused a shift in the arrangement of grains within the 

rhizosphere. Root pressure likely created an increase in the pore space around the 

roots. The growing roots thus caused a decrease in bulk density as the soil volume 

expanded. Rather than decreasing 𝜃𝑠 due to porosity loss, the roots actually decreased 

bulk density and increased 𝜃𝑠 in root permeated soil. The same effect was not seen in 

the Hamblen silt loam due to the inherently high porosity of this soil.  

 The variable 𝛼 is a shape parameter that is inversely related to the air entry point 

of the soil. The 𝛼 parameter controls the break in the SWRC, a point at which water 

content starts to decline rapidly with increasing pressure head. The 𝛼 parameter, when 

analyzed as the log10 of 𝛼 was not statistically significant at the 95% confidence interval 

for either the Flint sand or silt loam soil. Overall, the presence of roots and mycorrhizal 

fungi did not influence mean log10 𝛼 values. The lack of statistical significance for 𝛼 in 

either soil is surprising as some predictive models for root permeated soil rely on 𝛼 as 

the primary indicator for root influence in soils (see section 3.5). Although not 

statistically significant, there is visual evidence for the Flint sand of a slight shift in the 
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SWRC to the left, which is indicative of a lower air-entry value and a slightly higher 𝛼 

value (Figure 17).  

 The 𝑛 parameter controls the slope of the SWRC. The slope of the curve 

represents the pore-size distribution. Higher 𝑛 values denote steeper slopes and 

narrower pore-size distributions, while lower 𝑛 values indicate more gradual slopes and 

broader pore-size distributions (Bodner et al., 2014; Rachman et al., 2004).    

 There were statistically significant differences in 𝑛 amongst the treatments at the 

95% confidence interval for the Flint sand when analyzed with an ANOVA and a 

Tukey’s HSD test. The unrooted controls had the highest 𝑛 values and, consequently, 

the steepest slopes. Slope steepness decreased in the mycorrhizal control, rooted, 

fertilizer rooted, and mycorrhizal rooted treatments, indicating that roots and fungal 

hyphae expanded the pore-size distribution.  

 When analyzed with a one-way ANOVA, the 𝑛 values for the Hamblen silt loam 

were not statistically significant at the 95% confidence interval. Although not statistically 

significant, the mean 𝑛 values for this soil did share a similar trend to the mean values 

for the Flint sand treatments. The mean 𝑛 values for the unplanted treatments were 

qualitatively higher than the mean 𝑛-values for the planted treatments, suggesting that 

the presence of roots and mycorrhizal fungi also contributed to a broadening of the 

pore-size distribution in comparison to the control treatment for the silt loam soil.  

 The trends discussed above for the Flint sand and, to a lesser extent, the 

Hamblen silt loam, support the third hypothesis. The presence of roots and roots with 

mycorrhizal fungi increased the porosity and decreased the 𝑛 parameter and thereby 

changed the shape of the soil water retention curve close to saturation when compared 
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to bare soil. The 𝑛 parameter, in particular, was highly influenced by root-induced 

changes in pore-size distribution. As roots grew in the Flint sand, the pore-size 

distribution became broader, with increases in the numbers of both larger and smaller 

pores. The presence of roots also caused an increase in the overall porosity, as seen in 

the results.  

 Mycorrhizal fungi caused a broadening of the pore-size distribution through the 

promotion of enhanced root growth, as outlined above. This is consistent with the work 

of (Hosseini et al., 2016), who showed statistically lower 𝑛 values for their fungal 

endophyte treatment, when compared to the other treatments. Interestingly, the present 

study appears to be relatively novel in finding a strong effect of roots and mycorrhizae 

on the porosity and slope of the SWRC. Most previous studies have reported strong 

statistical differences amongst 𝛼 values, and we did not see this effect.  

 The residual water content (𝜃𝑟) is the amount of water remaining in the soil at 

very high capillary pressure heads. As explained previously, the 𝜃𝑟  parameter was only 

analyzed for the Flint sand soil. The 𝜃𝑟  parameter for the sit loam soil was estimated as 

zero due to the influence of the additional water activity measurements to the SWRC. 

For Flint sand, the 𝜃𝑟 parameter showed no significant differences between treatments 

at the 95% confidence interval. Tellingly, information on  𝜃𝑟  is rarely reported in the 

literature; in one of the few studies to investigate the effects of roots on residual water 

content, Leung (2015b) found that 𝜃𝑟 was consistent across root-permeated and bare 

soil, supporting our observation of lack of statistical significance for this parameter. 
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4.2.4 SWRC Predictive Models  

 Rooted-model 4 mirrored the measured 𝜃(ℎ) data from the rooted fertilizer 

treatment indicating that the presence of roots increased total porosity in the Flint sand 

soil. The predictive model and rooted data for the Flint sand were visually offset from 

the data for the unrooted bare soil. The presence of roots caused the rooted data and 

predictive model to have a higher 𝜃𝑠 than the unrooted data. The rooted data and 

predictive model also had their break in the curve, inversely related to 𝛼,  slightly before 

the unrooted data. The predictive model clearly reflects the impact of roots on initially 

low porosity soil. In the Flint sand, roots increased porosity while simultaneously 

clogging pore spaces and preventing preferential water flow.  

