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Abstract 

The 2016 Chimney Tops 2 wildfire in the Great Smoky Mountains National Park (GRSM) has 

given a unique opportunity to investigate the effects of wildfire in the eastern US, in a humid 

climate that rarely experiences wildfire. With ongoing water quality monitoring efforts in the 

GRSM and a 2010 soil study, pre-fire data were available for evaluation of the potential effects to 

water and soil chemistry. The acid-base status of soils and streams which govern transport, fate 

and effects of acidic pollutants were considered in this study. Soils from A/O and B horizons were 

compared based upon burn severity level, with categories of high burn, low/medium burn, 

unburned and reference. Collections began immediately after the fire and continued into 2019. A 

post-fire characterization was conducted for stream water and soil on chemical parameters that 

were also measured pre-fire. In burned soils, pH, percent base saturation, exchangeable base 

cations and nitrate were significantly lower than non-burned soils. Exchangeable acidity and Al 

were significantly greater in burned areas than non-burned areas. An increase in exchangeable Al 

coupled with a decrease in exchangeable base cations resulted in increased exchangeable acidity 

and decreased percent base saturation in burned soils. These soil impacts could affect the regrowth 

of sensitive plant species due to loss of available nutrient cations and increased Al. The water 

samples showed consistent decreases in pH, conductivity and acid neutralizing capacity (ANC) 

post-fire, at all sites, burned and reference. The most significant change in stream water was a 

decrease in ammonium in burned watersheds, however the decline in pH and ANC remains 

unexplained based on this study’s measured parameters. This study contributes valuable 

information noting the lack of post-fire export of sulfate and nitrate in streams, and generally aligns 

with the few studies published on responses of forest fires on soil and stream chemistry  in humid, 

acidic environments. The relationships identified on the response of soil and stream chemical 

properties to burn severity will inform understanding of patterns and timing of revegetation and 

recovery of the ecosystem from wildfire as well as the role of wildfire in exacerbating effects of 

acid deposition. 
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I. INTRODUCTION 

Wildfires are more prevalent in the western US compared to the East, and as a result impacts of 

fire on soil and stream water chemistry have been studied to a greater extent in those regions (Earl 

& Blinn, 2003; Waksom et al., 2014; Murphy et al., 2006; Bormann et al., 2008). However, it 

would be expected that soil and water impacts from wildfires would differ between the 

southeastern and western parts of the US due to dissimilarities in climate and biogeographic 

factors. The southeastern US has a humid sub-tropical climate with evenly disturbed rainfall 

throughout the year and forested land cover consisting mostly of dense hardwoods (Ingram et al., 

2013; USDA Forest Service FIA, 2013). In contrast, the western US is mostly semi-arid and a 

Mediterranean continental climate with hot and dry summers, and forested land cover consisting 

mostly of conifers.   

 In the western US, studies examining the impacts of wildfire on soil and stream water chemistry 

have shown elevated concentrations of inorganic N immediately following wildfires (Earl & Blinn, 

2003; Murphy et al., 2006). Wildfires have caused increased sediment erosion from burned land 

with a lack of ground cover, which threatens waterways and wildlife when sediment, ash and 

excess nutrients readily enter waters under increased runoff (Barkley, 2013; BAER, 2017; Ice et 

al., 2004). Significant loss of C (up to 50%), N and organic matter and increased pH have been 

common responses of soils from western fires (Baird 1999; Murphy et al., 2006; Bormann et al., 

2008). Studies in the western US tend to focus on C and N, with little attention to other nutrients, 

such as S and cations, which are important in montain soils in the eastern United States such as 

the Great Smoky Mountains National Park (GRSM) (Gonzalez, 2018; Cai et al., 2010).  

Contrary to the West, the eastern US experiences less prevalence and shorter periods of drought, 

land is more densely populated and fire suppression has long occurred to protect developed lands 

(Melvin et al., 2012; Fesenmyer & Christensen, 2010; Brose et al., 2001). A few studies have 

focused on prescribed burns in this region, but none on wildfires. High intensity prescribed fire 

has been shown to increase the occurrence of oak in the understory of Appalachian forests, 

increase herbaceous layer diversity, while reducing flammable fuels without negatively 

impacting pine or oak populations (Elliott et al., 2009; Vose et al., 2016). Knoepp et al. (2012) 

studied prescribed fire in the southern Appalachian Mountain region and found that the 

understory and overstory both experienced large vegetation losses. Soil Ca was not impacted by 
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fire, however effective cation exchange capacity declined significantly in surface and subsurface 

soils, and exchangeable Al increased over time at some sites (Knoepp et al., 2012). One study 

showed an increase in NH4 immediately following fire, with a return to normal levels within 10 

months (Knoepp et al., 2009). Understanding regional differences in biogeochemical responses is 

critical to interpreting the effects of an emerging disturbance, wildfire, on the long-term recovery 

of ecosystems from acid deposition, which is more prevalent in the eastern US.  

Decades of acid deposition in the eastern US has resulted in the acidification of soils and streams 

where the base-poor surficial geology dominates the landscape (Sullivan et al., 2007; Ryan et al., 

1989; Driscoll et al., 2001; Baker et al., 1991). Streams in the GRSM, underlain by sandstone 

geology, have been impacted by acid deposition, where baseflow pH values range approximately 

from 5.0 to 6.7, but decreases as low as 4.0 during storm events (Robinson et al., 2008; Neff et. 

al., 2013). During stormflow, significant declines in stream pH are primarily associated with 

increases in sulfate (Cook et al., 2004). However Deyton et al. (2009) found that other causes, such 

as nitrate, soil depletion of available base cations and organic acids, can also contribute to episodic 

acidification. They also found that dominant causes of stormflow acidification were watershed 

specific and varied seasonally.  

High elevation watersheds in the GRSM have been classified as Stage 2 Nitrogen saturation, 

indicating that atmospheric N deposition exceeds vegetative assimilation resulting in elevated 

nitrate export of in streams (Van Miegroet, 2002; NPS, 2019a). Prior to marked decreases in S and 

N deposition in 2008, Cai et al. (2010) estimated that approximately 60% of atmospheric sulfate 

deposition was retained in soils at a high-elevation watershed. Although there has been substantial 

decrease in atmospheric S deposition since 2008, stream sulfate concentrations have remained 

relatively constant (Schwartz et al., 2014, 2019). Watershed sulfate retention is thought to be due 

to soil adsorption. Indeed it is anticipated with a decrease in sulfate deposition, there would be a 

resulting increase in stream sulfate (Cai et al., 2010, 2012; Rice et al., 2014). However, this pattern 

has not occurred (Schwartz et al., 2019). Recent evidence from Gonzalez (2018) suggests that S is 

largely bound in soil organic matter which might explain its continued retention. With decreases 

in sulfate and nitrate deposition, base cations on soil exchange sites and in streams appear to be 

playing a large role in controlling the acid-base status of watersheds in the GRSM. Watershed 

system models applied to predict long-term trends in stream chemistry demonstrate the complexity 
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of biogeochemical reactions and controls, and that stream recovery may take decades in the GRSM 

(Zhou et al., 2015; Fakhraei et al., 2017). Model understanding can be tested with extreme 

disturbance, such as a wildfire, and subsequent monitoring.  

With the significant decline in sulfate and nitrate deposition observed in the GRSM, and the 

probable large sink for these chemical constituents stored in soil organic matter, full and partial 

burning of surface (A/O) soil could alter and release these constituents. In addition, nutrient cations 

assimilated by vegetation or retained by soil organic matter could also be released by burning, 

particularly K (Raison, 1979; Bayley et al., 1992).  

The Chimney Tops 2 (CT2) Wildfire impacting the GRSM provided a rare opportunity to study 

these biogeochemical transformations.  New knowledge could be gained on the impacts of wildfire 

in forested lands in eastern US and how this disturbance could alter the recovery of soil and stream 

water from remnant impacts from acid deposition. The CT2 wildfire started five days before 

intense, dry winds occurred on the morning of 28 November 2016 which expanded the fire into 

the city of Gatlinburg. The CT2 wildfire burned an area of 72.7 km2, about 44.5 km2 being within 

GRSM. The long-term GRSM Water Quality Monitoring Program provided historic stream 

chemistry data, and a study by Grell (2010) provided some limited soil chemistry data in the CT2 

Fire burn footprint.   

The study objectives were to: 1) investigate the biogeochemical impacts of wildfire by examining 

changes in soil chemistry between burned and unburned lands, and concentrations and export of 

acid anions, ammonium, base cations, and dissolved metals from streams in the burn footprint; and 

2) describe any changes in biogeochemical processes within the historic context of a forested, 

base-poor landscape affected by decades of acid deposition. Recognizing the climate and 

biogeographic characteristics of the southeastern US, this study addressed the following 

hypotheses of wildfire effects: 1) C, S, and N will be lost from soil, and with the loss of organic 

matter, exchangeable base cations will be reduced; 2) ion concentrations in streams, including 

sulfate, nitrate, ammonium and base cations, will be elevated due to releases from soil, however 

this perturbation will be short-lived as materials released from soil following wildfire are flushed 

from the watersheds and as regrowing vegetation quickly assimilates available nutrients; 3) stored 

S in soils from decades of acid deposition, is expected to be released from soil increasing stream 

losses, although stream pH is expected to remain unchanged due to a compensatory increase in 
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base cation export; and 4) chemistry will only be affected in smaller streams in the burn footprint, 

and these effects will be diminished when diluted by waters from unburned watersheds.  
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II. METHODS 

A. Study Site Description 

The CT2 fire occurred within the GRSM (Figure 1). The GRSM consists of 2,114.2 km2 located 

between North Carolina and Tennessee. Its elevation ranges from 266.7 m to 2,024.8 m at 

Clingman’s Dome (NPS, 2017). The climate is varied due to the large elevation range. At lower 

elevations, in the general vicinity where the fire occurred, the climate is moderate year round, with 

about 55 inches of average annual precipitation including some snow events in winter (NPS, 

2019b). Typical monthly average temperatures range from 4.2 °C in January to 23.1 °C in July at 

low elevations, and -2.8 °C in January to 15 °C in July at high elevation (NPS, 2019b). The lower 

elevations lie within a humid mesothermal climate and support deciduous forest vegetation. During 

the fall of 2016 extreme drought conditions persisted in the southeast US, and an unusual weather 

front with dry, high winds on the morning of November 23, 2016 facilitated the CT2 fire. 

