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ABSTRACT 

A main concern for producers of container grown plants is 

optimal water relations. Most problems occur because of poor physi

cal properties of the media, container design, and poor irrigation 

practices. 

The purposes of this study were (1) to determine the effects 

of container design on physical parameters of container media of 

differing bulk density and (2) to determine the effects of various 

edaphic parameters on the functioning of a new moisture controlling 

device (MCD), designed to optimize plant-media water relations. 

Four container designs and four media were tested to determine 

the following factors: total porosity, water-holding capacity, 

air space, and bulk density. As bulk density increased for the 

four media, total porosity decreased. An experimental prototype 

container with a fabric bottom, placed on a column of sand, resulted 

in removal of the perched water table, therefore increasing air 

space in a given medium. 

A newly developed moisture controlling device (MCD) was tested 

under laboratory and greenhouse conditions. The MCD was influenced 

by different media, soluble salt levels, and different moisture 

levels. The MCD responded well over the range of moisture found 

in container media and should prove to be useful under conditions 

where other devices fail. Water utilization of container grown 

Coleus was monitored using the MCD and it was found that media was 
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the dominant factor in the time to wilting of these plants under 

greenhouse conditions. Milliampere readings on the MCD were highly 

correlated with percent water holding capacity remaining in a con

tainer, though influenced by soluble salt level and media. 
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CHAPTER I 

INTRODUCTION 

Development of science and technology applicable to automation 

of container culture of ornamental plants is still in a beginning 

stage. New developments in this area should be geared towards 

increased automation and more precise quality control. Some aspects 

of conventional container culture such as maintenance of optimum 

water relations in containers and responsiveness of irrigation con

trol systems need to be analyzed and modified in order to render 

automation and precise control feasible. Therefore, this thesis 

was designed to address the effects of container design and media 

on water relations and to address the feasibility of using a newly 

developed moisture controlling device to determine moisture levels 

in a container medium. If sufficiently reliable, this device could 

feasibly be used to control automatic irrigation systems, thereby 

optimizing plant growth by maintaining desirable water relations. 

Irrigation is an essential requirements for the production 

of container nursery stock since container grown plants are strictly 

dependent upon a controlled supply of water (21). Container design 

and media influence water relations in a container (106). The com

position of most potting mixes for container crops are designed 

to encourage good aeration and drainage because poor aeration of 

the growing medium has often been the limiting factor in growth 
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and functioning of root systems in containers (68). Deep containers 

and coarse textured media improve aeration porosity and reduce water 

holding capacity. The opposite is true for shallow containers because 

the perched water table reduces the portion of the medium column 

with adequate aeration (88). The same perched water table exists 

in deep containers, but a greater portion of the medium column 

with adequate aeration is available to the root system of the plant. 

Hand watering of container grown crops was the most widely 

used method of irrigation in wholesale nurseries for many years. 

However, reasons such as reliability and cost of labor, and improper 

irrigation techniques have led to the automation of irrigation sys-

. terns (98). The purpose of good water management is to apply water 

at the frequency and in the amounts necessary to produce optimum 

growth (29). Excessive irrigation often results in poor aeration, 

waste of water and fertilizer, reduced plant growth, increased occur

rences of root rot, and eventual death of plant material (42). Most 

irrigation or moisture sensing devices used for field soils are not 

suitable for container mixes. For example, tensiometers have been 

used successfully for container culture with some media but are 

inadequate in coarse or very porous media (38). Of the devices 

presently used for container irrigation control, few actually sense 

the moisture content of a medium, activate and control irrigation 

systems, and few are applicable to a wide range of soils and soilless 

media (100). 
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A new moisture controlling device developed at The University 

of Tennessee, Knoxville shows promise of overcoming these deficiencies. 

This series of experiments was designed to gain information on the 

effect of various edaphic parameters on the functioning and potential 

application of the device, and to study the effects of a new container 

design on water related edaphic factors. 



CHAPTER II 

EFFECT OF CONTAINER DESIGN ON THE 

PHYSICAL PARAMETERS OF MEDIA 

Introduction 

Growing media and container design are two factors which 

influence plant growth regardless of species when adequate water 

and air are present in the container medium (45). A problem 

associated with media and conventional container designs in 

nursery containers is decreased aeration due to development of a 

perched water table. The height of a container affects water distri

bution in a medium. Even when the container medium is fully drained 

or at container capacity, the bottom of the medium column is saturated. 

Water content of the medium decreases with increasing height above 

the bottom of the container (87). Characteristics such as porosity, 

bulk density, and water retention are different for deep, unconfined 

field soils compared to free draining potting mixtures (37). A 

new container bottom design utilizing a porous polyester fabric 

bottom has been shown to prevent development of the perched water 

table found in a conventional container. Thus, increased drainage 

and aeration can be achieved (82). Many researchers have reported 

physical parameters for a variety of media, but it has been suggested 

that air space values cannot be accurately reported for a given 

medium without regard for specific container size and shape, since 
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drainage is influenced by container height (53). Therefore the 

purpose of this study was to determine the physical parameters of 

four media as influenced by container design. 

Literature Review 

The design of nursery containers has changed over the past 

forty years from clay pots and metal cans to the now common plastic 

and polyethylene containers. Modern plastic containers have numerous 

advantages over other types. They are sturdy, lightweight, reuseable, 

flexible, and require little storage space since they nest together 

(40). 

In the 1960 1 s, square and polyhedric containers were considered 

to have no advantages compared to the typical round container (67). 

Although square containers do not presently have large market accep

tance, they are better suited for growing, lend themselves to mech

anization, and should prove to be superior for over-wintering and 

various other production practices (20). Square containers have 

been shown to provide significant winter protection when bunched 

together for container grown nursery stock (81). Van de Werken (99) 

has designed a square container with numerous advantages such as 

winter protection, elimination of the perched water table, prevention 

of rooting-out, a low center of gravity, and a folding design which 

allows for compact packing. 

Container design is known to affect the growth of plants. 

Growth is stimulated when there is a matching of container shape 



and the natural root growth pattern of the plant (10, 55). Top 

growth of plants often increases as container size increases (11, 

96). 

Poly bags have been promoted recently for use as containers 

(35). Advantages such as low cost, longevity, ease of storage, 

availability in many sizes, and availability with black or white 

outside surfaces have been noted (47). According to Whitcomb (107), 

plants grown in poly bags exhibit a 5 to 15% increase in growth, 

a sixfold increase of visible root tips, and greater braching of 

roots due to a root pruning effect. 

The placement of a medium in a shallow container changes 

the air-water relationship because the medium column is not continuous 

as found in an unrestricted field soil. Therefore, a perched water 

table occurs at the bottom of the container (17, 106). Thus, more 

water is held in a container medium than in a similar medium in 

the field, especially in the lower portion of the container (112). 

This parameter has become known as container capacity and is expressed 

as the percent water by volume which is held by a medium in a con

tainer of a given depth with zero hydraulic head at its lower surface 

and in the absence of evapotranspiration (108). 

In order for drainage to occur, the hydraulic pressure at 

the bottom of a container must be greater than zero. When drainage 

stops, suction at the bottom of the container will equal zero and 

the suction at the surface of the medium will be equal to the depth 

of the medium column (38). The retention of moisture in containers 
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is a function of depth (73). As container height increases, air 

space increases and water-holding capacity decreases (5, 103). The 

placement of drainage holes can affect the physical properties of 

a medium, but the number and size of holes in plastic pots does 

not affect drainage (17). However, side holes are preferred to 

bottom holes which may become plugged and cause water logging of 

the root system or create rooting-out problems. 

The function of a growing medium is to provide mechanical 

support, to supply water and essential nutrients, and to allow for 

the diffusion of oxygen to the roots (63). Reproducible growing 

media are necessary so standardized cultural practices can be uti

lized and consistent results obtained (49). The lack of standardi

zation of growing media has been noted as one of the largest drawbacks 

in the nursery industry (23). Due to variability among media, indi

vidual management programs are necessary if comparable plant growth 

is to be realized (86). 

