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Abstract

Topological Data Analysis is a powerful tool in the image data analysis. In this dissertation,

we focus on studying cell physiology by the sub-cellular motions of organelles and generation

process of filament networks, relying on topology of the cellular image data.

We first develop a novel, automated algorithm, which tracks organelle movements and

reconstructs their trajectories on stacks of microscopy image data. Our tracking method

proceeds with three steps: (i) identification, (ii) localization, and (iii) linking, and does not

assume a specific motion model. This method combines topological data analysis principles

with Ensemble Kalman Filtering in the computation of associated nerve during the linking

step. Moreover, we show a great success of our method with several applications.

We then study filament networks as a classification problem, and propose a distance-

based classifier. This algorithm combines topological data analysis with a supervised machine

learning framework, and is built based on the foundation of persistence diagrams on the data.

We adopt a new metric, the dcp distance, on the space of persistence diagrams, and show it is

useful in catching the geometric difference of filament networks. Furthermore, our classifier

succeeds in classifying filament networks with high accuracy rate.
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Chapter 1

Introduction

Cell physiology depends on the motion of sub-cellular structures. Cytosolic streaming

and organelle motility are critical factors [8, 10, 19, 64, 84]. Such intracellular motion is

particularly pronounced in plant cells and is known to be essential to many cellular functions

including growth and overall health [55]. In particular, organelle motility in plant cells

is driven by motor proteins that directionally move along myosin filaments or diffuse in

the cell sap and occasionally switch between these modes. Additionally, different motor

proteins generate patterns of motion with different characteristics such as speed, turning

angles, switching frequencies between different motions. Due to the complex nature of these

underlying dynamics, an understanding of organelle motility based on first principles remains

uncharacterized. Instead, intracellular motion is commonly studied experimentally.

Cell physiology also depends on actin cytoskeleton and actin filament. The actin

cytoskeleton is a complex network of proteins that is present in all eukaryotic cells. In

addition to its function as cellular scaffolding, the actin cytoskeleton enables several basic

cellular functions including the control of cellular shape and direction of movement [86].

These basic functions are critical to many higher order physiological processes such as cell

division, expansion, mobility and motility[22].

In the actin cytoskeleton, actin filament organization is thought to be partially governed

by the interaction of filaments and partially by myosin motor proteins. Actin filaments are

polar structures, ploymerized by globular actin proteins. Many actin-binding proteins have

potential to bind to actin filaments at various sites along the filament. These proteins allow
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actin filaments to assemble and disassemble spatiotemporally, and cross-link into networks at

multiple binding sites. To understand certain behaviors of cells, it is tremendous important

to understand the processes that govern the generation of actin filament networks. A key

driver of these processes may be the relationship between actin-binding proteins, individual

filaments and emergent networks.

One way to study the cell physiology is by intracellular organelle motion. Conventional

fluorescence microscopy is one of the most popular technique employed for the direct

observation of intracellular motion [61, 59, 62, 88]. With the well-engineered optical

equipment and the fast development of bio-molecular labeling techniques, it is now routine

to observe organelle dynamics. This in turn has led to the acquisition of vast datasets.

A thorough and accurate reconstruction of organelle trajectories in these datasets is a

necessary task to distinguish motor protein structures, elucidate their behavior, and globally

characterize their motility. To accomplish this, some studies analyze raw measurements

and track sub-cellular motions manually which has yielded estimates with good accuracy

[17, 25, 26, 48, 61]. Nevertheless, manual tracking is tedious, time consuming, unreproducible

and unrealistic for complex datasets with multiple simultaneous motions, especially those

encountered in plant microscopy.

Automated tracking algorithms, capable of analyzing organelle motility datasets, provide

an opportunity to overcome these difficulties and robustly track a large number of sub-cellular

targets. These automated processes offer tighter error bounds and the promise of overcoming

the low throughput of manual tracking. Additionally, automated tracking algorithms can

reveal large scale motion patterns during the entire time course of an imaging experiment [18].

Therefore, developing automated intercellular tracking algorithms for organelles, specifically

designed for plant cell imaging, are essential.

Intracellular tracking can be broken down into four steps: (i) identification, where the

number of moving organelles is estimated first; (ii) localization, where the position of each

identified organelle is detected in space throughout time; (iii) linking, where estimated

localizations belonging to the same organelle trajectory are connected over time; and (iv)

interpretation, where the estimated trajectories are used to derive quantitative information

about the organelle motion [42]. Many methods for multiple targets tracking have been
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developed so far [3, 6, 16, 33, 39, 37, 42, 55, 56, 67, 69, 79, 80, 85], but only few of them

focus specifically on microscopy image data, while others are not applicable to image data

or fail due to the introduction of missassignments. The study in [55] provides a solution

by using a Bayesian framework that considers the intracellular movements as members of a

set and set tracking is the tracking place, [33] developes a tracking approach that combine

tracking information in the optimization procedure, [16] presents a method for simultaneously

tracking thousands of targets by adapting the multiple hypothesis tracking algorithm, [75]

solves the problem by considering a topological linking technique with minimal assumptions

about the underlying dynamics. In [42], a survey of all techniques applicable to image data

is provided.

In this dissertation, we seek to improve the linking stage as the first half of our work. We

propose an automated algorithm based on Bayesian identification of organelle parameters,

Ensemble Kalman filter (EnKF) estimations of displacement fields and topological linking

on the trajectories space. A Bayesian framework is applied to identify important parameters

of organelles. Subsequently, we use EnKF to estimate the displacements of organelles since

our linking method is based on these displacements. The linking process is completed by

using a topological data analysis (TDA) technique [12, 20, 75, 77] to find the geometry of

the data space. This embeds the data into a topological space, in which the trajectories are

reconstructed by identifying connected components.

Next we focus on the actin filament network generating process, which can be artificially

realized by simulating the dynamic structure of filament networks, combining theory from

theoretical physical with experimental stochastic simulation. With this technology one

controls the known factors, which will affect the structure of networks. Varying these

initial conditions enables researchers to compare the conditional difference in outcomes of the

simulated networks. This experimental strategy can provide an opportunity to independently

examine the role each factor plays in the process. These factors could include the cross-linker

density(number of cross-linkers per certain area), cross-linker stiffness, maximum angle that

exist between two filament segments to be crosslinked, and so on[22, 23]. In this dissertation,

we propose a machine learning approach to classify filament networks generated by a varied
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cross-linker density using TDA technique. Our method leverages the topology of the actin

networks through TDA.

Precisely, our classifier uses persistent homology to measure differences in topological

features. Persistent homology records the appearance and disappearance of homological

features, the connected components and holes in the filament network data. We encode the

homological features of filaments networks into persistence diagrams and classify simulated

actin networks by calculating the similarities in their persistence space. Our exploratory work

is the first time filament networks have been studied as a classification problem. This work

could serve as a pilot for future research in actin cytoskeleton organization. In the future,

this work should be useful in the course of research on cytoplasmic streaming to classify real

cells based on images of their actin networks. This would provide biologists a method of

disentangling the interaction of myosin motor proteins, the actin network, and streaming,

i.e., by imaging the actin structure and clustering cells based on their actin network topology,

the researcher may be able to fix a network structure while varying parameters specific to

myosin.

The rest of this dissertation is organized as follows. In Chapter 2, background knowledge

of filtering algorithms and TDA are provided, we focus on introduction of Kalman filter,

Ensemble Kalman filter, simplicial complexes and persistence diagrams. In Chapter 3, we

formulate the problem, give the technical details of the automated intercellular tracking

algorithm, and show the results when our method is applied to simulated and real data

sets. In Chapter 4, we describe the filament network data, demonstrate one distance-

based algorithm for classifying filament networks and exhibit the numerical results. Finally,

conclusion and discussion are presented in Chapter 5.
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Chapter 2

Background

2.1 Background of filtering algorithms

Filtering algorithms are wildly used in tracking problems. Two of the most representative

filtering algorithms are Kalman filter and particle filter. In this section, we will introduce

principle and formulation of the Kalman filter (KF) and Ensemble Kalman filter (EnKF).

2.1.1 Kalman filter

Kalman filter has solved the problem of estimating the state in a discrete time process system

with noisy sensor measurements [5]. The process is normally controlled by a linear Gaussian

stochastic equation

xk = Axk−1 + uk−1, uk−1 ∼ N(0, Q), (2.1)

with a measurement

zk = Hxk + vk, vk ∼ N(0, R). (2.2)

In Eq. (2.1), {xk} are states in Rn, A is a n × n matrix, {uk−1} are process running

noises, which are independent and identically distributed and follow a multivariate normal

distribution with mean 0 and covariance Q. This equation relates state xk at step k to its
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previous state at step k − 1. In Eq. (2.2), zk is the measurement of xk in Rm, H is m × n

matrix, {vk} are measurement noises, which are also independent and identically distributed

and follow a multivariate normal distribution with mean 0 and covariance R. This equation

gives the relation between the state and measurement at the same step k.

Define x̂′k as an a priori estimate of state at step k. It is an estimation based on

knowledge of the process before step k. Define x̂k as an a posteriori estimate of state

after the measurement zk at step k is obtained. The main idea of Kalman filter is that we

want to correct an a priori estimation with the feedback from the measurement to get an a

posteriori estimation, i.e., our goal is to write an a posteriori estimation as a weighted sum

of the a priori estimation and difference between measurement and predicted measurement,

x̂k = x̂′k +Kk(zk − ẑk)

= x̂′k +Kk(zk −Hx̂′k). (2.3)

In the equation above, zk − Hx̂′k is called innovation or residual. The innovation equals 0

indicates the agreement of measurement and predicted measurement. Kk is called Kalman

Gain. It is calculated by minimizing the a posteriori estimate error covariance. We are going

to show the detailed steps of finding Kk in the following paragraph.

The a posteriori estimate error covariance and the a priori estimate error covarican are

written as

Pk = E
[
(xk − x̂k)(xk − x̂k)T

]
, (2.4)

P ′k = E
[
(xk − x̂′k)(xk − x̂′k)T

]
,

repectively. Then substitute Eqs. (2.3)(2.2) into Eq. (2.4), get

Pk = E
[
[(I −KkH)(xk − x̂′k)−Kkvk] [(I −KkH)(xk − x̂′k)−Kkvk]

T
]

= (I −KkH)E
[
(xk − x̂′k)(xk − x̂′k)T

]
(I −KkH)T +KkE[vkv

T
k ]KT

k

= (I −KkH)P ′k(I −KkH)T +KkRK
T
k

= P ′k −KkHP
′
k − P ′kHTkTk +Kk

(
HP ′kH

T +R
)
KT
k . (2.5)
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Take trace of both sides in Eq. (2.5)

[Pk] = [P ′k]− [KkHP
′
k]−

[
P ′kH

TkTk
]

+
[
Kk

(
HP ′kH

T +R
)
KT
k

]
,

and further take derivative respect to Kk

d [Pk]

dKk

= −2(HP ′k)
T + 2Kk

(
HP ′kH

T +R
)
.