Approximately 44.5 km2 within the GRSM, roughly 2.1% of the total park area was burned during 

the CT2 fire. The fire occurred in the north-central area of the park, and only spread within the 

portion of the park in Tennessee, from the Chimney Tops geological feature southward into 

Gatlinburg, Tennessee. The study area included the burn portions within and just outside the 

GRSM with the collection of soil and stream water samples. 

The spatial location of different soil complexes in the burn area were obtained from the GRSM 

Soil Survey Geographic database (Appendix A). Through the use of ArcGIS, the dominant soil 

complexes throughout the sampling sites selected were (in order of most common to least): 

Cataska-Sylco, Soco-Stecoah, Spivey-Santeetlah-Nowhere, Ditney-Unicoi, Luftee-Anakeesta, 

Rosman-Reddies-Urban, Dellwood-Smokemont, Junalaska-Brasstown, Breakneck-Pullback, 

Junalaska-Cataska, Rock outcrop-Luftee and Rock outcrop-Unicoi. A complete list of soil types 

present and the associated taxonomic classifications can be found in Appendix A2.  

Soil samples at each collection site were separated by horizon between A/O and B at sites when 

both horizons were present. The horizons were separated by characteristics visually by color; the 

depth increments per horizon varied with soil type at each site. Sites were selected in part to overlap 

with Grell (2010) sampling sites, for use of historic soil data (Appendix B). 
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Water sampling sites were selected in coordination with routine sampling collections by the 

GRSM. These sample locations were part of the GRSM water quality monitoring program in which 

historic, pre-fire water quality data were available. This on-going monitoring program dates back 

to 1993 with various sampling locations and frequencies with the priority objective to quantify 

trends in stream acidification due to acid pollutant deposition (Cai et al., 2011a; Schwartz et al., 

2014).  
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Figure 1. Location of the Chimney Tops 2 wildfire burn area within the Great Smoky Mountains National Park (GRSM) and GRSM 

location within Tennessee and North Carolina state boundaries. 
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B. Soil and Water Sample Collection 

A total of 30 soil sample sites were selected in or immediately adjacent to the GRSM and in and 

around the fire footprint (Figure 2). More detailed maps of the specific burn areas are included in 

Appendix C. Sites were classified by four categories of burn severity including: high burn, 

low/medium burn, unburned, and reference areas. The unburned areas were within the fire area 

but did not burn, whereas the reference sites were outside the burn area as a control. The burn level 

in each area was determined using the NPS Geographic Information System (GIS) layer ‘Burn 

Severity Resulting from Chimney Tops 2 Fire’ (GRSM_GIS, 2016). The NPS used Burned Area 

Reflectance Classification (BARC) images and field surveys by the Burned Area Emergency 

Response (BAER) Team to create this map examining factors including char depth, organic matter 

loss, altered color and structure and reduced infiltration (Appendix D). The sites were randomly 

selected within each burn level using GIS ArcMap. Each site selected in GIS represented a 90 by 

90 m plot, within 300 m of a road or trail for access. Sites were inspected before collections began 

to ensure safe access was available. Soil site locations are listed in Table 1, with level of burn 

severity, location, watershed and collection dates indicated. Science research permits through the 

NPS were accepted for the soil collections from April 2018 through August 2019. NPS permit 

numbers were: GRSM-2019-SCI-2076 and GRSM-2019-SCI-2024.  

Initially, 20 sites were selected for the study with 10 in the natural category and 10 in the exurban 

category. Of the 10 sites selected in each category, 3 were in high burn areas, 3 were low/medium 

burn severity, 3 were unburned and 1 was a reference site (Figure 2). The first round of collections 

took place between April and October of 2018, with a total of four collections at each of the 

original 20 soil sampling sites. Two of the unburned sites were located adjacent to US Highway 

411 (site RS411 and site PL441). A key site condition to note is that during winter snow conditions, 

historically the GRSM used a dolomite chat for road traction enhancement. A second set of 

samples were collected in May and June of 2019, one more collection was completed at the initial 

20 sites in summer 2019, in addition to 2 collections at the 10 new sites. These sites were added in 

order to incorporate additional sites at the high burn level and unburned level, and to include 6 

sites with historical soil data studied in 2010 that were near or within the burn footprint. Grell 

(2010) previously characterized soil chemistry in the GRSM. One site studied in the Road Prong 

(RP3) watershed was in the burn footprint. Five other sites included two in the Road Prong 

watershed (RP1, RP2) just outside the burn footprint, and three in Walker Camp Prong (WCP1, 
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WCP2, and WCP3) within 3-6 km from the burn footprint (Figure 3). Though limited, soil 

chemistry data from the sites sampled by Grell (2010) were used for a separate pre- and post-fire 

analysis.  

The same sampling technique was used for all six collections. From the center of each plot, a bean 

bag was thrown in a random direction and the landing location was designated the center of the 

collection area. Sites were collected for the A/O and B horizons. Some sites within the burn area 

did not have an A/O soil horizon as soil rich in organic matter content was burned off during the 

fire, most commonly in sites classified as high burn. During each collection effort, 10 random soil 

samples were taken per site per horizon and then pooled. Samples were collected using a clean 

2.5-cm diameter stainless steel corer, which was rinsed with DI water after each use. Collected 

soil samples were immediately transported back to the University of Tennessee in coolers and then 

stored at 2-6 °C in a laboratory walk-in cold room prior to chemical analyses.  

The water sampling sites were selected within or near the CT2 fire footprint in the GRSM. A total 

of seven sites were selected, all with historic water quality data (Figure 3; Table 2). Field grab 

samples were collected by the GRSM staff immediately following the fire, one week post-fire, and 

then on a bimonthly basis, ending November 2019. A total of 14 collections were completed. 

Samples were collected following standard US Geological Survey sampling protocols (USDA, 

2009). Water samples were transported to the University of Tennessee in coolers, and then stored 

at 2-6 °C in a laboratory walk-in cold room prior to chemical analyses. Historic water quality data 

were obtained from the NPSTORET database. The historic data consisted of observations from 

study sites dating back to 1993. The water was analyzed for electrical conductivity (EC), pH, acid 

neutralizing capacity (ANC), chloride, nitrate, sulfate, NH4, Na, K, Mg, Ca, and Al. 
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Figure 2.  Locations of all 30 soil sampling sites in Great Smoky Mountains National Park and 

the city of Gatlinburg, Tennessee. Study sites were classified into four burn severity categories; 1) 

unburned, 2) low/med burn, 3) high burn, and 4) reference. 
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Figure 3. Locations of seven water quality sampling sites in Great Smoky Mountains National 

Park, Tennessee.  
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Table 1. Site ID names, latitude and longitude of soil sampling locations, burn severity, 

watershed and collection dates. Sites sampled in 2018 and 2019 included. 

Site ID 
North 

Latitude (deg) 

West Longitude 

(deg) 
Burn Level Watershed* 

Dates Collected 

(month/year) 

DUD 35.73017 -83.50323 High Burn DC 5/18, 6/18, 7/18, 10/18, 4/19 

FCM 35.69720 -83.53287 High Burn WPLP 5/18, 6/18, 7/18, 10/18, 4/19 

LCM 35.69720 -83.53287 High Burn WPLP 5/18, 6/18, 7/18, 10/18, 4/19 

NMT 35.73374 -83.51797 High Burn WPLP 5/18, 6/18, 7/18, 10/18, 4/19 

NS4  35.6290 -83.4782 High Burn WPLP 5/19, 6/19 

SCM 35.69720 -83.53287 High Burn WPLP 5/18, 6/18, 7/18, 10/18, 4/19 

TCL 35.71447 -83.52560 High Burn WPLP 4/18, 6/18, 7/18, 10/18, 4/19 

FCL 35.71596 -83.52303 Low/Med Burn WPLP 4/18, 6/18, 7/18, 10/18, 4/19 

GCL 35.71513 -83.52498 Low/Med Burn WPLP 4/18, 6/18, 7/18, 10/18, 4/19 

LGB 35.68377 -83.51074 Low/Med Burn LC 4/18, 6/18, 7/18, 10/18, 4/19 

NEON 35.68788 -83.50272 Low/Med Burn LC 4/18, 6/18, 7/18, 10/18, 4/19 

RGB 35.68292 -83.51270 Low/Med Burn WPLP 4/18, 6/18, 7/18, 10/18, 4/19 

RP3 35.6271 -83.4787 Low/Med Burn WPLP 5/19, 6/19 

WIN 35.70831 -83.52558 Low/Med Burn WPLP 4/18, 6/18, 7/18, 10/18, 4/19 

BGB 35.68099 -83.52755 Unburned WPLP 5/18, 6/18, 7/18, 10/18, 5/19 

CANEY 35.71959 -83.50490 Unburned  DC 5/18, 6/18, 7/18, 10/18, 4/19 

LOVE 35.72033 -83.49750 Unburned  DC 4/18, 6/18, 7/18, 10/18, 4/19 

NS1  35.6277 -83.4785 Unburned WPLP 5/19, 6/19 

NS2  35.6854 -83.4995 Unburned LC 5/19, 6/19 

NS3  35.6877 -83.5275 Unburned WPLP 5/19, 6/19 

PL441 35.70517 -83.52405 Unburned  WPLP 5/18, 6/18, 7/18, 10/18, 4/19 

RS441 35.70132 -83.52521 Unburned WPLP 5/18, 6/18, 7/18, 10/18, 5/19 

SKI 35.70634 -83.53653 Unburned WPLP 5/18, 6/18, 7/18, 10/18, 4/19 

RP1 35.6249 -83.4706 Reference WPLP 5/19, 6/19 

RP2 35.6237 -83.4792 Reference WPLP 5/19, 6/19 

SGL 35.682934 -83.53795 Reference WPLP 5/18, 6/18, 7/18, 10/18, 5/19 

TREE 35.71607 -83.48904 Reference RF 4/18, 6/18, 7/18, 10/18, 4/19 

WCP1 35.6229 -83.4212 Reference WPLP 5/19, 6/19 

WCP2 35.6259 -83.4475 Reference WPLP 5/19, 6/19 

WCP3 35.6265 -83.4465 Reference WPLP 5/19, 6/19 

*WPLP = West Prong of the Little Pigeon, DC = Dudley Creek, LC = LeConte Creek, RF = Roaring Fork  
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Table 2. Water quality sampling locations: site ID names, latitude and longitude, burn severity level, elevation, watershed, drainage 

area, area burned and collection dates. 