Media components vary considerably in their texture and physical 

properties (64). Most container grown plants are produced in light

weight soilless media which are formulated to achieve desirable 

physical and chemical properties. Many media are a combination 

of two or more components (74). The pore size distribution of a 

medium influences water retention and drainage characteristics (71). 

As pore size decreases, water-holding capacity and capillary rise 

of water increase (106). Soil moisture which is available to plant 
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roots is largely determined by pore size distribution and bulk density 

(94). 

Physical and chemical properties of a medium are influenced 

by bulk density (93). Total porosity of media mixtures have been 

predicted by bulk density' alone (39). When mineral soil particles 

are used, the influence of mixes on total porosity and water-holding 

capacity is not consistently predictable (29). Bulk densities of 

0.75 g/cc or less are acceptable for container media (49), with 

a range of 0.4-0.5 g/cc being commonly recommended (16, 18). An 

average bulk density for a mineral loam soil having good physical 

properties is 1.1 to 1.4 g/cc (24). After irrigation, a medium 

must retain a sufficient quantity of water while still having ade

quate aeration. 

Poor aeration of a growing medium is often the limiting factor 

in the growth and function of roots (68). Fluctuations in oxygen 

and carbon dioxide content of a medium are influenced by the moisture 

content, physical structure, management of the medium, and presence 

of roots and microorganisms (63). Total porosity is equal to the 

air space plus the water holding capacity at container capacity (32}. 

A suggested acceptable value for total porosity is as high as 85% 

(22). Acceptable volumes of air space range from 1) 5% (29), 2) 10-20% 

(18), to 3) 20-35% (83). It has been suggested that air space should 

never go below 20% (57), while air space of 32-35% represents exces

sive drainage (106). If a medium has sufficient air space, the 
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next most important parameter is the water holding capacity (4). On 

a volume basis, water holding capacity considered acceptable for 

container grown plants ranges from 1) 30-60% (73), or (2) 35-50% (18). 

Two commonly used ingredients in container production are 

peat moss and sand (21). Peat moss is considered to be a standard 

component in nearly 90% of all mixes used in the nursery industry 

(51). Peat moss is a fairly uniform substrate which is relatively 

free of disease and nutrients. It generally has very high total 

porosity, high air space, and exceptional water-holding capacity (4) 

while having water release characteristics most suited for container 

plant production (41). However, peat moss in combination with pine 

bark and/or peanut hulls tends to reduce total porosity, air space, 

and decreased growth of some plant species (9). 

Sand varies greatly in its physical and chemical properties. 

As a container mix component, the ideal particle size is 1/16 to 

l/8 11 (65}. Coarse sand was found to have no effect on air space, 

but fine sand decreased air space (76). Percolation rate was found 

to decrease in pine bark:sand mixes as percent sand increased (15) 

and total porosity was decreased in sand:soil mixtures because fine 

soil particles packed into the large sand pores (89). Addition of 

sand to container mixes was found to decrease total porosity, air 

space, and water available for plant usage (34). 

Mineral or field soils can rarely be used as a growing medium 

in containers due to retention of excess water and reduced aeration 
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(38) caused by the small size of pores in clay substrates (63). 

After irrigation, the pores of field soils often remain filled with 

water thus restricting oxygen supply to the roots (38). Therefore 

it is often necessary to add large quantities of organic matter 

or coarse aggregrates in order to increase drainage and air space 

(63). 

Pine bark has been used to a great extent in the formulation 

of nursery potting mixes in the southeastern U.S. because it is 

inexpensive, lightweight, uniform, reproducible, and generally avail

able (69). Much work has been done on the development of pine bark: 

sand mixes based on screen analysis (72). Bark has been found to 

become waterlogged, especially in the lower part of a container, 

thus increasing moisture and causing a decrease in air space (78). 

Water is released by pine bark at low matrix suctions, thus a low 

water:air ratio occurs (33). 

Pine and hardwood barks are common media components in many 

parts of the United States (7). Hardwood bark came into use during 

the 1970 1 s because of its disease-suppressing properties (43, 62). 

Composting of hardwood bark is generally required before usage (44). 

Recent studies have shown that blending composted pine bark and 

hardwood bark produces pH, physical properties, and plant growth 

acceptable for container production (8). A 1:1 mixture of pine 

bark and hardwood bark resulted in increased air space and water 

holding capacity, thus providing better physical properties than 

either component alone (8). 
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Materials and Methods 

The experiment was arranged as a completely randomized design 

with four media, four container types, and three replications. Four 

container designs were chosen to test various edaphic parameters. 

Each container was capable of holding 1 gallon or 3.8 liters of 

medium. The first container was a Zarn 400 {Z)(Zarn, Inc.), chosen 

to represent a conventional round polyethylene container. The second 

container was a black poly bag (PB) (Menne Nursery Corp.) 

The next two square containers were designed and fabricated 

for this study. Both containers were made of 1/8 11 polyethylene 

sheeting which was cut in 611 by 24 11 strips and folded to make a 

cube 6" square. One container type (CS) had a solid black polyethy

lene film bottom (4 mil), attached to the container with Monsanto 

All-Purpose Tape. Two holes, 5 mm in diameter, were drilled at 

the base of each side, each two inches from the corner of the con

tainer. The fourth container (CF) was also a cube of 6", the bottom 

being made of porous Formax polyester fabric (0.01" by 0.005" mesh). 

The Formax fabric was attached to the bottom edge of the container 

by heat welding until the polyethylene melted and bonded with the 

fabric. 

Four media were chosen to represent a wide spectrum of uses 

and bulk densities. The media were: Etowah loam, A-horizon mineral 

soil (EL); Pro-Mix BX, a commercially prepared floricultural mix (PM); 

a 3:1:1 mixture by volume of pine bark, sphagnum peat moss, and river 



12 

sand (3-1-1); and a 1:1 mix by volume of pine bark and hardwood bark 

mixed before composting with nutrients added (1-1) (92). 

Each medium was air dried for one week before the experiment 

was conducted. Each container was lined with a one gallon size 

(11 1/211 by 12 1/2 11 
) plastic food storage bag and weighed. 3000 cc 

of each medium was measured and placed in each container, with each 

container being tapped five times to allow for settling of the medium. 

Then 1400 cc of water containing 0.1% Triton AG-98 (Rohm 

and Haas, Charlotte, NC} was added to each container. Triton AG-98 

was added to aid in wetting the hydrophobic media particles. The 

plastic bags in the containers were sealed and the containers were 

allowed to equilibrate for twelve hours. At this time, the bags 

were opened and water was added to the media until the surfaces 

glistened of moisture. The amount of total water added (cc) deter

mined the total porosity of each medium. 

After sealing each bag, ten holes were punctured in the bottom 

18 11of each bag. All containers were placed on an column of sand 

and allowed to drain for twenty-four hours. After twenty-four hours 

of free drainage, the containers were at container capacity. Each 

container was then weighed using a Terraillon Manostat gram balance. 

Since one cc of water is equal to one gram, percent water-holding 

capacity and percent air space at container capacity were determined 

on a weight loss basis and expressed as percent of volume. The 

following formulas were used to determine the values present in 

this study: 
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BULK DENSITY (g/cc) = air dry weight/volume of medium 

TOTAL POROSITY= WATER HOLDING CAPACITY+ AIR SPACE 

TOTAL POROSITY (%v) = cc of water needed to saturate 
a known of medium 

X 100 cc volume of medium 

WATER-HOLDING CAPACITY (%v) =wt.of media at 24 hours -
wt. of dry media 
1% of volume of media 

AIR SPACE (%v) = vol. of water at saturation -
vol. of water held at 24 hours 
1% of volume of media 

Mechanical analysis to determine the% sand,% silt, and 

%clay for the EL medium was performed using the hydrometer method 

(12). Soil (EL) core samples were taken from the field and pore 

size distribution was determined using a tension table apparatus 

under 50 cm of water tension (79). The EL soil was also tested 

to determine low moisture tension release under 5 and 15 pounds 

of pressure using the porous plate method (79). Five and 15 pounds 

of pressure were used because 5 pounds= 1/3 bar= field capacity. 

