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ABSTRACT  

 

Despite its importance in host physiology, how the microbiome varies within and among populations of 

hosts is not well understood. However, differential abiotic and biotic selection pressures across a species’ 

range likely lead to variation in the microbiome. In addition, symbiotic microbiota may differ more between 

closely-related species in sympatry than in allopatry if selection favors the reduction of interspecific 

competition. We investigated variation in the maternally-transmitted, beneficial gut microbiomes of 

Phanaeus vindex and P. difformis, sister species of dung beetle that compete for the same resources in 

sympatry and occur across a wide range of climatic conditions that may affect their gut microbiota. We 

sampled and sequenced bacterial/archaeal 16S rDNA from guts of P. difformis and P. vindex collected 

across 17 sympatric and allopatric sites, exploring how climatic data, soil microbial diversity, distance 

between sites, and sympatry or allopatry predicted the observed patterns of gut microbial variation. Gut 

microbial communities were best predicted by spatial relationships among sampling locations, the 

abundance of cattle in the sampling area, and temperature and precipitation. Contrary to our hypotheses, 

we did not find that the gut microbial communities of P. vindex and P. difformis differed more in sympatry 

than in allopatry, nor that P. vindex exhibits greater turnover in the gut microbiome among populations. 

However, we found that the gut microbiome communities of P. vindex and P. difformis both shift between 

allopatry and sympatry, and that the gut microbiome of P. vindex likely experiences a greater shift. While 

more research is needed, it is possible that differences in their gut microbiomes allow P. vindex and P. 

difformis to more effectively partition their niches in sympatry. Our work argues for further exploration of 

the gut microbiome’s potential role in niche partitioning and local adaptation. 
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1. INTRODUCTION 

 

The unicellular organisms found in and on plants and animals, termed the microbiome, are a 

crucial part of the functioning of many host species. The microbiome plays diverse roles in digestion, 

metabolism, and immune function (Engel & Moran, 2013), determines the thermal limits of species 

(Dunbar, Wilson, Ferguson, & Moran, 2007; Kikuchi et al., 2016), and may prevent hybridization (Brucker 

& Bordenstein, 2013). Despite the link between a host’s microbiome and its function, little is known about 

variation in the microbiome within and among populations of non-human hosts. However, individuals of 

the same species live in heterogeneous environments, and differential biotic and abiotic pressures may 

lead to variation in the microbiome across a species’ geographic range. To date, most research efforts 

into variation in the gut microbiome among natural populations have examined hosts from a limited 

number of locations (e.g. Coon, Brown, & Strand, 2016; Tiede et al., 2017; Parker, Newton, & Moczek, 

2020; but see Fietz et al., 2018; Hosokawa, et al., 2016; Wang, Kapun, Waidele, Kuenzel, Bergland, & 

Staubach, 2020), which are unlikely to be representative of the breadth of environmental conditions 

across the host’s range that may be important in structuring gut microbial communities. Thus, we still lack 

an understanding of the patterns and processes leading to variation in the gut microbiome of species. 

One factor that could lead to variation in the gut microbiome is competition among closely-related 

taxa. Where ecologically-similar species occur in sympatry, natural selection should favor the species’ 

use of different resources or microhabitats to diffuse competition, which facilitates coexistence (Brown & 

Wilson, 1956; Hutchinson, 1959; MacArthur, 1958; Schoener, 1974). In contrast, ecologically-similar 

species occurring in allopatry are predicted to have greater niche overlap than in sympatry because of 

reduced competition (Brown & Wilson, 1956; Schoener, 1974). If niche partitioning underlies variation in 

aspects of the niche that are known to affect gut microbial communities, such as temperature or diet, then 

a host’s gut microbiome may be different in sympatry and allopatry. Furthermore, species with similar 

niches may have more similar gut microbiota where their niches are more similar, in allopatry, than where 

their niches show greater divergence, where they co-occur. To our knowledge, no studies have 

investigated how the presence or absence of ecologically-similar species may shape the gut microbiome 

across the host’s range.  

Alternatively, different abiotic conditions across the range of the host may also drive variation in 

the gut microbiome by acting directly on microbes, or by influencing host phenotype that in turn exerts 

pressure on microbes. For example, aspects of host diet that may vary across geography, such as salinity 

(Hallali et al., 2018; Wilck et al., 2017), fiber content (Friedman et al., 2017), and prey diversity (Tiede, 

Scherber, Mutschler, McMahon, & Gratton, 2017), affect gut community composition. Temperature 

variation across the range of the host may also drive variation in the gut microbiome (Sepulveda & 

Moeller, 2020). Gut-specialized microorganisms often have narrower thermal tolerances than their hosts 

(Corbin, Heyworth, Ferrari, & Hurst, 2017; Kikuchi et al., 2016; Zhang, et al., 2019), and thus the 

community of symbionts may turnover across a hosts’ range (Hosokawa et al., 2016). Specifically, 
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temperatures may alter competitive dynamics within the microbiome, changing the relative abundances of 

microbial community members (Palmer-Young, Raffel, & McFrederick, 2018).  

Variation in gut microorganisms may also be due to deterministic and stochastic processes that 

positively correlate with distance. The gut microbiome of animals is under a degree of host genetic control 

(e.g. Benson et al., 2010); thus, as host populations become more genetically distinct with increasing 

distance, so too might their gut microbiota (Fietz et al., 2018). In addition, the biotic and abiotic conditions 

that select for the free-living microorganisms present in the environment may explain much of the 

variation in the horizontally-transmitted gut microbial communities, as has been found in species of flies 

and mosquitoes (Chandler, Lang, Bhatnagar, Eisen, & Kopp, 2011; Coon, Brown, & Strand, 2016). 

However, even microorganisms which are passed from mother to offspring may vary over space because 

these microorganisms were at some point acquired from the environment (Bright & Bulgheresi, 2010), as 

has been observed in the bacterial endosymbionts of pea aphids (Gauthier et al., 2015) and the gut 

microbiome of stinkbugs (Hosokawa et al., 2016). In addition, external microbes are subject to stochastic 

distance-decay processes (Lacap, Lau, & Pointing, 2011; Martiny et al., 2006), such as dispersal 

limitation, which account for the differences in the gut microbiomes among populations of various hosts, 

including primates, carnivores, artiodactyls, and rodents (Moeller et al., 2013; Moeller et al., 2017). 

Finally, ecological drift may also lead to increasing gut microbial dissimilarity between host populations 

over time (Bordenstein & Theis, 2015; Shafquat, Joice, Simmons, & Huttenhower, 2014). 

We used two closely-related species of dung beetles in the genus Phanaeus to investigate the 

patterns and processes structuring the composition of the gut microbiome. Dung beetles develop from 

egg to adult completely within a ball of dung, or brood ball, that females form below dung pats (Price & 

May, 2009). Females directly transmit their gut microbiome to their offspring via a bacterial pedestal within 

the brood ball (Estes et al., 2013). Once established in the larval gut, gut bacteria buffer the organisms 

against heat and desiccation stresses (Schwab, Riggs, Newton, & Moczek, 2016) and are predicted to fix 

nitrogen and facilitate the breakdown of cellulose (Shukla, Sanders, Byrne, & Pierce, 2016). This 

accelerates larval growth and development rates (Schwab, Riggs, Newton, & Moczek, 2016), which are 

fitness proxies in insects (Kingsolver & Huey, 2008). Therefore, the gut microbiome should be under 

strong selection. 

Phanaeus vindex (MacLeay) and P. difformis (LeConte) are sister species of dung beetle (Blume 

& Aga, 1978) that are morphologically near-identical and share a diet of large mammal dung (Edmonds, 

1994; Dickey, 2006). P. vindex ranges throughout most of the United States east of the Rocky Mountains, 

and additionally some populations can be found in desert parts of New Mexico and Arizona. It is 

noticeably absent in southern and central Texas (Blume & Aga, 1978; Dickey, 2006). P. difformis is found 

in Texas, Oklahoma, Kansas, and parts of adjacent American and Mexican states (Blume & Aga, 1978; 

Dickey, 2006). Prior studies suggest that P. difformis prefers sandy soils, whereas P. vindex is found on 

various soil types, including clay. Because competition for brood ball burial space is thought to be a 

primary force shaping sympatric dung beetle community structure and breeding and feeding behavior 
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(Simmons & Risdill-Smith, 2011; Price & May, 2009), different edaphic preferences may play a part in 

facilitating sympatric co-existence (Blume & Aga, 1978; Edmonds, 1994; Dickey, 2006).  

Because competition in sympatry may select for closely-related species to have more distinct 

niches in sympatry than in allopatry, we hypothesized that the gut microbiota of P. vindex and P. difformis 

would be more dissimilar in sympatry than in allopatry. In addition, we hypothesized that the gut 

microbiome would be more varied (exhibit greater beta diversity) among populations of the broadly 

distributed, edaphic-generalist P. vindex, compared to populations of the narrowly-distributed, sand-

specialist P. difformis due to the variation in abiotic conditions across the species’ ranges. 
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2.  MATERIALS AND METHODS 

 
2.1 Sample collection    

We collected Phanaeus dung beetles from 5 allopatric P. difformis populations, 6 allopatric P. 

vindex locations, and 6 sympatric P. vindex and P. difformis populations across Texas, Oklahoma, 

and Kansas (United States) during May and June 2019 in a manner that minimized temporal 

autocorrelation. For this study, we considered a site allopatric or sympatric based on the species of 

beetles we encountered in the field. We identified beetles as P. vindex or P. difformis using a 30x 

magnifying hand lens. Specifically, we looked for the presence or absence of one or more continuous 

mid-longitudinal costae on the first or second interstriae of the elytra as well as broad and flat or 

narrow striae to differentiate species (Edmonds, 1994; Dickey, 2006). We defined a population as all 

beetles collected within a maximum of 0.5 km2, and populations were at least 6 km apart. In total, we 

had 17 sampling locations (Fig. 1, all tables and figures are in appendices at the end of this  

document). All sampling was done with proper permission and permitting.  