Site 

ID # 
Site Name 

North 

Latitude 

(degrees) 

West 

Longitude 

(degrees) 

Elevation 

(m) 

Drainage 

Area (ha) 

Area 

Burned (ha) 

Area 

Burned 

(%) 

Watershed* 
Dates Collected 

(month/year) 

Soil Sites 

Within 

Watershed 

26 
LeConte Creek 

at boundary 
35.6994 -83.5105 481.6 218.4 217.9 99.8% LC 

1/17, 1/18, 7/18, 

11/18 
LGB 

28 
LeConte Creek 

at Uplands 
35.6866 -83.5005 593.8 575.9 272.9 47.4% LC 

12/16, 1/17, 3/17, 

1/18, 7/18, 11/18 
NS2 

30 

West Prong 

Little Pigeon at 

Headquarters 

35.6882 -83.5367 442.3 1798.3 1091.0 60.7% WPLP 
12/16, 1/17, 3/17, 

1/18, 7/18, 11/18 
BGB 

66 

West Prong 

Little Pigeon at 

Chimneys 

Picnic Area 

35.6372 -83.4948 816.6 3439.8 574.0 16.7% WPLP 
1/17, 3/17, 1/18, 

7/18, 11/18 

NS1, NS4, 

RP1, RP2, 

RP3, WCP1, 

WCP2, WCP3 

71 

Road Prong 

above barrier 

cascade  

35.6344 -83.4703 1038.2 828.3 21.6 2.6% WPLP 
1/17, 3/17, 1/18, 

7/18, 11/18 

NS1, RP1, 

RP2, RP3 

73 

Walker Camp 

Prong above 

Road Prong 

35.6348 -83.4693 1037.8 2052.7 0.0 0.0% WPLP 
1/17, 3/17, 1/18, 

7/18, 11/18 

WCP1, 

WCP2, WCP3 

74 

Walker Camp 

Prong above 

Alum Cave 

Creek 

35.6291 -83.4510 1177.1 742.8 0.0 0.0% WPLP 
1/17, 3/17, 1/18, 

7/18, 11/18 

WCP1, 

WCP2, WCP3 

*WPLP = West Prong of the Little Pigeon, DC = Dudley Creek, LC = LeConte Creek, RF = Roaring Fork 
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C. Laboratory Analysis of Soil and Water 

Soil Laboratory Analysis Methods: Physical and Chemical Properties 

The collected soil samples were prepped for physical and chemical analyses by first removing 

gravel and debris by passing the samples through a 2-mm sieve, discarding the gravel and debris. 

The soil collections were well mixed and the soil replicates were taken from the well mixed 

composite soil. Soil at this stage, sieved of debris but not dried, is referred to as field moist soil. 

Soil samples were prepared for laboratory analyses by being left to dry in a laboratory fume hood 

for 72 hours up to one week, depending on the moisture level of the collected soils. The resulting 

soils are referred to as ‘air dry’ samples. The air dry samples were stored at room temperature. 

Two replicates per parameter were run for each soil sample for quality control and assurance. 

The physical and chemical analyses conducted on the soil samples for this study included: soil pH 

(deionized water and CaCl2), moisture content (MC), organic matter content, exchangeable base 

cations (EBC), which include Ca, Mg, K, Na, exchangeable nitrate, sulfate and ammonium, 

exchangeable Al, total acidity (TA), effective cation exchange capacity (ECEC), percent base 

saturation (%BS), total sulfur (TS), percent C and percent N. Methods are summarized in Table 3, 

and described in more detail in Appendix E. Solute/leachate concentrations were measured with a 

Thermo-Scientific Ion Chromatogram System 1100 (IC) and a Thermo-Scientific iCAP-DUO 

7400 inductively coupled argon plasma (ICP-OES). TS analysis was completed for a subset of soil 

samples, which consisted of all samples collected in 2017 along with 6 samples from 2018 

collections and 11 from 2019 (N = 46). The total percent N and percent C were measured at the 

Colorado Plateau Stable Isotope Laboratory in a continuous-flow mode using a Thermo-Finnigan 

Deltaplus Advantage gas isotope-ratio mass spectrometer interfaced with a Costech Analytical 

ECS4010 elemental analyzer.  
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Table 3. Summary of procedures used for soil chemical analyses, procedures, and method 

references. 

Analysis Procedure Method References 

Water pH 
Calibrated combination pH 

electrode 
Thomas (1996) 

CaCl2 pH 
Calibrated combination pH 

electrode 
Thomas (1996) 

Oven-dry moisture content (MC) 
105°C oven until constant 

mass 
Hart et al. (1994) 

Organic matter content (OM) Loss on ignition Nelson and Sommers (1996) 

Effective cation exchange capacity 

(ECEC = Na + K + Mg + Ca + NH4 + 

TA) 

NH4Cl exchange for Na, K, 

Mg, Ca, and Al; KCl 

exchange for NH4 

Sumner and Miller (1996) 

Exchangeable anions (EA = NO3 + 

SO4) 
KCl exchange 

Cronan and Schofield (1990); Stams and 

Marnette (1990) 

Total Acidity (TA) 
Titration to phenolphthalein 

endpoint 
Sumner and Miller (1996) 

% Base saturation (%BS) 

Sum of base cation charge 

(Na + K + Mg + Ca + NH4) 

divided by ECEC 

Brady and Weil (2008) 

Total sulfur (TS) Thermal oxidation Eivazi et al. (1988); Rossete et al. (2008) 

Total carbon (TC), total nitrogen 

(TN), C:N ratio 
Thermal oxidation Werner and Brand (2001) 

 

 

 

 

 

Stream Laboratory Analysis Methods: Chemical Properties 

Water samples were analyzed for pH, ANC, conductivity, chloride, nitrate, sulfate, ammonium, 

and base cations (Ca, Mg, K, Na). Within 48 hours of sample collection, samples were allowed to 

equilibrate to room temperature and analyzed for pH, ANC, and conductivity using a ManTech 

Inc. PC-Titrate(R) System autotitrator. Other analyses were performed with a Thermo-Scientific 

Ion Chromatogram System 1100 (IC) and a Thermo-Scientific iCAP-DUO 7400 inductively 

coupled argon plasma (ICP-OES), within standard holding times (Standard Methods, 1999). A 

summary of parameters, analytical instruments, and referenced standard methods are summarized 

in Table 4. The pre-fire data were divided into years before and after 2008, when the acid 

deposition significantly decreased in the park due to changes in national regulations and the 
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addition of scrubbers to nearby Tennessee Valley Authority (TVA) coal units, including those at 

the Bull Run and Kingston Power plants (Schwartz et al., 2014). Here, the data before the decrease 

in acid deposition (2008) were omitted in pre-fire averages. Additionally, sites 26 and 28 are not 

included as no pre-fire data were available. 

 

 

 

 

Table 4. Summary of water chemical analyses, procedures, and method references.  

Analysis Procedure Method References 

pH (temperature-compensated) 
Calibrated combination pH 

electrode 
EPA Method 150.1 

Conductivity (25°C) Electrometric EP Method 120.1 

Acid Neutralizing Capacity (ANC) Automated Titration 
Automated Gran Titration for low ionic 

strength waters, as in Hillman et al., 1986 

Anions (NO
3
, Cl, SO

4
)  Ion Chromatography Standard Methods 4110 

Monovalent Cations (NH
4
) Ion Chromatography Modification of Standard Methods 4110 

Earth and Trace Metals (Na, K, Mg, 

Ca, Mn, Al, Fe, Cu, Zn, & Si) 

Inductively Coupled Plasma 

Spectrophotometer 

Standard Methods 3120B 

EPA Method 6010B 

EPA Method 3005A 

 

 

 

 

 

 

D. Statistical Analysis and Qualitative Trend Assessments  

Soil Chemistry 

Descriptive statistics were summarized for the physical/chemical parameters for the A/O and B 

soil horizons consisting of means and standard deviations. An ANOVA was performed to compare 
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the physical/chemical properties between the A/O and B soil horizons per site burn level (site 

condition classification). A comparison of soil chemistry parameters among site burn levels and 

per each horizon separately, using an ANOVA, Tukey-Kramer Honestly Significant Difference 

(HSD) means separation method. An unequal variance t-test was used to statistically compare 

means for selected parameter and burn condition sites of interest. Significant differences were 

based on a p-value less than 0.05. A t-test was performed to compare high burn sulfate values with 

low/medium, unburned and reference site values, all in the B soil horizon. 