 The predictive models for the Hamblen silt loam were less useful forecasters of 

the impact of roots on the SWRC soil since there were only minimal differences 

between treatments due to roots. The higher porosity associated with silt loam soil 

resulted in 𝑅𝑣 having little impact on the model predictions. All forward prediction 

models were visually similar, with rooted-model 4 slightly greater than the control and 

rooted-model 3 slightly less than the control. When compared to real data for the 

unrooted and root permeated treatments, the forward prediction, rooted-model 4, 

slightly underestimated 𝜃𝑠. The predictive model also slightly underestimated the break 

in the curve, which was inversely related to 𝛼. However, these differences were 

minimal, and the main message is that neither the data nor the model predictions 

indicted any significant impact of roots on the SWRC of this high porosity soil.   
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4.2.5 Unsaturated Hydraulic Conductivity Parameters 

 The unsaturated hydraulic conductivity function used by the fitting software 

Shypfit2.0 was Equation [10] (Mualem, 1976). The fitting parameter 𝜏, an empirical 

fitting parameter for pore tortuosity and pore connectivity, was estimated as well as an 

estimated saturated hydraulic conductivity 𝐾𝑠𝑎𝑡 (Pertassek et al., 2015). Neither the 

estimated 𝐾𝑠𝑎𝑡 or 𝜏  parameter from the unsaturated hydraulic conductivity fits resulted 

in any statistically significant differences between the treatments at the 95% confidence 

interval for either the Flint sand or Hamblen silt loam.  

 These results contradicted the fourth hypothesis, which stated that root and 

mycorrhizal hyphae derived changes in pore connectivity would increase the 

unsaturated hydraulic conductivity of the soil. Due to Poiseuille’s law, larger pore 

spaces conduct more water than smaller pore spaces (Scott, 2000). The larger 

preferential flow paths were the first to be lost under partially-saturated conditions 

leaving behind the smaller pores for water conductance. The presence of roots was 

expected to decrease the amount of open preferential flow paths via pore-clogging and 

therefore skew open pore spaces toward smaller pore radii. The impact of this process, 

however, was not reflected in the results.  

 Instead, the rooted and mycorrhizal rooted treatments were undifferentiable from 

the control treatment. As the root permeated soils desaturated, there was no increase in 

unsaturated flow through smaller pore spaces. In the Flint sand, the radially expanding 

roots simultaneously increased macroporosity while inducing pore-clogging. 

Interestingly, while pore-clogging influenced other parameters, such as measured 𝐾𝑠𝑎𝑡 

and 𝑛, there was no effect on 𝐾(𝜃). The lack of statistical significance in the silt loam 
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was predictable; as a fine-textured soil, the presence of roots and mycorrhizal fungi 

generally show less impact on soil structure overall (Lehmann et al., 2017). The lack of 

statistical significance also likely reflects the variability of 𝐾(𝜃) often found in nature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

60 
 

CONCLUSIONS, LIMITATIONS, AND SUGGESTIONS FOR 

FUTURE RESEARCH 

  
 This research aspired to investigate the influence of roots and mycorrhizal fungi 

on the flow and retention of water in soil through the statistical comparison of hydraulic 

parameters. The influence of vegetation on soil hydraulic parameters was explored 

through the application of laboratory experiments and quantification of plant biomass 

and root volume ratios (𝑅𝑣). Using this approach, statistically significant relationships 

were found between biological parameters and soil hydraulic properties.  

 Plant biomass was measured by weighing the total biomass after oven drying. 

The amount of roots present in the soil was obtained by measuring the root volume and 

calculating 𝑅𝑣. Physical measurements in a laboratory environment were conducted to 

measure 𝐾𝑠𝑎𝑡, 𝜃(ℎ), and 𝐾(𝜃). Forward predictive models were developed from the 

calculated 𝑅𝑣 values and the hypothesized impacts of roots on the soil water retention 

parameters. 

 In both soil types, the presence of roots with mycorrhizal fungi increased total 

biomass. This increase in biomass was reflected in the mean 𝑅𝑣 values, which were 

statistically higher for the mycorrhizal rooted treatment than for the rooted treatment in 

both Flint sand and Hamblen silt loam. The impact of the significantly higher 𝑅𝑣 values 

was reflected in the predictive models for Flint sand, where root-model 4 (increased 

porosity) gave the best representation of the SWRC curve for rooted soil. The 𝑅𝑣 values 

for the Hamblen silt loam were not large enough to influence the forward models’ 

predictions due to the high initial porosity of this soil. In other words, Root-Model 4 was 

successful in predicting the impact of roots on the SWRC for the relatively low porosity 
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Flint sand, but was unable to identify any effect of roots on the SWRC on high porosity 

soil. Both sets of predictions were supported by the experimental data. 

 In the Flint sand, roots increased porosity while simultaneously clogging pore 

spaces and preventing preferential water flow. This effect of plant roots on porosity was 

reflected in the shape of the SWRC where the presence of roots increased 𝜃𝑠 and 

decreased 𝑛. The presence of roots inoculated with mycorrhizal fungi further 

accentuated these effects in the Flint sand. The growth of roots in nutrient deficient soil 

was reflected in the root architecture. With limited nutrients, the rooted treatment from 

the Flint sand had a statistically lower 𝐾𝑠𝑎𝑡 due to the root blockage of preferential flow 

paths. This decrease in 𝐾𝑠𝑎𝑡 was not reflected in the fertilizer rooted and mycorrhizal 

rooted treatments due to greater nutrient access, which likely influenced root 

morphology and the extent of pore plugging. 

The influence of roots on soil hydraulic properties was not reflected in the 

Hamblen silt loam results, as none of the treatments were statistically different from 

each other. Although not statistically significant, the SWRC results for this soil were 

consistent with prior studies involving high porosity, natural soils. The present study 

appears to be one of the first to compare 𝐾(𝜃) parameters between bare, rooted, and 

mycorrhizal rooted soils. However, evidence showed that neither roots nor roots with 

mycorrhizal fungi had any pronounced influence on unsaturated flow parameters in 

either Flint sand or Hamblen silt loam under the conditions of these experiments. 

 In most cases, the presence of mycorrhizal fungi furthered the impact of roots on 

the SWRC for the low porosity soil. Mycorrhizal fungi accentuated the influence of roots 

on key soil hydraulic parameters. The presence of mycorrhizal fungi promoted overall 
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growth and resulted in greater total biomass and 𝑅𝑣. The presence of roots and roots 

with mycorrhizal fungi changed the shape of the SWRC for Flint sand in comparison to 

roots, with mycorrhizal fungi moving the curve upward by increasing macroporosity and 

changing the pore-size distribution thereby decreasing the slope. In Flint sand, roots 

with mycorrhizal fungi had a greater influence on hydraulic properties than roots alone.   