We used pitfall traps baited with human or pig dung to collect up to twelve females of each 

locally present Phanaeus species at each sampling location (Table S1). We stored beetles individually in 

plastic containers, fed them autoclaved cow dung for four days to control for differences in diet 

consumed prior to capture, and then euthanized them by submersion in 96% molecular grade ethanol 

(Fisher BioReagents). We sourced all the dung we fed to the beetles from a single organic cattle pasture 

that was collected on the same morning, homogenized, sterilized by autoclaving twice, and then stored 

frozen in small batches until use. We cleaned the plastic containers that we stored live beetles in with 

a 3% bleach solution between uses.  

To examine background soil bacterial and archaeal diversity, we took two soil samples per 

population, each from one meter away in a random direction from a successful beetle trap. We used 

flame-sterilized tools to take approximately 0.75 g of soil from a depth of 10 cm. We kept soil samples in 

96% molecular grade ethanol to match beetle storage conditions. High percentages of ethanol (i.e. 95%-

100%) are effective at preserving microbial communities in insect guts and soils, among other sample 

types (Harry, Gambier, & Garnier-Sillam, 2000; Hammer, Dickerson, & Fierer, 2015; Estes et al., 2013). 

We stored all beetle and soil samples at 4 °C or on ice for brief periods during transport until further 

processing. 

 

2.2  DNA extractions, 16S library preparation, and MiSeq sequencing  

We used the DNeasy PowerSoil Kit (Qiagen, Venlo, Netherlands) to extract DNA from dissected 

guts and soil samples in a random order to minimize batch effects. Prior to dissection, we weighed each 

beetle. We dissected out the whole gut of each beetle using flame-sterilized tools on individual pieces of 

autoclaved aluminum foil. For soil samples, we dried the samples for approximately 35 minutes in a 

sterilized laminar flow hood on individual sheets of autoclaved aluminum foil. We followed Qiagen’s 

standard Quick-Start protocol (June 2016), except that we eluted with 50 μL of solution C6 at step 19 
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and then waited 5 minutes before centrifuging. To characterize the background DNA present in the 

reagents, we sequenced an extraction kit blank. Although gel electrophoresis post-PCR indicated a very 

weak band for the extraction blank, NanoDrop spectrophotometry showed that the DNA concentration 

was too low to be reliably quantified via NanoDrop (<10 ng/ μL). We stored extracted DNA at -20 ºC until 

amplicon library preparation. 

Preparation of the 16S rRNA gene amplicon library was performed by the University of 

Tennessee, Knoxville Genomics Core in Knoxville, TN, USA. Our protocol followed the 16S 

Metagenomic Sequencing Library Preparation Workflow published by Illumina Corporation (San Diego, 

CA, USA), except for three key modifications to the amplicon PCR. First, to amplify the V4 region of the 

16S rRNA gene, we used the primers 515 forward and 806 reverse (Caporaso et al., 2011), modified 

slightly with the addition of two degenerate base pairs (Apprill, McNally, Parsons, & Weber, 2015). The 

primer sequences of 515F and 806R were GTGYCAGCMGCCGCGGTAA and 

GGACTACNVGGGTWTCTAAT, respectively. Second, PCR was performed in triplicate, and we reduced 

each reagent in the amplicon PCR by half and added 0.5 μL of 10 mg/μL bovine serum albumin (Sigma-

Aldrich, St. Louis, MO, USA) for a total reaction volume of 13 μL. Finally, the amplicon PCR was carried 

out in 35 cycles. We ran the amplicon PCR products from each of the triplicate reactions on a 2% 

agarose gel to verify the amplicon length, then pooled to a volume of 25 μL before performing the index 

PCR as specified in the Illumina protocol. After completing the index PCR, we pooled the samples to 

approximately equimolar concentrations using the results from a NanoDrop and confirmed amplicon 

length and quantity on a Bioanalyzer (Agilent, Santa Clara, CA, United States). We conducted PCR in a 

UV-sterilized laminar flow hood and included 3 PCR negative controls to verify that minimal DNA 

contaminants were present in the samples. We were unable to detect PCR negative controls on the 

agarose gels post PCR, and the DNA concentrations were less than 10 ug/μL when measured via 

NanoDrop spectrophotometry. To minimize the potential for contamination, we used aerosol barrier 

pipette tips for all lab work steps. 

Illumina MiSeq sequencing was conducted at the University of Tennessee, Knoxville Genomics 

Core facility using a MiSeq Reagent Kit v3 cycle flow cell (500 base pairs) to obtain two 250 bp paired-

end reads. We used a loading concentration of 4 pM, and to increase base pair diversity on the flow cell, 

we spiked in 20% PhiX control DNA (Illumina). We sequenced 125 P. vindex samples, 125 P. difformis 

samples, 34 soil samples, 1 extraction blank, and 3 negative PCR controls for a total of 288 samples on 

the flow cell. 

 

2.3 Bioinformatics  

We conducted all bioinformatic steps using plugins in QIIME2 version 2020.2.0 (Bolyen et al., 

2019), all of which were version 2020.2.0 unless otherwise noted. First, we used cutadapt to remove the 

515F and 806R primers from our raw reads, allowing an error rate of 0.2 (Martin, 2011). To trim, denoise, 

dereplicate, and merge our reads, we used DADA2 (Callahan et al., 2016), which resulted in amplicon 
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sequence variants (ASVs) (Yilmaz et al., 2014). We employed DADA2’s default settings and trimmed 

forward reads at 185 bp and reverse reads at 170 bp. We used scikit-learn version 0.22.1 to train a naïve 

Bayes taxonomic classifier on the SILVA 128 99% OTUs reference database for our primer region of the 

16S gene, and then we used scikit on the trained classifier to assign taxonomy to our sequences. We 

employed the SATé-enabled phylogenetic placement (SEPP) method (Mirarab, Nguyen, & Warnow, 

2012) to place ASVs onto the existing SILVA 128 99% OTUs phylogeny, using the qiime2 plugin 

fragment-insertion (Janssen et al., 2018; Eddy, 2011; Matsen, Hoffman, Gallagher, & Stamatakis, 2012; 

Matsen, Kodner, &Armbrust, 2010). SEPP uses hidden Markov models (Finn, Clements, & Eddy, 2011; 

Eddy, 2011) trained on the reference tree to cluster sequence fragments more accurately and precisely 

than do traditional de novo tree-building methods with short sequences such as the 16S gene (Janssen et 

al., 2018), and is now the method that qiime2 recommends. We excluded reads that were not present at 

least two times, ASVs identified as unassigned at the phylum taxonomic level, and chloroplast and 

mitochondria sequences.  

The remainder of the bioinformatics and the statistical analyses were conducted in R (version 

4.0.0, R Core Team, 2020). We exported the ASV tables, taxonomy, and the phylogenetic tree from 

QIIME2, combining them with a metadata table (see next section for details) in R to create a phyloseq 

object (phyloseq package, version 1.32.0, McMurdie & Holmes, 2013). We obtained the mean ASV 

abundance for each sample by rarefying 1,000 times to 3,507 and 26,336 reads for gut and soil samples 

respectively, using rrarefy in the vegan package available in R (version 2.5-6, Oksanen et al., 2013). 

Using the rarefied gut communities, we constructed a quantitative Jaccard (Ružička) dissimilarity matrix 

using vegan’s function vegdist and a matrix of weighted UniFrac distances using phyloseq. All analyses 

were repeated for weighted UniFrac and Jaccard dissimilarities. 

 

2.4 Metadata sourcing  

To understand if sympatry and allopatry explain variation in the gut microbiomes of P. vindex and 

P. difformis, we had to account for environmental and geographic/spatial factors that may also cause 

populations of Phanaeus to differ in their gut microbiomes. We utilized the GIS map portal of the National 

Oceanic and Atmospheric Administration (NOAA) to compute average monthly temperature, monthly 

temperature variability, and average monthly precipitation using data from the years 2009-2018, or the 

most recent available year prior to 2009 if data from a year between 2009-2018 was unavailable. NOAA 

measurement stations were no more than 34 km from each sampling location and were on average 20.7 

km away. We included an ordinal variable called “Cattle Presence Rank” as an estimate of how many 

cattle were present at each sampling location. Cattle Presence Rank had three levels: no cows in the 

beetle collection area or in an area immediately adjacent (“low”), cattle in adjacent area but not present in 

sampling area (“medium”), or cattle present in sampling area (“high”). To account for the microbial 

diversity in the beetle’s soil habitat that could influence the beetle gut microbiome, we computed the 

average exponential Shannon entropy index for the soil samples taken from each sampling area. 
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Averaging the Shannon indices by sampling site was necessary because one soil sample out of the 34 

we sequenced failed. See Table S1 for metadata used in this study. 