In order to examine co-related chemical parameters, a Pearson correlation method was chosen for 

the multivariate, pairwise analysis and relation coefficients were reported, with an indication of 

significant correlations in bold (p<0.05) (Appendix F).  

Pre- and post-fire analysis was completed on historic soil chemistry data (Grell 2010) which 

included one site (RP3) located in the fire footprint and re-sampled seven years later. Chemical 

parameters analyzed by the same laboratory methodology were tabulated for six sites in or adjacent 

to the fire footprint. The sites were in Road Prong watershed (RP1, 2, and 3) and Walker Camp 

Prong watershed (WCP1, 2, and 3). A two-way contingency analysis was used to compare pre- 

and post-fire chemical differences. Only site RP3 (low/medium burn) represented the pre- and 

post-fire comparison, whereas the other sites served as a control (reference sites).  

 

Stream Water Chemistry 

Descriptive statistics were summarized for the stream water chemistry parameters for pre- and 

post-fire data consisting of means and standard deviations. The pre-fire data included the period 

from January 2008 to May 2014. Post-fire data included water samples taken immediately 

following the CT2 fire until November 2019. 

Individually, per sample location, stream water chemistry parameters were compared for 

differences between pre- and post-fire periods using a repeated measures ANOVA.  

A qualitative assessment of stream water chemistry patterns post-fire were visualized on scatter 

plots to observe whether there were rapid shifts in chemistry immediately following the fire in 

November 2016.  
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III. RESULTS 

A. Post-Burn Soil Chemistry Characterization 

Chemical properties measured and calculated on soil samples are displayed in Table 5 (A/O 

horizon) and Table 6 (B horizon). Individual parameters are displayed in box plots to compare the 

A/O and B horizon and 4 burn severity levels: reference, unburned, low/medium and high burn 

(Figures 4 – 14). Note, two unburned sites, PL441 and RS441, were omitted from statistical 

analyses due to their proximity to US441, a major roadway that received dolomite chat during the 

winter months to improve traction for vehicles. Road applications resulted in elevated base cations 

making it difficult to discern whether changes in soil chemistry were due to fire or the chat applied 

in winter. The two sites are displayed in Table 5 & 6 as unburned (road), whereas the remaining 

unburned samples unaffected by the road chat are labeled as unburned (no road).  

Salt pH, the pH measured in 0.01M CaCl2, as it is less affected by soil electrolytes and a more 

consistent measure, had a mean value of 5.06 to 5.64 in non-burned (reference and unburned sites, 

respectively) A/O horizon samples and a mean of 4.38 in A/O horizon low/medium burn samples 

(Figure 4) (Minasny et al., 2011). In the B horizon, mean salt pH were 5.14 and 5.35 at reference 

and unburned sites, respectively, and 4.20 and 4.27 at low/medium sites and high burn sites. TA 

in the A/O horizon reference and unburned sites had means of 0.4 cmolc/kg and 0.8 cmolc/kg 

respectively, compared with a mean of 2.4 cmolc/kg in the low/medium burn sites (Figure 5). In 

the B horizon, TA averaged 0.69 cmolc/kg at reference sites and 1.21 cmolc/kg at unburned sites, 

while in burned areas the averages were 3.82 cmolc/kg and 4.52 cmolc/kg, in low/medium and high 

burn sites respectively. Organic matter in the A/O low/medium sites averaged 18.6%, while 

reference and unburned sites averaged 19.2% and 20.1%, respectively (Figure 6). In the B horizon, 

high burn areas had the lowest average organic matter content (7.5%), while low/medium sites 

averaged 8.3%, unburned sites 9.0% and reference sites 9.8%. The total EBC was lower in the B 

horizon than the A/O horizon, with means of 2.77 cmolc/kg in B horizon reference sites and 6.16 

cmolc/kg in A/O horizon reference sites, similarly, 4.77 cmolc/kg and 12.4 cmolc/kg in unburned 

B and A/O horizons respectively, and 0.96 cmolc/kg in B low/medium sites and 4.81 cmolc/kg in 

A/O low/medium sites (Figure 7). High burn sites saw a larger range of EBC values (0.78-9.08 

cmolc/kg) than did low/medium sites in the B horizon (0.30- 2.47 cmolc/kg), with high sites having 

a higher range for EBC (0.78-9.08 cmolc/kg).  
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The ECEC in the A/O horizon (7.40-13.97 cmolc/kg) averaged greater values than the B horizon 

(4.35-7.60 cmolc/kg) (Figure 8). The %BS was lower in burned areas in both horizons, and higher 

in the A/O horizon than the B horizon (Figure 9). The %BS ranged from 68.0% to 88.1% in the 

A/O horizon, and 32.4% to 78.7% in the B horizon in all burn levels. Sulfate averaged 0.34 and 

0.11 cmolc/kg for reference sites (A/O and B horizon respectively), unburned sites averaged 0.28 

cmolc/kg in A/O and 0.33 cmolc/kg in B and in low/medium sites A/O average sulfate was 0.32 

cmolc/kg and B horizon average was 0.16 cmolc/kg (Figure 10). Nitrate in the A/O horizon ranged 

0.64 to 1.25 cmolc/kg and in the B horizon averaged 0.39 cmolc/kg at high burn sites, 0.21 cmolc/kg 

at low/medium sites, 0.81 cmolc/kg at reference and 0.75 cmolc/kg at unburned sites (Figure 11). 

In the A/O horizon, ammonium averaged 0.84 cmolc/kg at reference sites, 0.74 cmolc/kg at 

unburned sites, and 0.64 cmolc/kg at low/medium sites (Figure 12). In the B horizon, reference 

sites averaged 0.89 cmolc/kg, unburned averaged 0.69 cmolc/kg, low/medium averaged 0.54 

cmolc/kg and high burn sites averaged 0.61 cmolc/kg. The percent C ranged from 6.6% to 9.1% in 

the A/O horizon, and 3.7% to 4.9% in the B horizon (Figure 13). Reference sites in the A/O horizon 

had the lowest C content of A/O sites, at 6.6% compared to 9.1% and 9.0% in unburned and 

low/medium sites respectively. In the B horizon, burned areas showed the lowest C content, with 

low/medium sites averaging 3.7% and high burn sites 3.9%, while reference and unburned sites 

averaged 4.9% and 4.6%, respectively. Percent N (%N) had a small range in both soil horizons 

(Figure 14). The B horizon sites averaged between 0.15% and 0.29%, and the A/O horizon sites 

ranged 0.44% to 0.54%. In the B horizon, which showed consistently lower N content than the 

A/O horizon, the burned sites (low/medium and high burn) both averaged 0.29% N, while the non-

burned sites (reference and unburned) both averaged 0.15%. The ratio of C/N is reported in 

analyses. In the A/O horizon, C/N ratio was between 14.3 and 21.6, with the lowest ratio at 

reference sites and highest at low/medium burn sites. The B horizon showed a similar pattern, with 

higher values. Reference sites in the B horizon had a C/N ratio of 17.1, while high burn sites 

averaged 26.9, the highest reported ratio average in either horizon. Individual cations (Na, K, Mg, 

Ca and Al) were measured. Na showed no pattern between burn levels or horizons, with a range 

of 0.03 to 0.09 cmolc/kg. K averages ranged 0.37 to 0.65 cmolc/kg in the A/O horizon and 0.14 to 

0.36 cmolc/kg in the B horizon. Mg tended to be higher in the B horizon, with values ranging 0.76 

to 1.78 cmolc/kg, than in the A/O horizon (0.18-0.58 cmolc/kg). Ca was consistently greater than 

Na, K and Mg, with A/O means ranging 0.46 to 3.76 cmolc/kg, and B horizon means from 3.47 to 
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9.84 cmolc/kg. Al tended to be higher in the B horizon, with a range of 0.88 to 2.93 cmolc/kg, while 

in the A/O horizon the means ranged from 0.11 to 1.02 cmolc/kg (Figure 15). Al was greatest in 

burned areas, with highest values in high burn B horizon sites.  

  

 

 

 

 

 

 

Figure 4. Box plot displaying the soil salt pH per burn severity level for A/O and B horizons. The 

25th to 75th quartile are encompassed within the box, the median is represented by the horizontal 

line in the box, and points outside the error bars are outliers. 
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Figure 5. Box plot displaying the soil total acidity per burn severity level for A/O and B 

horizons. The 25th to 75th quartile are encompassed within the box, the median is represented by 

the horizontal line in the box, and points outside the error bars are outliers. 

 

 

 

Figure 6. Box plot displaying the percent soil organic matter per burn severity level for A/O and 

B horizons. The 25th to 75th quartile are encompassed within the box, the median is represented 

by the horizontal line in the box, and points outside the error bars are outliers. 
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Figure 7. Box plot displaying the soil exchangeable base cations per burn severity level for A/O 

and B horizons. The 25th to 75th quartile are encompassed within the box, the median is 

represented by the horizontal line in the box, and points outside the error bars are outliers. One 

outlier point (44.9 cmolc/kg) not shown in the unburned category A/O horizon. 

 

 

 

 

Figure 8. Box plot displaying the soil effective cation exchange capacity per burn severity level 

for A/O and B horizons. The 25th to 75th quartile are encompassed within the box, the median is 

represented by the horizontal line in the box, and points outside the error bars are outliers. 
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Figure 9. Box plot displaying the soil percent base saturation per burn severity level for A/O and 

B horizons. The 25th to 75th quartile are encompassed within the box, the median is represented 

by the horizontal line in the box, and points outside the error bars are outliers. 

 

 

 

Figure 10. Box plot displaying the soil exchangeable sulfate per burn severity level for A/O and 

B horizons. The 25th to 75th quartile are encompassed within the box, the median is represented 

by the horizontal line in the box, and points outside the error bars are outliers. 
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Figure 11. Box plot displaying the soil exchangeable nitrate per burn severity level for A/O and 

B horizons. The 25th to 75th quartile are encompassed within the box, the median is represented 

by the horizontal line in the box, and points outside the error bars are outliers. 