Most container grown plants are irrigated before one bar of tension 

occurs, thus 15 pounds of pressure (1 bar) was used. 

Results and Discussion 

The data for the physical parameters of the Etowah loam, 

A-horizon soil are shown in Table 1. Using the hydrometer method, 

the textural category for the EL soil was determined to be a loam. 

Over one-third of the soil particles were classified as silt which 

is important because the silt fraction of most mineral soils 
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Table 1. Physical Parameters of an A-Horizon Etowah Soil 

Etowah A-Horizon Soil 

Mechanical Analysis of Soil by the 
Hydrometer Method 

%Sand 42.3 
% Silt 34.7 
% Clay 23.0 
Texture Loam 

Determination of Pore Size Distribution 
at 50 cm Tension 

%Macropores 9.0 
%Micropores 50.2 
Bulk Density 1.28 

Determination of Moisture by the Porous 
Plate Method 

5 Pounds of Pressure 
%Moisture by Weight 21.6 
%Moisture by Volume 27.6 

15 Pounds of Pressure 
%Moisture by Weight 16.0 
%Moisture by Volume 20.5 
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contributes greatly towards available water for plant usage. The 

bulk density (1.28 g/cc) was in the normal range for a productive 

loam soil. 

The pore size distribution consisted of 9% macropores compared 

to 50.2% micropores measured at 50 cm water tension. Macropore 

water in container media is considered to be that which is held 

between 1-100 cm of water tension (14). Micropore water is that 

released at greater than 100 cm tension. Since the determinations 

were made at 50 cm of water tension, macropore space would be 

expected to increase if 100 cm tension had been used. Easily avail

able water is that which is held between 10-50 cm water tension, 

which represents 75-90% of the total water available to plants (28). 

The parameters for testing mineral soils are different than for 

container media, thus 50 cm water tension was used as the standard 

for determining macro and micro pore space for the EL medium in 

this study. Percent moisture by volume was determine to be 27.6% 

and 20.5% at 5 and 15 pounds of pressure, respectively. Five pounds 

of pressure is equal to 1/3 bar, therefore being close to field 

capacity under natural conditions. 

Bulk density for the four media used in this study was as 

follows: 0.19 (PM), 0.36 (1-1), 0.55 (3-1-1), and 1.24 (EL) g/cc, 

determined on an air dry basis. The bulk density of the air dry 

EL soil was very similar to that determined in the lab (1.28 g/cc). 

Total porosity for the different media was 73.3% (PM), 60.0% (1-1), 
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56.7% (3-1-1), and 53.3% (EL). Therefore, as bulk density increased, 

total porosity decreased for the media used in this study. 

The influence of container design on water holding capacity 

and air space for all media is presented in Table 2. Removal of 

the perched water table in the container with the Formax bottom 

(CF) placed on sand was evident as it had the lowest percent water 

holding capacity and the highest air space, exactly the opposite 

of the CS container with the solid bottom. Table 3 shows the influ

ence of media on water-holding capacity and air space for all con

tainer types at container capacity. The mean water-holding capacity 

and air space were within acceptable ranges for container production 

for the following media: PM, 3-1-1, and EL. The air space (32.9%) 

and water-holding capacity (27.1%) for the 1-1 medium were considered 

to be above and below the acceptable limits for these parameters, 

respectively. The mean water holding capacity for the EL medium 

(Table 3) was greater (36.2%) than the moisture retained at 5 pounds 

of pressure (27.6%, Table 1), indicating that the EL medium at con

tainer capacity was at a lesser tension and holding more water than 

at field capacity. 

The media consisting of composted hardwood bark and pine 

bark had the greatest air space for the composite of all container 

types (Table 3). Pro-Mix BX had the greatest mean water-holding 

capacity and a high mean air space. The 3-1-1 media had an air 

space only 0.6% greater than the EL soil (Table 3). In all container 
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Table 2. Influence of Four Container Designs on Mean Percent Water 
Holding Capacity and Mean Percent Air Space Across all 
Media at Container Capacity 

Container Mean % 
Type Mean % WHC Air Space 

cs 42.0a 18.8d 

z 38.4b 22.Sc 

PB 37. Sc 23. 3b 

CF 29.6d 31. 2a 

Duncan's New Multiple Range Test - means within columns with 
the same letter are not significantly different at the 5% level. 
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Table 3. Influence of Four Media on Mean Percent Water Holding 
Capacity and Mean Percent Air Space Across All Container 
Types at Container Capacity 

Media 
Type Mean% WHC 

PM 45.4a 

3-1-1 38.9b 

EL 36. 2c 

1-1 27. ld 

Mean% Total 
Air Space Porosity 

27.9b 

17.8c 

17. 2d 

32.9a 

73.3% 

56. 7% 

53.4% 

60.0% 

Duncan's New Multiple Range Test - means within columns with 
the same letter are not significantly different at the 5% level. 
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types except the CF, the EL medium had significantly greater air 

space than the 3-1-1 medium (Table 4). The overall mean for the 

3-1-1 medium was greater than the EL medium (Table 3) because of 

the high percentage of air space (28.9%) found in the CF container 

compared to a high of 19.4% for the EL (Table 4). The 1-1 mix had 

the lowest water-holding capacity in all container types (Table 5). 

Tables 4 and 5 show significant differences for different media 

and container designs for air space and water-holding capacity. 

This research demonstrates that for a variety of media of 

different bulk densities and consisting of different media components, 

air space and water-holding capacity can be manipulated by altering 

container design. The 1-1 medium appears to have excessive drainage 

and therefore increased air space which could be useful for crops 

requiring a high percentage of air space in the medium. Pro-Mix BX 

has very good physical properties whereas it is interesting to note 

the often low percentage of air space for the 3-1-1 medium compared 

to the EL field soil. 

The study shows that air space can be greatly increased for 

different media by eliminating the perched water table. At container 

capacity, the CF container increased air space 77% to 137% in the 

often used 3-1-1 nursery mix and 29% to 94% in the PM mix, compared 

to other containers tested (Table 4). This research also shows 

that the amount of water held at container capacity is greatly 

affected by container design. For the 3-1-1 mix, the water retained 
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Tab1e 4. Percent Air Space by Container Type and Media at Container 
Capacity 

Container Media 
Type 1-1 PM 3-1-1 EL 

CF 38.3a 38. 2a 29.9d 19.4g 

PB 34.7b 24.4f 16. 3i 18.0h 

z 31.lc 29.5d 13.6j 15.6i 

cs 27.6e 19.7g 12.2k 15.6i 

Duncan's New Multiple Range Test - means within rows and 
columns with the same letter are not significantly different at the 
5% level. 
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Table 5. Percent Water Holding Capacity by Container Type and Media 
at Container Capacity 

Container Media 
Type 1-1 PM 3-1-1 EL 

CF 21. 71 35.lg 27.7j 33.9h 

PB 25.3k 48.9b 40. 4e 35.3g 

z 28.9j 43.Bcd 43.ld 37.7f 

cs 32.4i 53.6a 44.5c 37.7f 

Duncan's New Multiple Range Test - means within rows and 
columns with the same letter are not significantly different at the 
5% level. 
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at container capacity ranged from 44.5% to 27.7% while for the PM 

mix it ranged from 53.6% to 35.1% (Table 5). Air space for the 

1-1 mix ranged from 38.3% to 27.6% and from 19.4% to 15.6% for the 

EL medium (Table 4). Less variation in air space for the EL medium 

can be accounted for by the greater amount of water held by micropores 

compared to the other media. 