Ecological processes that occur at a variety of spatial scales are important for shaping species 

interactions (Borcard, Legendre, Avois-Jacquet, & Tuomisto, 2004). Thus, to tease out the effects of 

spatial autocorrelation on variation in the gut microbiome, we used distance-based Moran’s eigenvector 

map (dbMEM) models (Borcard & Legendre, 2002; Borcard, Gillet, & Legendre, 2018; Borcard, Legendre, 

Avois-Jacquet, & Tuomisto, 2004; Dray, Legendre, & Peres-Neto, 2006). The dbMEM approach 

decomposes spatial relationships among sites, resulting in eigenvectors that describe spatial patterns 

across the entire range of scales detectable given the coordinates of the samples. We used the function 

dbmem in the package adespatial (version 0.3.8, Dray et al., 2019) to create positive and negative 

dbMEM eigenvalues in a series of three steps. First, we constructed a pairwise Euclidean distance matrix 

is among all sites using geodetic, Cartesian coordinates (in our case, taken from the center of each of our 

sampling locations). Next, we truncated distances in the matrix based on a threshold value equal to the 

maximum distance between a pair of neighboring sites. We replaced all pairwise distances larger than the 

threshold, as well as the matrix diagonals, with the threshold value multiplied by four. Thirdly, we 

computed a PCoA of the truncated distance matrix, the resulting eigenfunctions describing spatial 

structure at a range of scales. Prior to testing the explanatory power of the constructed dbMEMs, we 

removed the effects of linear distance among sites by regressing Jaccard and weighted UniFrac 

dissimilarity matrices on the X-Y coordinates and then saving the model residuals. We implemented 

distance-based redundancy analyses (db-RDAs, Legendre & Anderson, 1999) and permutational anovas 

on dbMEMs with positive and negative eigenvalues separately using the detrended dissimilarity matrices 

as the response variables. If dbMEM variables were significant, we determined which dbMEMs to include 

in downstream analyses with the help of forward model selection using vegan function ordiR2step. 

Finally, we applied the Šidák (1967) correction to P-values generated by ordiR2step to account for 

running multiple tests on positive and negative dbMEMs (Blanchet, Legendre, & Borcard, 2008; Borcard, 

Gillet, & Legendre, 2018).  

We also performed forward model selection separately on environmental variables (i.e. average 

temperature, temperature variation, average precipitation, cattle presence, and soil habitat microbial 

biodiversity) using vegan function ordiR2step, which uses Blanchet’s double-stopping criterion (Table S2). 

Following these model selections, we created two separate R objects from the combined geographic 

variables (significant MEMs and X,Y coordinates because we detected a linear trend in our data) and the 

significant environmental variables. Performing multiple rounds of model selection before hypothesis 

testing was necessary to avoid saturating our models with our many initial candidate predictors. In 

addition, it allowed us to understand how environmental, geographic, and biotic variables may be jointly 

influencing patterns of gut microbial variation via variation partitioning.  
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2.5 Examining the drivers of variation in the gut microbiome 

To understand the explanatory power of our geographic variables, environmental variables, range 

overlap, and Phanaeus species in relation to variation in the gut microbiome, we performed variation 

partitioning using the vegan function varpart. Variation partitioning runs independent redundancy 

analyses on the response variables and each matrix of explanatory variables, and then computes the 

adjusted R2 of each fraction via subtraction (Borcard, Legendre, & Drapeau, 1992; Peres-Neto, Legendre, 

Dray, & Borcard, 2006). Therefore, this technique allowed us to understand the unique and overlapping 

contributions of all of the types of variables in our models, including those that were correlated. 

To test our hypothesis that the gut microbiomes of P. vindex and P. difformis would be more similar in 

allopatry than in sympatry, we implemented db-RDAs using the Jaccard and the weighted UniFrac 

dissimilarity matrices as the response variables. Prior to implementing db-RDAs, we performed global 

model selection using ordiR2step on the environmental and geographic variables used in variation 

partitioning, “patry” (sympatry or allopatry), Phanaeus species, and beetle mass (Table S3). Based on 

these model selections, we included X,Y coordinates (i.e. longitude and latitude), five negative dbMEMs, 

average Shannon entropy of soil samples, cattle presence, Phanaeus species, range overlap, and the 

interaction between Phanaeus species and range overlap as predictors in our quantitative Jaccard db-

RDA. Despite forward selection identifying average precipitation as a significant variable, we did not use it 

in our Jaccard model because it had a variance inflation factor (VIF) of over 20, presumably because of a 

high correlation with longitude (Pearson correlation coefficient = 0.901). For our model using the weighted 

UniFrac dissimilarity as the response variable, we included the Y coordinates (i.e. latitude), a single 

significant negative dbMEM, average precipitation, ranked cattle presence, Phanaeus species, range 

overlap, and the interaction between Phanaeus species and range overlap as predictors. Other than the 

interaction term and its variables, all variables had a VIF of 5 or lower. Testing the significance of the 

interaction between beetle species and range overlap allowed us to explicitly consider if the gut 

microbiomes of P. difformis and P. vindex differentially depend on the presence of the other Phanaeus 

species. We investigated the significance of our models’ constraints using the vegan function anova.cca 

with 99,999 permutations. Finally, to separate out the proportions of the variation explained by each 

predictor, we again performed variation partitioning using the same predictors that were in the db-RDAs. 

 

2.6 Testing differences in beta diversity among populations of P. vindex and P. difformis 

We hypothesized that the gut microbiome of the broadly-distributed, cosmopolitan P. vindex 

would exhibit greater beta diversity than that of the relatively narrowly-distributed, specialist P. difformis. 

Beta diversity describes the variation in species composition among sampling units for a geographic area 

of interest (Whittaker, 1960). One way of quantifying beta diversity is as the average distance between 

sampling units and their group centroid in multivariate space, i.e. multivariate dispersion (Anderson, 

Ellingsen, & McArdle, 2006). However, to obtain beta diversities representing variation in the gut 

microbiome among populations of P. vindex and P. difformis, we had to account for uneven sample size, 



 9 

spatial relationships among our sample sites, and other random factors including cattle presence and soil 

biodiversity that could influence the gut microbiome from one site to the next. To do this, we first created 

average ASV tables for each population of P. vindex and P. difformis, and then obtained pairwise 

weighted UniFrac and quantitative Jaccard dissimilarities among them. Next, in the same way as 

described above, we identified dbMEMs and random environmental variables that were important for our 

models using forward selection. Finally, we regressed Jaccard and weighted UniFrac dissimilarities on 

significant spatial and environmental predictors. To calculate the multivariate dispersions of P. vindex and 

P. difformis, we input the residuals of these models into the function betadisper in vegan. We tested the 

null hypothesis of no difference between the beta diversities of P. vindex and P. difformis gut communities 

using function permutest (99,999 permutations).  

 

2.7 Indicator species analyses 

 We performed indicator species analyses to identify which gut microbes differed in P. vindex and 

P. difformis in sympatry and in allopatry. Specifically, we identified ASVs that were associated with samples of 

P. vindex in sympatry, P. difformis in sympatry, P. vindex in allopatry, P. difformis in allopatry, and combinations of 

these groups using indicator species analyses (De Cáceres & Legendre, 2009; De Caceres, Legendre, & 

Moretti, 2010). To do this, we estimated the group equalized, point-biserial correlation coefficients, rg, between 

ASVs and groups described above and the significance of these associations using 99,999 permutations with the 

function multipatt in version 1.7.9 of the package indicspecies (De Cáceres & Legendre, 2009). The point-

biserial correlation coefficient takes into account the abundance of each ASV in the group, as well as whether or 

not it occurs in the other groups under consideration. We then calculated the relative abundances of each indicator 

species in each sample grouping. 

 
3. RESULTS 

 
3.1 Characterization of Phanaeus gut microbial communities 

 Our MiSeq sequencing run yielded 11,130,657 raw sequences. For all samples, the median 

number of sequences per sample was 37,458, and for beetle gut and soil samples, the median number of 

sequences per sample was 33,720.5 and 62,157, respectively. After trimming, merging, and chimera 

removal with DADA2, 6, 442,702 sequences remained representing 33,488 unique ASVs. Of these, we 

retained 23,641 bacterial or archaeal ASVs that were assigned to at least the phylum level and that 

appeared at least twice in our dataset. This included an average of 18,310 sequences per gut sample and 

an average of 40,699 sequences per soil sample. Rarefaction curves indicated that a sampling depth of 

3,500 and 26,336 for gut and soil samples, respectively, was more than adequate to capture the full 

microbial richness of the communities (Fig. S4). After rarefying, we retained 110 P. difformis, 89 P. 

vindex, and 33 soil samples. Because we took the average communities of 1,000 rarefactions, we 

retained all 23,641 original ASVs, which included 855 ASVs in P. vindex guts, 907 ASVs in P. difformis 

guts, and 22,365 ASVs and soil samples.  
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P. vindex and P. difformis gut communities were dominated by the same bacterial phyla and 

families; however, the relative abundances of the top phyla (Fig. 2) and families (Fig. 3) differed between 

P. vindex and P. difformis. The most abundant phyla included Firmicutes (P. vindex: 38.91%, P. difformis: 

42.72%), Proteobacteria (P. vindex: 36.76 %, P. difformis: 31.44%), Bacteroidetes (P. vindex: 15.6% , P. 

difformis: 19.31%), and Actinobacteria (P. vindex: 5.17 %, P. difformis: 7.12 %). In addition, 1.29% of the 

ASVs found in P. vindex belonged to the phylum Fusobacteria. No other phylum characterized more than 

2% of the ASVs in either Phanaeus species. The five most abundant bacterial families were 

Enterococcaceae (P. vindex: 23.45% , P. difformis: 27.82%), Moraxellaceae (P. vindex: 17.86% , P. 

difformis: 10.03%), Porphyromonadaceae (P. vindex: 10.82%, P. difformis: 16.14%), Enterobacteriaceae 

(P. vindex: 14.34%, P. difformis: 13.22%, and Planococcaceae (P. vindex: 8.66%, P. difformis: 9.17%). 