 This research has several limitations worth devoting more time and research into 

investigating. Due to the nature of the relatively short growth periods, the effect of roots 

and mycorrhizal fungi on soil hydraulic properties was limited by time. Literature has 

shown that the effect of roots on pore plugging is time-dependent with the aging and 

death of roots opening root-created macropores and increasing saturated flow via 

preferential flow paths (Leung et al., 2015b; Ng et al., 2016; Scholl et al., 2014).  

 Additionally, the research is limited by the lack of soil diversity, and replication in 

the case of the Hamblen silt loam. Soil water retention curves are temporally and 

spatially variable with a different curve required for not only different soil types, but also 

different soil horizons, and under wetting versus drying conditions. Extension of this 

research to a wider range of soil types and including hysteresis would be valuable. 

Increased replication would increase the ability of the statistical analyses to identify 

significant treatment effects. 

This study investigated the impact of mycorrhizal fungi and switchgrass on soil 

hydraulic properties; however, there is potential for different mycorrhizal-plant 

associates to have alternate results. Outside of a controlled environment, multiple sub-

species of mycorrhizal fungi can associate with a plant simultaneously. Separate 

species have been known to compete for access to resources and mutualistic plant 
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assimilates. Therefore, a multi-mycorrhizal association could affect hyphal-impact on 

soil hydraulic properties differently, and is worth investigating.  

 Additional research is needed to grasp the full impact of roots with mycorrhizal 

fungi on soil hydraulic properties. Research into multiple plant-fungal associates in 

various soil types would give the best representation of mycorrhizal fungi on soil 

hydraulic properties. Further research into the hydraulic properties of mycorrhizal-plant 

associates grown in disturbed and undisturbed natural soil conditions is also warranted. 

A long-term study into different plant and fungal associates in multiple soil types with 

increased replication would give the best representation of the impacts of roots and 

mycorrhizal fungi on soil hydraulic properties.  
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Table 1: Pressure head and pore-size distribution parameters for various 𝜃(ℎ) models. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Table 2: Selected physical and chemical soil properties of Flint sand and Hamblen silt 

loam. 

 
 

 

 

 

 

 

 

 

 

 

 

a US Silica Company (US, 2010)     c Soil Survey of Roane County Tennessee, 2019 (Service, 2019) 
b Zhuang et al. 2003 (Zhuang et al., 2003)* Assumed Value  

 
 
 

Model 
Pressure head   

parameters 
Pore-size distribution 

parameters 

van Genuchten (1980),   Eq. (1) 𝛼 𝑛, 𝑚 

Kosugi (1996),                Eq. (2) ℎ𝑚 𝜎 

Gallipoli et al. (2003),      Eq. (3) 𝜓, 𝜔  𝑛, 𝑚 

Daynes et al. (2003),       Eq. (4) 𝜒 𝛽 

Augé et al. (2001, 2004), Eq. (5) 𝜆 𝜇, 𝛿 

Durner et al. (1994),        Eq. (6) 𝛼 𝑛 

Soil Texture 
Organic 
Matter (𝑤𝑡 %) 

pH 
Specific 
Gravity 

CEC 

(𝑐𝑚𝑜𝑙𝑐/𝑘𝑔) 

 

Flint Sand 

 

Sand 0* 6.0 – 8.0a 2.65a 0.6b 

Hamblen 
Silt Loam 

Silty clay 
loam 

0.2 - 1.0c 5.0 - 7.0c 2.65* 3.7 - 7.6c 
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Table 3: Average greenhouse climatic conditions (Guha et al., 2018). 

 
 
 
 
 

(Guha et al., 2018) 
 
] 
 
Table 4: Predictive models for root-influenced SWRC parameters.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
𝜃𝑠 = saturated water content  𝜃𝑟  = residual water content   𝑅𝑣 = root volume ratio   

 𝛼 = inverse of air entry point   𝜙𝑚𝑎𝑐𝑟𝑜 =  macroporosity  

  

 

 

 

 
 
 
 
 
 

 
Air Temperature 

(⁰C) 
Relative Humidity 

(%) 

Photosynthetically 
Active Radiation 

(μmol m-2 s-1) 

Day 24 35 500 

Night 18 41 0 

Model  𝜃𝑠 in presence of roots 𝛼 in presence of roots References 

Root Model 1 (𝜃𝑠)𝑟𝑜𝑜𝑡 =    𝜃𝑠 − 𝑅𝑣
  𝛼𝑟𝑜𝑜𝑡 = 𝛼 (

1 − (𝜃𝑠)𝑟𝑜𝑜𝑡

1 − 𝜃𝑠
)

3.72

   

     

Ng et al. 2016, 
Assouline et al. 
2006 
 

Root Model 2 (𝜃𝑠)𝑟𝑜𝑜𝑡 =    𝜃𝑠 − 𝑅𝑣 𝛼𝑟𝑜𝑜𝑡 = 𝛼
(𝜙𝑚𝑎𝑐𝑟𝑜 − 𝑅𝑣)2

𝜙𝑚𝑎𝑐𝑟𝑜
2  

 

Ng et al. 2016, 
Assouline  
& Or 2014 

Root Model 3 (𝜃𝑠)𝑟𝑜𝑜𝑡 =  
𝜃𝑠 +  𝑅𝑣

1 + 𝑅𝑣
 

𝛼𝑟𝑜𝑜𝑡 = 𝛼
(

𝜙𝑚𝑎𝑐𝑟𝑜 + 𝑅𝑣

1 + 𝑅𝑣
)

2

𝜙𝑚𝑎𝑐𝑟𝑜
2  

Ng et al. 2016, 
Assouline  
& Or 2014 
 
 

Root Model 4 (𝜃𝑠)𝑟𝑜𝑜𝑡 =  
𝜃𝑠 +  𝑅𝑣

1 + 𝑅𝑣
  𝛼𝑟𝑜𝑜𝑡 = 𝛼 (

1 − (𝜃𝑠)𝑟𝑜𝑜𝑡

1 − 𝜃𝑠
)

−3.72

 

Ng et al. 2016, 
Assouline et al. 
2006 
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Table 5: Plant Biomass and 𝑅𝑣 values for the individual cores. 