 

 

 

Figure 12. Box plot displaying the soil exchangeable ammonium per burn severity level for A/O 

and B horizons. The 25th to 75th quartile are encompassed within the box, the median is 

represented by the horizontal line in the box, and points outside the error bars are outliers. 



25 

 

 

Figure 13. Box plot displaying the soil percent C per burn severity level for A/O and B horizons. 

The 25th to 75th quartile are encompassed within the box, the median is represented by the 

horizontal line in the box, and points outside the error bars are outliers. 

 

 

 

Figure 14. Box plot displaying the soil percent N per burn severity level for A/O and B horizons. 

The 25th to 75th quartile are encompassed within the box, the median is represented by the 

horizontal line in the box, and points outside the error bars are outliers. 
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Figure 15. Box plot displaying soil exchangeable Al per burn severity level for A/O and B 

horizons. The 25th to 75th quartile are encompassed within the box, the median is represented 

by the horizontal line in the box, and points outside the error bars are outliers.  

  



27 

 

Table 5. Soil chemistry parameters for the A/O horizon summarized as collection means and standard deviations. Per site burn level 

category, a range of means are summarized.  

A. Low/medium burn sites; N = 4.  

Site 

ID 

Site 

Burn 

Level 

MC (%) DI pH Salt pH 
TA 

(cmolc/kg) 

EBC 

(cmolc/kg) 

ECEC 

(cmolc/kg) 
BS (%) OM (%)  

SO4
 

(cmolc/kg) 

FCL Low/med 25.7 ± 12.8 5.63 ± 0.38 4.74 ± 0.37 1.56 ± 1.31 6.80 ± 5.82 8.39 ± 5.14 74.6 ± 20.1 12.8 ± 5.05 0.10 ± 0.06 

NEON Low/med 28.3 ± 4.58 5.39 ± 0.24 4.54 ± 0.21 2.42 ± 1.38 2.47 ± 1.79 5.60 ± 2.12 62.7 ± 15.7 11.4 ± 1.56 0.54 ± 1.04 

RP3 Low/med 42.9 ± 6.65 5.35 ± 0.56 4.63 ± 0.38 1.30 ± 0.71 1.26 ± 0.62 4.22 ± 2.54 64.9 ± 10.8 18.9 ± 7.04 0.14 ± 0.07 

WIN Low/med 29.9 ± 20.1 5.15 ± 0.33 4.20 ± 3.02 4.29 ± 3.02 5.06 ± 3.42 10.2 ± 3.24 68.0 ± 7.13 26.1 ± 6.34 0.28 ± 0.18 

Mean 31.7 5.38 4.38 2.40 4.81 7.85 68.0 18.6 0.32 

Means Range 25.7 – 42.9 5.15 – 5.63 4.20 – 4.74 1.30 – 4.29 1.26 – 6.80 4.22 – 10.2 62.7 – 74.6 11.4 – 26.1 0.10 – 0.54 

 

 

Site 

ID 

Site 

Burn 

Level 

C (%) N (%) C/N 
Na 

(cmolc/kg) 

K 

(cmolc/kg) 

Mg 

(cmolc/kg) 

Ca 

(cmolc/kg) 

Al 

(cmolc/kg) 

NH4 

(cmolc/kg) 

NO3 

(cmolc/kg) 

FCL Low/med 7.67 ± 2.83 0.31 ± 0.13 24.8 ± 2.58 0.09 ± 0.04 0.72 ± 0.42 0.83 ± 0.72 4.71 ± 4.48 0.85 ± 0.43 0.03 ± 0.06 0.49 ± 0.42 

NEON Low/med 5.22 ± 0.43 0.28 ± 0.04 18.8 ± 2.04 0.08 ± 0.05 0.34 ± 0.11 0.47 ± 0.21 2.06 ± 1.12 0.87 ± 0.23 0.71 ± 1.66 0.80 ± 1.53 

RP3 Low/med 7.25 ± 3.43 0.46 ± 0.19 15.4 ± 1.02 0.01 ± 0.00 0.12 ± 0.02 0.15 ± 0.09 0.97 ± 0.40 1.07 ± 0.41 1.66 ± 2.16 0.91 ± 0.96 

WIN Low/med 16.5 ± 1.09 0.74 ± 0.07 23.2 ± 2.16 0.09 ± 0.05 0.60 ± 0.18 1.23 ± 0.46 4.63 ± 1.90 1.32 ± 0.61 0.79 ± 0.92 0.52 ± 0.50 

Mean 8.98 0.44 21.6 0.08 0.50 0.76 3.47 1.02 0.64 0.64 

Means Range 5.22 – 16.5 0.28 - 0.74 15.4 – 24.8 0.01 – 0.09 0.12 – 0.72 0.15 – 1.23 0.97 – 4.71 0.85 – 1.32 0.03 – 1.66 0.49 – 0.91 

*MC = moisture content, TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  
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Table 5 Continued.  

B. Unburned (no road) sites; N = 7.  

Site ID 

Site 

Burn 

Level 

MC (%) DI pH Salt pH 
TA 

(cmolc/kg) 

EBC 

(cmolc/kg) 

ECEC 

(cmolc/kg) 
BS (%) OM (%) 

SO4
 

(cmolc/kg) 

BGB Unburned 49.3 ± 14.6 6.19 ± 0.52 5.56 ± 0.17 2.31 ± 4.19 19.3 ± 17.2 22.2 ± 14.8 98.1 ± 2.40 32.2 ± 2.91 0.15 ± 0.12 

CANEY Unburned 38.2 ± 14.6 4.95 ± 0.47 3.95 ± 0.28 3.86 ± 2.44 8.15 ± 5.20 13.15 ± 3.77 65.0 ± 30.0 39.0 ± 5.87 0.07 ± 0.00 

LOVE Unburned 27.4 ± 4.67 6.89 ± 0.46 6.30 ± 0.46 2.28 ± 5.20 12.2 ± 8.26 14.7 ± 5.77 99.0 ± 1.12 9.56 ± 2.68 0.09 ± 0.01 

NS1 Unburned 36.1 ± 0.55 5.61 ± 0.05 4.79 ± 0.01 0.60 ± 0.28 0.82 ± 0.00 1.75 ± 0.35 66.6 ± 7.60 13.0 ± 1.08 0.12 ± 0.01 

NS2 Unburned 35.8 ± 0.93 6.13 ± 0.36 5.36 ± 0.24 0.00 ± 0.00 2.87 ± 0.34 3.72 ± 0.72 100 ± 0.00 11.7 ± 1.97 0.86 ± 1.79 

NS3 Unburned 34.8 ± 8.94 6.44 ± 0.02 5.95 ± 0.15 0.00 ± 0.00 6.28 ± 0.11 8.43 ± 2.18 100 ± 0.00 17.6 ± 4.57 0.25 ± 0.24 

SKI Unburned 28.4 ± 7.87 7.02 ± 1.07 6.61 ± 1.23 4.22 ± 8.59 9.10 ± 7.82 13.7 ± 6.81 82.5 ± 37.8 7.83 ± 2.06 0.36 ± 0.32 

Mean 35.7 6.18 5.64 0.80 12.4 13.97 84.3 20.1 0.28 

Means Range 27.4 – 49.3 4.95 – 7.02 3.95 – 6.61 0.00 – 4.22 0.82 – 19.3 1.75 – 22.2 66.6 – 100 7.83 – 39.0 0.07 – 0.86 

 

Site ID 

Site 

Burn 

Level 

C (%) N (%) C/N 
Na 

(cmolc/kg) 

K 

(cmolc/kg) 

Mg 

(cmolc/kg) 

Ca 

(cmolc/kg) 

Al 

(cmolc/kg) 

NH4 

(cmolc/kg) 

NO3 

(cmolc/kg) 

BGB Unburned 17.1 ± 3.70 0.90 ± 0.18 19.0 ± 0.39 0.12 ± 0.14 1.06 ± 0.54 4.33 ± 2.70 18.6 ± 11.2 0.02 ± 0.01 0.63 ± 0.58 0.71 ± 0.62 

CANEY Unburned 19.5 ± 9.38 0.90 ± 0.38 22.7 ± 1.02 0.09 ± 0.04 0.93 ± 0.37 2.24 ± 0.77 6.38 ± 2.88 0.93 ± 0.66 1.15 ± 1.07 0.83 ± 0.93 

LOVE Unburned 4.54 ± 1.07 0.32 ± 0.05 14.1 ± 2.01 0.06 ± 0.04 0.93 ± 0.25 1.75 ± 0.63 11.9 ± 5.32 0.01 ± 0.02 0.16 ± 0.13 0.56 ± 0.41 

NS1 Unburned 6.27 ± 0.64 0.33 ± 0.04 18.8 ± 0.57 0.19 ± 0.32 0.14 ± 0.06 0.08 ± 0.07 0.43 ± 0.18 1.05 ± 0.94 0.33 ± 0.19 0.68 ± 0.74 

NS2 Unburned 5.58 ± 1.29 0.39 ± 0.08 14.2 ± 0.23 0.04 ± 0.06 0.27 ± 0.04 0.36 ± 0.13 2.20 ± 0.42 0.08 ± 0.05 0.85 ± 0.64 1.84 ± 2.06 

NS3 Unburned 10.3 ± 0.20 0.78 ± 0.01 13.2 ± 0.31 0.05 ± 0.07 0.26 ± 0.03 0.57 ± 0.24 5.40 ± 0.56 0.04 ± 0.01 2.15 ± 2.18 0.63 ± 0.08 

SKI Unburned 5.20 ± 0.81 0.30 ± 0.06 17.3 ± 1.57 0.07 ± 0.04 0.30 ± 0.13 1.04 ± 0.35 12.8 ± 3.94 0.01 ± 0.01 0.42 ± 0.36 0.90 ± 1.10 

Mean 9.13 0.54 16.7 0.09 0.65 1.78 9.84 0.29 0.77 0.76 

Means Range 4.54 – 19.5 0.30 – 0.90 13.2 – 22.7 0.04 – 0.19 0.14 – 1.06 0.08 – 4.33 0.43 – 18.6 0.01 – 1.05 0.16 – 2.15 0.63 – 1.84 

*MC = moisture content, TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  

  



29 

 

Table 5 Continued.  