All remaining families characterized fewer than 5% of the ASVs we found in P. vindex and in P. difformis. 

Although our primers were designed to detect archaea and bacterial 16S rDNA, archaea represented only 

0.0032% and 0.0027% of reads in P. difformis and P. vindex, respectively.  

 We performed indicator species analyses to identify ASVs that have different affinities for P. 

vindex and P. difformis in sympatry and in allopatry, both species in sympatry, and both species in 

allopatry (Table S5). The identified indicator species comprised a high percentage of total abundance of 

ASVs. We found 21 indicator species representing 10.25% of allopatric P. difformis sequences, 11 

indicator species representing 20.61% of sympatric P. difformis sequences, 20 indicator species 

comprising 18.79% of the allopatric P. vindex sequences, and 15 species comprising 13.96% of 

sympatric P. vindex sequences. However, only four indicator species identified in each of these four 

groups comprised more than 1% of that group’s total relative abundance. Notable indicator taxa that were 

both highly correlated and highly abundant included an unidentified ASV in Planococcaceae for allopatric 

P. difformis (rg =0.267, abundance = 2.35%), two Vagococcus spp. in sympatric P. difformis samples (rg 

=0.363 and 0.202; abundances =13.30% and 3.46%), Acinetobacter sp. (rg =0.278, abundance =7.161%) 

and an unknown ASV within Enterobacteriaceae (rg =0.318, abundance = 4.854%) for allopatric P. vindex, 

and an ASV within the genus Glutamicibacter (rg =0.311, abundance =1.22%) for sympatric P. vindex 

samples. Different ASVs within the genus Dysgonomonas were identified as indicator taxa for all four 

groups of P. vindex and P. difformis samples. Interestingly, an indicator taxon for sympatric P. difformis 

was an ASV within the family Rhodobacteraceae that is a known endosymbiont of the dung beetle 

Onthophagus taurus (rg =0.196, abundance = 0.013%). This ASV was not found in any other group of 

samples. In addition, we found up to three indicator ASVs for all combinations of two of the groups 

described above except for the combination of P. vindex and P. difformis sympatric samples. 

 

3.2 Contributions of range overlap, Phanaeus species, and environmental and spatial variables to 

gut microbiome structure 

 We used variation partitioning to explore how the environmental, geographic, and biotic variables 

(“patry” and Phanaeus species identity) contributed to the overall explanation of the gut microbiome data 
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(Fig. 4). For our analysis on the Jaccard dissimilarity data, the geographic variables (significant dbMEMs 

and X-Y coordinates), environmental variables, Phanaeus species, and sympatry or allopatry individually 

explained 2.76%, 1.14%, 1.04%, and .25% of the variation in the gut microbiome data respectively, 

together explaining 6.42% of the variation. In total, our model of the weighted UniFrac distances among 

gut microbiome samples accounted for 6.24% of the observed variation. The unique contributions to gut 

microbiome variation of geographic variables, environmental variables, Phanaeus species identity, and 

range overlap were 1.13%, 1.81%, .99%, and 1.1%, respectively. Positive dbMEM eigenvalues did not 

explain a significant amount of the variation in our detrended dissimilarity matrices (Jaccard: P = 0.6997, 

weighted UniFrac: P = 0.1257); thus, they were not included in analyses. More information on model 

selection is given in Table S2. 

Permutational anovas revealed that different variables explained weighted UniFrac and Jaccard 

dissimilarities among gut samples. Surprisingly, geographic predictors (P < 0.01), average precipitation (P 

< 0.001), and cattle presence (P < 0.05) were the only significant explanatory variables in our weighted 

UniFrac db-RDA model (Fig. 5). However, the interaction term between Phanaeus species and range 

overlap was significant (P < 0.01) in our model with the Jaccard dissimilarity matrix as the response 

variable, as were geographic variables (P < 0.0001) and level of cattle present in the sampling area (P < 

0.001) (Fig. 6). Variation partitioning analyses based on the predictors used in the quantitative Jaccard 

model indicated that geographic, environmental, species identity, and range overlap respectively 

accounted for 2.84%, .82%, .96%, and 0.4% of variation, and that together, the unique fractions explained 

5.68% of the variation in our dataset. In addition, despite our attempt to reduce collinearity, 0.3% of the 

variation was explained jointly by geography and the environmental variables. For the predictors used in 

the weighted UniFrac model, we found that the model explained 6.07% of the total variation, and that 

2.41%, 1.82%, 1.07%, and 0.62% were explained by geography, environmental variables, Phanaeus 

species identity, and range overlap, respectively.  

To understand the significant interaction between Phanaeus species and range overlap in our 

Jaccard model, we ran this model another three times on Jaccard dissimilarity matrices separated by P. 

vindex and P. difformis and on a Jaccard dissimilarity matrix based on only sympatric samples. For these 

models, we did not include the dbMEMs as predictors because they were constructed using all 

coordinates, including those from sites where only one Phanaeus species was collected. Interestingly, we 

found that range overlap explained a significant amount of the variation in both the P. vindex and the P. 

difformis models (P. vindex model: P < 0.01; P. difformis model: P < 0.05), while Phanaeus species 

identity was significant in the sympatry model: P < 0.0001). All models were also explained by geographic 

variables (P. vindex: P < 0.001; P. difformis: P < 0.001; sympatry model: P < 0.0001) and the ranked 

prevalence of cattle in the area (P. vindex model: P < 0.01; P. difformis and sympatry models: P < 0.001). 

However, the averaged Shannon index of the soil samples was only significant in the sympatry model (P 

< 0.01).   
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3.4 Comparisons of the beta diversity of P. vindex and P. difformis populations 

 Prior to comparing beta diversities, we removed the effects of random environmental variables 

(i.e. average soil Shannon diversity and the presence of cattle) and geographic distance (no positive or 

negative dbMEMs were significant) that could cause random differences among populations of P. vindex 

and P. difformis. We did not detect a difference in the beta diversities of P. vindex and P. difformis for 

Jaccard (P= 0.3895) or weighed UniFrac models (P = 0.1888) (Fig. 7).  

 

4. DISCUSSION 
 

4.1 Summary of results 

In this study, we sampled Phanaeus vindex and P. difformis dung beetles across their allopatric 

and sympatric ranges to understand the factors influencing variation in the gut microbiome. We did not 

find that the gut microbiomes of P. vindex and P.difformis were more similar in allopatry than in sympatry 

as we expected. However, our db-RDAs based on Jaccard dissimilarities indicated that the gut 

microbiomes of P. vindex and P. difformis respond differently to sympatric and allopatric conditions, 

consistent with the expectations of character displacement. In addition, we hypothesized that because P. 

vindex is found in more diverse habitats and has a larger geographic range than P. difformis, its gut 

microbiome would vary more among populations. While it appears that P. vindex has greater beta 

diversity than does P. difformis in our analysis based on weighted UniFrac dissimilarities (Fig. 7), the 

results were not statistically significant (P = 0.1888), suggesting that we may have needed more 

populations of both Phanaeus species. Overall, geographic distance among populations, environmental 

variables, and local dung sources were the most important for shaping the gut microbiomes of P. difformis 

and P. vindex. Finally, taxa identified as highly abundant or as indicator species echo those found by 

other dung beetle researchers, suggesting candidate taxa for the core vertically-transmitted gut 

microbiome of Scarabaeinae dung beetles. We discuss our findings and their implications below.  

 

4.2 Evidence of character displacement in sympatry 

 Surprisingly, our db-RDAs and subsequent anovas on the full gut microbiome dataset suggested 

that Phanaeus species identity and range overlap were poor predictors of overall variation in the gut 

microbiome (Figs. 5 and 6). However, in our models based on quantitative Jaccard dissimilarities, we 

found a significant interaction effect between Phanaeus species and range overlap. This indicates that 

the gut microbiome of one of the Phanaeus species shifts more from allopatry to sympatry than does the 

gut microbiome of its sister Phanaeus species. When we performed additional analyses on separated P. 

vindex and P. difformis Jaccard dissimilarities to disentangle this interaction effect, we found that the gut 

microbiomes of both Phanaeus species differed based on range overlap. While we cannot validate it 

statistically, it appears that this trend is stronger among P. vindex samples (Fig. S6) than among P. 

difformis samples (Fig. S7), despite the fact that many of our allopatric P. vindex locations were 

geographically very close to where we encountered sympatric Phanaeus communities (Fig. 1, Table S1).  
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Sympatric Phanaeus compete fiercely for dung and space to bury brood balls (Price & May, 

2009), and thus, ecological theory suggests that their co-existence is predicated on a change in a trait 

that facilitates niche partitioning (e.g. Brown & Wilson, 1956). We speculate that shifts in the gut 

microbiome in sympatry, possibly particularly that of P. vindex, may be a form of character displacement 

which reduces competition between P. vindex and P. difformis in sympatry and allows for co-existence.  