Set the derivative result equals 0 and sovle for Kk, we get the Kalman Gain as

Kk = P ′kH
T (HP ′kH

T +R)−1. (2.6)

Then substitute Eq. (2.6) back into Eq. (2.5), Pk can be further simplified as

Pk = P ′k − P ′kHT (HP ′kH
T +R)−1HP ′k

= P ′k −KkHP
′
k

= (I −KkH)P ′k.

Overall, Kalman filter can be summarized into five equations in Algorithm 1. The first

two equations are predicting equations. In these two equations, an a priori estimate is

made and the process noise covariance is updated. The next three equations are updating

equations. In these three equations, the Kalman gain is calculated, a a posteriori estimate is

computed as a combination of the a priori estimate and weighted measurement innovation,

and then the process noise covariance is further updated. Note that, as limR→0Kk = H−1

and limR→0 x̂k = zk, thus when the measurement error covariance R approaches 0, the

Kalman gain Kk weights the innovation more heavily; conversely, since limP ′k→0Kk = 0 and

limP ′k→0 x̂k = x̂′k, therefore when the a priori estimate error covariance P ′k approaches 0,

the Kalman gain Kk weights the a priori estimate more heavily instead [5]. In general, the

expected a posteriori error is kept minimized in a long term run.
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Algorithm 1 Kalman filter

x̂′k = Ax̂k−1

P ′k = APk−1A
T +Q

Kk = P ′kH
T (HP ′kH

T +R)−1

x̂k = x̂′k +Kk(zk −Hx̂′k).
Pk = (I −KkH)P ′k

2.1.2 Ensemble Kalman filter

Kalman filter only works for the case when the process is governed by a linear Gaussian

stochastic equation. But in the real world problems, we are facing nonlinear processes most

of the time, i.e.

xk = Ψ(xk−1) + uk−1, uk−1 ∼ N(0, Q), (2.7)

where Ψ : Rn 7→ Rn is a nonlinear function. Thus a more robust and universal method

is needed for both linear and nonlinear cases. This problem can be solved by Ensemble

Kalman Filter [41] as in Algorithm 2. In EnKF, the first three equations are predicting

equations. In these three equations, an ensemble of a priori estimates are simulated based

on Eq. (2.7), where E is the size of this ensemble set, a sample mean and a sample covariance

are subsequently calculated by this ensemble set. The last three steps are updating equations,

they inherit the similar formulations from KF, the a posteriori estimate is also a weighted

sum of predicted a priori estimates and measurement innovation, in which the weight Kk is

depends on Q and R.

2.2 Background of Topological Data Analysis

In the fast development of machine learning recent years, TDA has become increasingly

popular as a powerful tool in many areas. Researchers have used TDA to solve many

real-world problems. A great deal of TDA applications have been developed including

signal identification [50], materials science [28, 54], shape recognition [7, 43], histology image

8



Algorithm 2 Ensemble Kalman filter

x̂
′(e)
k = Ψ(x̂

(e)
k−1) + u

(e)
k−1, e = 1, ..., E

m̂k =
1

E

E∑
e=1

x̂
′(e)
k

Ĉk =
1

E − 1

E∑
e=1

(x̂
′(e)
k − m̂k)(x̂

′(e)
k − m̂k)

T

Kk = ĈkH
T (HĈkH

T +R)−1

x̂k = (I −KkH)m̂k +Kkzk

x̂
(e)
k = x̂k + v

(e)
k , e = 1, ..., E

analysis [2, 63, 78], ecology of human mobility [14, 15], and cosmology [82, 87]. A review

of TDA and its application is provided in [89]. In our work, we use topological nerve in

the linking process of tracking algorithm, and then classify actin networks based on their

persistence diagrams, therefore we aim to introduce necessary background knowledge of TDA

in this section.

2.2.1 Simplicial complexes

In TDA, we need to build a structure which reveals geometric features hidden in the data.

We construct this structure by simplicial complexes. Simplcial complexes provide a bridge

between the data space and a topological space in which computation of distances between

sets of data points can be realized. We start with the definition of simplices.

Definition 2.1. Let v0, v1, ..., vk be k + 1 linear independent vertices in Rd. A k-simplex is

the set of convex combinations of these k + 1 vertices,

s(v0, v1, ..., vk) =

{
k∑
i=0

αivi |
k∑
i=0

αi = 1, αi ≥ 0

}
.

The faces of a simplex is the all convex combinations in a subset of its vertices.

In particular, higher dimensional simplices are constructed from lower dimensional

simplices. From its definite, vertices are 0-simplices. A 1-simplex is called an edge and
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is created by its two vertices as faces. Note that a higher dimensional edge is constructed

from lower dimensional points. A 2-simplex or a triangle has three edges as faces. Further

more, a 3-simplex or a tetrahedron has four triangles as faces.

Definition 2.2. A simplicial complex is a finite collection of simplices of different dimensions

such that faces of simplices are also simplices, and intersections of the simplices are either

empty or a face of both.

An example of a simplicial complex is exhibited in Fig. 2.1. Note that this simplicial

complex in 3D is a collection of vertices, edges, a triangle and a tetrahedron, and their

intersections are either a face or empty.

Figure 2.1: A simplicial complex example in R3. It is a collection of vertices, edges, a
triangle and a tetrahedron.

With those definitions and examples above, then we are ready to see how to construct

two certain types of simplicial complexes.

Definition 2.3. Let F be a finite collection of open sets. A nerve N (F ) of F is simplicial

complex such that a k-simplex s(v0, v1, ..., vk) is in N (F ) if and only if ∩
Fi∈F,i∈{0,...,k}

Fi 6= ∅.

Building a nerve is the most basic way to construct a simplicial complex. Different

choices of the open sets in F lead to various kinds of simplicial complex. In our intracellular
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tracking work, we partition organelle trajectories into small open segments, trajectories are

then reconstructed by building a nerve based on intersections of these open segments.

Given the data {xi}, if we let F be the finite collection of balls {B(xi, ε)}, where B(xi, ε)

is a ball centered at xi with radius ε, than the nerve is called the Čech complex of the

data. In the real world, the drawback of the Čech complexes is that they are expensive to

compute. Computing the entire complex requires exponential time in the size of X, which is

extremely inefficient. Therefore another simplicial complexes called Vietoris-Rips complex

[20] has been wildly used instead. Its definition is given as follows,

Definition 2.4. Let X = {x} be a finite set of points in Rd. The Vietoris-Rips complex of

X and ε is

VRε = {s ⊆ VRε|diam s ≤ 2ε} .

In general, in order to build Čech complexes or Vietoris-Rips complexes on a dataset, we

just introduce ε-balls with radius ε and centered at each data point. A simplicial complexes

is constructed based on intersections of these ε-balls. Every ε value is corresponding to a

simplicial complex of data points, and various ε may cause different complexes. Several

Vietoris-Rips complexes examples with different ε are exhibited in Fig. 2.2. Five data points

in R2 are given in panel (a). When ε = 0.5 in panel (b), none of the ε-balls intersect, the

Vietoris-Rips complex just contains five vertices. In panel (c), four ε-balls in the upper half

area have intersected when ε = 0.71, thus these four vertices are connected to its contiguous

neighbor vertices, and the Vietoris-Rips complex contains four edges and five vertices. When

ε = 0.85, the Vietoris-Rips complex is built up by five edges and five vertices in panel (d).

In the last panel (e), when ε is increased to 1, the four ε-balls in the upper half area are

pairwise intersected, therefore, the Vietoris-Rips complex is constructed by four triangles,

seven edges and five vertices.

2.2.2 Persistence diagrams

In this section, we start from briefly introducing homology group with its complementary

knowledge.
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Figure 2.2: This figure shows four Vietoris-Rips complexes (VRε) of five data points in R2

with different ε values. Note that every ε is corresponding to a complex, and diversifying ε
may cause the change of complexes.
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Definition 2.5. For a simplicial complex K, A p-chain is a formal sum of p-simplices in K,

i.e., {∑
si∈K

αisi|αi ∈ Z2 = {0, 1}, si is a p-simplex

}
.

A set of p-chains form a p-chain group Cp.

Definition 2.6. The boundary map is a group homomorphism ∂ : Cp 7→ Cp−1 such that

∂s(v0, v1, ..., vk) =
k∑
i=0

(−1)is(v0, ..., vi−1, vi+1, ..., vk).

Notice that, the boundary of a p-simplex is a sum of its (p− 1)-dimensional faces, taking

boundary of a p-chain will yield a (p − 1)-chain as the result. For example, the boundary

of an edge is its two vertices, the boundary of a triangle is three edges, the boundary of a

tetrahedron is three triangles, and so on.

With the boundary map, we define homology groups,

Definition 2.7. The p-dimensional homology group is the quotient group given by

Hp = ker(∂p)/im(∂p+1).

From the definition, the coset equivalence can be written as ∀c ∈ ker(∂p), c ∼ {c+ c′|c′ ∈

im(∂p+1)}. That means given c1 ∈ ker(∂p), c1 ∼ c2 if and only if c2 = c1 + im(∂p+1), which

also means c1, c2 are differed by a image of ∂p+1. Therefore one specific p-dimensional

homology group is corresponding to one type of homological (topological) features in a

simplicial complex. In fact, the 0-dim homology group is corresponding to connected

components, the 1-dim homology group is corresponding to holes, the 2-dim homology group

is corresponding to voids, and generally, the p-dimensional homology group is corresponding

to p-spheres in a complex [53]. Further, in our convention, every simplicial complex has a

group of homological features, we use Fig. 2.2 as examples. In panel (b), the Vietoris-Rips

complex only has five components (0-dim homological feature); the complex in panel (c) has

two connected components and one hole (1-dim homological feature); while there are one
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connected component and one hole in panel (d); and the complex has only one connected

component in the last panel (e).

Once we capture a group of homological features in a simplicial complex (e.g. VRε)

of a dataset with a specific ε, moreover, we could get multiple groups of homological

features in difference complexes built on the same data with various ε, we need a tool

to summarize all these information. Persistence diagram is well qualified for this job by

visualizing the ”birth” and ”death” of a homological feature as x-, y-coordinates of a point

in the diagram. To construct a persistence diagram for a set of data points, we adopt

the procedure of forming Vietoris-Rips complexes by introducing a sequence of ε-balls with

increasing radius ε and centered at each data point. Each value of ε yields an unordered

group of homological features. Considering values of ε as a timeline, we only record when

a homological feature appears and disappears. These indexes are called the birth time and

death time of a particular homological feature. Moreover, the lifespan (death minus birth)

of a homological feature is referred to as the feature’s persistence. A set of homological

features gives rise to a set of persistence measurements. At the end of this procedure, when

radius ε is sufficient larger so that the homology group remains unchanged even by further

increasing the radius, information of persistent homology (the set of persistent homology

measurements) is summarized in a persistence diagram.