C. Unburned (road) sites; N=2.  

Site 

ID 

Site 

Burn 

Level 

MC (%) DI pH Salt pH 
TA 

(cmolc/kg) 

EBC 

(cmolc/kg) 

ECEC 

(cmolc/kg) 
BS (%) OM (%) 

SO4
 

(cmolc/kg) 

PL441 Unburned 22.8 ± 7.07 5.78 ± 0.78 4.90 ± 0.72 1.63 ± 2.59 4.66 ± 3.78 7.34 ± 3.65 68.7 ± 45.3 8.96 ± 2.41 0.45 ± 0.54 

RS441 Unburned 38.2 ± 8.84 6.09 ± 0.65 5.42 ± 0.27 2.51 ± 4.95 11.5 ± 8.39 14.4 ± 5.66 98.1 ± 2.37 20.9 ± 2.36 0.17 ± 0.05 

Mean 30.5 5.94 5.16 2.07 8.10 10.9 80.5 14.9 0.31 

Means Range 22.8 – 38.2 5.78 – 6.09 4.90 – 5.42 1.63 – 2.51  4.66 – 11.5 7.34 – 14.4 68.7 – 98.1 8.96 – 20.9 0.17 – 0.45 

 

Site ID 

Site 

Burn 

Level 

C (%) N (%) C/N 
Na 

(cmolc/kg) 

K 

(cmolc/kg) 

Mg 

(cmolc/kg) 

Ca 

(cmolc/kg) 

Al 

(cmolc/kg) 

NH4 

(cmolc/kg) 

NO3 

(cmolc/kg) 

PL441 Unburned 3.81 ± 0.86 0.24 ± 0.04 15.8± 1.69 0.07 ± 0.04 0.31 ± 0.12 1.06 ± 0.33 5.20 ± 1.67 0.03 ± 0.03 1.05 ± 2.46 1.37 ± 2.62 

RS441 Unburned 10.4 ± 1.68 0.70 ± 0.09 14.8 ± 0.86 0.10 ± 0.05 0.62 ± 0.22 2.67 ± 1.01 11.0 ± 4.51 0.02 ± 0.01 0.40 ± 0.25 0.43 ± 0.21 

Mean 7.11 0.47 15.3 0.09 0.47 1.87 8.11 0.03 0.73 0.90 

Means Range 3.81 – 10.4 0.24 – 0.70 14.8 – 15.8 0.07 – 0.10 0.31 – 0.62 1.06 – 2.67 5.20 – 11.0 0.02 – 0.03 0.40 – 1.05 0.43 – 1.37 

*MC = moisture content, TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  
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Table 5 Continued.  

D. Reference sites; N = 7.  

Site 

ID 

Site 

Burn 

Level 

MC (%) DI pH Salt pH 
TA 

(cmolc/kg) 

EBC 

(cmolc/kg) 

ECEC 

(cmolc/kg) 
BS (%) OM (%)  

SO4
 

(cmolc/kg) 

RP1 Ref 45.8 ± 2.16 5.37 ± 0.62 4.60 ± 0.65 0.40 ± 0.57 3.60 ± 1.77 5.25 ± 1.63 93.1 ± 8.82 18.7 ± 0.69 0.10 ± 0.03 

RP2 Ref 38.9 ± 0.17 6.02 ± 0.54 5.33 ± 0.62 0.20 ± 0.28 2.21 ± 0.19 3.40 ± 0.98 95.0 ± 7.11 11.7 ± 0.62 0.08 ± 0.02 

SGL Ref 31.0 ± 8.44 5.77 ± 0.68 5.31 ± 0.98 3.98 ± 6.89 5.39 ± 4.85 10.0 ± 5.03 77.9 ± 39.5 11.6 ± 5.12 0.50 ± 0.77 

TREE Ref 27.3 ± 7.24 6.59 ± 0.65 5.67 ± 0.82 1.42 ± 2.86 7.05 ± 5.13 9.09 ± 4.12 97.8 ± 2.06 8.80 ± 2.45 0.67 ± 1.20 

WCP1 Ref 46.4 ± 7.09 5.95 ± 0.15 4.64 ± 0.30 0.20 ± 0.28 4.55 ± 1.72 5.56 ± 2.19 97.8 ± 3.09 27.4 ± 8.76 0.18 ± 0.12 

WCP2 Ref 61.3 ± 15.1 4.76 ± 1.03 4.13 ± 0.98 1.30 ± 1.84 4.49 ± 0.22 6.99 ± 2.13 85.6 ± 20.4 51.7 ± 39.3 0.20 ± 0.01 

WCP3 Ref 52.1 ± 10.3 4.99 ± 0.50 4.07 ± 0.84 0.40 ± 0.57 4.82 ± 0.32 6.17 ± 1.39 93.5 ± 9.22 29.3 ± 10.3 0.17 ± 0.03 

Mean 43.3 5.64 5.06 0.40 6.16 7.40 88.1 19.2 0.34 

Means Range 27.3 – 61.3 4.76 – 6.59 4.07 – 5.67 0.20 – 3.98 2.21 – 7.05 3.40 – 10.0 77.9 – 97.8 8.80 – 51.7 0.08 – 0.67 

 

Site 

ID 

Site 

Burn 

Level 

C (%) N (%) C/N 
Na 

(cmolc/kg) 

K 

(cmolc/kg) 

Mg 

(cmolc/kg) 

Ca 

(cmolc/kg) 

Al 

(cmolc/kg) 

NH4 

(cmolc/kg) 

NO3 

(cmolc/kg) 

RP1 Ref 8.15 ± 0.33 0.61 ± 0.06 13.3 ± 0.80 0.07 ± 0.11 0.15 ± 0.03 0.36 ± 0.07 3.02 ± 1.40 0.15 ± 0.10 1.25 ± 1.11 2.00 ± 1.50 

RP2 Ref 4.97 ± 0.85 0.30 ± 0.06 16.7 ± 0.43 0.03 ± 0.02 0.18 ± 0.01 0.24 ± 0.12 1.76 ± 0.26 0.09 ± 0.03 0.99 ± 0.98 0.76 ± 1.14 

SGL Ref 4.59 ± 1.03 0.37 ± 0.07 12.5 ± 0.60 0.06 ± 0.04 0.75 ± 0.23 1.28 ± 0.35 6.23 ± 2.44 0.09 ± 0.09 0.65 ± 0.85 1.34 ± 1.55 

TREE Ref 3.66 ± 1.15 0.28 ± 0.06 12.9 ± 1.26 0.08 ± 0.05 0.42 ± 0.17 1.51 ± 0.51 6.45 ± 3.62 0.01 ± 0.01 0.61 ± 0.93 0.96 ± 1.41 

WCP1 Ref 10.8 ± 0.03 0.51 ± 0.07 21.3 ± 2.99 0.05 ± 0.06 0.10 ± 0.01 0.69 ± 0.51 3.71 ± 0.96 0.04 ± 0.00 0.81 ± 0.90 1.63 ± 2.07 

WCP2 Ref 18.2 ± 11.2 1.02 ± 0.39 16.9 ± 4.49 0.02 ± 0.01 0.16 ± 0.01 0.46 ± 0.21 3.84 ± 0.37 0.20 ± 0.14 1.20 ± 0.57 1.14 ± 0.82 

WCP3 Ref 8.47 0.67 12.7 0.11 ± 0.20 0.17 ± 0.04 0.53 ± 0.08 4.01 ± 0.27 0.33 ± 0.35 0.95 ± 1.07 1.12 ± 1.56 

Mean 6.59 0.44 14.3 0.06 0.37 0.93 4.80 0.11 0.84 1.25 

Means Range 3.66 – 18.2 0.28 – 1.02 12.5 – 21.3 0.02 – 0.11 0.10 – 0.75 0.24 – 1.51 1.76 – 6.45 0.01 – 0.33 0.61 – 1.25 0.76 – 2.00 

*MC = moisture content, TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  
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Table 6. Soil chemistry parameters for the B horizon summarized per collection means and standard deviations. Per site burn level 

category, a range of means are summarized.  