This study indicates that container design has a significant 

effect on physical parameters of a medium. Although physical param

eters have often been reported without regard for container design, 

this study indicates that reporting these parameters without concern 

for container design may be less useful than once thought. 



CHAPTER III 

INFLUENCE OF SOLUBLE SALTS AND PERCENT MOISTURE CONTENT ON THE 

FUNCTIONING OF A NEW MOISTURE CONTROLLING DEVICE 

Introduction 

The ability to control soil moisture in a container at a 

uniform level is one of the problems associated with container plant 

production. The supply of water to plants has been noted to account 

for many of the problems associated with greenhouse culture (38). 

More precise irrigation indicators are necessary to prevent stress 

associated with fluctuations in moisture availability (36). 

The following questions are often considered before applying 

water to container grown plants: 1) how much water to apply?, 2) when 

should plants be irrigated?, 3) what effect does moisture stress 

have on quantity and quality of plant growth?, and 4) what method 

or equipment should be used for irrigation? (63). Irrigation fre

quency is influenced by environmental parameters such as size of 

plants and containers, potting medium, media and air temperatures, 

solar radiation, humidity, and air movement (42). Integration of 

these factors is necessary to produce quality plants while minimizing 

water related stress. 

A number of methods to control or measure soil moisture have 

been tested during the past ninety years. At the turn of the century, 

electrical resistance methods (31) and auto-irrigators (61) were 

23 
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being developed. It was noted in 1897 (110) that for the in situ 

measurement of soil moisture by electrical resistance, an instrument 

would have to be accurate over a wide range of moisture levels, 

portable, compact, and lightweight. Other considerations for the 

development of a soil moisture determining device are 1) independance 

of salt content to a large degree, 2) accurate over a complete range 

of moisture contents, 3) rapid and simple to operate, 4) applicable 

to soils in situ, and 5) not greatly influenced by temperature (26, 

84). 

Researchers at The University of Tennessee, Knoxville have 

recently developed a moisture sensing and irrigation controlling 

device suitable for a wide range of container media in which other 

methods fail (100). The purpose of this study was to determine 

the effects of soluble salt levels and moisture regimes in different 

media on the current flow (milliamperes) through these media using 

the newly developed moisture controlling device. 

Literature Review 

Two radiological methods are available for the measurement 

of soil water, these being neutron scattering and gamma ray attenua

tion (14). Both methods have advantages in that the equipment is 

portable, measurements can be taken at permanent observation sites, 

and the edaphic environment is not disturbed after initial 

installation (14). 
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Neutron scattering devices are based on the fact that hydrogen 

atoms have a greater ability to slow down and scatter fast neutrons 

than most other atoms; thus, counting slow neutrons in the vicinity 

of fast neutrons provides a means of estimating the hydrogen content 

of a medium, which is proportional to the amount of water present (24). 

Disadvantages of this method are 1) expense, 2) legal restrictions 

because of radioactivity, and 3) it must be calibrated for each 

soil texture (58). Neutron scattering measurements are not accurate 

in shallow soils and are affected by soil organic matter and certain 

mineral elements (29, 58). 

Gamma ray attenuation or absorption is the measurement of 

changes in soil water content by the change in gamma radiation 

absorbed. The amount of radiation passing through a soil depends 

on its density, which changes with the moisture content (58). This 

method has many of the advantages of the neutron scattering method, 

but it is assumed the changes in density are due to changes in soil 

water content (14); therefore, it is only useful in soils where 

the change in bulk density is very small compared to the water con

tent. Neutron scattering and gamma ray attenuation have not been 

adopted by commercial growers because the cost of equipment is too 

high and the radiation hazard in shallow growing media is too great 

(63). 

Water has a higher dielectric constant than dry soil, there

fore the value of the soil dielectric constant varies with changes 
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in water content (58, 85). The major advantage of this method is 

that results are only slightly affected by the salt concentration 

in a soil solution (2). The disadvantages of the system are problems 

associated with electrode contact effects (101}, temperature variation 

effects (58), and changes in bulk density related to moisture content 

(85). 

Shaw and Baver (84) made use of the phenomenon that as the 

moisture content of a soil decreases, the conduction of heat also 

decreases. This is known as thermal conductivity. A heating element, 

usually copper, is placed in the soil, an electrical current passed 

through it, and the amount of heat dissipation or the change in 

current magnitude is measured (58, 85). The major advantage of 

this system is that salts in the soil solution have little effect 

on the results obtained. Problems encountered are lack of sensitivity 

at low matric potentials and problems with electrode contact because 

of shrinkage of media during drying cycles. Furuta (29) has suggested 

that this method should be useful for determining the moisture content 

of a container medium, although this method is not commonly in use. 

Electrical resistance between two metal electrodes in the 

soil as a method of measuring soil moisture content was attempted 

in 1898 (110). Early attempts using this method were unsuccessful 

due to variations in soil salt solutions, but these problems were 

overcome by embedding the electrodes in plaster of paris blocks (13). 

Gypsum blocks are popular because they can be made cheaply and they 
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mask the effects of high soluble salt concentrations. Problems 

associated with gypsum blocks are that they often deteriorate within 

one season, but they are effective over the range of soil moisture 

which is available to plants (0.5 to 15 bars). These blocks work 

best in dry soils and the effects of electrode contact, soil salt 

concentration, and temperature induced resistance are moderated (58). 

Nylon and fiberglass resistance blocks are available, and although 

they are longer lasting, they are affected by the soil salt concen

tration to a greater degree. One advantage of this system is that 

they can easily be attached to automatic irrigation equipment {85). 

Resistance blocks are not considered to be accurate or reliable 

within the moisture range found in container grown plants {29). 

Tensiometers have been reported to be useful for the auto

matic irrigation control of greenhouse crops (75, 105). The first 

commercial installation of a completely automatic sprinkler system 

in a container nursery using tensiometers was reported in 1964 (98). 

Tensiometers allow for the direct measurement of the soil matric 

potential or suction (28, 58). Problems occur in porous media in 

containers due to poor contact between the medium and the porous 

ceramic tip of the tensiometer (29, 38). The tensiometer is very 

useful for measuring the matric potential of moist media, but air 

begins to enter the porous cup below 80 KPa (1 KPa=0.01 bar), thus 

making the tensiometer unreliable (58, 59). Tensiometers are made 

in different sizes suitable for small pots (38), and electrical 

https://KPa=0.01
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switching devices can be purchased for automatic irrigation control 

(59). Tensiometers have been used successfully to determine the 

matric potentials for water release curves of container media (53). 

Gaggini (30) has suggested that one gallon containers be watered 

at 20 KPa and that irrigation of larger containers should be trig

gered at 30 KPa. 

Early attempts to maintain a preset media matric potential 

involved the use of autoirrigators (66). Self-irrigating pots are 

variable in their ability to maintain uniform soil moisture (80) 

although successful maintenance of a matric potential of 50 cm water 

tension has been reported (77). A number of methods based on gravi

metric loss have been proposed for laboratory studies (6, 60). 

White and Shaw developed a gravimetric device for controlling irriga

tion systems that integrated many of the factors affecting the edaphic 

regime which influence water loss and uptake of a container grown 

plant (109). Use of porous ceramic bulbs may have potential for 

controlling the moisture content of container media (54) but further 

research is needed with plants growing in containers. 

Distilled or pure water is a poor conductor of electrical 

current; whereas, water containing dissolved salts or charged ions 

will conduct a current proportional to the amount of salt in solution 

(48). Since most media are a nonconducting porous matrix, their 

electrical resistance is a function of the electrolytic concentration 

and the moisture content of a given medium. Altering either parameter 
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should allow for the measurement of electrical resistance between 

two electrodes. It has been noted that such methods appear unworkable 

(14). 

Electrical resistance between two electrodes has never shown 

much promise as an indicator of soil moisture content. Erratic 

measurements often occur because electrical contact between a medium 

and the electrode is altered due to shrinking and swelling of the 

medium in relation to the moisture content (2). All electrical 

resistance units are affected by the electrolytic concentration 

of the soil solution (2, 14), therefore introducing error in measure

ments taken. 