 

Growth 
Period 

Soil 
Type 

Treatment Shoot 
Mass 

(g) 

Root 
Mass 

(g) 

Total 
Mass 

(g) 

𝑅𝑣 

APR-JUN  FS    FRT  0.54 0.56 1.10 0.0293 
APR-JUN FS FRT 0.47 0.38 0.85 0.0066 
APR-JUN FS FRT 0.67 0.63 1.30 0.0127 
APR-JUN FS RTS 0.36 0.46 0.82 0.0031 
APR-JUN FS RTS 0.29 0.14 0.43 0.0088 
APR-JUN FS RTS 0.27 0.26 0.53 0.0083 
APR-JUN FS RTS+MYC  1.10 0.90 2.00 0.0236 
APR-JUN FS RTS+MYC  0.89 1.17 2.06 0.0188 
APR-JUN FS RTS+MYC 0.63 0.54 1.17 0.0237 
AUG-OCT FS FRT 1.52 0.48 2.00 0.0084 
AUG-OCT FS FRT 1.64 0.38 2.02 0.0058 
AUG-OCT    FS FRT 1.17 0.43 1.60 0.0088 
AUG-OCT FS RTS 0.75 0.31 1.06 0.0075 
AUG-OCT FS RTS 0.97 0.37 1.34 0.0051 
AUG-OCT FS RTS 0.65 0.29 0.94 0.0084 
AUG-OCT FS RTS+MYC 1.24 0.64 1.88 0.0112 
AUG-OCT FS RTS+MYC 1.15 0.67 1.82 0.0207 
AUG-OCT FS RTS+MYC 1.13 0.69 1.82 0.0149 
NOV-JAN  HSL  RTS 0.21 0.03 0.24 0.0030 
NOV-JAN HSL RTS 0.20 0.07 0.27 0.0012 
NOV-JAN HSL RTS 0.14 0.06 0.20 0.0020 
NOV_JAN HSL RTS+MYC 2.97 0.95 3.92 0.0169 
NOV-JAN HSL RTS+MYC 0.42 0.16 0.58 0.0053 
NOV-JAN HSL RTS+MYC 2.29 0.88 3.17 0.0187 

 
APR-JUN =  April-June  AUG-OCT = August-October NOV-JAN = November-January   
FS = Flint Sand   HSL =  Hamblen Silt Loam FRT = Fertilizer Rooted  
RTS =  Rooted   RTS + MYC = Mycorrhizal Rooted 
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Table 6: Measured 𝐾𝑠𝑎𝑡 values for the individual cores determined by the constant head 

method. 

 

Growth Period Soil Type Treatment 𝐾𝑠𝑎𝑡 (m/s) 
 

APR-JUN  FS  CON  7.39 x 10-4 
APR-JUN FS CON 2.20 x 10-4 
APR-JUN FS CON 3.91 x 10-4 
APR-JUN FS CON+MYC  2.67 x 10-4 
APR-JUN FS CON+MYC 3.97 x 10-5 
APR-JUN FS CON+MYC 9.16 x 10-5 
APR-JUN FS FRT  4.44 x 10-5 
APR-JUN FS FRT 1.21 x 10-4 
APR-JUN FS FRT 5.22 x 10-5 
APR-JUN FS RTS  9.89 x 10-5 
APR-JUN FS RTS 3.37 x 10-5 
APR-JUN FS RTS 9.62 x 10-5 
APR-JUN FS  RTS+MYC  4.01 x 10-4 
APR-JUN FS  RTS+MYC 1.36 x 10-4 
APR-JUN FS  RTS+MYC 2.72 x 10-5 
AUG-OCT FS CON 2.45 x 10-4 
AUG-OCT FS CON 5.31 x 10-5 
AUG-OCT FS CON 7.28 x 10-5 
AUG-OCT FS CON+MYC 1.56 x 10-4 
AUG-OCT FS CON+MYC 6.09 x 10-5 
AUG-OCT FS CON+MYC 6.42 x 10-5 
AUG-OCT FS FRT 6.96 x 10-5 
AUG-OCT FS FRT 5.20 x 10-5 
AUG-OCT FS FRT 5.50 x 10-5 
AUG-OCT FS RTS 5.18 x 10-5 
AUG-OCT FS RTS 5.57 x 10-5 
AUG-OCT FS RTS 6.38 x 10-5 
AUG-OCT FS RTS+MYC 4.11 x 10-5 
AUG-OCT FS RTS+MYC 3.49 x 10-6 
AUG-OCT FS RTS+MYC 2.66 x 10-5 
 NOV-JAN  HSL CON 1.91 x 10-8 
NOV-JAN HSL CON 2.05 x 10-8 
NOV-JAN HSL CON 1.93 x 10-8 
NOV-JAN HSL CON+MYC 1.32 x 10-6 
NOV-JAN HSL CON+MYC 1.34 x 10-8 
NOV-JAN HSL CON+MYC 1.72 x 10-8 
NOV-JAN HSL RTS 2.35 x 10-8 
NOV-JAN HSL RTS 4.39 x 10-8 
NOV-JAN HSL RTS 1.36 x 10-8 
NOV-JAN HSL RTS+MYC 1.36 x 10-8 
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Table 6 Continued 
 

NOV-JAN HSL RTS+MYC 2.32 x 10-8 
NOV-JAN HSL RTS+MYC 2.99 x 10-7 

 
APR-JUN =  April-June  AUG-OCT = August-October NOV-JAN = November-January   
FS = Flint Sand   HSL =  Hamblen Silt Loam CON+MYC = Mycorrhizal Control 
CON = Control  FRT = Fertilizer Rooted  RTS =  Rooted     
RTS + MYC = Mycorrhizal Rooted   
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Table 7: RMSE values for Equations [1] and [10] fitted to the experimental data for each 

core simultaneously. 