We continuous using the five data points in Fig. 2.2 to show the process of building a

persistence diagram, and provide a depiction in Fig. 2.3. Given the data points in panel (a),

let’s investigate ε from 0 to 1.25 and only consider 0-dim and 1-dim homological features,

which are also known as connected components and holes. When ε is relatively small, five

individual components are present. When ε increases to 0.71, four components merge into

one connected component, this simultaneously gives rise to a hole. When ε is enlarged to

0.85, all components merge into one connected component, though the hole survives. When

ε is continuously increased to 1, the only 1-dim hole vanishes. No extra information is gained

while ε is grown to 1.25. Recording the birth time and death time of a homological feature

as x-, y-coordinates, respectively, the appearances and disappearances of 0-dim and 1-dim

features are summarized as black dots (correspond to connect components) and red triangles

(correspond to holes) in a persistence diagram in panel (f). Notice for 0-dim homological
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features, three connected components are born at 0 and die at 0.71, one connected component

is born at 0 and dies at 1, one connected component is born at 0 and survive to the end.

For 1-dim homological features, one hole is born at 0.71 and dies at 1. Thus, the persistence

diagram provides information of connectedness and holes induced from the Vietoris-Rips

complexes on the points cloud.

Overall, persistent homology indirectly summarizes the hidden shape of the data and

transcribe these shapes to the persistence diagrams. With the persistence diagrams of each

point cloud, a classifier can be generated either from the distance [51] between persistence

diagrams, or by alternative vectorizations of the diagrams, such as persistence landscape

technique [9], persistence image technique [1] and distance statistics technique [52].
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Figure 2.3: Approach depiction of making persistence diagram. Beginning from ε = 0,
there are five components in Panel (a). When ε = 0.5, five components stay alive in Panel
(b). In Panel (c), when ε = 0.71, four components connect into one connected component,
forming a hole, thus three components die and one hole is born. In Panel (d), when ε = 0.85,
the two components further merge into one, therefore, one more component dies. Finally,
when ε = 1, the only one hole dies but the only one connected component survives in Panel
(e). No additional homological change while ε is grown to 1.25. Panel (f) summarizes the
persistent homology as a persistence diagram.
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Chapter 3

Topological tracking algorithm of

sub-cellular motions

3.1 Description of datasets

Datasets that capture the motion of organelles through conventional fluorescence microscopy

are typically provided in a video format [27, 42, 76]. Essentially, each video-dataset consists

of a stack of pixelated images D = {Fn, tn}Nn=1, where each image Fn is obtained at time tn

during the course of an experiment.

Ignoring imaging artifacts caused by finite frame rate, dead time, or rolling shutter [42]

that are insignificant on the time- and space-scales involved in plant microscopy [45, 47],

we consider images obtained at time levels {tn}n that start at the experiment’s onset and

end with the experiment’s conclusion, denoted t1 = 0 and tN = T , respectively. Further,

we consider intermediate time levels that remain equidistant tn = (n − 1)∆t, where ∆t =

T/(N − 1) is the exposure period used for the acquisition of the images.

In turn, each image Fn is an array of intensity values {Ipn}
P
p=1, where Ipn denotes the

intensity [29, 81], recorded at time tn of a pixel located at a fixed position xp ∈ R2. We assume

that the positions of the pixels {xp}Pp=1 are given and that they are reported in physical units

in the same coordinate system as the sample under imaging. Ignoring positioning parallel to

the optical axis (i.e., ignoring z-depth), which is not captured in conventional fluorescence
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microscopy [30, 42, 44], we consider R2 as a plane perpendicular to the optical axis (for

example, without any loss of generality, R2 can model the focal- or xy-plane).

Depending upon the imaging equipment employed in the experiment (e.g., cameras or

other light detectors), intensities may be reported in various forms such as photon or electron

counts, voltages, currents, ADU (Analog Digital Unit), etc [29, 31, 34, 46, 81]. In this study

we assume {Ipn}n,p are given in normalized gray scale values, i.e., Ipn are measured in arbitrary

units (a.u.), with the convention that lower intensities correspond to darker pixels and vice

versa higher intensities correspond to brighter pixels.

To initiate our method, we model each intensity Ipn as consisting of a background signal

Bp
n, the signal produced by the organelles in the sample Jpn, and noise npn. That is, we model

Ipn as

Ipn = Bp
n + Jpn + npn.

To find the locations of organelles, we adopt part of the data preprocessing steps and the

Bayesian localization step in [75], briefly summarized in the following. In plant microscopy,

typically the background signal changes smoothly across the frames. Therefore, we model

it as a smooth quadratic surface over the entire field of view and remove it by least square

fitting. Next, we model the organelle signal as a sum of Gaussian intensity peaks

Jpn =
S̃n∑
s=1

h̃sn exp

(
−‖x

p − x̃sn‖2

2(w̃sn)2

)
,

where each peak, labeled by s, is produced by a single organelle [72] that is imaged with

maximum intensity h̃sn > 0, width w̃sn > 0, and center x̃sn ∈ R2. We obtain the total

number of organelle peaks S̃n, present in each time level tn, through an iterative method in

which we remove the largest intensity peaks from the frame without the background unitl a

certain threshold is met; while we obtain the organelle features {(x̃sn, h̃sn, w̃sn)}S̃ns=1 through the

maximum a posteriori estimates [13, 24] of a Bayesian model that assumes: (i) the noises

{npn}p are independent and Gaussian; (ii) the organelles are a priori uniformly positioned

over the imaged plane; and (iii) the maximum intensities and widths are a priori distributed

over appropriate finite intervals.
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Ignoring imaging artifacts that are caused by intra-frame motion, which are insignificant

in plant microscopy [45, 47], we model each localization x̃sn ∈ R2, as the effective position of

a single organelle at time tn. In other words, following the localization procedure above, we

obtain a collection of space-time positions R̃ = {{(x̃sn, tn)}S̃ns=1}n ⊂ R2 × [0, T ] that reveals

the positions of every organelle in the sample only at the experimental time levels {tn}n, see

Fig. 3.1.

Figure 3.1: The motion of organelles, during an experiment starting at t1 = 0 ending at
tN = T , is identified at discrete times tn (dots). For simplicity, space is represented with
one dimension, although real datasets are two dimensional. The black dots represent the
locations of organelles at different time levels. R̃ is the set contains the locations of all black
dots.

To proceed with the analysis, we model each organelle’s effective position as an idealized

point and its motion as a 2D trajectory ignoring motion parallel to the optical axis, which

is not captured in a typical dataset. Thus, each organelle, labeled by a, in our formulation

corresponds to a continuous function ra : [0, T ] 7→ R2, where [0, T ] represents the time

course of the experiment and R2 represents any plane compatible with the pixel positions

{xp}p ⊂ R2. Given a dataset D of raw experimental observations and a collection of organelle

space-time localizations R̃ identified as described above, our main objective from now on

will be the computational reconstruction of {ra}a.
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3.2 Ensemble Kalman velocimetry

The motion of the entire set of organelles in the experiment can be encoded within a family

of displacement fields ft→t′(·) : R2 7→ R2, which we use (see Sect. 3.3, below) to distinguish

space-time positions that are visited by each organelle. According to our convention, for

any organelle, its position x, x′ ∈ R2 at a times t, t′ ∈ [0, T ] respectively are coupled by the

displacement fields as

x′ = x+ ft→t′(x),

x = x′ + ft′→t(x
′).

At the spatiotemporal scales probed by conventional fluorescence microscopy, organelles

follow irreversible dynamics [60]. Accordingly, the fields ft→t′(·) and ft′→t(·) are generally

uncorrelated. So, below we incorporate such lack of correlation by adopting a formulation

with different forward and backward fields instead of a formulation using only a single field

for both temporal directions.

In general, the driving dynamics of organelle motion are unknown, thus the precise form of

the fields {ft→t′(·)}t,t′ is unknown as well. Next, we describe a method to estimate these fields

directly from the raw images in D. For our purpose, it is sufficient to compute displacement

fields only at successive time levels. In particular, we are only interested in 1-level forward

fn,+(·) : R2 7→ R2 and 1-level backward fn,−(·) : R2 7→ R2 fields, defined by

fn,+(·) = ftn→tn+1(·), n = 1, . . . , N − 1

fn,−(·) = ftn→tn−1(·), n = 2, . . . , N.

This convention is illustrated in Fig. 3.2.

We compute the displacement fields following a velocimetric approach. We first compute

displacements {{f̄ jn,+}N−1
n=1 , {f̄

j
n,−}Nn=2}Jj=1 ⊂ R2 at the discrete time levels tn, for n = 1, . . . , N ,

of the images in the dataset D and arbitrarily selected discrete positions {x̄j}Jj=1 ⊂ R2. In

particular, given a selected position x̄j, we compute the displacements f̄ jn,+, f̄
j
n,− by image

registration method between a sub-region of pixels, centered around x̄j, in image Fn and the
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Figure 3.2: Here, x is the position of an organelle producing the images shown (gray),
fn,+(x) and fn,−(x) illustrate 1-level forward displacement and backward displacement of x,
respectively. For clarity, the image produced by the organelle are shown as multi-peaked
and space as 1D.

images Fn+1, Fn−1, respectively. Briefly, we consider a transformation Tδ,θ : R2 7→ R2 that

translates by δ ∈ R2 and rotates by an angle θ ∈ [0, 2π). Further, we consider Āj gathering

all pixels P such that ‖x̄j−xP‖∞ ≤ wmax, where wmax > 0 is a parameter controlling the side

length of the region under registration, and set to a small multiple of the typical organelle

size. The image registration reduces to solving the following minimization problems

f̄ jn,+ = arg min
δ

[
min
θ

∑
P∈Āj

∣∣∣IPn − ITδ,θ(xP )
n+1

∣∣∣2] , j = 1, . . . , J, n = 1, . . . , N − 1, (3.1)

f̄ jn,− = arg min
δ

[
min
θ

∑
P∈Āj

∣∣∣IPn − ITδ,θ(xP )
n−1

∣∣∣2] , j = 1, . . . , J, n = 2, . . . , N. (3.2)

Additionally, to exclude arbitrarily large displacements, we restrict each minimization over

only displacements ‖δ‖ ≤ dmax, where dmax > 0 is an upper bound on the longest distance

an organelle can travel during one exposure ∆t.
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To extend our discrete displacements over the entire R2 support, obtain globally defined

displacement fields, and account for the errors introduced in prediction, we adopt a

representation of the forward field

f1,+(·) = u1,+(·), (3.3)

fn,+(·) = Ψ+(fn−1,+(·)) + un,+(·), n = 2, . . . , N − 1 (3.4)

and a similar representation for the backward field

fn,−(·) = Ψ−(fn+1,−(·)) + un,−(·), n = 2, . . . , N − 1 (3.5)

fN,−(·) = uN,−(·), (3.6)

where Ψ+(·) : R2 7→ R2 and Ψ−(·) : R2 7→ R2 describe how the displacement fields change

from one frame to its immediate ancestor and predecessor. Ψ+(·),Ψ−(·) could be motion

equations of a dynamic system if it was known or just ansatzes based on previous experience.