Total soluble salts in a growing medium can be determined 

with the use of a conductivity meter (102). Electrical resistance 

is defined as E = IR, where E = volts, I= current in amperes, and 

R = resistance in ohms. Electrical conductance, C, is the conductivity 

of a solution in mhos and is the reciprocal of resistance, R, expressed 

as C = I/R (48). Specific conductance, L, of a solution is that 

measured between two electrodes one cm2 in cross section and one 

cm apart at 25°C. From this, the following conversions are possible 

(50): 

Osmotic Pressure (atm.) = 0.28 - 0.36 L mmhos/cm 

Milliequivalents of salt/liter= 12.5 L mmhos/cm 

Parts per Million of salts= 640 L mmhos/cm 

The specific electrical conductance of a media extract is linearly 

related to the amount of salts in solution. This is important because 
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soluble salts decrease the availability of water by increasing osomotic 

pressure (38, 59). This significance can be seen since the total 

water potential of a container medium is equal to the matrix poten

tial (moisture tension) plus the osmotic potential {17). 

When expressing electrical conductivity (EC), the term mho 

has been replaced by the term Siemen, with 1 Siemen = 1 mho. Thus 

current terminology for expressing EC in the USA is in dS/m which 

is equal to mmhos/cm. 

Materials and Methods 

The experiment was arranged as a nested design with six mois

ture levels, two soluble salt levels within each moisture level, 

four media within each soluble salt level, four different aliquot 

levels within each medium, and four samples per aliquot level. Each 

aliquot level was based on physical parameters of container design

media relationship determined in Chapter II. 

The media used in this experiment were the same as previously 

described in Chapter II: 1-1, 3-1-1, EL, and PM. The container 

designs were also the same as described in Chapter II: Z, PB, CS, 

and CF. The six moisture levels were 0, 20, 40, 60, 80, and 100% 

of the water held by each container type at container capacity as 

determined in Chapter II. The milliliters of solution needed to 

increase the moisture content of each medium in 20% increments for 

each container design is presented in Table 6. The soluble salt 

solutions used were 50 ppm (0.28 dS/m) and 500 ppm (2.30 dS/m) based 
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Table 6. Milliliters of Soluble Salt Aliquot Treatment Necessary 
to Achieve 20% of Container Capacity for 3000 cc of Each 
Medium* 

Aliquot Portion Mediafor Container 
Type PM EL 3-1-1 1-1 

z 294 226 259 173 

PB 263 212 242 152 

cs 322 226 267 196 

CF 211 204 167 130 

MEAN 273 217 234 163 

* - Medi a volume of 3000 cc. 
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on %N of 20-20-20 (Plant Marvel Laboratories, Inc., Chicago Heights, 

IL). 

Eight experimental groupings were used, each group having 

sixteen experimental units (four samples x four container designs). 

Each main group was a soluble salt level (2) times medium (4) com

bination. Each soluble salt solution contained 0.1% Triton AG-98 

surfactant (Rohm and Haas, Charlotte, NC). 

Three thousand cc of air dry medium was placed into Rubbermaid 

pans (Rubbermaid, Inc., Chicago Heights, IL) having dimensions of 

11 1/211 x 13 1/211 x 5 1/411 
• Each experimental unit was then wetted 

with the appropriate aliquot volume of soluble salt solution, covered 

with a plastic bag to prevent evaporation, and allowed to equilibrate 

for twelve hours before testing. At each application, the aliquot 

solution was added and mixed by hand for twenty turns. Data recorded 

at the 0% level was for air dry media. A 12 volt light bulb was 

attached to the MCD through the solenoid connector in order to deter

mine if solenoid activation would have occurred. The MCD was set 

at 16.0 milliamps for solenoid activation, indicated by the turning 

on of the light bulb. 

Milliamp readings and soluble salt measurements were taken 

for each experimental unit after equilibration at each moisture 

level (0-100% container capacity). Milliamp readings were taken 

utilizing a new moisture controlling device (MCD) developed at The 

University of Tennessee, Knoxville (100). A milliamp meter (Triplett 
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Corp., Model 310) was attached in-line between the MCD and the elec

trodes to increase the accuracy of readings. The electrodes used 

were stainless steel Scoopulas (Fisher Scientific Co.,Pittsburgh, 

PA) coated with Plasti Dip (POI, Inc., St. Paul, MN), a flexible air 

dry plastic coating. A surface area of 2.25 cm2 at the tapered 

end of the Scoopula was left uncoated, with this exposed end being 

inserted into the medium. The electrodes were placed 12 cm apart 

(parallel) and inserted to a depth of 9 cm in the medium being tested. 

Media conductivity levels were determined using a 1:2 (medium:water) 

by volume method (103) utilizing a Beckman Solu-bridge. A 50 cc 

sample of medium was diluted with 100 cc of distilled water, stirred, 

and allowed to set for one hour before testing. After filtering 

the sample, the 50 cc sample of medium was returned to its correspond

ing container. Solution temperatures were determined using an Omega 

450 ATH Thermistor Thermometer (Omega Engineering, Inc., Stamford, CT). 

Results and Discussion 

As far as is known, there is no low voltage electronic sole

noid controlling device based on current flow through a medium as 

influenced by the moisture content. The moisture controlling device 

(MCD) has a unique feature in that it can be set to maintain a medium 

moisture content above the preset level by allowing for the activation 

of an electronic solenoid when soil moisture reaches that level. 

Therefore this automatic irrigation control system is based on water 

content of the medium and maintenance of sufficient water to avoid 

water stress. 
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The MCD has a transistor which activates a relay to signal 

for irrigation of a crop. The transistor, which allows for electrical 

resistance to be amplified, is controlled by a voltage drop in the 

base to emitter circuit. The voltage drop varies proportionally 

to the resistance of the soil-water-electrolytic interactions of 

the medium. As moisture increases, the amount of resistance decreases. 

The potentiometer, which can be adjusted to provide a desired amount 

of capacitance, is in the base to emitter circuit and allows for 

relay activation at a predetermined moisture content. The relay 

closes the circuit which activates the solenoid valve. At present, 

the MCD has a 100 V input with a 25 V output transformer, thus making 

the system low voltage allowing for safe operation. Further descrip

tion of the MCD is not possible at this time because a patent has 

been applied for through the University of Tennessee Research Cor

poration. Non-disclosure forms may be obtained from the U.T. Research 

Corporation or by contacting Professor Hendrik van de Werken in 

the Department of Ornamental Horticulture and Landscape Design at 

The University of Tennessee, Knoxville. 

The MCD responds to the flow of current between two electrodes 

as governed by water content of the container medium. The principle 

is different from that of a conductivity meter which is based on 

conductivity as governed by the soluble salt content of a media 

extract. Conductivity (mhos) is the reciprocal of resistance (ohms) 

and a conductivity meter integrates this with compensation for tem

perature thereby giving readings in dS/m (mmhos/cm). The electrodes 
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used in a conductivity meter are not designed to respond to soil 

moisture. 

Data for milliamp readings and corresponding soluble salt 

levels are presented in Tables 7 through 11. The temperature of 

all solutions tested was 22°C. The 3-1-1 mix had the lowest initial 

soluble salt levels (Table 9) followed by the EL medium (Table 8). 

The readings for the 1-1 medium were greater because of the nutrients 

added during the composting process (92). PM had the greatest initial 

soluble salt levels (Table 10) because it comes amended with macro 

and micro nutrients. 