Soil Type Treatment RMSE θ(h) RMSE K(θ) 

FS  CON 0.0105 0.3189 

FS CON 0.0063 0.2431 

FS CON 0.0045 0.3057 

FS CON 0.0047 0.0673 

FS CON 0.0048 0.3653 

FS CON 0.0045 0.2787 

FS   CON+MYC  0.0044 0.3313 

FS CON+MYC 0.0031 0.2135 

FS CON+MYC 0.0021 0.2880 

FS CON+MYC 0.0037 0.3021 

FS CON+MYC 0.0038 0.1597 

FS CON+MYC 0.0021 0.3272 

FS FRT 0.0055 0.2302 

FS FRT 0.0045 0.2853 

FS FRT 0.0050 0.2668 

FS FRT 0.0031 0.2333 

FS FRT 0.0027 0.2864 

FS FRT 0.0025 0.2397 

FS RTS 0.0035 0.2968 

FS RTS 0.0018 0.3295 

FS RTS 0.0027 0.3719 

FS RTS 0.0023 0.3034 

FS RTS 0.0045 0.2968 

FS RTS 0.0052 0.1920 

FS RTS+MYC    0.0034 0.2589 

FS RTS+MYC 0.0037 0.2563 

FS RTS+MYC 0.0029 0.3063 

FS RTS+MYC 0.0083 0.2844 

FS RTS+MYC 0.0046 0.3064 

FS RTS+MYC 0.0028 0.3140 

HSL  CON 0.0087 0.1411 

HSL CON 0.0094 0.1731 

HSL CON 0.0100 0.1388 

HSL CON+MYC 0.0096 0.1123 

HSL CON+MYC 0.0106 0.1497 

HSL CON+MYC 0.0163 0.1105 

HSL RTS 0.0072 0.1460 

HSL RTS 0.0125 0.1803 
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FS = Flint Sand   HSL =  Hamblen Silt Loam CON+MYC = Mycorrhizal Control 
CON = Control  FRT = Fertilizer Rooted  RTS =  Rooted     
RTS + MYC = Mycorrhizal Rooted 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 7 Continued 
 

HSL RTS 0.0132 0.2358 

HSL RTS+MYC 0.0076 0.1755 

HSL RTS+MYC 0.0070 0.1674 

HSL RTS+MYC 0.0034 0.1180 
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Table 8: Summary of ANOVA results for the fitting parameters from Equation [1]. 

 
 
 
 
 

 
 
 
 
 
 

FS = Flint Sand   HSL =  Hamblen Silt Loam  
  

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Soil 
Type 

Parameter Model  
R2 

Model 
F-value 

 

Model 
p-value 

Treatment 
F-Value  

Treatment 
p-value  

FS  𝜃𝑠  0.8356 24.39 <.0001 27.17 <.0001 
FS 𝛼 0.1523 1.120 0.3681 1.120 0.3681 

FS 𝑛 0.8164 27.79 <.0001 27.79 <.0001 
FS 𝜃𝑟  0.1241 0.890 0.4869 0.890 0.4869 

HSL 𝜃𝑠  0.0133 0.430 0.7365 0.430 0.7365 
HSL 𝛼 0.4225 1.950 0.2001 1.950 0.2001 

HSL 𝑛 0.5868 3.790 0.0586 3.790 0.0586 
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Table 9: Soil hydraulic parameters estimated by fitting Equations [1] and [10] to the 

experimental data for the individual cores simultaneously. 

Soil 
Type 

 
Treatment 

 

𝜃𝑠 
Measured 
(cm3/cm3) 

 

𝛼 
(1/cm3) 

 

𝑛 
(-) 

𝜃𝑟 
(cm3/cm3) 

𝐾𝑠𝑎𝑡 
Estimated 

(m/s) 

𝜏 
(-) 