A. High burn sites; N = 7. 

Site 

ID 

Site 

Burn 

Level 

MC (%) DI pH Salt pH 
TA 

(cmolc/kg) 

EBC 

(cmolc/kg) 

ECEC 

(cmolc/kg) 
BS (%) OM (%)  

SO4
 

(cmolc/kg) 

DUD High 16.8 ± 4.45 4.83 ± 0.33 4.05 ± 0.17 4.40 ± 1.96 0.81 ± 0.36 6.10 ± 1.84 24.2 ± 17.1 4.89 ± 0.59 0.50 ± 0.78 

FCM High 16.6 ± 2.53 5.43 ± 1.28 4.59 ± 1.20 4.02 ± 2.86 1.86 ± 2.35 6.75 ± 1.96 40.5 ± 40.4 5.55 ± 1.86 0.58 ± 1.17 

LCM High 18.8 ± 6.52 5.41 ± 1.15 4.56 ± 1.24 3.32 ± 2.83 4.01 ± 6.42 7.74 ± 5.40 44.8 ± 36.8 7.62 ± 3.22 0.13 ± 0.06 

NMT High 24.7 ± 9.62 5.99 ± 1.04 5.10 ± 1.00 1.99 ± 1.54 9.08 ± 8.39 11.5 ± 7.04 67.9 ± 31.6 9.86 ± 1.69 0.47 ± 0.58 

NS4 High 6.89 ± 3.83 4.84 ± 0.40 3.82 ± 0.33 2.90 ± 0.99 0.82 ± 0.30 4.84 ± 1.46 38.8 ± 0.14 14.8 ± 4.07 0.20 ± 0.14 

SCM High 17.7 ± 2.17 5.06 ± 0.16 4.14 ± 0.12 4.31 ± 3.26 0.78 ± 0.57 5.31 ± 2.24 12.1 ± 3.07 7.73 ± 3.46 0.14 ± 0.11 

TCL High 19.9 ± 6.87 4.99 ± 0.17 4.10 ± 0.16 5.15 ± 1.79 1.93 ± 1.45 7.78 ± 2.70 31.3 ± 15.1 7.64 ± 1.38 0.52 ± 0.91 

Mean 17.3 5.22 4.27 4.52 2.48 7.60 37.6 7.53 0.40 

Means Range 6.89 – 24.7 4.83 – 5.99 3.82 – 5.10 1.99 – 5.15 0.78 – 9.08 4.84 – 11.5 12.1 – 67.9 4.89 – 14.8 0.13 – 0.58 

 

 

Site 

ID 

Site 

Burn 

Level 

C (%) N (%) C/N 
Na 

(cmolc/kg) 

K 

(cmolc/kg) 

Mg 

(cmolc/kg) 

Ca 

(cmolc/kg) 

Al 

(cmolc/kg) 

NH4 

(cmolc/kg) 

NO3 

(cmolc/kg) 

DUD High 2.03 ± 0.90 0.11 ± 0.03 18.3 ± 3.59 0.07 ± 0.04 0.25 ± 0.11 0.10 ± 0.04 0.27 ± 0.22 3.98 ± 1.33 0.89 ± 0.81 0.32 ± 0.76 

FCM High 2.50 ± 0.64 0.07 ± 0.01 34.7 ± 6.27 0.06 ± 0.04 0.25 ± 0.11 0.06 ± 0.03 0.09 ± 0.04 3.86 ± 0.94 0.87 ± 1.60 0.62 ± 1.72 

LCM High 2.68 ± 1.04 0.08 ± 0.03 31.3 ± 2.87 0.09 ± 0.10 0.53 ± 0.57 0.12 ± 0.06 0.27 ± 0.17 3.03 ± 1.14 0.41 ± 0.50 0.08 ± 0.11 

NMT High 5.42 ± 0.58 0.24 ± 0.03 22.7 ± 4.58 0.11 ± 0.13 0.50 ± 0.15 1.01 ± 0.40 9.15 ± 7.16 0.79 ± 0.68 0.37 ± 0.17 0.24 ± 0.32 

NS4 High 12.4 ± 2.86 0.44 ± 0.04 28.1 ± 4.02 0.02 ± 0.02 0.07 ± 0.02 0.19 ± 0.17 0.54 ± 0.11 2.14 ± 1.57 1.12 ± 0.69 1.01 ± 1.18 

SCM High 3.03 ± 1.76 0.09 ± 0.03 33.0 ± 6.47 0.04 ± 0.03 0.20 ± 0.08 0.09 ± 0.05 0.11 ± 0.07 2.52 ± 1.44 0.22 ± 0.16 0.10 ± 0.17 

TCL High 3.09 ± 0.69 0.12 ± 0.03 25.2 ± 2.88 0.06 ± 0.03 0.35 ± 0.22 0.38 ± 0.29 1.33 ± 1.09 3.73 ± 2.07 0.70 ± 1.24 0.68 ± 1.48 

Mean 3.92 0.15 26.88 0.07 0.33 0.29 1.79 2.93 0.61 0.39 

Means Range 2.03 – 12.4 0.07 – 0.44 18.25 – 34.68 0.02 – 0.11 0.07 – 0.53 0.06 – 1.01 0.09 – 9.15 0.79 – 3.98 0.22 – 1.12 0.08 – 1.01 

*MC = moisture content, TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  
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Table 6 Continued.  

B. Low/medium burn sites; N = 6. 

Site 

ID 

Site 

Burn 

Level 

MC (%) DI pH Salt pH 
TA 

(cmolc/kg) 

EBC 

(cmolc/kg) 

ECEC 

(cmolc/kg) 
BS (%) OM (%)  

SO4
 

(cmolc/kg) 

FCL Low/med 20.8 ± 9.33 5.36 ± 0.37 4.45 ± 0.38 2.42 ± 1.31 2.47 ± 3.54 5.35 ± 2.63 39.3 ± 30.4 7.84 ± 2.81 0.14 ± 0.12 

GCL Low/med 24.9 ± 9.57 4.93 ± 0.18 4.01 ± 0.18 5.43 ± 2.33 2.29 ± 2.26 8.79 ± 3.72 32.9 ± 22.2 13.2 ± 12.5 0.24 ± 0.22 

LGB Low/med 30.5 ± 5.94 5.02 ± 0.26 4.16 ± 0.13 3.04 ± 1.08 1.32 ± 0.79 4.86 ± 1.28 32.4 ± 17.5 8.50 ± 2.37 0.22 ± 0.19 

RGB Low/med 27.5 ± 4.85 5.10 ± 0.14 4.29 ± 0.05 3.00 ± 0.99 0.87 ± 0.24 4.10 ± 0.97 26.0 ± 10.4 8.86 ± 1.24 0.16 ± 0.11 

RP3 Low/med 34.0 ± 2.99 5.06 ± 0.22 4.66 ± 0.44 1.00 ± 0.85 0.30 ± 0.12 2.35 ± 1.20 46.4 ± 1.28 9.47 ± 1.05 0.19 ± 0.01 

WIN Low/med 19.2 ± 9.70 4.91 ± 0.09 4.04 ± 0.12 3.45 ± 1.00 0.99 ± 0.31 4.64 ± 1.16 26.7 ± 9.38 9.11 ± 1.24 0.16 ± 0.06 

Mean 26.2 5.06 4.20 3.82 0.96 5.32 32.4 8.34 0.16 

Means Range 19.2 – 34.0 4.91 – 5.36 4.01 – 4.66 1.00 – 5.43 0.30 – 2.47 2.35 – 8.79 26.7 – 46.4 7.84 – 13.2 0.14 – 0.24 

 

 

Site 

ID 

Site Burn 

Level 
C (%) N (%) C/N 

Na 

(cmolc/kg) 

K 

(cmolc/kg) 

Mg 

(cmolc/kg) 

Ca 

(cmolc/kg) 

Al 

(cmolc/kg) 

NH4 

(cmolc/kg) 

NO3 

(cmolc/kg) 

FCL Low/med 2.79 ± 0.73 0.11 ± 0.03 26.1 ± 1.57 0.07 ± 0.04 0.22 ± 0.07 0.14 ± 0.06 0.39 ± 0.26 2.23 ± 0.66 0.45 ± 0.57 0.10 ± 0.08 

GCL Low/med 3.07 ± 0.74 0.13 ± 0.01 23.5 ± 3.57 0.06 ± 0.03 0.38 ± 0.15 0.18 ± 0.12 0.55 ± 0.28 4.38 ± 1.22 1.07 ± 2.14 0.22 ± 0.32 

LGB Low/med 3.77 ± 1.15 0.15 ± 0.04 25.1 ± 3.45 0.08 ± 0.05 0.34 ± 0.17 0.27 ± 0.14 0.62 ± 0.50 2.49 ± 0.79 0.51 ± 0.43 0.18 ± 0.28 

RGB Low/med 4.16 ± 0.64 0.13 ± 0.01 31.5 ± 1.93 0.06 ± 0.04 0.28 ± 0.09 0.16 ± 0.05 0.32 ± 0.09 2.04 ± 0.86 0.23 ± 0.08 0.11 ± 0.21 

RP3 Low/med 4.75 ± 1.91 0.31 ± 0.10 15.1 ± 1.31 0.01 ± 0.01 0.08 ± 0.02 0.03 ± 0.03 0.17 ± 0.09 0.80 ± 0.12 1.05 ± 0.71 0.55 ± 0.53 

WIN Low/med 4.36 ± 0.86 0.20 ± 0.03 21.7 ± 1.13 0.06 ± 0.03 0.19 ± 0.07 0.19 ± 0.07 0.53 ± 0.22 1.56 ± 0.77 0.21 ± 0.06 0.27 ± 0.31 

Mean 3.69 0.15 24.8 0.06 0.27 0.18 0.46 2.41 0.54 0.21 

Means Range 2.79 – 4.75 0.11 – 0.31 15.1 – 31.5 0.01 – 0.08 0.08 – 0.38 0.03 – 0.27 0.17 – 0.62 0.80 – 4.38 0.21 – 1.07 0.10 – 0.55 

*MC = moisture content, TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  
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Table 6 Continued.  