There are several ways in which a distinct gut microbiome may aid niche partitioning. One possibility is 

that P. vindex and P. difformis bury their brood balls at different depths, a strategy found among 

sympatric Onthophagus dung beetles that reduces competition for space below the dung pat to bury 

brood balls (Macagno, Moczek, & Pizzo, 2016). P. difformis usually has an additional point on its front 

tibiae compared to P. vindex (Dickey, 2006; Edmonds, 1994), potentially making it more adept at 

displacing soil and burying brood balls deeper. Brood balls buried nearer the surface of the soil 

experience more extreme temperatures and more temperature variation (Snell-Rood, Burger, Hutton, and 

Moczek, 2016), and the dung beetle gut microbiome increases fitness under thermal stressors (Schwab, 

Riggs, Newton, & Moczek, 2016). Thus, if P. vindex buries its brood balls at shallower depths in sympatry 

than in allopatry, members of its gut microbiome may be adapted to a broader range of temperatures and 

thus be better equipped to help developing P. vindex larvae digest cellulose and fix nitrogen, likely 

functions of the dung beetle gut microbiome (Shukla, Sanders, Byrne, & Pierce, 2016). An alternative 

means of niche partitioning raised in the literature is that P. vindex, an edaphic generalist throughout most 

of its range, is displaced by P. difformis, a sand-specialist, on sand where they co-occur (Blume & Aga 

1976; 1978). This possibility does not seem likely because we consistently caught both P. vindex and P. 

difformis in high abundance in the same trap in sandy collection sites (Table S1). In accordance with the 

literature however, we observed that P. difformis specializes on sandy soils and that P. vindex is absent 

from southern Texas (Fig. 1, Table S1).  

We cannot say with certainty why the interaction between species and range overlap was 

significant in our Jaccard analysis but not our weighted UniFrac analysis. UniFrac calculates the distance 

between two samples as the proportion of unshared tree branch lengths out of all tree branch lengths 

(Lozupone & Knight, 2005). If the change detected by Jaccard dissimilarities barely changed the overall 

phylogenetic signal, it likely would not change the weighted UniFrac distance calculation in a significant 

way. However, a lack of phylogenetic signal does not preclude the importance of the change in the gut 

microbiome, because physiologically important traits of gut microbes can differ among bacterial species, 

or even from strain to strain (e.g. Arnold, Simpson, Roach, Kwintkiewicz, & Azcarate-Peril, 2018). Future 

research should investigate differences in brood ball burial depths where P. vindex and P. difformis occur 

alone and co-occur, coupled with metagenomic and metatranscriptomic approaches to understand if 

differences in members of the gut microbiome correspond to differences in functionality.  
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4.3 Local and broad scale trends shape gut microbial communities 

Both the weighted UniFrac and the quantitative Jaccard models highlighted that geographic 

distance among Phanaeus communities, a few negative dbMEMs, and cattle presence drove patterns of 

gut microbial variation (Figs. 5 and 6). However, our first variation partitioning analyses and model 

selections suggested that precipitation and temperature were also important predictors for gut microbial 

variation (Table S2, Table S3), but that they were colinear with geographic variables such as latitude and 

longitude (Fig. 4). Thus, we captured most of the contribution of longitude by including precipitation in our 

UniFrac model, whereas the effects of temperature variation were likely accounted for by including 

latitude in both db-RDAs.  

Many manipulative lab studies on insects have shown that temperature induces changes in the 

composition or function of the gut microbiome. For example, insects in general tend to have increases in 

the relative abundance of Proteobacteria in their guts under heat stress (Sepulveda & Moeller, 2020), and 

elevated temperatures can cause a loss of beneficial endosymbionts in aphids (Russell & Moran, 2006) 

and in stinkbugs (Kikuchi et al., 2016). This research is certainly useful for understanding the function of 

the gut microbiome and its potential response to climate change. However, these studies, which usually 

source individuals from one population, tell us little about how temperature may interact with other 

selection pressures and host genetics across a species’ range to influence the gut microbiome. Other 

than two studies on the gut microbiota of the common fruit fly Drosophila melanogaster (Walters et al., 

2020; Wang, Kapun, Waidele, Kuenzel, Bergland, & Staubach, 2020), ours is the only study to our 

knowledge that examines the gut microbiome of an insect across a temperature gradient representing 

much of its geographic range. We know of no other studies that examine how precipitation variation 

correlates with the gut microbiome. However, because the dung beetle gut microbiome leads to greater 

fitness outcomes under desiccation and temperature stressors (Schwab, Riggs, Newton, & Moczek, 

2016), it follows that selection would favor different gut microbial members under different precipitation 

and temperature regimes. Alternatively, changes in the gut microbiome may not reflect selection 

pressures on the host, but instead be the result of selection acting on free-living, environmental microbes 

encountered in the diet (Rosa, Minard, Lindholm, & Saastamoinen, 2019).  

The significance of negative dbMEMs and cattle abundance in our models suggests that local, 

even site-specific, factors are at work to shape the gut microbiome. In our system, negative spatial 

autocorrelation (i.e. significant negative dbMEMs) meant that dissimilar gut microbiome samples tended 

to cluster close to one another in space. Negative spatial autocorrelation is often the signature of biotic 

interactions (Borcard, Gillet, & Legendre, 2018), and we found that among sympatric samples, the gut 

microbiome differs based on Phanaeus species identity (Fig. S8). Thus, this trend was likely due to 

structuring within sympatric sampling locations and among allopatric and sympatric P. vindex populations 

that were in close proximity to one another.  

In contrast to negative dbMEMs, not a single positive dbMEM was significant, indicating that we 

did not detect positive spatial autocorrelation in our data. There are a few possible reasons for this. First, 
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the differences in gut microbial communities with decreased distance among nearby sites may be caused 

by temperature, precipitation, or other environmental variables that scale with distance that we did not 

measure. In addition, the amount of cattle at a sampling site, which varied randomly across the 

landscape, was a strong predictor of gut microbiome function, suggesting factors related to diet are 

impacting the gut microbiome. As an example, the gut microbiome of beetles in areas with abundant 

cattle may be a result of priority effects, where the first microbes that beetles encounter in their diet (i.e. a 

brood ball made from cattle dung) are able to colonize the gut first with limited competition from other 

microbes, as has been found in the gut microbiomes of honeybees (Ellegaard & Engel, 2019). Another 

possibility is that microbes specialized to facilitate the digestion of cattle dung are selected for in the dung 

beetle gut, and they may even be passed on from one generation to the next. An exciting area for future 

research might be transgenerational studies to tease apart the degrees of vertical versus horizontal 

transmission characterizing ASVs associated with diet. 

 

4.4 Important taxa of the gut microbiome 

Our study confirms that abundant microbes in the gut of Phanaeus dung beetles are similar to 

those found in other genera of dung beetles. Some of the most abundant bacterial families identified here, 

including Enterobacteriaceae, Comamonadaceae, Moraxellaceae, and Planococcaceae (Fig. 3), are also 

among the most prevalent in Onthophagus taurus (Estes et al., 2013; Hammer et al., 2016) and Aphodius 

fossor (Hammer et al., 2016), and likely perform roles that aid Phanaeus in digesting its nutrient-poor 

dung diet. For example, some members of Enterobacteriaceae perform cellulose digestion and nitrogen 

fixation in fruit flies (Behar, Yuval, & Jurkevitch, 2005), while others assist bark beetles in uric acid 

recycling (Morales-Jiménez et al., 2013). In addition, our indicator species analyses revealed that 

different ASVs within the genus Dysgonomonas associate with samples taken from the sympatric and 

allopatric ranges of both Phanaeus species, whereas ASVs within Acinetobacter were associated with 3 

different groups of Phanaeus by patry (Table S5). Dysgonomonas has also been found on multiple 

continents in multiple species of dung beetles (Parker, Newton, & Moczek, 2020), and breaks down 

lignocellulose in the guts of termites (Sun, Yang, Zhang, Shen, & Ni, 2015). Acinetobacter may aid in lipid 

and ester digester (Kok, Christoffels, Vosman, & Hellingwerf, 1993). Together our results and those from 

previous researchers suggest strongly that Acintobacter spp. and Dysgonomnas spp. are likely vertically-

transmitted, core members of the dung beetle microbiome. 

 

4.5 Conclusion 

 This study offers a first look into how biotic interactions and climatic factors across a species 

range may interact to shape its gut microbiome. We found that the gut microbiomes of Phanaeus vindex 

and P. difformis vary across their ranges in patterns predicted by the dung available in the local area, 

climatic factors such as precipitation and temperature, and due to biotic interactions. Range overlap and 

species identity were surprisingly poor predictors of variation among Phanaeus beetles in our full, pooled 
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dataset. However, the gut microbiomes of P. vindex and P. difformis consistently exhibited turnover from 

allopatric populations to sympatric populations and sympatric communities of Phanaeus harbor species-

specific gut microbiomes. Furthermore, it appears that gut microbiome of P. vindex may shift more 

between allopatric and sympatric communities than that of P. difformis, possibly indicating that the 

presence of P. difformis is driving character displacement of the gut microbiome of P. vindex where both 

Phanaeus species co-occur. However, more research is required to assess any physiological changes 

that may accompany the sympatric shifts in the gut microbiome and their effects on the fitness of 

Phanaeus. Overall, our work emphasizes the need to consider biotic interactions and interpopulation 

variation in the gut microbiome.  
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Appendix A: Figures  
 
 
 

 
 
 
 