There is a special case when Ψ+(·),Ψ−(·) are identity functions, this happens when one

trusts the displacement fields reserve the same trend as the previous level. The driving

noise {un,+(·)}N−1
n=1 and {un,−(·)}Nn=2 are independent Gaussian processes with mean zero and

covariances that correlates the x or y components of the displacement fields according to

a kernel K(·, ·) : R2 × R2 7→ (0,∞). To facilitate the computations, we leave the x and

y components independent from each other. To ensure smooth fields that do not change

rapidly across organelles, we use the squared exponential kernel

K(x, x′) = σ2
u exp

(
−1

2

(
‖x− x′‖

`

)2
)
, (3.7)

where σ2
u > 0 is a constant and we set ` > 0 approximately equal to the diameter of a single

organelle. Here σ2
u presents the credibility of prediction system, i.e., if Ψ+(·),Ψ−(·) are quite

believable then σ2
u should be chosen to be small, vice versa, if Ψ+(·),Ψ−(·) are uninformative

then σ2
u should be relatively large.
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Due to imperfections in image registration, the displacements {{f̄ jn,+}N−1
n=1 , {f̄

j
n,−}Nn=2}j

computed through Eqs. (3.1),(3.2) may deviate from the true displacements

{{fn,+(x̄j)}N−1
n=1 , {f

j
n,−(x̄j)}Nn=2}j ⊂ R2 at the corresponding positions x̄j. To account for

such errors, we combine these fields with the displacements {{f̄ jn,+}N−1
n=1 , {f̄

j
n,−}Nn=2}j to form

a noisy phenomenological observation model

f̄ jn,+ = fn,+(x̄j) + vjn,+, n = 1, . . . , N − 1 (3.8)

f̄ jn,− = fn,−(x̄j) + vjn,−, n = 2, . . . , N (3.9)

where {vn,+}N−1
n=1 and {vn,−}Nn=2 are independent bivariate Gaussian random variables with

zero mean and variances σ2
v > 0. Here σ2

v measures the reliability of observed displacements

{{f̄ jn,+}N−1
n=1 , {f̄

j
n,−}Nn=2}j acquired from image registration method, smaller σ2

v indicates closer

agreement with the true displacement.

Figure 3.3: The relations of forward fields and backward fields are indicated here. (a) shows
the approach depiction of forward displacement fields, (b) shows the approach depiction of
backward displacement fields. For clarity, time marches forward in (a) and backward in (b).

An implementation of Eqs. (3.3)-(3.6), which apply in continuous space, is computa-

tionally intractable yielding to a pertinent discretization. Precisely, we apply a grid of
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fixed positions {¯̄xλ}Λ
λ=1 ⊂ R2 that may not, in general, coincide with {x̄j}j. Next, let

φn,+(·) : R2 7→ R, with n = 1, . . . , N − 1, denote the x component of the displacement field

fn,+(·).

Denoting
[
φn,+(¯̄x1) · · · φn,+(¯̄xΛ)

]T
by Φn,+( ¯̄XΛ) and

[
φn,+(x̄1) · · · φn,+(x̄J)

]T
by Φn,+(X̄J),

then according to the Gaussian process u1,+(·), Eq. (3.3) becomes

[
Φ1,+( ¯̄XΛ) Φ1,+(X̄J)

]T
∼ NΛ+J

(
0(Λ+J)×1,Σ

)
, (3.10)

where Σ =



K(¯̄x1, ¯̄x1) · · · K(¯̄x1, ¯̄xΛ) K(¯̄x1, x̄1) · · · K(¯̄x1, x̄J)
...

. . .
...

...
. . .

...

K(¯̄xΛ, ¯̄x1) · · · K(¯̄xΛ, ¯̄xΛ) K(¯̄xΛ, x̄1) · · · K(¯̄xΛ, x̄J)

K(x̄1, ¯̄x1) · · · K(x̄1, ¯̄xΛ) K(x̄1, x̄1) · · · K(x̄1, x̄J)
...

. . .
...

...
. . .

...

K(x̄J , ¯̄x1) · · · K(x̄J , ¯̄xΛ) K(x̄J , x̄1) · · · K(x̄J , x̄J)


.

Similarly, according to the Gaussian processes {un,+(·)}N−1
n=2 , Eq. (3.4) becomes

[
Φn,+( ¯̄XΛ) Φn,+(X̄J)

]T
∼ NΛ+J

(
Ψ+

([
Φn−1,+( ¯̄XΛ) Φn−1,+(X̄J)

]T)
,Σ

)
, (3.11)

where n = 2, . . . , N − 1.

Let φ̄jn,+ ∈ R denote the x component of f̄ jn,+ and further denote the vector[
φ̄1
n,+ · · · φ̄Jn,+

]T
by Φ̄J

n,+. Then Eq. (3.8) becomes

Φ̄J
n,+ ∼ NJ

([
0J×Λ IJ×J

] [
Φn,+( ¯̄XΛ) Φn,+(X̄J)

]T
, σ2

vIJ×J

)
, n = 1, . . . , N − 1.

(3.12)

Analogous formulas apply for the y component ψn,+(·) : R2 7→ R of the forward field, as

well as for the x component φn,−(·) : R2 7→ R and y component ψn,−(·) : R2 7→ R of the

backward field. We provide the complete set of equations in the Appendix.

We consider the Ensemble Kalman Filtering (EnKF) [41] to compute the posterior point

estimates. Let notation [·j] denote the vector, which contains all elements corresponding
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possible value j. In Eqs. (3.10),(3.11), {[φjn,+]}N−1
n=1 are the states in RΛ+J , in which

predictions are made based on Ψ+(·)(see Eqs. (3.4),(3.11)), and {[φ̄jn,+]}N−1
n=1 are the states in

RJ , in which the observations are obtained by applying image registration to the image data.

With Eqs. (3.3),(3.4),(3.8) and their vectorized discrete form (3.10),(3.11),(3.12), EnKF will

produce a sequence of improved estimations {[φ̂jn,+]}N−1
n=1 for the x component of forward

fields.

To adopt the EnKF algorithm for our problem, we mainly perform predicting and

updating steps iteratively. Denote Q = Σ and R = σ2
vIJ×J , and let E be the size of an

ensemble we choose. In every iteration, instead of using a single estimation, EnKF generates

an ensemble of samples based on multiple predictions φ̂
(e)
n in the following equation,

φ̂(e)
n = Ψ+(φ

(e)
n−1) + [ujn,+](e), [ujn,+](e) ∼ N(0, Q), e = 1, ..., E,

where one sample is corresponding to one simulation satisfying Eq. (3.11). Sample mean

and sample variance needed in the following updating steps are computed subsequently by

this ensemble set as follows,

m̂n =
1

E

E∑
e=1

φ̂(e)
n

Ĉn =
1

E − 1

E∑
e=1

(φ̂(e)
n − m̂n)(φ̂(e)

n − m̂n)T .

Then the Kalman gain denoted by Gn is calculated by Gn = Ĉn(Ĉn + R)−1. It controls the

weight of the predictions φ̂
(e)
n and observation [φ̄jn,+] to be involved in our approximation

[φ̂jn,+], where the improved estimation [φ̂jn,+] is obtained by updating the sample mean of

predictions with the observation in the following way,

[φ̂jn,+] = (I −Gn)m̂n +Gn[φ̄jn,+]. (3.13)

Actually, the improved estimation [φ̂jn,+] is a weighted sum of predictions φ̂
(e)
n and observation

[φ̄jn,+] depends on σ2
u the credibility of prediction system and σ2

v the reliability of observation.

Suppose the observation is more reliable, meaning σ2
v < σ2

u and σ2
v → 0, then limσ2

v→0Gn = I,
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and limσ2
v→0(I − Gn) = 0, hence [φ̂jn,+] in Eq. (3.13) has less information from the mean of

predictions m̂n, but contains more information from the observation [φ̄jn,+], therefore the

observation holds a heavier weight in the improved estimation. Conversely, suppose the

prediction process is more trustworthy, or equivalently, σ2
u < σ2

v and σ2
u → 0, the improved

estimation weights the predictions more heavily [5]. At the end of every iteration, samples

in the resemble set are further updated as

φ(e)
n = [φ̂jn,+] + [vjn,+](e), [vjn,+](e) ∼ N(0, R), e = 1, ..., E.

Thus, after all iterations, a sequence of improved estimations {[φ̂jn,+]}N−1
n=1 is obtained by

applying EnKF. All steps of EnKF algorithm for organelle velocimetry is summarized in

Algorithm 3.

The y component of forward fields and backward fields filtering process works in a similar

way. With the discreterized equations given in Appendix and the approach depiction

in Fig. 3.3, one could perform the EnKF to obtain the improved estimations {[ψ̂jn,+]}Nn=1,

{[φ̂jn,−]}Nn=1 and {[ψ̂jn,−]}Nn=1.

3.3 Topological reconstruction

Given a collection of organelle space-time localizations R̃ and appropriate displacement

fields {fn,+(·)}N−1
n=1 and {fn,−(·)}Nn=2, our goal is to computationally reconstruct {ra}a. Of

course, because the reconstruction of {ra}a in continuous time is impossible without a motion

model capable of time interpolation, which is unavailable for plant organelles, we focus on

reconstructing trajectories {r̃a}a that are discretized at time levels contained in R̃, i.e., r̃a =

{ra(tn)}n. As we show below, for such discrete reconstruction the computed displacement

fields {fn,+(·)}N−1
n=1 and {fn,−(·)}Nn=2 are sufficient.

We adopt a similar linking process as in [75]. Our algorithm (described in depth below)

proceeds in three stages. See Fig. 3.4 for visual representation. In the first stage, we embed
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Algorithm 3 Ensemble Kalman Filter for Organelle Velocimetry

φ
(e)
0 = 0, e = 1, ..., E

Q = Σ

R = σ2
vI

When n = 1,

φ̂
(e)
1 = φ

(e)
0 + [uj1,+](e), [uj1,+](e) ∼ N(0, Q), e = 1, ..., E

m̂1 =
1

E

E∑
e=1

φ̂
(e)
1

Ĉ1 =
1

E − 1

E∑
e=1

(φ̂
(e)
1 − m̂1)(φ̂

(e)
1 − m̂1)T

G1 = Ĉ1(Ĉ1 +R)−1

[φ̂j1,+] = (I −G1)m̂1 +G1[φ̄j1,+]

φ
(e)
1 = [φ̂j1,+] + [vj1,+](e), [vj1,+](e) ∼ N(0, R), e = 1, ..., E

For n = 2 to N − 1

φ̂(e)
n = Ψ+(φ

(e)
n−1) + [ujn,+](e), [ujn,+](e) ∼ N(0, Q), e = 1, ..., E

m̂n =
1

E

E∑
e=1

φ̂(e)
n

Ĉn =
1

E − 1

E∑
e=1

(φ̂(e)
n − m̂n)(φ̂(e)

n − m̂n)T

Gn = Ĉn(Ĉn +R)−1

[φ̂jn,+] = (I −Gn)m̂n +Gn[φ̄jn,+]

φ(e)
n = [φ̂jn,+] + [vjn,+](e), [vjn,+](e) ∼ N(0, R), e = 1, ..., E
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Figure 3.4: (a) shows R̃ as black dots and R as gray lines; (b) shows R, Tn in Eq. (3.14)
and P−1

R (Tn) as blue segments; (c) shows R, Tn, P−1
R (Tn), R̃ and reconstructed discrete

trajectories. For visualization purpose, space is shown in 1D.