The amount of change from the initial soluble salt level 

to the final soluble salt level at 100% container capacity varied 

for the four media at both soluble salt levels. At the 50 ppm level, 

the change in soluble salt levels from 0% to 100% container capacity 

was as follows: 0.14 (EL}, 0.23 (3-1-1), 0.44 (PM), and 0.45 (1-1) 

dS/m, over all treatment levels (Tables 7-10). The change in dS/m 

for the 500 ppm level was as follows: 0.42 (EL), 0.83 (1-1), 1.52 

(3-1-1), and 1.75 (PM). In all cases except for 3-1-1 and EL at 

the 50 ppm treatment, significant differences occurred at all levels 

of container capacity tested. 

It is recommended (63) that for a 1:2 media to water extract, 

from a porous organic based medium, a level of 1.80 dS/m should not 

be exceeded or damage may occur. Only the PM medium at the high 

soluble salt rate exceeded this figure (Table 10). 
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Table 7. 1-1 Medium Effect of Percent Container Capacity Obtained 
through the Addition of 50 ppm (0.28 dS/m) and 500 ppm 
(2.30 dS/m) Nutrient Solutions upon Milliamp and Soluble 
Sa 1t Readings* 

Percent 
Container 
Capacity 50 

Mi 11 i amp 

500 50 

SS Level 

500 

100 

80 

60 

40 

20 

12.Ba 

10.6b 

8.4c 

5.3d 

2.2e 

19.la 

16.5b 

12.5c 

7.3d 

2.2e 

0. 74a 

0.67b 

0.56c 

0.46d 

0.41e 

1.13a 

1.00b 

O. 92c 

0.80d 

0.49e 

0 0.5f 0.5f 0.29f 0.30f 

Duncan's New Multiple Range Test - means within columns with 
the same letter are not significantly different at the 5% level. 

* - averaged across container types. 
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Table 8. EL Medium Effect of Percent Container Capacity Obtained 
through the Addition of 50 ppm (0.28 dS/m) and 500 ppm 
(2.30 dS/m) Nutrient Solutions upon Milliamp and Soluble 
Salt Readings* 

Percent Mi 11 i amp SS LevelContainer 
Capacity 50 500 50 500 

100 18. 7a 23.8a 0.29a 0. 54a 

80 15.9b 20.3b 0.21b 0.39b 

60 9.5c 14.0c 0.16c 0.26c 

40 3.6d 5.3d 0.14d 0.21d 

20 1. 7e 1. 7e 0.14d 0. 16e 

0 O.Sf 0.5f 0 .15cd 0.12f 

Duncan's New Multiple Range Test - means within columns with 
the same letter are not significantly different at the 5% level. 

* - averaged across container types. 
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Table 9. 3-1-1 Medium Effect of Percent Container Capacity Obtained 
through the Addition of 50 ppm (0.28 dS/m) and 500 ppm 
(2.30 dS/m) Nutrient Solutions upon Milliamp and Soluble 
Salt Readings* 

Percent 
Milliamp SS LevelContainer 

Capacity 50 500 50 500 

100 10. 7a 29.2a 0.28a 1.57a 

80 8.4b 25.0b 0.26b 1.12b 

60 6. lc 17 .9c 0.13c 0.88c 

40 3.3d 9.0d 0.05d 0.65d 

20 l.4e 2.0e 0.05e 0.21e 

0 O.Sf 0.Sf 0.05d O.OSf 

Duncan's New Multiple Range Test - means within columns with 
the same letter are not significantly different at the 5% level. 

* - averaged across container types. 
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Table 10. PM Medium Effect of Percent Container Capacity Obtained 
through the Addition of 50 ppm (0.28 dS/m) and 500 ppm 
(2.30 dS/m) Nutrient Solutions upon Milliamp and Soluble 
Salt Readings* 

Percent 
Container Milliamp SS Level 
Capacity 50 500 50 500 

100 20.Sa 30.6a o.~4a 2.26a 

80 19.3b 27.4b 0.88b 1.60b 

60 15.9c 23.lc 0.68b 1.40c 

40 11.4d 14.7d 0.58d 0.90d 

20 4.8e 4.2e 0. 51e 0.63e 

0 0.5f 0.5f 0.50e 0.51f 

Duncan 1 s New Multiple Range Test - means within columns with 
the same letter are not significantly different at the 5% level. 

* - averaged across container types. 
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Table 11. Soluble Salt (dS/m) and Milliamp Means for Four Media 
as Influenced by Container Design 

Treatments 

50 ppm 500 ppm 
(0.28 dS/m) (2.30 dS/m) 

Container Soluble Soluble 
Design Salts Mi 11 i amps Salts Mi 11 i amps 

EL 
cs 0.188a 8.85a 0.296a 10. 77b 
z 0.187a 8. 38b 0.280b 11.83a 
PB 0.182a 8.48b 0.285b 10. 90b 
CF 0.165b 7.56c 0.267c 10. 23c 

PM 
cs 0. 774a 13.58a 1.508a 18.21a 
z 0.664c 11. 71b 1.116c 16.97b 
PB 0.701b 13.46a 1.259b 18.21a 
CF 0.588d 9.37c 0.989d 13.58c 

1-1 
cs 0.578a 7.54a 0.938a 11.02a 
z 0.532b 6.91b 0.789b 10. 27b 
PB 0.509c 6.58b 0. 718c 9.56c 
CF 0.459d 5.54c 0.643d 7 .83d 

3-1-1 
cs 0.154a 6. 23a 0.939a 15.54a z 
PB 
CF 

0.139b 
0.135b 
0.128c 

5. 30b 
5.10b 
3.72c 

0.812b 
0. 681c 
0.552d 

15.12b 
14.56c 
10.56d 

Duncan 1 s New Multiple Range Test - means within vertical 
columns and for individual media with the same letter are not sig-
nificantly different at the 5% level. 
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The small difference between initial and final soluble salt 

levels for the EL medium may be explained in terms of cation exchange 

capacity (CEC), although the CEC of the various media used in this 

study was not determined. The cation exchange capacity of various 

media can be summarized as follows: mineral soils> aged pinebark > 

peat moss> vermiculite> perlite = sand. Therefore it would be 

expected that the EL medium, a mineral soil, would have a greater 

capacity to bind the cations added in the soluble salt treatments, 

thus having the least amount of change (Figure 1). The 1-1 medium 

had the greatest change at the low soluble salt level and had the 

second lowest change at the high soluble salt level. For the high 

soluble salt level, the media mixtures with more than one component 

had the greatest change in soluble salt levels. The inert ingredients 

such as sand in the 3-1-1 medium and the perlite in the PM medium 

do not contribute greatly to the CEC; therefore, at the higher soluble 

salt levels it would be expected that saturation of the binding 

sites would occur sooner, as was indicated in this study. It was 

also interesting to note that the medium with the greatest bulk 

density, EL, had the least amount of change in soluble salt levels 

at the high rate and that the PM medium, which had the lowest bulk 

density, had the greatest amount of change, possibly because many 

of the binding sites were already occupied by the original nutrient 

amendments of the PM medium. 

The effects of soluble salt levels on milliamp readings can 

be seen in Figure 1. The 3-1-1 medium had the least amount of change 
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at the 500 ppm level. In general, the 1-1 medium had the lowest 

changes in milliamp readings between 0 and 100% container capacity, 

but also, because of its low water holding capacity, received the 

least amount of total soluble salts for all container types (Table 

6, p. 32). The differences in soluble salt readings between the 50 

ppm to 500 ppm treatments was the least for the 1-1 and EL media. 

In all instances, the milliamp readings increased as the 

percent of container capacity increased, indicating the ability 

of the MCD to detect changes in the moisture content of the medium. 

Correlation coefficients are presented in Table 12. As the soluble 

salt level increased from 50 ppm to 500 ppm, a greater change in 

milliamp readings at the lower moisture contents can be seen (Figure 

2). In all instances, the 500 ppm treatment gave greater milliamp 

readings than the 50 ppm treatment at the same moisture percentage, 

indicating that the electrolytic concentration of the soil solution 

indeed increased the number of charged ions in the soil solution 

and allowed for greater current flow between the electrodes of the 

MCD. 