Figure 1: Map showing collection localities of Phanaeus vindex and P. difformis samples in the 
states of Kansas, Oklahoma, and Texas (USA). For legibility, points close to each other have been 
moved slightly. See Table S1 for details about sampling sites. 
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Figure 2: Relative abundance of taxonomic phyla present in the guts of Phanaeus difformis and P. 
vindex samples. Taxonomic groups representing less than 1% abundance have been combined. 
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Figure 3: Relative abundance of taxonomic families present in the guts of Phanaeus difformis and 
P. vindex samples. Taxonomic groups representing less than 1% abundance have been combined. 
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(A) Quantitative Jaccard 

 
 
 
Figure 4: Variation partitioning of Phanaeus vindex and P. difformis gut microbiome data into 
various components. Response variables are (A) quantitative Jaccard dissimilarity and (B) weighted 
UniFrac distances. In both plots, Species refers to the amount of variation explained by Phanaeus 
species (P. vindex or P. difformis) and Patry refers to range overlap (sympatry or allopatry of Phanaeus 
species). In A, geographic variables (Geo.) include X,Y coordinates (longitude and latitude) and six 
negative distance-based Moran’s eigenvector mapping variables (MEMs 2,5,8,10,11, and 12); 
environmental variables (Envir.) include average temperature, average precipitation, the average 
Shannon index of soil samples taken from the sampling area, and the amount of cattle present. In B), 
Geo includes X,Y coordinates and one negative MEM (MEM 6); and Envir. variables include average 
temperature, average precipitation, and amount of cattle present. Numbers within the Venn diagram 
represent the adjusted R2 of each fraction. Blank fractions have very small negative adjusted R2 values 
and are not shown. 
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(B) Weighted UniFrac 

 
 
 
Figure 4 (continued) 
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Figure 5: Plot of distance-based redundancy analysis (db-RDA) based on weighted UniFrac 
dissimilarity matrix of Phanaeus difformis and P. vindex samples. Points on the plot indicate 
individual Phanaeus beetles. Ellipses represent 95% confidence intervals around centroids of each 
Phanaeus species. All constrained axes together explain 10.00% of the total variation in multivariate 
space. Arrows indicate the strength of correlation of variables with dbRDA axes 1 and 2. Numerical 
variables constraining the ordination include one negative distance-based Moran’s eigenvector mapping 
eigenvalues (MEM 6), latitude (Lat.), and precipitation of the sampling location (Precip.). Constraining 
factor variables include cattle presence in the sampling area (low, medium, or high), Phanaeus species, 
range overlap  (i.e. sympatry or allopatry) and the interaction between Phanaeus species and range 
overlap (P. vindex x Symp.). Factor variables are automatically dummy coded; thus, the factor level coded 
as the intercept does not have a corresponding axis. A permutational anova (99,999 permutations) 
showed that geographic predictors (i.e. MEM 6 and latitude), precipitation, and the abundance of cattle at 
the sampling location were significant predictors in the model. 
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Figure 6: Plot of distance-based redundancy analysis (db-RDA) based on the quantitative Jaccard 
dissimilarity matrix of Phanaeus difformis and P. vindex samples. Points on the plot indicate 
individual Phanaeus beetles. Ellipses represent 95% confidence intervals around centroids of each 
Phanaeus species. All constrained axes together explain 12.27% of the total variation in multivariate 
space. Arrows indicate the strength of correlation of variables with dbRDA axes 1 and 2. Numerical 
variables constraining the ordination include five negative distance-based Moran’s eigenvector mapping 
eigenvalues (MEMs 2, 5, 8, 10, and 11), latitude (Lat.), longitude (Long), and the average Shannon index 
of soil samples taken from each sampling location (Soil). Constraining factor variables include cattle 
presence in the sampling area (low, medium, or high), Phanaeus species, range overlap  (i.e. sympatry or 
allopatry) and the interaction between Phanaeus species and range overlap (P. vindex x Symp). Factor 
variables are automatically dummy coded; thus, the factor level coded as the intercept does not have a 
corresponding axis. A permutational anova (99,999 permutations) indicated that geographic variables (i.e. 
dbMEMs, latitude, and longitude), cattle abundance, and the interaction effect between P. vindex and P. 
difformis were significant in the model. 

-0.4

-0.2

0.0

0.2

-0.50 -0.25 0.00 0.25 0.50

dbRDA1 (20.6%)

d
b

R
D

A
2

 (
1

4
.9

1
%

)

PD PV

MEM 2

MEM 5 Lat.

P. vindex

P. vindex x Symp.

MEM 8

Soil

Symp.

Med. 

Catt.

MEM 11

MEM 10

High 

Catt.

Long.



 30 

 
 
(A) Quantitative Jaccard 

 
 
 
Figure 7: Beta diversity of Phanaeus vindex and P. difformis represented as multivariate 
dispersions. (A) was performed on Jaccard dissimilarity dissimilarities and (B) was performed on 
weighted UniFrac dissimilarities. Populations of P. vindex are represented by blue dots; gold triangles 
indicate populations of P. difformis. Numbers represent different populations by location (see Table 1 for 
metadata associated with each population). The words “P. vindex” and “P. difformis” are positioned in the 
species’ respective centroids in multivariate space. Ellipses represent one standard deviation away from 
the centroid of P. vindex and P. difformis.  
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(B) Weighted UniFrac 

 
 
 
Figure 7 (continued) 
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Appendix B: Supplementary Data and Figures 
 
Table S1. Metadata associated with each sampling location. PV and PD refer to Phanaeus vindex 
and P. difformis, respectively. Allo. and symp. stand for allopatry and sympatry, respectively. Latitude and 
longitude reported here are to the nearest tenth of a degree to respect the privacy of landowners. 
Average beetle mass refers to that of the beetle samples retained after rarefying. Average temperature 
and temperature variation are based on average monthly data over ten years, whereas average 
precipitation is the average monthly precipitation over ten years. We used the United States Department 
of Agriculture’s (USDA) Web Soil Survey to assign the soil at each successful trap to one of the twelve 
major soil textural classes based on proportions of silt, sand, and clay as defined by the USDA (Soil 
Science Division Staff, 2017). Soil types reported here are the two most common soil types at each 
location (some locations had up to 3 soil types). 
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Location 
Range 
overlap 

Beetles 
Avg. Beetle 

Mass (g) 
Lat. Long. Cattle 

Avg. 
Temp. 

(°C) 

Temp. 
variation 

(°C) 

Avg. 
precip. 
(mm) 

 

Soil 
Type 1 

Soil 
Type 2 

Avg. 
soil 

Shan- 
non 

 PV PD PV PD 

1. KP Allo. PV 3 — 0.88 — 39.1 -96.6 high 13.14 9.89 70.32 
silty 
clay 
loam 

silt loam 5.2339 

2. DOK Allo. PV 6 — 0.84 — 36.2 -97.7 high 15.58 9.74 65.16 
sandy 
loam 

silty 
clay 
loam 

6.2502 
 

3. CTW Symp. 7 8 0.87 1.09 34.0 -97.4 medium 16.22 9.20 81.18 
loamy 
sand 

sandy 
loam 

6.6027 

4. FBR Symp. 9 12 0.95 1.00 33.9 -96.9 high 16.92 9.28 88.49 
loamy 
sand 

loamy 
sand 

6.5900 

5. PMW Allo. PV 7 — 0.66 — 33.8 -95.7 low 18.47 9.21 95.05 silt loam 
sandy 
loam 

6.1704 

6. PME Allo. PV 5 — 0.91 — 33.8 -95.6 low 18.47 9.21 95.05 
sandy 
loam 

sandy 
loam 

6.0668 

7. FW Symp. 11 11 0.88 1.14 32.8 -97.5 low 19.37 8.17 80.85 
sandy 
loam 

loamy 
sand 

6.4095 

8. WTX Allo. PV 6 — 1.17 — 32.5 -96.0 high 18.65 8.12 93.91 
sandy 
loam 

sandy 
loam 

5.7322 

9. RCW Allo. PV 10 — 0.81 — 31.9 -96.1 low 18.87 9.44 82.02 
sandy 
loam 

clay 
loam 

6.2151 

10. GEW Symp. 11 12 1.04 1.26 31.9 -95.9 low 19.58 7.35 89.40 
loamy 
sand 

loamy 
sand 

6.4127 

11. BUTX Symp. 8 12 0.90 0.97 31.5 -96.1 high 19.08 7.47 88.92 sand sand 6.6602 

12. STR Allo. PD — 12 — 0.82 30.8 -99.4 med. 19.06 7.52 55.57 
sandy 
loam 

sandy 
loam 

6.1468 

13. BATX Symp. 6 12 0.78 1.23 30.1 -97.4 high 19.908 8.73 80.57 
loamy 
sand 

loamy 
sand 

6.2731 

14. GCR Allo. PD — 6 — 0.96 29.5 -97.8 high 18.959 10.06 70.98 sand sand 6.2240 

15. NW Allo. PD — 9 — 1.23 29.6 -97.7 medium 18.959 10.06 70.98 sand sand 6.0804 

16. YTX Allo. PD — 9 — 0.99 29.0 -97.5 high 21.326 7.73 68.47 
loamy 
sand 

loamy 
sand 

5.6862 

17. CWE Allo. PD — 7 — 1.46 28.3 -99.4 medium 22.718 7.61 42.03 
sandy 
loam 

sandy 
loam 

5.8813 
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Table S2. Results of forward model selection based on adjusted R2 and P-values, performed prior 
to variation partitioning. Jaccard dissimilarities and weighted UniFrac dissimilarities were used as 
response variables. (A)Model selection on negative distance-based Moran’s eigenvector map (dbMEM) 
variables. Because a linear trend was detected, detrended dissimilarity matrices were used as the 
response variables. B) Model selection on environmental variables.  
 