R̃ into

R =
⋃
a

{
(ra(t), t)

}
t∈[0,T ]

⊂ R2 × [0, T ].
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Then for any two points (x, t) ∈ R2 × [0, T ] and (x′, t′) ∈ R2 × [0, T ], we consider

d ((x, t), (x′, t′)) = ‖x− x′‖+ α|t− t′|,

where ‖ · ‖ is the Euclidean norm in R2 and α > 0 is constant. Since d(·, ·) is a distance in

R2× [0, T ], our main object of interest R ⊂ R2× [0, T ] inherits the topological properties of

a metric space [21, 57, 83]. Essentially, R consists of the points in space-time R2× [0, T ] that

are visited by the organelles during the experiment. AlthoughR globally captures the motion

we are interested in revealing, it leaves individual trajectories indistinguishable. Accordingly,

in the second stage, we partition R into components {Ra}a such that each Ra corresponds

to a single trajectory ra, i.e., we partition R = ∪aRa such that Ra =
{

(ra(t), t)
}
t∈[0,T ]

⊂

R2 × [0, T ]. The partitioning of R can be computationally achieved through construction

of the appropriate topological nerve [20] via the Mapper algorithm [12, 77]. Briefly, for any

τ > 0, such that τ < ∆t, we consider the overlapping intervals {Tn}N−1
n=1 defined by

T1 = [t1, t2 + τ),

Tn = (tn − τ, tn+1 + τ), n = 2, . . . , N − 2, (3.14)

TN−1 = (tN−1 − τ, tN ]

which are associated with the time levels {tn}n of the provided dataset. For any (x, t) ∈ R

we consider the temporal projection PR : R 7→ [0, T ] defined by

PR ((x, t)) = t, (x, t) ∈ R.

Due to continuity, {P−1
R (Tn)}N−1

n=1 ⊂ R forms an open covering of R. By its definition,

each pre-image P−1
R (Tn) ⊂ R contains segments of at least one organelle trajectory,

however, due to its inherited topology, each trajectory segment corresponds to only a

single connected component within P−1
R (Tn) ⊂ R. Consequently, partitioning R into

connected components is achieved by, first partitioning each P−1
R (Tn) into its connected

components {Sm,n}Mn
m=1 and, computing subsequently the nerve of the entire resulting family

of components {{Sm,n}Mn
m=1}N−1

n=1 ⊂ R, which is also an open covering of R. Lastly, in the
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third stage, we readily obtain discrete trajectories r̃a by intersecting Ra ∩ R̃. To partition

each P−1
R (Tn) into its connected components {Sm,n}m, we consider

` ((x, t), (x′, t′)) = ‖x− x′ − ft′→t(x′)‖+ ‖x′ − x− ft→t′(x)‖,

where (x, t) ∈ R2×[0, T ] and (x′, t′) ∈ R2×[0, T ]. Here, the points (x, t) ∈ R2×[0, T ] and (x+

ft→t′(x), t′) ∈ R2× [0, T ] or the points (x′, t′) ∈ R2× [0, T ] and (x′+ft′→t(x
′), t) ∈ R2× [0, T ]

are both produced by the same organelles. Thus, (x, t) ∈ P−1
R (Tn) and (x′, t′) ∈ P−1

R (Tn),

belong to the same connected component Sm,n if and only if `((x, t), (x′, t′)) = 0. Therefore,

provided the 1-level displacement fields {fn,+(·)}N−1
n=1 and {fn,−(·)}Nn=2 have been already

computed, we can use ` to topologically characterize trajectory segments or equivalently

connected components of P−1
R (Tn). Consequently, a computational characterization of

S̃m,n = Sm,n ∩ R̃ can be achieved by an agglomerative clustering on P−1
R (Tn) ∩ R̃ with

linkage `. Specifically, the restriction `n of ` in P−1
R (Tn) ∩ R̃, required for each clustering,

reduces to

`n ((x, t), (x′, t′)) =


‖x− x′ − fn+1,−(x′)‖+ ‖x′ − x− fn,+(x)‖, t < t′

2‖x− x′‖, t = t′

‖x− x′ − fn,+(x′)‖+ ‖x′ − x− fn+1,−(x)‖, t > t′.

3.4 Results

3.4.1 Case I: Velocimetry benchmark

The displacement estimation and linking processes are tested on a simulated data set

consisting of 20 organelles in 100 frames of video with a time delay ∆t = 1 s. The trajectories

are exhibited in Fig. 3.5. The positions of an organelle in each frame are known and are

generated by a diffusion process, which also contains a drift term, given by

dXt = vxdt+DWt,

dYt = vydt+DWt,
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where Wt is a Wiener process, vx = 3 pixel/s, vy = 1 pixel/s, and D = 1 pixel/s. The

starting distances between any two adjacent organelles at t = 0 s is 10 pixels.

Figure 3.5: Case I: The frame size is 320 by 320 pixels. Trajectories of 20 organelles are in
red spanning from time t = 0 s to t = 99 s. Their motion is described by a diffusion process
containing both a diffusion and a drift term. The starting distance of any two adjacent
organelles at t = 0 s is 10 pixels.

Given the location of all organelles in each frame, we apply our displacement estimation

process detailed in Sect. 3.2 to the data set, then calculate the mean error (in pixels) between

the estimated forward (backward) displacement and true displacement frame by frame, along

the x-axis and y-axis respectively. The results are shown in Fig. 3.6. The four histograms,

almost all mean errors per frame are around 0.25 pixel and smaller than one pixel, only

very few are greater than one pixel and all are smaller than two pixels, we may see these as

outliers.
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Figure 3.6: Case I: Four histograms of mean error of each frame. Each one compares
estimated forward and backward displacement with ground truth along x-axis and y-axis,
respectively.

Given the displacements, we apply the linking process of Sect. 3.3, and the results are

shown in Fig. 3.7. All organelles are correctly connected by 20 trajectories, each trajectory

spans exactly from t = 0 s to t = 99 s, and the yielding accuracy rate is 100%.

Next we perturb the y-axis direction of the location of simulated organelles, by adding

noise following a uniform distribution U(−ε, ε) at every time level, where ε is the largest

perturbation could be added. We will investigate the cases when ε varies from 1 pixel

to 4 pixels. Apply the displacement estimation and linking processes with our algorithm,

then count number of total reconstructed trajectories, number of reconstructed trajectories

longer than 10 s, number of reconstructed trajectories having 100% agreement with the

truth, number of reconstructed trajectories having at least 90% agreement with the truth
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Figure 3.7: Case I: Linking result of all trajectories in red. The accuracy rate is 100%.

and number of reconstructed trajectories having at least 50% agreement with the truth. The

results are in Table 3.1.

Table 3.1: Case I: Table of detection result

ε (in pixels) total > 10 s = 100% ≥ 90% ≥ 50%
ε = 1 20 20 20 20 20
ε = 1.5 20 20 20 20 20
ε = 2 20 20 20 20 20
ε = 2.5 24 24 14 17 20
ε = 3 32 27 9 14 17
ε = 3.5 33 30 5 10 15
ε = 4 53 40 1 4 14
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As shown in Fig. 3.8, when we increase ε, the trajectories contain larger fluctuations, and

any two adjacent trajectories become closer or even intersect. Thus, larger ε causes higher

difficulty to detect trajectories. From Table 3.1, when the noise is mild (ε < 2.5 pixels),

our reconstructed trajectories remain the same; but when ε becomes large (ε ≥ 2.5 pixels),

the accuracy rate decreases. In fact, when ε = 4 pixels, there are no clear patterns for all

independent trajectories to be detected, and most of organelles just look scattered in the

frame when overlapping all their positions over the time span of the video.

Figure 3.8: Case I: Positions of organelles over time after adding perturbation U(−ε, ε)
when ε = 0, 1, 1.5, 2, 2.5, 3, 3.5, 4 pixels, respectively. If ε increases, it is more difficult
to detect trajectories, especially, when ε = 4 pixels, there are no clear patterns for all
trajectories to be reconstructed.

3.4.2 Case II: Complex dynamics

Now consider a complex video with 20 organelles in each frame and 100 frames in total.

Each frame has a 380 by 380 pixels grid on it. This video has a frame rate of 30 frames per
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second, which gives ∆t = 33.33 ms. There are multiple filaments hiding in the background,

and are not visible in the imagery. Three kinds of motions could happen. An organelle could

attach to or detach from a filament, travel along a filament, or move randomly. Moreover,

an organelle could go through multiple of these three motions in a single ∆t.

After importing the video as gray scaled images and filtering out the background from

each frame, our method detects peaks iteratively and applies Bayesian identification with

the following prior distributions:

� ñpn follows normal distribution N(0, 1),

� zsn follows uniform distribution over the frame,

� hsn follows translated beta distribution with support (50, 150), mode 100, and shape

parameter α = 5,

� wsn follows translated beta distribution with support (10, 20), mode 15, and shape

parameter α = 5,

as mentioned in Sect. 3.1. An example of a single frame is shown in Fig. 3.9. The red dots

on the left panel and blue pentagons on the right panel are the original locations before

Bayesian identification. It is clear to see that the three pairs at the bottom (which have

y-value greater than 300) need to be corrected as part of their corresponding organelles are

overlapped. The red pentagons are the fitted location after Bayesian identification.

For the approximation of displacement fields using Ensemble Kalman filtering(see Section

2.2), since ∆t = 33 ms is considered extremely small, this ensures the displacement fields do

not change rapidly from one frame to the very next. Moreover, the displacement fields from

one level should partially memorize the trend from the previous level. Thus, lacking more

information about the dynamic system, we choose Ψ(x) =
√
x to imitate a nonlinear decay

in the displacement field. Setting σu = 5 pixels, σv = 2 pixels since we want to give more

weight to observations, then the forward displacement fields of the 17th frame at tn = 0.53 s

is displayed in Fig. 3.10(a), an area of pixels [140, 230] on x-axis times pixels [260, 350] on

y-axis is enlarged in Fig. 3.10(b). We can easily observe the displacement fields around

organelles.
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Figure 3.9: Case II: The left shows the rough detection result, the right show the locations
after correction. The red dots in the left penal and blue pentagons in the right penal are the
original locations before Bayesian identification. The red pentagons in the right panel are
the fitted location after Bayesian identification.

The trajectories are reconstructed in Fig. 3.11. The left panel shows all estimated

trajectories in red concentrate upon the light area. The right panel shows trajectories

with ground truth trajectories in black. Most of them coincide, except the area where our

method cannot do the tracking job perfectly when more organelles collide or stick together.

Specifically, we pick four sets of trajectory reconstructions, exhibited in Fig. 3.12, each panel

shows our reconstructions compared with one true trajectory, their mean error are 1.20, 2.24,

2.09 and 1.42 pixels, respectively.