The purpose of the MCD is to allow growers and researchers 

who utilize container grown plants to monitor the edaphic environment 

and to allow for automated irrigation of crops based on water stress 

factors. The main factors involved in water stress of container 

grown plants are those related to water loss and corresponding 

increases in soluble salt levels in the container. The MCD responds 

to both of these parameters. Although responses of devices to 



44 

Table 12. Pearson Correlation Coefficients for Milliamps and Soluble 
Salts by Soluble Salt Treatment Level, Media, and Con-
tainer Design Aliquot 

Soluble Container 
Salt Design Correlation 
Level Media Aliquot Coefficient 

50 FS CF .82 
50 FS cs .83 
50 FS PB .85 
50 FS z .91 
500 FS CF .94 
500 FS cs .95 
500 FS PB .96 
500 FS z .94 
50 PM CF .87 
50 PM cs .94 
50 PM PB .89 
50 PM z .91 
500 PM CF .92 
500 PM cs .97 
500 PM PB .91 
500 PM z .95 

50 1-1 CF .96 
50 1-1 cs .98 
50 1-1 PB .97 
50 1-1 z .97 

500 1- CF .95 
500 1-1 cs .95 
500 1-1 PB .95 
500 1-1 z .97 
50 3-1-1 CF .94 
50 3-1-1 cs .95 
50 3-1-1 PB .95 
50 3-1-1 z .96 
500 3-1-1 CF .96 
500 3-1-1 cs .99 
500 3-1-1 PB .95 
500 3-1-1 z .96 



45 

35 - 500 ppm (2.30 dS/m) 

----- 50 ppm (0.28 dS/m) 

PM30 
3-1-1 

25 
EL 

M 
PMi 

l 
1-120l 

i EL 
a 
m 
p 
s 15 

1-1 
3-1-1 

10 

5 

0 10020 40 60 80 
Percent of Container Capacity 

Figure 2. The influence of soluble salt treatments (50 and 500 ppm 
%N) in four media and six moisture levels on milliamperage 
readings averaged across container types. 



46 

soluble salt levels has been considered to be a disadvantage of this 

system since it is not intended to directly measure the matrix poten

tial or to give readings of the soluble salt levels of the medium 

in which it is being used. With the MCD being influenced by moisture 

levels in a container and soluble salt levels or osmotic stress, the 

system integrates these parameters and responds to the combined 

effect of both edaphic factors causing water stress of plants. 

Since most container crops are watered before 50% of container 

capacity is reached, a device such as the MCD needs to be accurate 

at higher soil moisture contents. The MCD has very good response 

characteristics throughout the entire range of moisture percentages 

tested. The similarity of responses at 0% container capacity can 

be accounted for since air dry media are not very good conductors 

of electrical current. The MCD also proved to be useful for a variety 

of media components and differing bulk densities in which other 

devices often fail. Small variations among the different readings 

within samples tested fell within acceptable ranges indicating that 

no problems occurred with electrode contact or soil hysteresis. 

This indicates that the MCD may have practical application for irri

gation control of container grown nursery and floricultural plants. 



CHAPTER IV 

INFLUENCE OF FOUR MEDIA AND TWO NUTRIENT LEVELS ON WATER 

UTILIZATION OF CONTAINER GROWN COLEUS 

Introduction 

Availability of water to plants in container media is influenced 

by various physical and chemical properties of a medium. Two proper

ties which are major factors in determining water availability are 

the matrix potential and the osmotic potential (17). The matrix 

potential is influenced by physical parameters such as bulk density, 

pore space, and particle size. The osmotic potential is directly 

related to the soluble salt concentration in the liquid phase of 

the medium. Increases in either potential decreases the availability 

of water for plant use. 

Container grown plants should be irrigated before the soil 

moisture content reaches 50% of the total water holding capacity (63, 

98). This will vary from medium to medium due to different edaphic 

regimes and cultural practices. The purpose of this study was to 

examine the influence of eight different media-soluble salt inter

actions on subsequent growth and water utilization of container 

grown Coleus employing the newly developed moisture sensing device 

(MCD) described in Chapter III. 
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Literature Review 

A variety of techniques and instruments are available to 

determine the water status of plants. These devices can be placed 

into the following categories for the measurement of water potential, 

osmotic potential, turgor potential, stomatal resistance, and canopy 

temperature (56). 

Environmental and plant-related factors affect leaf water 

potential (90). Environmental factors are solar radiation, tempera

ture, humidity, wind, and soil moisture availability. Plant-related 

factors include plant age and growth stage, plant morphology, and 

stomatal resistance. Stanley et al. (90), using chrysanthemums, 

found that leaf water potential was difficult to interpret in terms 

of final plant characteristics. Plant growth parameters such as 

height and growth rate were found to be the best indicators of effects 

of water stress on final yield. Pan evaporation and plant height 

when used together have proven to be good indicators of daily water 

requirements of potted chrysanthemums (91). 

The development of a healthy root system is essential for 

the growth of container plants. Distribution of roots in the soil 

is determined by genetic and environmental conditions (111). Size, 

number, and structural rigidity of soil pores influences the size 

and shape of root systems (52). Bulk density is an important physical 

property which influences other physical and chemical properties of a 

medium (93). The bulk density of a soil is known to affect root 



49 

penetration; thus, media having lower bulk densities favor the pene

tration of roots (95). Tap roots of container grown pecan seedlings 

had much greater root penetration in a low bulk density medium (4:1 

pinebark:sand) than in a higher bulk density (1:1 pinebark:sand) 

medium (1). 

As bulk density increases, the soil becomes more compact, 

structure is less defined, and pore space decreases (97). The move

ment of water and gases is reduced and growth is inhibited as bulk 

density increases (27). Oxygen supply to a root system can be a growth 

rate limiting factor influenced by the physical structure of the 

root medium and its moisture content (37). Roots which receive 

adequate oxygen are long, white in color, and well supplied with 

root hairs. Lack of oxygen creates roots which are shorter, thicker, 

darker in color, and few root hairs are found (63). The oxygen 

content of a medium may range from 0-21%, but below 3% roots begin 

to die and decompose in container media (70). Extension of a root 

system into all areas of a medium is restricted by poor aeration (63). 

Water consumption of woody plants in 3.8 L containers has been 

noted to be 300-500 ml/day while available water is often 700-1000 

ml/container (19). Available water holding capacity varies with 

different media components (4). Bearce (3) has determined the prac

tical available water content of media based on a percent volume 

basis by measuring the difference between a well watered container 

which was allowed to drain and the weight of the container at the 
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first sign of wilting. It was found that a non-composted hardwood 

bark mix had a greater practical available water content than a 

peat-lite medium. 

Permanent wilting point is the moisture content in the root 

zone at which a wilted plant can no longer recover turgidity> even 

when placed in a saturated atmosphere for 12 hours (25)> but can 

recover if watered. A soil moisture tension of 15 atmospheres is 

usually associated with the permanent wilting point of plants> 

although most container crops are irrigated before 1 atmosphere 

tension occurs. Beardsell et al. (5) have described different stages 

of wilting> with stage 2 being when all leaves are wilted. They 

placed more emphasis on stage 2 wilting instead of stage 3 wilting 

(permanent wilting point) because plants reaching stage 3 will experi

ence a reduction in growth. 

It has been found that the time it takes for plants in a 

container to wilt is not always proportional to the amount of avail

able water held (5). It was found that pinebark resists water loss 

by evaporation> and because its available water is not readily avail

able to the plant> pinebark is able to maintain plants unwilted 

for a longer period of time even though it has less total available 

water holding capacity than peat moss. It was noted that standard 

techniques for measuring available water holding capacity do not 

give meaningful data and that the only meaningful measure of the 

available water holding capacity of a medium comes from the performance 

of plants grown in that medium. 



51 

Materials and Methods 

The experimental design used in this study was a split-plot 

factorial arrangement of treatments. The main treatments were two 

nutrient salt levels, 50 ppm and 500 ppm. Three replications of 

each treatment were used with four different media per replication 

and four samples per media. 