(A) Model selection on negative distance-based Moran’s eigenvector map variables 
 

  
After double-stopping forward 

model selection 
After Sidák 
correction 

Dissimilarity 
matrix 

MEM: adjusted R2 p-value 
adjusted 
p-value 

Jaccard 

MEM1 0.036909 < 0.05 * 0.19132 

MEM2 0.016477 < 0.01 ** < 0.05 * 

MEM5 0.024535 < 0.01 ** < 0.05 * 

MEM6 0.03904 < 0.05 * 0.29557 

MEM7 0.034445 < 0.01 ** 0.09164 

MEM8 0.028196 < 0.01 ** < 0.05 * 

MEM9 0.031439 < 0.01 ** 0.06198 

MEM10 0.006983 < 0.0001 *** < 0.001 *** 

MEM11 0.012124 < 0.001 *** < 0.01 ** 

MEM12 0.020868 < 0.01 ** < 0.05 * 

Weighted 
UniFrac 

MEM6 0.010804 < 0.01 ** < 0.05 * 

MEM7 0.019963 < 0.05 * 0.06797 

MEM8 0.033577 < 0.05 * 0.11256 

MEM11 0.027603 < 0.05 * 0.19922 
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(B). Model selection on environmental variables 
 

Dissimilarity 
matrix 

Environmental variable 

After double-stopping 
forward model selection 

Adjusted R2 P-value 

Jaccard 

Cattle presence 0.010721 0.0001 *** 

Average soil Shannon entropy 0.015704 < 0.001 *** 

Average monthly temperature 0.020614 < 0.001 *** 

Average monthly precipitation 0.025039 < 0.01 ** 

All variables 0.027232 N/A 

weighted UniFrac 

Cattle presence 0.020423 < 0.05 * 

Average monthly temperature 0.012315 < 0.01 ** 

Average monthly precipitation 0.033710 < 0.01 ** 

All variables 0.038557 N/A 
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Table S3. Results of forward model selection based on adjusted R2 and P-value, performed prior 
to implementing distance-based redundancy analyses (db-RDAs) and additional variation 
partitioning. Quantitative Jaccard and weighted UniFrac distances were used as response variables. All 
variables except precipitation in the Jaccard model were included in final db-RDAs and second round of 
variation partitioning analyses. 
 

  
After double-stopping forward 

model selection 

Dissimilarity 
matrix 

Predictor Adjusted R2 P-value 

Jaccard 

X coordinates (longitude) 0.062416 < 0.01 ** 

Y coordinates (latitude) 0.037077 < 0.001 *** 

Negative dbMEM 2 0.053218 < 0.05 * 

Negative dbMEM 5 0.050680 < 0.01 ** 

Negative dbMEM 8 0.057153 < 0.01 ** 

Negative dbMEM 10 0.046759 < 0.01 ** 

Negative dbMEM 11 0.032073 < 0.001 *** 

Ranked cattle abundance 0.010721 < 0.001 *** 

Average precipitation 0.042212 < 0.001 *** 

Average Shannon entropy of 
soil 

0.058946 < 0.05 * 

Phanaeus species 0.019942 < 0.001 *** 

Range overlap (“patry”) 0.026400 < 0.001 *** 

All variables 0.064215 N/A 

Weighted 
UniFrac 

Y coordinates (latitude) 0.016370 < 0.001 *** 

Negative dbMEM 6 0.060728 < 0.05 * 

Ranked cattle abundance 0.037549 < 0.05 * 

Average precipitation 0.053021 < 0.05 * 

Phanaeus species 0.044704 < 0.05 * 

Range overlap (“patry”) 0.028341 < 0.01 ** 

All variables 0.064637 N/A 
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Figure S4. Rarefaction curves indicate that rarefaction depths chosen were adequate to capture 
ASV diversity in our samples. Brown lines represent soil samples, whereas blue and gold lines are P. 
vindex and P. difformis samples, respectively. Soil samples were rarefied at 26,336 reads and gut 
samples were rarefied at 3,500 reads because soils were far more diverse than gut samples and overall 
had better sampling coverage.  
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Table S5. Indicator species analyses for different groupings of Phanaeus difformis and P. vindex 
gut microbiome samples in allopatry and in sympatry. Asterisks next to rg values indicate significance 
levels; * p < 0.05, ** p < 0.01, and *** p < 0.001. PD and PV stand for P. difformis and P. vindex, 
respectively. No species characterizing the combination of sympatric P. vindex and sympatric P. difformis 
gut microbiome samples were identified. 
 

 
 

Group 
 

 
 

Phylum, family, genus, species 
 

rg 

 

Percent Relative Abundance 

Allo. 
PD 

Symp. 
PD 

Allo. 
PV 

Symp. 
PV 

Allopatric 
P. difformis 

Proteobacteria, Orbaceae, Gilliamella, 
Unidentified species 

0.279 *** 0.697 0.161 0 0.030 

Firmicutes, Planococcaceae, Solibacillus, 
unidentified species 

0.278 *** 0.688 0.120 0.054 0.030 

Firmicutes, Planococcaceae, unidentified 
genus, unidentified species 

0.267 ** 2.349 0.367 0.341 0.679 

Proteobacteria, Rhodobacteraceae, 
unidentified genus, unidentified species 

0.258 ** 0.014 0.001 0 0 

Tenericutes, Spiroplasmataceae, 
Spiroplasma, unidentified species 

0.249 ** 0.006 0.001 0.001 0.001 

Proteobacteria, Comamonadaceae, 
Comamonas, unidentified species 

0.243 ** 2.041 0.704 0.011 0.451 

Bacteroidetes, Porphyromonadaceae, 
Proteiniphilum, unidentified species 

0.223 * 0.032 0 0 0 

Proteobacteria, Neisseriaceae, unidentified 
genus, unidentified species 

0.219 ** 0.098 0.005 0 0 

Firmicutes, Enterococcaceae, 
Enterococcus, unidentified species 

0.212 * 0.122 0.028 0 0 

Actinobacteria, Micrococcales Incertae 
Sedis, Timonella, uncultured bacterium 

0.208 * 0.543 0.262 0.059 0.245 

Proteobacteria, Enterobacteriaceae, 
unidentified genus, unidentified species 

0.192 * 1.218 0 0 0 

Bacteroidetes, Sphingobacteriaceae, 
Sphingobacterium, uncultured bacterium 

0.189 * 0.003 0.001 0 0 

Actinobacteria, Segniliparaceae, 
Segniliparus, Unidentified species 

0.187 * 0.152 0.033 0.069 0.044 

Bacteroidetes, Porphyromonadaceae, 
Dysgonomonas, uncultured bacterium 

0.18 * 1.194 0 0 0 

Firmicutes, Enterococcaceae, 
Enterococcus, unidentified species 

0.18 * 0.013 0 0 0 

Tenericutes, Mycoplasmataceae, 
Echinogammarus veneris 

0.178 * 0.646 0.023 0.041 0.032 

Proteobacteria, Enterobacteriaceae, 
Morganella, unidentified species 

0.17 * 0.101 0 0 0 

Proteobacteria, Rhodobacteraceae, 
unidentified genus, unidentified species 

0.167 * 0.039 0.002 0 0 

Saccharibacteria, unidentified family, 
unidentified genus, unidentified species 

0.163 ** 0.091 0 0 0 

Spirochaetae, Brevinemataceae, 
Brevinema, unidentified species 

0.163 * 0.063 0 0 0 

Proteobacteria, Moraxellaceae, 
Acinetobacter, unidentified species 

0.148 * 0.142 0 0.002 0 

Sympatric 
P. difformis 

Firmicutes, Enterococcaceae, Vagococcus, 
unidentified species 

0.363 *** 4.360 13.304 0.135 2.401 

Proteobacteria, Neisseriaceae, Vitreoscilla, 
Unidentified species 

0.295 *** 0.060 0.963 0.156 0.289 

Bacteroidetes, Porphyromonadaceae, 
Dysgonomonas, uncultured bacterium 

0.244 ** 0.308 1.590 0.092 0.499 

Firmicutes, Enterococcaceae, Vagococcus, 
unidentified species 

0.202 * 1.767 3.459 0.743 1.702 

Firmicutes, Family XI, Gallicola, uncultured 
bacterium 

0.199 * 0.017 1.145 0.107 0.376 

Bacteroidetes, Porphyromonadaceae, 
Dysgonomonas, uncultured bacterium 

0.199 * 0.001 0.055 0 0.013 



 39 

Table S5 (Continued) 
 

 
 

Group 
 

 
 

Phylum, family, genus, species 
 

rg 

 

Percent Relative Abundance 

Allo. 
PD 

Symp. 
PD 

Allo. 
PV 

Symp. 
PV 

Sympatric 
P. difformis 

Proteobacteria, Rhodobacteraceae, 
uncultured, bacterium endosymbiont of 
Onthophagus taurus 