3.4.3 Case III: Real Data

Finally, we consider a real grayscale video with a total of 299 frames, recording the motion

of peroxisomes in a plant cell. In plant cells, peroxisomes play a variety of roles including

converting fatty acids to sugar and assisting chloroplasts in photorespiration. The spatial

resolution for this video is 0.196 micrometers/pixel and the size of each frame is 79 by 662
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Figure 3.10: Case II: Estimated displacement fields of 17th frame using EnKF. Panel
(a) shows the estimated displacement fields for the entire focal plane. Panel (b) shows the
enlarged area of [140, 230]× [260, 350] in Penal (a).

pixels. The time period between successive frames is 82 ms, that is, ∆t = 82 ms. Fig. 3.13(a)

shows the first frame of the video, the light spots in the frame are peroxisomes and their

sizes range from 0.5 to 1 micrometer.

The outcomes of our method applied to this video are shown in Fig. 3.13(b) and 3.13(c).

We plot the estimated trajectories, which only exist in at least 10 consecutive frames, in

Fig. 3.13(b). We can see that the red trajectories cover almost every highlighted area. In

Fig. 3.13(c), we exhibit all these 116 trajectories in different colors. Mainly two type of

trajectories are observed: a long trail when peroxisome is traveling along the filament; a

short trail when peroxisome is wiggling in the cell. Our developed method is able to track

the peroxisomes in different types of motions for long time intervals.
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Figure 3.11: Case II: Trajectories reconstruction result

38



Figure 3.12: Case II: Four specific sets of trajectory reconstructions vs ground truth. Each
panel shows reconstructions versus one true trajectory. The upper left is amplified from the
area [290, 380]× [40, 130] in Figure 3.11; the upper right is amplified from the area [40, 190]×
[190, 340] in Figure 3.11; the bottom left is amplified from the area [80, 210] × [200, 330] in
Figure 3.11; the bottom right is amplified from the area [230, 380]× [200, 350] in Figure 3.11;
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Figure 3.13: Case III: Panel (a) is the first frame of the video. Panel (b) exhibits all
estimated trajectories in red. Panel (c) further shows each estimated trajectory in different
colors.
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Chapter 4

Filament networks learning

4.1 Filament networks and data preprocessing

Actin filaments are thought to be organized by cross-linking on actin-binding proteins

[88]. Filaments and inter-filament structure can be simulated by a physical model [22, 23].

However, the change of environment in a eukaryotic cell will cause variation in filament

networks. Our network data is simulated by three different cross-linker densities, which

are corresponding to three distinct cellular environments. Higher cross-linker density yields

more opportunities for filaments to cross-link, i.e. the binding and unbinding processes are

more active in a certain area. As shown in Fig. 4.1(a), three kinds of filaments networks are

simulated with different numbers of cross-linkers: 825, 1650 and 3300. All cells are bounded

by a 20 µm × 20 µm square, and the cross-linking density of each network is 2.06, 4.13 and

8.25 per µm2, respectively. In each network, there are totally 100 filaments with an average

length 10 µm, they are modeled as polar warm-like chain in red and blue dots represent

barbed ends of these filaments. We also record the locations of actin beads that make up

the filaments, which are shown as small black circles in Fig. 4.1(b). Every actin bead has an

identical radius 0.5 µm. We study filament networks as a classification problem, and we are

interested in developing an automated method to accurately classify cross-linker density of

a filament network.

Using the approach of Sect. 2.2.1 and Sect. 2.2.2, we construct simplicial complexes

in a typical way of persistent homology by using the 2-dimensional coordinates of actin
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Figure 4.1: Filament networks. Panel (a) shows three filament networks generated by 825,
1650 and 3300 cross-linkers, respectively, in a 20 µm × 20 µm area. Each network contains
100 filaments which are represented as red lines. The blue dots are the barbed ends of these
filaments. Panel (b) shows the locations of the actin beads that make up the filaments
exhibited in Panel (a).
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beads along the filaments as the initial nodes. We adopt the procedure of forming Vietoris-

Rips complexes [20] on each dataset (actin network) by introducing a sequence of ε-balls

with increasing radius ε and centered at each data point (actin bead), where each value

ε corresponds to an unordered group of homological features. We only record when a

homological feature appears and vanishes. At the end of this procedure, information of

a filament network’s persistent homology is summarized in a pertinent persistence diagram.

4.2 Filament network classifier

Once we generate persistence diagrams that correspond to the actin filament networks, we

are ready to classify these networks. In this work, we propose a distance-based methodology

for a filament network classifier.

Given any two persistence diagrams, we need a way to quantify the difference between

them. In TDA, two distances are commonly used, the Bottleneck and the Wasserstein

distance [1, 9, 20, 40, 89]. Their definitions are given as follows,

Definition 4.1. Given two persistence diagrams X and Y . The Wasserstein distence

Wp(X, Y ) is defined by

Wp(X, Y ) =

(
inf

η:X 7→Y

∑
x∈X

||x− η(x)||p∞

) 1
p

, (4.1)

where the infimum is taken over all bijections η. If p → ∞, then Wasserstein distence

becomes the Bottleneck distance,

W∞(X, Y ) = inf
η:X 7→Y

sup
x∈X
||x− η(x)||∞. (4.2)

These distances calculate the optimal (minimal) cost in matching points between two

persistence diagrams. To ensure the bijection η between persistence diagrams X and Y

exists, matching to the diagonal (where birth equals death in persistence diagrams) in the

Wasserstein distance and Bottleneck distance is allowed. They assume infinitely many points
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of infinite multiplicity on the diagonal. Thus, they only penalize extra points by imposing

cost of connecting to the diagonal.

In addition to the Wasserstein and the Bottleneck distance, in this work we adopt a new

distance, called dcp distance, which is proposed in [51] and has been proved to be stable in [52].

The cardinality of a persistence diagram may carry important information in applications,

especially for those homological features which die very quickly and may be considered as

insignificant in the Wasserstain distance. Thus, the dcp distance accounts uneven cardinalities

between persistence diagrams by assigning a regularization term with a parameter c, rather

than connecting extra points to the diagonal. An example of different ways in matching is

shown in Fig. 4.2. The dcp distance is defined as follows,

Definition 4.2. Let DX and DY be two persistence diagrams with cardinalities n and m

respectively such that n ≤ m and denote Dx = {x1, ..., xn}, Dy = {y1, ..., ym}. Let c > 0 and

1 ≤ p < ∞ be fixed parameters. The dcp distance between two persistence diagrams Dx and

Dy is

dcp(Dx, Dy) =

(
1

m

(
min
π∈Πm

n∑
l=1

min(c, ||xl − yπ(l)||∞)p + cP |m− n|

)) 1
p

, (4.3)

where Πm is the set of permutations of (1, ...,m). If m < n, define dcp(Dx, Dy) := dcp(Dy, Dx).

Eq. (4.3) shows that the dcp distance calculates the distance of points in two persistence

diagrams without simulating points on the diagonal, it adds a penalty term of the difference

in cardinalities between the two sets of points as well. The parameter c in Eq. (4.3) is a

constant controlling the weight of penalization to be added in the dcp distance. A greater

value of c yields a larger penalization. We tend to evaluate c between 0 and 1 as these have

been empirically found to be appropriate options in real-world applications [52]. Moreover,

A pair of p and c can be selected by running cross-validation on the data set.

Since persistence diagrams can summarize homological features of multiple dimensions

in one diagram, such as in Fig. 4.3, the persistence diagram is generated by a set of

five data points, which has been used as an example in Sect. 2.2.2, and this persistence

diagram contains both 0-dim features (connected components) with cardinality 5 and 1-dim
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Figure 4.2: Given two persistence diagrams, one is represented by blue dots, the other one
is represented by red squares. In panel (a), matching to diagonal is allowed in calculating
Wasserstain distance, and the extra blue dot has been matched to the diagonal. In panel (b),
the dcp distance does not match points to diagonal, and it counts the extra blue dot by adding
a penalty term depending on parameter c as in Eq. (4.3).

features (holes) with cardinality 1, we consequently further define the dcp distance of a certain

dimensional feature between a persistence diagram and a group of persistence diagrams.

Definition 4.3. Consider only a specific β-dim homological feature, β = 0, 1, 2, ..., denote

C as a collection of persistence diagrams from the same class, the dcp distance of β-dim

homological feature between a persistence diagram Dx and a set of persistence diagrams C is

given by its average,

dβ(Dx, C) =
1

|C|
∑
D∈C

dcp(Dx, D), (4.4)

where |C| represents the size of class C.

Next, we build the dcp-based network classifier. For K classes of filament networks, every

network in a class is generated under an identical set of cellular constraints. Therefore, we

have K sets of persistence diagrams, where each set corresponds to a unique set of cellular

45



Figure 4.3: The persistence diagram on the left is generated by a set of five data points on
the right. This persistence diagram contains both 0-dim features (connected components)
with cardinality 5 and 1-dim features (holes) with cardinality 1. They have been used as an
example in Sect. 2.2.2, the detailed generating process of the persistence diagram is exhibited
in Fig. 2.3.

conditions. Given a new filament network with its persistence diagram D′, our goal is to

classify under which constraints the network was most likely generated, i.e. to which class

k most likely belongs. We estimate this membership by calculating the distance between D′

and each class of persistence diagrams. We then assign the new network to the class with

the smallest distance. Additionally, we parameterize relative weights for different dimensions

of homological feature in calculation of the distance and force the weights’ sum to 1. The

classifier is summarized in Algorithm 4.

4.3 Classification result

In our data set, we are provided with three classes of filament networks. Each class of

filament networks is generated with a different number of cross-linker proteins (Class 1: 825

cross-linkers, Class 2: 1650 cross-linkers, Class 3: 3300 cross-linkers) in a cell bounded by
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Algorithm 4 dcp-based network classifier

Let B is the highest dimension of homological features under consideration.
1. Take the training set T1, T2, ..., TK from each class of diagrams C1, C2, ..., CK ,
2. For a new network with its corresponding persistence diagram D′, compute

d(D′, Tk) =
B∑
β=0

wβdβ(D′, Tk), (4.5)

where
∑B

β=0wβ = 1, and wβ determine how much β-dim homological feature is considered,
3. Assign D′ a class label c′ such that,

c′ = arg min
1≤k≤K

d(D′, Tk), (4.6)

a 20 µm × 20 µm square. Each class contains a balanced number of 50 samples. Therefore,

there are total of 150 individual filament networks.

In order to compare classifiers, we employ 10-fold Cross-Validation to estimate overall

classification accuracy. All of the networks are randomly partitioned into 10 mutually

exclusive sets, of which 9 partitions are selected as a training set, while the remaining 1

partition is used for testing. We repeat the classification procedure 10 times, such that every

partition acts as a testing set exactly once. We consider the overall classification accuracy

rate as the mean accuracy across all partitions. We also calculate the Area Under the ROC

Curve (AUC) as our model performance indicator. AUC measures how much the classifier

is capable of distinguishing between classes [58], ranging from 0 to 1. The higher the AUC

and closer to 1, the better the classifier is at distinguishing networks from different classes.