FS  CON  0.33 0.0497 14.30 0.03 1.68 x 10-6 -1.41 

FS CON 0.36 0.0508 14.37 0.07 4.10 x 10-7 -1.79 

FS CON 0.33 0.0503 12.01 0.04 2.05 x 10-7 -1.85 

FS CON+MYC  0.38 0.0633 10.85 0.09 1.83 x 10-7 -1.82 

FS CON+MYC 0.35 0.0511 9.82 0.07 4.17 x 10-7 -1.42 

FS CON+MYC 0.36 0.0492 9.50 0.07 1.71 x 10-7 -1.70 

FS FRT  0.38 0.0583 8.17 0.05 5.32 x 10-7 -1.69 

FS FRT 0.37 0.0495 10.12 0.05 3.67 x 10-7 -1.77 

FS FRT 0.38 0.0537 7.60 0.05 1.69 x 10-7 -1.81 

FS RTS 0.38 0.0495 10.18 0.07 2.34 x 10-7 -1.79 

FS RTS 0.36 0.0497 13.28 0.05 2.34 x 10-7 -1.85 

FS RTS 0.40 0.0530 11.57 0.07 2.60 x 10-7 -1.79 

FS RTS+MYC  0.40 0.0628 6.74 0.04 2.05 x 10-7 -1.82 

FS RTS+MYC 0.40 0.0623 6.04 0.04 2.08 x 10-7 -1.81 

FS RTS+MYC 0.41 0.0525 6.96 0.07 2.37 x 10-7 -1.71 

FS CON 0.33 0.0519 12.92 0.00 3.30 x 10-7 -1.83 

FS CON 0.33 0.0518 15.00 0.01 2.45 x 10-7 -1.84 

FS CON 0.32 0.0516 12.80 0.00 2.78 x 10-7 -1.83 

FS CON+MYC 0.35 0.0506 13.01 0.03 4.14 x 10-7 -1.78 

FS CON+MYC 0.33 0.0509 11.00 0.02 2.74 x 10-7 -1.77 

FS CON+MYC 0.32 0.0515 9.62 0.00 2.31 x 10-7 -1.69 

FS FRT 0.38 0.0528 9.42 0.03 4.33 x 10-7 -1.76 

FS FRT 0.37 0.0516 9.27 0.03 4.77 x 10-7 -1.70 

FS FRT 0.37 0.0528 8.31 0.01 4.24 x 10-7 -1.79 

FS RTS 0.36 0.0574 9.31 0.02 5.34 x 10-7 -1.69 

FS RTS 0.38 0.0509 9.95 0.05 3.56 x 10-7 -1.75 

FS RTS 0.36 0.0532 10.25 0.03 2.00 x 10-7 -1.85 

FS RTS+MYC 0.38 0.0532 6.35 0.03 6.85 x 10-7 -1.55 

FS RTS+MYC 0.39 0.0505 8.26 0.04 2.79 x 10-7 -1.75 

FS RTS+MYC 0.38 0.0522 7.06 0.02 6.55 x 10-7 -1.63 

HSL CON 0.57 0.0026 1.36 0.00 2.60 x 10-6 -2.89 

HSL CON 0.58 0.0032 1.30 0.00 8.94 x 10-7 -6.00 

HSL CON 0.57 0.0023 1.41 0.00 2.73 x 10-6 3.16 

HSL CON+MYC 0.56 0.0036 1.29 0.00 1.69 x 10-6 0.56 

HSL CON+MYC 0.57 0.0025 1.35 0.00 1.27 x 10-6 -0.50 

HSL CON+MYC 0.59 0.0029 1.38 0.00 8.24 x 10-7 -3.98 
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APR-JUN =  April-June  AUG-OCT = August-October NOV-JAN = November-January   
FS = Flint Sand   HSL =  Hamblen Silt Loam CON+MYC = Mycorrhizal Control 
CON = Control  FRT = Fertilizer Rooted  RTS =  Rooted     
RTS + MYC = Mycorrhizal Rooted   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 9 Continued 

 

HSL RTS 0.55 0.0039 1.27 0.00 2.22 x 10-6 -3.04 

HSL RTS 0.57 0.0036 1.29 0.00 2.33 x 10-6 -3.83 

HSL RTS 0.58 0.0032 1.27 0.00 4.91 x 10-6 -0.41 

HSL RTS+MYC 0.59 0.0052 1.27 0.00 1.66 x 10-6 0.52 

HSL RTS+MYC 0.59 0.0031 1.26 0.00 1.55 x 10-6 -1.51 

HSL RTS+MYC 0.57 0.0033 1.30 0.00 1.05 x 10-6 -0.75 
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Table 10: Values of input parameters used for the forward predictions in Figure 25 and 

Figure 26.   

 
 

Curve 

  
 

Parameters 

Soil Type 
 

Model Flint Sand Hamblen Silt 
Loam 

U
n
ro

o
te

d
 

 
 

𝜃 − 𝜃𝑟 

𝜃𝑠 − 𝜃𝑟

= [1 + (𝛼ℎ)𝑛]1−
1
𝑛 

𝛼 0.050 0.003 

𝜃𝑠 0.333 0.573 

𝜃𝑟 0.025 0 

𝑛 13.57 1.36 

R
o
o

te
d

-m
o

d
e

l 
4
  

 
 

𝜃 −  𝜃𝑟

𝜃𝑠𝑟𝑜𝑜𝑡
− 𝜃𝑟

= [1 + (𝛼𝑟𝑜𝑜𝑡ℎ)𝑛]1−
1
𝑛 

 

𝛼𝑟𝑜𝑜𝑡 0.056 0.003 

𝜃𝑠𝑟𝑜𝑜𝑡
 0.353 0.574 

𝜃𝑟 0.25 0 

𝑛 13.57 1.36 

𝑅𝑣 0.03 0.003 

 
Note: Parameters are averages of the individual parameter values for the control (unrooted) treatment 
and the largest  𝑅𝑣 value from the rooted treatments.  

 
 
 
Table 11: Mean estimated 𝐾𝑠𝑎𝑡 values and standard deviations from fitting Equation [10] 

the experimental 𝐾(𝜃) data. 

 
FS = Flint Sand   HSL =  Hamblen Silt Loam CON+MYC = Mycorrhizal Control 
CON = Control  FRT = Fertilizer Rooted  RTS =  Rooted     
RTS + MYC = Mycorrhizal Rooted 

Soil Type Treatment 
Estimated Mean 

𝐾𝑠𝑎𝑡 (m/s) 
Standard Deviation 

 
FS  

CON  5.61 x 10-7 5.64 x 10-7 

FS CON+MYC  2.90 x 10-7 1.37 x 10-7 
FS FRT  2.51 x 10-7 4.71 x 10-8 
FS RTS  3.78 x 10-7 9.36 x 10-8 
FS RTS+MYC  5.09 x 10-7 1.51 x 10-7 

HSL CON 2.08 x 10-6 1.03 x 10-6 
HSL  CON+MYC 1.26 x 10-6 4.33 x 10-7 
HSL  RTS 3.15 x 10-6 1.52 x 10-6 
HSL  RTS+MYC 1.42 x 10-6 3.24 x 10-7 
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APPENDIX 2 - FIGURES 
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Figure 1: The experimental design for the Flint sand cores consisted of five treatments: control (CON), mycorrhizal control 

(CON+MYC), rooted (RTS), fertilizer rooted (FRT), and mycorrhizal rooted (RTS+MYC). 