0.196 * 0.002 0.013 0 0 

Firmicutes, Ruminococcaceae, 
uncultured, uncultured Firmicutes 
bacterium 

0.196 * 0 0.013 0 0 

Proteobacteria, Orbaceae, Gilliamella, 
Unidentified species 

0.192 * 0 0.001 0 0 

Proteobacteria, Coxiellaceae, 
Rickettsiella, Candidatus Rickettsiella 
viridis 

0.19 * 0 0.003 0 0 

Firmicutes, Enterococcaceae, 
Vagococcus, unidentified species 

0.179 * 0 0.061 0 0 

Allopatric 
P. vindex 

Proteobacteria, Enterobacteriaceae, 
unidentified genus, unidentified species 

0.318 *** 1.242 0.923 4.854 0.902 

Proteobacteria, Moraxellaceae, 
Acinetobacter, unidentified species 

0.278 *** 0.029 0.117 7.161 0.648 

Proteobacteria, Moraxellaceae, 
Acinetobacter, unidentified species 

0.248 ** 0.002 0.000 0.156 0.000 

Proteobacteria, Pseudomo   nadaceae, 
Pseudomonas, unidentified species 

0.239 ** 0.069 0.090 0.211 0.086 

Proteobacteria, Comamonadaceae, 
Delftia, unidentified species 

0.211 * 0.003 0.004 0.034 0.010 

Actinobacteria, Micrococcaceae, 
unidentified genus, unidenti                                                         
fied species 

0.207 ** 0.933 0.529 3.197 1.418 

Proteobacteria, Burkholderiaceae, 
Ralstonia, unidentified species 

0.202 * 0 0 0.003 0 

Proteobacteria, Enterobacteriaceae, 
Hafnia-Obesumbacterium, unidentified 
species 

0.202 * 0.023 0 2.471 
0.015 

 

Actinobacteria, Nocardiaceae, 
Rhodococcus, unidentified species 

0.197 * 0 0.001 0.013 
0.003 

 

Proteobacteria, Methylobacteriaceae, 
Methylobacterium, Methylobacterium 
aquaticum 

0.195 * 0.022 0.023 0.073 0.039 

Actinobacteria, Nocardioidaceae, 
Nocardioides, unidentified species 

0.194 ** 0 0 0.092 0 

Actinobacteria, Micrococcaceae, 
unidentified genus, unidentified species 

0.189 * 0 0.001 0.101 0 

Bacteroidetes, Flavobacteriaceae, 
Empedobacter, unidentified species 

0.187 * 0 0 0.011 0 

Bacteroidetes, Flavobacteriaceae, 
Flavobacterium, unidentified species 

0.186 * 0.006 0 0.083 0 

Firmicutes, Lachnospiraceae, 
Lachnoclostridium 5,Unidentified species 

0.184 * 0 0 0.016 0 

Firmicutes, Enterococcaceae, 
Vagococcus, unidentified species 

0.183 * 0 0 0.036 0 

Proteobacteria, Enterobacteriaceae, 
Morganella, unidentified species 

0.169 * 0.005 0.022 0.222 0 

Unassigned phylum, unassigned genus, 
unassigned species 

0.163* 
 

0 0 0.004 0 

Verrucomicrobia, DA101 soil group, 
unidentified genus, unidentified species 

0.154 * 0 0 0.003 0 

Proteobacteria, Comamonadaceae, 
unidentified genus, unidentified species 

0.153 * 0 0 0.049 0 

Sympatric 
P. vindex 

Actinobacteria, Micrococcaceae, 
Glutamicibacter, Unidentified species 

0.311 *** 0.035 0.466 0.414 1.221 

Actinobacteria, Microbacteriaceae, 
Leucobacter, unidentified species 

0.273 ** 0 0.002 0 0.015 
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Table S5 (Continued) 
 

 
 

Group 
 

 
 

Phylum, family, genus, species 
 

rg 

 

Percent Relative Abundance 

Allo. 
PD 

Symp. 
PD 

Allo. 
PV 

Symp. 
PV 

Sympatric 
P. vindex 

Firmicutes, Enterococcaceae, 
Enterococcus, unidentified species 

0.259 ** 0 0.053 2.927 9.900 

Proteobacteria, Moraxellaceae, 
Acinetobacter, unidentified species 0.243 ** 0.003 0.006 0.012 

 
0.027 

 

Actinobacteria, Promicromonosporaceae, 
Cellulosimicrobium, unidentified species 

0.237 ** 0 0 0 0.006 

Actinobacteria, Micrococcaceae, 
Glutamicibacter, unidentified species 

0.23 ** 0.363 0.368 0.212 0.751 

Bacteroidetes, Sphingobacteriaceae, 
Sphingobacterium, unidentified species 

0.224 ** 0 0 0 0.042 

Bacteroidetes, Flavobacteriaceae, 
Empedobacter, uncultured bacterium 

0.202 * 0 0.084 0 0.451 

Firmicutes, Veillonellaceae, uncultured, 
uncultured bacterium 

0.199 * 0 0.003 0 0.026 

Fusobacteria, Fusobacteriaceae, 
Fusobacterium, unidentified species 

0.194 * 0 0.025 0 0.264 

Actinobacteria, Micrococcaceae, 
unidentified genus, unidentified species 

0.187 * 0 0.013 0 0.178 

Actinobacteria, Dermacoccaceae, 
unidentified genus, unidentified species 

0.184 * 0 0.012 0.011 0.054 

Proteobacteria, Comamonadaceae, 
Comamonas, unidentified genus 

0.174 * 0.021 0.101 0.024 0.365 

Bacteroidetes, Sphingobacteriaceae, 
Sphingobacterium, unidentified genus 

0.17 * 0.108 0.110 0.041 0.637 

Bacteroidetes, Porphyromonadaceae, 
Dysgonomonas, Unidentified species 

0.169 * 0 0 0 0.019 

Allopatric 
P. difformis 

+ 
Sympatric 

P. difformis 

Actinobacteria, Propionibacteriaceae, 
Propioniciclava, uncultured bacterium 

0.22 * 0.189 0.183 0.070 0.049 

Bacteroidetes, Flavobacteriaceae, 
Cloacibacterium, Unidentified species 

0.184 * 0.011 0.007 0 0 

Firmicutes, Enterococcaceae, 
Enterococcus, unidentified species 

0.173 * 0.108 0.079 0 0 

Allopatric 
P. difformis 
+ Allopatric 
P. vindex 

Firmicutes, Planococcaceae, Kurthia, 
unidentified species 

0.187 * 9.286 3.631 9.118 4.997 

Allopatric 
P. vindex + 
Sympatric 
P. vindex 

Proteobacteria, Enterobacteriaceae, 
unidentified genus, unidentified species 

0.228 ** 0.491 1.087 2.329 3.343 

Actinobacteria, Micrococcaceae, 
unidentified genus, unidentified species 

0.189 * 0.094 0.056 0.359 0.231 

Allopatric 
P. difformis 

+ 
Sympatric 
P. vindex 

Proteobacteria, Rhodobacteraceae, 
unidentified genus, unidentified species 

0.234 ** 0.093 0.027 0.005 0.175 

Proteobacteria, Moraxellaceae, 
Acinetobacter, unidentified species 

0.2 * 1.108 0.192 0.028 0.980 
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Figure S6: Plot of distance-based redundancy analysis (db-RDA) based on the quantitative 
Jaccard dissimilarity among Phanaeus vindex samples in sympatry and in allopatry. Points on the 
plot indicate individual P. vindex beetles. Ellipses represent 95% confidence intervals around centroids of 
P. vindex in allopatry and in sympatry with P. difformis. All constrained axes together explain 10.89% of 
the total variation in multivariate space. Arrows indicate the strength of correlation of variables with 
dbRDA axes 1 and 2. Numerical variables constraining the ordination latitude (Lat), longitude (Long.), and 
average Shannon index of soil samples taken from the sampling areas (Soil). Constraining factor 
variables include cattle presence in the sampling area (low, medium, or high), and range overlap (i.e. 
sympatry or allopatry). Factor variables are automatically dummy coded; thus, the factor level coded as 
the intercept does not have a corresponding axis. All variables shown were significant following anovas 
(99,999 permutations). 
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Figure S7: Plot of distance-based redundancy analysis (db-RDA) based on the quantitative 
Jaccard dissimilarity among Phanaeus difformis samples in sympatry and in allopatry. Points on 
the plot indicate individual P. difformis beetles. Ellipses represent 95% confidence intervals around 
centroids of P. difformis in allopatry and in sympatry with P. vindex. All constrained axes together explain 
9.47% of the total variation in multivariate space. Arrows indicate the strength of correlation of variables 
with dbRDA axes 1 and 2. Numerical variables constraining the ordination latitude (Lat), longitude 
(Long.), and average Shannon index of soil samples taken from the sampling areas (Soil). Constraining 
factor variables include cattle presence in the sampling area (low, medium, or high), and range overlap 
(i.e. sympatry or allopatry). Factor variables are automatically dummy coded; thus, the factor level coded 
as the intercept does not have a corresponding axis. All variables shown were significant following 
anovas (99,999 permutations). 
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Figure S8: Plot of distance-based redundancy analysis (db-RDA) based on the quantitative 
Jaccard dissimilarity among samples of Phanaeus vindex and P. difformis in sympatry. Points on 
the plot indicate individual P. difformis and P. vindex beetles. Ellipses represent 95% confidence intervals 
around centroids of P. difformis in allopatry and in sympatry with P. vindex. All constrained axes together 
explain 11.24% of the total variation in multivariate space. Arrows indicate the strength of correlation of 
variables with dbRDA axes 1 and 2. Numerical variables constraining the ordination latitude (Lat), 
longitude (Long.), and average Shannon index of soil samples taken from the sampling areas (Soil). 
Constraining factor variables include cattle presence in the sampling area (low, medium, or high), and 
range overlap (i.e. sympatry or allopatry). Factor variables are automatically dummy coded; thus, the 
factor level coded as the intercept does not have a corresponding axis. All variables shown were 
significant following anovas (99,999 permutations). 
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