4.3.1 Case I: Even weighted data analysis

In this case, we impose an additional restriction that each fold of filament network data

is enforced to evenly have a same amount of filament networks from each class, when we

randomly partition the data set into 10 folds. That is, each fold contains 5 random filament

networks from the three classes respectively.

After making a persistence diagram based on the locations of actin beads for each filament

network, we test our dcp-based classifier on this data set. Considering only 0-dim and 1-dim
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homological features, we first run a sensitivity analysis on p and c in order to find the best

pair of their values. We take p into account via a sequence of values {0.25, 0.5, 1, 2, 3, 4},

and grid search c in a sequence of values {0.1, 0.2, · · · , 0.9, 1, 2, · · · , 6}. In addition, we vary

w0, w1 in Eq. (4.5), and record the best classification accuracy rate for every corresponding

pair of p and c. The analysis results are plotted in Fig. 4.4,

Figure 4.4: The curves in the figure show the classification accuracy rates corresponding
to difference values of p and c. The dcp-based classifier achieves the overall best rate only
when p = 0.5, p = 1, or p = 2.

Fig. 4.4 demonstrates that only when p = 0.5, p = 1, or p = 2, the dcp-based classifier

achieves the overall best classification accuracy rate. Therefore, p should be chosen among

these three values. Further more, when p ≤ 1, choosing c around 4 provides a higher

accuracy rate than any other values of c; when p = 2, higher accuracy rates are obtained at
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both c = 0.2 and c = 1; when p ≥ 3, a higher accuracy rate is obtained at c = 0.2 or even

smaller c. Thus, these results also reveals the pattern that the larger value of p, the closer

value to 0 of optimal c in the purpose to get a higher accuracy rate.

Here we chose p = 2 to mimic the tradition Euclidean distance. When w0 = 0.45, w1 =

0.55, which means connected components are considered slightly heavier than holes, and

c = 0.2 to assign a smaller contribution from cardinality difference in the dcp distances, the

best classification accuracy rate is 89%. The confusion matrix is displayed in Table 4.1. The

AUC of our classifier is 0.94. Thus, using our dcp-based classifier methodology with 10-fold

Cross-Validation technique, we classify 150 filament networks at a 89% accuracy rate, it

also indicates our dcp-based classifier has an outstanding ability of distinguishing filament

networks class by class.

Table 4.1: Confusion matrix

True class

Class 1 Class 2 Class 3

P
re

d
ic

te
d

Class 1 50 3 0

Class 2 0 40 6

Class 3 0 7 44

We also compare our algorithm with other classifiers, which are built by properly

vectorizing persistence diagrams, considering both 0-dim and 1-dim features and applying

vector-based machine learning tools, such as Support Vector Machine (SVM) and Random

Forest classifiers. Distance-statistics vectorization takes the similar idea in [52], vectorizing

each persistence diagram by calculating statistics of the distances between itself and all

other persistence diagrams. Precisely, for any two persistence diagrams Di, Dj in a set of

diagrams, let d i,j
β (Di, Dj) be the distance of β-dim homological feature between Di and

Dj, further denote the mean and variance of the distances {d i,j
β (Di, Dj)}j 6=i by Eiβ and Vi

β

respectively, then the persistence diagram Di is vectorized as (Ei0,Vi
0,Ei1,Vi

1). Moreover, we
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could choose either the dcp or Wasserstein distance in computing d i,j
β (Di, Dj). Persistence

Image (PI) in [1] is a finite-dimensional vector representation of persistence diagrams. It is

built by adding a Gaussian kernel density onto every point in the persistence diagram with

a continuous weighting function, integrating the formed surface over a grid overlaid on this

diagram. In addition, we compare our algorithm with a non-TDA-used classifier. A raster

image is defined by a pixel that has one or more numbers associated with it. It has been

wildly used in applications of image storage and geographic information systems. We place a

20×20 grid directly on the image of filament networks as shown in Fig. 4.1(b), and count the

number of actin beads in every 1 µm2 grid, then apply other common standard classification

algorithms. All results of the accuracy rates and AUCs by using different classifiers are listed

in Table 4.2.

Table 4.2: Accuracy rate and AUC for even weighted data

classifier accuracy AUC
dcp-based 89% 0.94

dcp-statistics
SVM

86% 0.93

dcp-statistics
Random Forest

84% 0.92

Wasserstein-based 83% 0.91
Wasserstein-statistics

SVM
77% 0.86

Persistence Image
SVM

75% 0.85

Wasserstein-statistics
Random Forest

71% 0.79

Raster
SVM

65% 0.77

Raster
Random Forest

55% 0.69

From the results, the dcp distance generally outperforms the Wasserstein distance as the

dcp distance adds a term to count difference cardinalities between persistence diagrams. All

classifiers that use persistence diagrams perform better than the classifiers that do not use
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TDA technique since persistence diagrams are embedded with extra geometric information

hidden in the data, this information provides more clue in classification. But overall, the

dcp-based classifier has the greatest accuracy classification rate and the highest AUC, it is

superior than other classifiers.

4.3.2 Case II: Mixed data analysis

In this case, we remove the even weighted restriction as in Case I, when 10-folds Cross-

Validation is performed. In this convention, the 150 filament networks are just randomly

divided into 10 folds without any additional restriction, every fold is allowed to have

unbalanced amounts of filament networks from each class, or even without filament networks

from a class at all. Then let’s investigate if our classifier is still robust when the training set

is a set of mixed filament networks from the three classes.

We test our dcp-based classifier and compare with some classifiers that performed well in

Case I, the results are exhibited in Table 4.3.

Table 4.3: Accuracy rate and AUC for mixed data

classifier accuracy AUC
dcp-based 88% 0.94

dcp-statistics
SVM

87% 0.93

dcp-statistics
Random Forest

85% 0.92

Wasserstein-based 83% 0.91
Wasserstein-statistics

SVM
75% 0.83

Wasserstein-statistics
Random Forest

73% 0.8

Persistence Image
SVM

72% 0.79
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Comparing to Table 4.2, the classification results in Table 4.3 are slightly different. This

shows that our classifier with the 10-fold Cross-Validation technique handles mixed data

very well. Moreover, the dcp-based classifier still does the best job in classification.

4.3.3 Case III: Weight analysis on filament networks

In this section, we vary the weights of different classes of filament networks in the sample

set. We first look into the effect by over-weighting a certain class of filament networks. Since

there are 50 networks in each class, we keep only one class with 50 networks and randomly

remove 20 networks from the other two classes respectively. We test our dcp-based classifier

with some other classifiers on these three cases, and show results in Table 4.4.

Table 4.4: Accuracy rate and AUC for weighted data

class weight 50 : 30 : 30 30 : 50 : 30 30 : 30 : 50

classifier accuracy AUC accuracy AUC accuracy AUC
dcp-based 93% 0.96 86% 0.93 89% 0.95

dcp-statistics
SVM

88% 0.91 83% 0.91 88% 0.94

Wasserstein-based 86% 0.92 79% 0.89 84% 0.92
dcp-statistics

Random Forest
85% 0.91 84% 0.93 84% 0.91

Wasserstein-statistics
Random Forest

75% 0.79 73% 0.79 75% 0.79

Wasserstein-statistics
SVM

72% 0.78 72% 0.77 71% 0.78

From the results in Table 4.4, most classifiers indicate that heavier weight of Class 1

results in higher accuracy rate and AUC, while heavier weight of Class 2 results in lower

accuracy rate and AUC. This phenomenon gives a preliminary conclusion that Class 1

networks are distinct from the other two classes, and conversely, Class 2 networks are less

distinguishable from Class 1 and Class 3. This conclusion will be further enhanced and

explained in the next two paragraphs.
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To further investigate the effect by varying the weight of one class, we fix two classes with

all their 100 networks, varying the size of the rest class from 10 to 50 with an increment of

10 networks, then record the accuracy rates and AUCs by applying our dcp-based classifier.

The results are exhibited in Fig. 4.5.

Figure 4.5: The three panels plot the accuracy rate curve and the AUC curve when the
size is varied from 10 to 50 with an increment 10 in Class 1, Class 2 and Class 3 respectively.

Fig. 4.5 supports the conclusion that heavier weight of Class 1 results in higher accuracy

rate and AUC, it also demonstrates that heavier weight of Class 2 or Class 3 will lower the

accuracy rate since we have misclassifications in both Class 2 and Class 3. This is explained

by consulting with the confusion matrix in Table 4.1. The first column of the confusion

matrix reveals that we did perfect job in classifying Class 1 without any misclassification, thus

the left panel of Fig. 4.5 shows both the accuracy rate and AUC increase significantly as the

size of Class 1 is raised from 10 to 50. The second column of the confusion matrix indicates

that we had 10 failures in classifying the networks in Class 2, including 3 misclassifications

as Class 1 and 7 misclassifications as Class 3, so the increasing size of Class 2 will raise

the probability of misclassifications, thus in the middle panel of Fig. 4.5, the accuracy rate

decays as the size is varied from 10 to 50. But the AUC first increases as more reference
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samples raise the capability of distinguishing networks for our model when we start from a

relative small sample size 10, at some point the AUC levels off and then starts to decrease

as more samples result in additional difficulties in distinguishing networks duo to larger

variability. The third column of the confusion matrix demonstrates fewer misclassifications

in Class 3, which leads to a gentle decay of the accuracy rate in the right penal of Fig. 4.5.

The AUC also increases at first but with an almost flat growth rate when the weight of Class

3 further increases.

In summary, our proposed dcp-based classifier overwhelms other classifiers in classifying

filament networks, it outperforms other classifiers with even weighted data and mixed data.

In the classification results, the confusion matrix and the weight analysis demonstrate that

the filament networks generated by 825 cross-linkers are highly distinguishable from the other

two kinds of filament networks generated by 1650 and 3300 cross-linkers, i.e., 825 cross-linkers

generate filament networks with unique features which can be uncovered by topological tools.

But 1650 cross-linkers may generate few filament networks that carry close features as 825

or 3300 cross-linkers, while 3300 cross-linkers may also generate few networks that contain

features as 1650 cross-linkers. Overall, our topological dcp distance-based classifier does great

work in classifying these three classes of filament networks with high accuracy rate and AUC.
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Chapter 5

Conclusions

In this dissertation, we have proposed a novel algorithm to track organelles in microscopy

video. Our method combines Topological Data Analysis and advanced filtering techniques.

A key features of our approach includes the adoption of topological data analysis principles,

while using Gaussian processes and EnKF to facilitate the clustering involved in the

computation of the associated nerve.

Unlike earlier tracking approaches, our method can proceed with, most importantly, or

without a motion model. Without invoking a motion model, a reasonable guess may relax

a strong requirement in the analysis of biological data, especially those obtained from in

vivo microscopy at the level between cellular and molecular. In the opposite case, with a

motion model, more precise inference can be incorporated into final estimation. In both

cases, we estimate the displacement field from the data. In essence, our approach resembles

data-driven clustering. However, our method implicitly assumes a phenomenological motion

type that is exclusively informed by the observations. In any case, reconstructed tracks are

valid if the computed of estimated displacement fields are consistent.