 

85 
 

 

 
 

Figure 2: The experimental design for the Hamblen silt loam cores consisted of four treatments: control (CON), 

mycorrhizal control (CON+MYC), rooted (RTS) and mycorrhizal rooted (RTS+MYC). 
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Figure 3: Illustration of a Meter 𝐾𝑠𝑎𝑡  permeameter (A) that was used in conjunction with the constant head method to 

measure the saturated hydraulic conductivity (𝐾𝑠𝑎𝑡) of the Flint sand and Hamblen silt loam soil cores. Soil samples were 

fitted with two porous plates attached by gaskets and firmly secured to the permeameter using a screw on cap (B).
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Figure 4: Illustration of a Meter Hyprop2 that device was used to measure 𝜃(ℎ) and 𝐾(𝜃). The device works by recording 

changes in pressure head (ℎ) and volumetric water content (𝜃) due to evaporation. Evaporative loss was measured as 

weight in grams.
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Figure 5: The presence of fungal hyphae in the inoculated treatments was confirmed 

using microscopy. (A) was taken under 40x magnification and shows a root with 

mycorrhizal hyphae and fungal spores. (B) closeup of a similar area at 20x 

magnification showing root physiology (root and associated root hairs) as distinguished 

from mycorrhizal physiology (fungal spores and fungal hyphae).  
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Figure 6: Boxplots and Tukey HSD letter groupings for total biomass. Results are from 

plants harvested from Flint sand cores grown from April to June 2019 and August to 

October 2019. The x-axis is the experimental treatment. The y-axis is the dry weight 

measured in grams. The median value is displayed as a horizontal line. The arithmetic 

mean is shown as an x symbol. Letters above the graphs display the Tukey letter 

grouping. Treatments that share a letter are not significantly different at p < 0.05.  
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Figure 7: Boxplots with Tukey HSD letter groupings for the root volume ratio, 𝑅𝑣, for 

Flint sand. The x-axis is treatment. The y-axis is the base-ten logarithm of 𝑅𝑣. The 

median value is displayed as a horizontal line. The arithmetic mean is shown as an x 

symbol. Letters above the graphs display the Tukey letter grouping. Treatments that 

share a letter are not significantly different at p < 0.05.   
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Figure 8: Boxplots for total biomass for the Hamblen silt loam soil. The y-axis is the dry 

weight measured in grams. The median value is displayed as a horizontal line. The 

arithmetic mean is shown as an x symbol. There were no statistically significant 

differences between the treatments at p < 0.05.  
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Figure 9: Boxplot with Tukey HSD letter grouping for the root volume ratio, 𝑅𝑣  for 

Hamblen silt loam. The x-axis is treatment. The y-axis is the base-ten logarithm of 𝑅𝑣. 

The median value is displayed as a horizontal line. The arithmetic mean is shown as an 

x symbol. Letters above the graphs display the Tukey letter grouping. Treatments that 

share a letter are not significantly different at p < 0.05. 
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Figure 10: Boxplots and Tukey HSD letter groupings for the average log10  𝐾𝑠𝑎𝑡  for Flint 

sand. The x-axis is the experimental treatment. The y-axis is the average base-ten 

logarithm of log10 𝐾𝑠𝑎𝑡   measured in meters per second. The median value is displayed 

as a horizontal line. The arithmetic mean is shown as an x symbol. Outliers are 

represented as circles. Hinges represent the 25th and 75th percentiles of the 

distributions. Letters above the graphs display the Tukey letter grouping. Treatments 

that share a letter are not significantly different at p < 0.05.   
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Figure 11: Boxplots of the log10  𝐾𝑠𝑎𝑡   for Hamblen silt loam. The x-axis is the 

experimental treatment, while the y-axis is the base-ten logarithm of log10  𝐾𝑠𝑎𝑡    

measured in meters per second. The horizontal line represents the median value. The 

arithmetic mean is shown as an x symbol. There were no statistically significant 

differences between the treatments at p < 0.05.
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Figure 12: Flint sand soil water retention curve representing the median RMSE value for the curve fit (i.e., one half of the 

curves had a better fit and one half of the curves had a worse fit). The x-axis is the capillary pressure head measured as 

the base-ten logarithm of cm (pF). The y-axis is the volumetric water content measured in percent. Circles are data points; 

solid line is the fitted curve.
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Figure 13: Flint sand unsaturated hydraulic conductivity curve representing the median RMSE value for the curve fit (i.e., 

one half of the curves had a better fit and one half of the curves had a worse fit). The x-axis is the volumetric water 

content measured in percent. The y-axis is the base-ten logarithm of hydraulic conductivity measured in cm per day. 

Circles are data points; solid line is the fitted curve.    
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Figure 14: Hamblen silt loam soil water retention curve representing the median RMSE value for the curve fit (i.e., one half 

of the curves had a better fit and one half of the curves had worse fit). The x-axis is the capillary pressure head measured 

as the base-ten logarithm of cm (pF). The y-axis is the volumetric water content measured in percent. Circles are data 

points; solid line is the fitted curve. 
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Figure 15: Hamblen silt loam unsaturated hydraulic conductivity curve representing the median RMSE value for the curve 

fit (i.e., one half of the curves had a better fit and one half of the curves had a worse fit).  The x-axis is the volumetric 

water content measured in percent. The y-axis is the base-ten logarithm of hydraulic conductivity measured in cm per day. 

Circles are data points; solid line is the fitted curve.    
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Figure 16: Boxplots and Tukey letter groupings for the 𝜃(ℎ) fitting parameter 𝜃𝑠 for Flint 

sand. The x-axis is the experimental treatment, while the y-axis is saturated water 

content (𝜃𝑠) measured in cm3/cm3. The median value is a horizontal line. The arithmetic 

mean is shown as an x symbol. The circles are outliers. Hinges represent the 25th and 

75th percentiles of the distributions. Letters below the graphs display the Tukey letter 

grouping. Treatments that share a letter do not have a statistically significant difference 

at p < 0.05. 

  
 

 

 

 

 



 

100 
 

 

 

Figure 17: Boxplots of the soil water retention curve fitting parameter 𝛼 for Flint sand. 