Tip cuttings of Coleus blumei were stuck directly in four 

inch pots and placed under mist on 10-21-85. These rooted cuttings 

were then shifted into 3.8 L (Zarn 400) containers and placed in a 

greenhouse on 11-15-85. The media used were an Etowah loam, A-horizon 

(EL), Pro-Mix BX, a commercially prepared floricultural mix (PM), a 

3:1:1 mixture by volume of pinebark, spagnum peat moss, and river 

sand (3-1-1_, and a 1:1 mix by volume of pinebark and hardwood bark 

mixed before composting (1-1). Each container was weighed at the 

time of potting so that the same amount of medium was in each container. 

Knowing the bulk density of each medium and the weight of medium 

added, the volume of medium in each container was easily calculated. 

After the containers were placed in the greenhouse, they 

were treated as follows: S.T.E.M. micronutrients (W. R. Grace &Co., 

Iron Run Industrial Park, Fogelsville, PA) 1 teaspoon per gallon, 

magnesium sulphate at 4 ounces per 1.5 gallons, and 100 ppm calcium 

nitrate. The plants were fertilized as needed with a 50 ppm liquid 

solution based on %N of Plant Marvel 20-20-20 until 12-08-85. After 

this point, the respective groups of plants were fertilized with 

either 50 ppm (0.28 dS/m) or 500 ppm (2.30 dS/m) as needed. 
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On 01-06-86, the plants were moved to a warmer greenhouse and 

liquid fertilized daily. On 01-12-86 the containers were watered 

several times to bring each to complete saturation. Each container 

was allowed to drain for 24 hours, therefore reaching a point below 

container capacity due to transpiration of the plants. At this time 

daily milliamp readings were recorded using the MCD, each container 

was weighed to track water utilization, and soluble salt measurements 

were taken using a 1:2 medium to water by volume method utilizing 

a Beckman Solu-bridge. 

Data was recorded at 8:00 am each morning until wilting occurred 

for a particular container plant. The experiment was considered 

terminated for a particular plant if the plant remained wilted over

night. At this time, the plants were watered, allowed to regain 

turgor for 24 hours, and were then cut off at the soil line so fresh 

weights could be recorded. The plants received full solar exposure 

as no shading compound was on the glasshouse. Daily maximum tempera

tures were between 90-100°F. 

Results and Discussion 

Bulk density for the four media is as follows: 0.19 (PM), 

0.36 (1-1), 0.55 (3-1-1), and 1.24 (EL) g/cc on an air dry basis. 

It was noted that the 1-1 mix produced the highest quality root 

systems with the 3-1-1 and the PM being similar to each other. The 

EL medium only had roots present in the upper one-half of the con

tainer. Total water consumption data is presented in Table 13. 
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Table 13. Water Consumption until Wilting of Coleus Grown at Two 
Nutrient Levels in Four Media 

Water Held Water WaterNutrient at Container DaysUtilized RemainingLevel %WHC Capacity in unti 1 
Media ppm (% V) cc cc % cc % Wilting 

1-1 50 29 867 612 70.6 255 29.4 4 

1-1 500 29 867 573 66.1 294 33.9 3 

3-1-1 50 43 1293 1149 88.9 144 11.1 6 

3-1-1 500 43 1293 1074 83.1 219 16.9 4 

PM 50 44 1314 909 69.2 405 30.8 6 

PM 500 44 1314 837 63 7 477 36.3 5 

EL 50 38 1131 591 52.3 540 47.7 4 

EL 500 38 1131 573 50.7 558 49.3 4 
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Daily water consumption for the 50 ppm treatment is shown in Figure 3 

and the 500 ppm treatment is shown in Figure 4. No significant 

difference occurred between the two treatment levels for water utili

zation, indicating that the different media accounted for the differ

ences in water utilization. 

The greatest percentage of available water for utilization 

was found in the 3-1-1 mix, with 88.9% of container capacity for 

the 500 ppm treatment and 83.1% for the 500 ppm treatment being 

available for the plant to utilize. The 1-1 and PM media were very 

similar as to the percentage of water utilized, the 1-1 medium having 

70.6% and 66.1% water utilized and the PM having 69.2% and 63.7% 

water utilized for the 50 ppm and 500 ppm treatments, respectively. 

Plants in the EL medium were only able to utilize just over 50% 

of the available water before wilting occurred. The similarity 

of percent water utilized in the 1-1 and PM media was interesting 

since at container capacity, the 1-1 medium held only two-thirds 

the volume of water held by the PM medium. 

Significant differences occurred between the nutrient salt 

treatment levels in milliamp readings and soluble salt levels in 

the various media. The PM medium had the greatest mean milliamp 

readings (7.4) followed by EL (6.2) 3-1-1 (3.2), and 1-1 (2.6, respec

tively. The PM and EL media were significantly different from the 

two bark-based media. Milliamp data by treatment, media, and day 

is shown in Figures 5 and 6. 
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Although a significant difference in soluble salt levels was 

detected between the two nutrient salt treatment levels, no differ

ence could be detected by day, indicating that soluble salt levels 

did not significantly increase as the media became drier. 

A significant difference occurred between treatment levels 

for fresh weight of Coleus, the mean for the 500 ppm treatment being 

233.7 grams compared to 142.4 grams for the 50 ppm treatment (Table 

14). 

Differences between the 1-1 and PM media were evident in 

the number of days until wilting (Table 13) and the fresh weight 

of plants (Table 14). Plants in the 1-1 medium wilted after 4 and 

3 days compared to 6 and 5 days for the PM medium. The 1-1 medium 

initially held less water at container capacity than the PM medium 

but the fresh weights were greater for both soluble salt levels. A 

significant difference was detected among treatment levels for soluble 

salts, the 500 ppm (0.40 dS/m) treatment plants wilted before the 

50 ppm (0.25 dS/m) treatment plants in all media. This may be due 

to greater transpiration of the larger plants at the 500 ppm level 

or due to greater osmotic stress. 

For all nutrient level-media interactions, 50% of the water 

in each container was utilized by the end of the third day, indicating 

the need for irrigation (Figures 3 and 4). High correlations were 

found for milliamp-percent water remaining by volume in container 

interactions (Table 15). This study shows that although the commonly 
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Table 14. Shoot Fresh Weight in Grams of Coleus Grown in Four 
Different Media at Two Nutrient Levels 

Media 50 ppm Nutrient Level 500 ppm 

1-1 176.0a 311.4a 

PM 153.4b 230.3b 

3-1-1 117. 3c 220.4b 

EL 122.6c 172.8c 

Mean 142.4b 233.7a 

Duncan's New Multiple Range Test - means within columns with 
the same letter are not significantly different at the 5% level. 
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Table 15. Pearson Correlation Coefficients for Milliamps and 
Percent Water Remaining in the Container by Nutrient 
Level and Media Interactions 

Nutrient Corre 1ati on 
Level Media Coefficient 

50 FS .95 

50 PM .97 

50 1-1 .94 

50 3-1-1 .96 

500 FS .94 

500 PM .98 

500 1-1 .91 

500 3-1-1 .95 
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used 3-1-1 medium may have quite a different set of physical parameters 

(Chapter II) compared to other media, it released most of its water 

for plant use, therefore the plants grown in this medium took the 

longest before reaching stage 2 wilting. This is in agreement with 

previous research (5). 

The MCD appears to be adaptable to a variety of media under 

differing edaphic regimes. It appears from these studies that edaphic 

conditions are quite different in the greenhouse with plants growing 

in containers compared to studies done in the lab with media alone. 

The MCD appears to have potential for controlling the irrigation 

scheduling of container grown plants. Although further testing needs 

to be done, utilization of a device such as the MCD should provide 

plants with a more optimal edaphic regime, thus eliminating stress 

and increasing growth. 
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