In our tracking method, the EnKF works in the case with minimal assumptions of the

dynamic system. Moreover, it can achieve more precise results if additional knowledge of

the dynamic system is provided. EnKF has the advantage that it inherits some trends from

previous time step, and fits the nonlinear system, which could be more effectively applied

when a sophisticated motion model is known in a real world analysis.
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Earlier attempts obtained estimates of displacement fields using a combination of

heuristics and conventional Kalman Filtering (KF). Given that motion patterns are non-

linear, conventional KF lacks robustness and no longer works. Here, instead we develop a

principled approach that models the displacement fields through Gaussian processes and we

apply EnKF, which is shown to successfully estimate the desired dynamics under a wide

range of motion conditions.

Overall, our intracellular tracking algorithm successfully reconstructs organelle trajec-

tories as we show with example applications to synthetic and real data. This method

optimizes parameters of organelles based on data captured in images, combine predictions

with observations in estimating organelle movement, and link organelles based on topological

analysis.

We then have proposed a dcp distance-based classifier on filament networks. This classifier

enables us to successfully classify the filament networks, which are generated under different

cellular environments. In this method, we combine a machine learning framework with

topological data analysis. Our method is built on the foundation of persistent homology by

encoding hidden topological features of the data into homological features. Key features of

our method include summarizing homological features in persistence diagrams and adopting

an advanced distance: the dcp distance. We test our classifier on the network data set with

great success.

Our classification results show that the dcp classifier is superior than other classifiers, and

TDA has been proved as a powerful tool in image data analysis again, yielding classification

of actin filaments networks with high accuracy. Accordingly, this classification method could

provides biologist with the opportunities to uncover the interaction of motor proteins, actin

networks and streaming by comparing filament networks generated under different cellular

environments. Our future work will clustering cells with real microscopy images. To that

end, an unsupervised algorithm, which will be diagnostic to the number of different groups

of data generated by the different number of cross-linkers, will be developed. The idea there

is to establish a notion of mean or median for generationg a K-means or K-mediods type of

clustering algorithm. Overall, our work is the first time to learn actin filament networks and
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model it as a classification problem though TDA tools. Relying on these results, researchers

could advance their understanding of cell physiology through this work.
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(2019b). An alternative framework for fluorescence correlation spectroscopy. Nature

communications, 10.

[37] Kang, K., Maroulas, V., Schizas, I., and Bao, F. (2018). Improved distributed particle

filters for tracking in a wireless sensor network. Computational Statistics & Data Analysis,

117:90–108. 3

[38] Kang, K., Maroulas, V., and Schizas, I. D. (2014). Drift homotopy particle filter for non-

Gaussian multi-target tracking. In 17th International Conference on Information Fusion

(FUSION), pages 1–7. IEEE.

[39] Kang, K., Maroulas, V., Schizas, I. D., and Blasch, E. (2016). A multilevel homotopy

MCMC sequential Monte Carlo filter for multi-target tracking. In Information Fusion

(FUSION), 2016 19th International Conference on, pages 2015–2021. IEEE. 3

[40] Kerber, M., Morozov, D., and Nigmetov, A. (2017). Geometry helps to compare

persistence diagrams. Journal of Experimental Algorithmics (JEA), 22:1–4. 43

62



[41] Law, K., Stuart, A., and Zygalakis, K. (2015). Data assimilation. Cham, Switzerland:

Springer. 8, 24

[42] Lee, A., Tsekouras, K., Calderon, C., Bustamante, C., and Pressé, S. (2017). Unraveling
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A KF equations of the discretized displacement fields

A.1 Forward fields: y-components



ψ1,+(¯̄x1)
...

ψ1,+(¯̄xΛ)

ψ1,+(x̄1)
...

ψ1,+(x̄J)


∼ NΛ+J





0
...

0

0
...

0


,



K(¯̄x1, ¯̄x1) · · · K(¯̄x1, ¯̄xΛ) K(¯̄x1, x̄1) · · · K(¯̄x1, x̄J)
...

. . .
...

...
. . .

...

K(¯̄xΛ, ¯̄x1) · · · K(¯̄xΛ, ¯̄xΛ) K(¯̄xΛ, x̄1) · · · K(¯̄xΛ, x̄J)

K(x̄1, ¯̄x1) · · · K(x̄1, ¯̄xΛ) K(x̄1, x̄1) · · · K(x̄1, x̄J)
...

. . .
...

...
. . .

...

K(x̄J , ¯̄x1) · · · K(x̄J , ¯̄xΛ) K(x̄J , x̄1) · · · K(x̄J , x̄J)




.



ψn,+(¯̄x1)
...

ψn,+(¯̄xΛ)

ψn,+(x̄1)
...

ψn,+(x̄J)


∼ NΛ+J


Ψ+





ψn−1,+(¯̄x1)
...

ψn−1,+(¯̄xΛ)

ψn−1,+(x̄1)
...

ψn−1,+(x̄J)




,



K(¯̄x1, ¯̄x1) · · · K(¯̄x1, ¯̄xΛ) K(¯̄x1, x̄1) · · · K(¯̄x1, x̄J)
...

. . .
...

...
. . .

...

K(¯̄xΛ, ¯̄x1) · · · K(¯̄xΛ, ¯̄xΛ) K(¯̄xΛ, x̄1) · · · K(¯̄xΛ, x̄J)

K(x̄1, ¯̄x1) · · · K(x̄1, ¯̄xΛ) K(x̄1, x̄1) · · · K(x̄1, x̄J)
...

. . .
...

...
. . .

...

K(x̄J , ¯̄x1) · · · K(x̄J , ¯̄xΛ) K(x̄J , x̄1) · · · K(x̄J , x̄J)




, n = 2, . . . , N − 1.

696969




ψ̄1
n,+

...

ψ̄Jn,+

 ∼ NJ




0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 1





ψn,+(¯̄x1)
...

ψn,+(¯̄xΛ)

ψn,+(x̄1)
...

ψn,+(x̄J)


,


σ2
v · · · 0
...

. . .
...

0 · · · σ2
v




, n = 1, . . . , N − 1.

A.2 Backward fields: x-components



φN,−(¯̄x1)
...

φN,−(¯̄xΛ)

φN,−(x̄1)
...

φN,−(x̄J)


∼ NΛ+J





0
...

0

0
...

0


,



K(¯̄x1, ¯̄x1) · · · K(¯̄x1, ¯̄xΛ) K(¯̄x1, x̄1) · · · K(¯̄x1, x̄J)
...

. . .
...

...
. . .

...

K(¯̄xΛ, ¯̄x1) · · · K(¯̄xΛ, ¯̄xΛ) K(¯̄xΛ, x̄1) · · · K(¯̄xΛ, x̄J)

K(x̄1, ¯̄x1) · · · K(x̄1, ¯̄xΛ) K(x̄1, x̄1) · · · K(x̄1, x̄J)
...

. . .
...

...
. . .

...

K(x̄J , ¯̄x1) · · · K(x̄J , ¯̄xΛ) K(x̄J , x̄1) · · · K(x̄J , x̄J)





707070





φn,−(¯̄x1)
...

φn,−(¯̄xΛ)

φn,−(x̄1)
...

φn,−(x̄J)


∼ NΛ+J


Ψ−





φn+1,−(¯̄x1)
...

φn+1,−(¯̄xΛ)

φn+1,−(x̄1)
...

φn+1,−(x̄J)




,



K(¯̄x1, ¯̄x1) · · · K(¯̄x1, ¯̄xΛ) K(¯̄x1, x̄1) · · · K(¯̄x1, x̄J)
...

. . .
...

...
. . .

...

K(¯̄xΛ, ¯̄x1) · · · K(¯̄xΛ, ¯̄xΛ) K(¯̄xΛ, x̄1) · · · K(¯̄xΛ, x̄J)

K(x̄1, ¯̄x1) · · · K(x̄1, ¯̄xΛ) K(x̄1, x̄1) · · · K(x̄1, x̄J)
...

. . .
...

...
. . .

...

K(x̄J , ¯̄x1) · · · K(x̄J , ¯̄xΛ) K(x̄J , x̄1) · · · K(x̄J , x̄J)




, n = 2, . . . , N − 1.


φ̄1
n,−
...

φ̄Jn,−

 ∼ NJ




0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 1





φn,−(¯̄x1)
...

φn,−(¯̄xΛ)

φn,−(x̄1)
...

φn,−(x̄J)


,


σ2
v · · · 0
...

. . .
...

0 · · · σ2
v




, n = 2, . . . , N.

717171



A.3 Backward fields: y-components



ψN,−(¯̄x1)
...

ψN,−(¯̄xΛ)

ψN,−(x̄1)
...

ψN,−(x̄J)


∼ NΛ+J





0
...

0

0
...

0


,



K(¯̄x1, ¯̄x1) · · · K(¯̄x1, ¯̄xΛ) K(¯̄x1, x̄1) · · · K(¯̄x1, x̄J)
...

. . .
...

...
. . .

...

K(¯̄xΛ, ¯̄x1) · · · K(¯̄xΛ, ¯̄xΛ) K(¯̄xΛ, x̄1) · · · K(¯̄xΛ, x̄J)

K(x̄1, ¯̄x1) · · · K(x̄1, ¯̄xΛ) K(x̄1, x̄1) · · · K(x̄1, x̄J)
...

. . .
...

...
. . .

...

K(x̄J , ¯̄x1) · · · K(x̄J , ¯̄xΛ) K(x̄J , x̄1) · · · K(x̄J , x̄J)







ψn,−(¯̄x1)
...

ψn,−(¯̄xΛ)

ψn,−(x̄1)
...

ψn,−(x̄J)


∼ NΛ+J


Ψ−





ψn+1,−(¯̄x1)
...

ψn+1,−(¯̄xΛ)

ψn+1,−(x̄1)
...

ψn+1,−(x̄J)




,



K(¯̄x1, ¯̄x1) · · · K(¯̄x1, ¯̄xΛ) K(¯̄x1, x̄1) · · · K(¯̄x1, x̄J)
...

. . .
...

...
. . .

...

K(¯̄xΛ, ¯̄x1) · · · K(¯̄xΛ, ¯̄xΛ) K(¯̄xΛ, x̄1) · · · K(¯̄xΛ, x̄J)

K(x̄1, ¯̄x1) · · · K(x̄1, ¯̄xΛ) K(x̄1, x̄1) · · · K(x̄1, x̄J)
...

. . .
...

...
. . .

...

K(x̄J , ¯̄x1) · · · K(x̄J , ¯̄xΛ) K(x̄J , x̄1) · · · K(x̄J , x̄J)




, n = 2, . . . , N − 1.

727272




ψ̄1
n,−
...

ψ̄Jn,−

 ∼ NJ




0 · · · 0 1 · · · 0
...

. . .
...

...
. . .

...

0 · · · 0 0 · · · 1





ψn,−(¯̄x1)
...

ψn,−(¯̄xΛ)

ψn,−(x̄1)
...

ψn,−(x̄J)


,


σ2
v · · · 0
...

. . .
...

0 · · · σ2
v




, n = 2, . . . , N.

737373
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