The x-axis is the experimental treatment. The y-axis is 𝛼, the inverse of the air entry 

point measured in 1/cm3. The median value is displayed as a horizontal line. The 

arithmetic mean is shown as an x symbol. Outliers are represented as circles. Hinges 

represent the 25th and 75th percentiles of the distributions. There were no statistically 

significant differences between the treatments at p < 0.05. 
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Figure 18: Boxplot and Tukey letter groupings for the soil water retention curve fitting 

parameter 𝑛 for Flint sand. The x-axis is the experimental treatment. The y-axis is the 

fitting parameter 𝑛; a parameter related to the pore size distribution. The median value 

is displayed as a horizontal line. The arithmetic mean is shown as an x symbol. Outliers 

are represented as circles. Hinges represent the 25th and 75th percentiles of the 

distributions. Letters above the graphs display the Tukey letter grouping. Treatments 

that share a letter do not have a statistically significant difference at p < 0.05.  
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Figure 19: Boxplot of the soil water retention curve fitting parameter 𝜃𝑟 for Flint sand. 

The x-axis is the experimental treatment. The x-axis is treatment. The y-axis is the 

residual water content (𝜃𝑟) measured in cm3/cm3. The median value is displayed as a 

horizontal line. The arithmetic mean is shown as an x symbol. Hinges represent the 25th 

and 75th percentiles of the distributions. There were no statistically significant 

differences between the treatments at p < 0.05. 
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Figure 20: Boxplots of the soil water retention curve fitting parameter 𝜃𝑠  for silt loam 

soil. The x-axis is the experimental treatment. The y-axis is saturated water content (𝜃𝑠) 

measured in cm3/cm3. The median value is displayed as a horizontal line. The arithmetic 

mean is shown as an x symbol. There were no statistically significant differences 

between the treatments at p < 0.05. 
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Figure 21: Boxplot of the log-tansformed soil water retention curve fitting parameter 𝛼 

for silt loam soil. The x-axis is the experimental treatment. The y-axis is 𝛼; the inverse of 

the air entry point measured in 1/cm3. The median value is displayed as a horizontal 

line. The arithmetic mean is shown as an x symbol. There were no statistically 

significant differences between the treatments at p < 0.05. 
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Figure 22: Boxplot of the soil water retention curve fitting parameter 𝑛 for silt loam soil. 

The x-axis is the experimental treatment. The y-axis is the fitting parameter 𝑛; a 

parameter related to the pore size distribution. The median value is displayed as a 

horizontal line. The arithmetic mean is shown as an x symbol. There were no 

statistically significant differences between the treatments at p < 0.05. 
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Figure 23: Proposed forward prediction models expressed as volumetric water content 

for sandy soil. Rooted-model 1 assumed that roots reduced porosity. Rooted-model 2 

assumed that roots reduced macroporosity. Rooted-model 3 assumed that roots 

increased macroporosity. Rooted-model 4 assumed roots increased porosity. The y-axis 

is volumetric water content expressed as a percentage. The x-axis is the pressure head 

expressed as the base-ten logarithm of cm (pF).  Forward predictions were generated 

from standard 𝜃𝑠, 𝜃𝑟, 𝛼, and 𝑛 parameters from the van Genuchten equation as well as 

a calculated 𝑅𝑣 value.  
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Figure 24: Proposed forward prediction models expressed as volumetric water content 

for Hamblen silt loam soil. For the silt loam soil, no visible difference was apparent 

between the models. The models were calculated so that Rooted-model 1 assumed that 

roots reduced porosity. Rooted-model 2 assumed that roots reduced macroporosity. 

Rooted-model 3 assumed that roots increased macroporosity. Rooted-model 4 

assumed roots increased porosity. The y-axis is volumetric water content expressed as 

a percentage. The x-axis is the pressure head expressed as the base-ten logarithm of 

cm (pF). Forward predictions were generated from standard 𝜃𝑠, 𝜃𝑟, 𝛼, and 𝑛 parameters 

from the van Genuchten equation as well as a calculated 𝑅𝑣 value. 
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Figure 25: Forward prediction of Rooted-model 4 as compared to rooted and unrooted 

data for Flint sand. Unrooted and fertilizer rooted values were from single samples and 

chosen to show the greatest contrast between data sets. The y-axis is volumetric water 

content expressed as a percentage. The x-axis is the pressure head expressed as the 

base-ten logarithm of cm (pF).  Forward predictions were generated from 𝜃𝑠, 𝜃𝑟, 𝛼, and 

𝑛 parameters from the fitting of the control data as well as the highest calculated 𝑅𝑣 

value from the fertilizer rooted treatment.  
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Figure 26: Forward prediction of Rooted-model 4 as compared to rooted and unrooted 

data for silt loam soil. Unrooted and rooted values were from single samples and 

chosen to show the greatest contrast between data sets. The y-axis is volumetric water 

content expressed as a percentage. The x-axis is the pressure head expressed as the 

base-ten logarithm of cm (pF). Forward predictions were generated from 𝜃𝑠, 𝜃𝑟, 𝛼, and 

𝑛 parameters from the fitting of the control data as well as the highest calculated 𝑅𝑣 

value from the rooted treatment.  
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Figure 27: Boxplot for the unsaturated hydraulic conductivity curve fitting parameter 𝜏 for 

Flint sand. The x-axis is treatment. The y-axis is 𝜏, an empirical parameter related to 

pore connectivity and tortuosity. The median value is displayed as a horizontal line. The 

arithmetic mean is shown as an x symbol. Outliers are represented as circles. Hinges 

represent the 25th and 75th percentiles of the distributions. There were no statistically 

significant differences between the treatments at p < 0.05. 
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 Loam 𝜏 

Figure 28: Boxplot for the unsaturated hydraulic conductivity curve fitting parameter 𝜏 for 

silt loam soil. The x-axis is treatment. The y-axis is 𝜏, an empirical parameter related to 

pore connectivity and tortuosity. The median value is displayed as a horizontal line. The 

arithmetic mean is shown as an x symbol. There were no statistically significant 

differences between the treatments at p < 0.05. 
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