C. Unburned (no road) sites; N = 7. 

Site ID 

Site 

Burn 

Level 

MC (%) DI pH Salt pH 
TA 

(cmolc/kg) 

EBC 

(cmolc/kg) 

ECEC 

(cmolc/kg) 
BS (%) OM (%)  

SO4
 

(cmolc/kg) 

BGB Unburned 28.5 ± 5.63 5.77 ± 0.14 4.98 ± 0.18 1.21 ± 1.96 5.31 ± 2.95 7.38 ± 2.01 94.4 ± 5.08 10.3 ± 1.91 0.44 ± 0.84 

CANEY Unburned 25.6 ± 5.62 5.12 ± 0.16 4.17 ± 0.04 3.54 ± 1.47 1.47 ± 0.26 5.79 ± 1.93 37.1 ± 12.5 11.8 ± 1.15 0.45 ± 0.77 

LOVE Unburned 16.8 ± 6.28 6.32 5.71 ± 0.10 3.41 ± 4.83 5.13 ± 7.25 8.77 ± 2.43 100 6.60 0.13 ± 0.04 

NS1 Unburned 41.0 ± 5.41 5.07 ± 0.48 4.64 ± 0.28 1.70 ± 0.42 0.40 ± 0.31 2.89 ± 0.70 42.8 ± 11.9 16.2 ± 3.43 0.26 ± 0.14 

NS2 Unburned 28.6 ± 2.72 5.96 ± 0.77 5.12 ± 0.58 0.60 ± 0.85 1.71 ± 1.25 3.17 ± 0.78 76.1 ± 33.7 7.72 ± 2.35 0.08 ± 0.01 

NS3 Unburned 25.2 ± 5.39 6.37 ± 0.34 5.61 ± 0.52 0.00 ± 0.00 3.26 ± 1.24 4.16 ± 1.34 100 ± 0.00 7.45 ± 2.38 0.09 ± 0.01 

SKI Unburned 18.5 ± 4.72 7.43 ± 1.40 6.71 ± 1.25 3.74 ± 7.28 6.53 ± 5.55 10.6 ± 5.20 81.8 ± 39.9 4.21 ± 2.03 0.26 ± 0.25 

Mean 26.3 6.01 5.35 1.21 4.77 6.66 67.3 8.96 0.33 

Means Range 16.8 – 41.0 5.07 – 7.43 4.17 – 6.71 0.00 – 3.74 0.40 – 6.53 2.89 – 10.6 37.1 – 100 4.21 – 16.2 0.08 – 0.45 

 

 

Site ID 
Site Burn 

Level 
C (%) N (%) C/N 

Na 

(cmolc/kg) 

K 

(cmolc/kg) 

Mg 

(cmolc/kg) 

Ca 

(cmolc/kg) 

Al 

(cmolc/kg) 

NH4 

(cmolc/kg) 

NO3 

(cmolc/kg) 

BGB Unburned 4.90 ± 0.41 0.33 ± 0.03 14.8. ± 0.53 0.09 ± 0.03 0.63 ± 0.15 1.14 ± 0.33 4.51 ± 1.07 0.14 ± 0.19 0.86 ± 1.04 0.69 ± 1.10 

CANEY Unburned 5.95 ± 1.56 0.29 ± 0.07 20.7 ± 1.00 0.08 ± 0.04 0.38 ± 0.11 0.38 ± 0.08 0.62 ± 0.17 2.90 ± 1.27 0.78 ± 1.15 0.68 ± 1.33 

LOVE Unburned 2.67 0.23 11.7 0.05 ± 0.01 0.84 ± 0.02 1.40 ± 0.03 7.97 ± 0.23 0.00 ± 0.00 0.22 ± 0.10 0.06 ± 0.13 

NS1 Unburned 8.27 ± 1.04 0.45 ± 0.09 18.6 ± 1.48 0.01 ± 0.00 0.08 ± 0.02 0.03 ± 0.01 0.28 ± 0.22 1.77 ± 1.36 0.79 ± 0.69 1.02 ± 1.63 

NS2 Unburned 4.38 ± 2.01 0.30 ± 0.11 14.3 ± 2.07 0.03 ± 0.03 0.19 ± 0.08 0.19 ± 0.03 1.30 ± 0.88 0.23 ± 0.18 0.86 ± 0.67 0.76 ± 0.44 

NS3 Unburned 4.77 ± 1.99 0.44 ± 0.18 10.8 ± 0.10 0.02 ± 0.01 0.21 ± 0.05 0.28 ± 0.01 2.75 ± 0.97 0.05 ± 0.01 0.90 ± 0.52 1.73 ± 0.78 

SKI Unburned 1.78 ± 1.54 0.10 ± 0.08 17.4 ± 4.70 0.08 ± 0.04 0.23 ± 0.11 0.57 ± 0.13 8.09 ± 3.03 0.01 ± 0.02 0.30 ± 0.19 0.50 ± 0.66 

Mean 4.58 0.29 16.0 0.06 0.36 0.58 3.76 0.88 0.69 0.75 

 Means Range 1.78 – 8.27 0.10 – 0.45 10.8 – 20.7 0.01 – 0.09 0.08 – 0.84 0.03 – 1.40 0.28 – 8.09 0.00 – 2.90 0.22 – 0.90 0.06 – 1.73 

*MC = moisture content, TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  

  



34 

 

Table 6 Continued.  

D. Unburned (road) sites; N =1. 

Site 

ID 

Site Burn 

Level 
MC (%) DI pH Salt pH 

TA 

(cmolc/kg) 

EBC 

(cmolc/kg) 

ECEC 

(cmolc/kg) 
BS (%) OM (%)  

SO4
 

(cmolc/kg) 

RS441 Unburned 26.9 ± 2.90 5.71 ± 0.34 4.83 ± 0.38 1.82 ± 2.27 4.25 ± 2.42 6.31 ± 1.12 84.5 ± 12.1 12.0 ± 1.84 0.18 ± 0.08 

 

 

Site ID 
Site Burn 

Level 
C (%) N (%) C/N 

Na 

(cmolc/kg) 

K 

(cmolc/kg) 

Mg 

(cmolc/kg) 

Ca 

(cmolc/kg) 

Al 

(cmolc/kg) 

NH4 

(cmolc/kg) 

NO3 

(cmolc/kg) 

RS441 Unburned 4.40 ± 0.76 0.35 ± 0.04 12.6 ± 0.69 0.09 ± 0.05 0.32 ± 0.09 1.05 ± 0.35 3.64 ± 0.96 0.39 ± 0.37 0.24 ± 0.11 1.16 ± 2.01 

*MC = moisture content, TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  
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Table 6 Continued.  

E. Reference sites; N = 7. 

Site 

ID 

Site 

Burn 

Level 

MC (%) DI pH Salt pH 
TA 

(cmolc/kg) 

EBC 

(cmolc/kg) 

ECEC 

(cmolc/kg) 
BS (%) OM (%)  

SO4
 

(cmolc/kg) 

RP1 Ref 35.9 ± 5.81 5.73 ± 0.52 4.94 ± 0.54 0.30 ± 0.42 2.65 ± 1.90 4.01 ± 1.89 90.0 ± 14.2 10.8 ± 3.74 0.09 ± 0.01 

RP2 Ref 35.3 ± 4.72 6.02 ± 0.59 5.48 ± 0.74 0.20 ± 0.28 1.07 ± 0.32 1.99 ± 0.81 90.0 ± 14.2 8.54 ± 1.00 0.07 ± 0.01 

SGL Ref 28.3 ± 11.9 6.57 6.33 ± 0.92 7.63 ± 10.79 3.03 ± 4.27 11.0 ± 6.52 100  13.5 0.11 ± 0.03 

TREE Ref 21.8 ± 5.81 6.27 ± 0.22 5.06 ± 0.70 0.82 ± 1.10 2.38 ± 3.23 3.94 ± 3.17 97.0 ± 4.22 6.18 ± 0.25 0.11 ± 0.04 

WCP1 Ref 27.0 ± 9.97 6.78 ± 0.11 6.23 ± 0.52 0.00 ± 0.00 5.77 ± 2.52 7.25 ± 2.76 100 ± 0.00 8.66 ± 4.00 0.19 ± 0.13 

WCP2 Ref 38.9 ± 7.33 4.82 ± 0.07 4.09 ± 0.18 2.60 ± 1.70 0.48 ± 0.22 3.96 ± 2.08 34.8 ± 23.7 11.5 ± 3.71 0.17 ± 0.08 

WCP3 Ref 33.4 ± 8.73 5.13 ± 0.24 4.37 ± 0.18 1.20 ± 0.57 1.75 ± 1.05 3.74 ± 0.97 68.3 ± 14.7 9.18 ± 5.65 0.07 ± 0.01 

Mean 31.5 5.90 5.14 0.69 2.77 4.35 78.7 9.77 0.11 

Means Range 21.8 – 38.9 4.82 – 6.78 4.09 – 6.33 0.00 – 7.63 0.48 – 5.77 1.99 – 11.0 34.8 – 100 6.18 – 13.5 0.07 – 0.19 

 

 

Site 

ID 

Site 

Burn 

Level 

C (%) N (%) C/N 
Na 

(cmolc/kg) 

K 

(cmolc/kg) 

Mg 

(cmolc/kg) 

Ca 

(cmolc/kg) 

Al 

(cmolc/kg) 

NH4 

(cmolc/kg) 

NO3 

(cmolc/kg) 

RP1 Ref 3.93 ± 2.06 0.31 ± 0.17 12.7 ± 0.27 0.03 ± 0.03 0.11 ± 0.03 0.27 ± 0.08 2.24 ± 1.45 0.16 ± 0.09 1.06 ± 1.18 0.94 ± 0.20 

RP2 Ref 3.55 ± 0.52 0.20 ± 0.04 17.4 ± 0.58 0.02 ± 0.01 0.12 ± 0.02 0.09 ± 0.02 0.85 ± 0.26 0.14 ± 0.09 0.72 ± 0.81 0.35 ± 0.60 

SGL Ref - - - 0.01 ± 0.00 0.41 ± 0.03 0.90 ± 0.08 4.73 ± 0.36 0.03 ± 0.00 0.28 ± 0.07 2.62 ± 0.24 

TREE Ref 2.19 ± 0.23 0.18 ± 0.01 12.4 ± 0.59 0.03 ± 0.03 0.20 ± 0.13 0.67 ± 0.70 2.33 ± 2.47 0.89 ± 1.01 0.73 ± 0.66 0.46 ± 0.31 

WCP1 Ref 6.26 ± 1.65 0.29 ± 0.04 21.4 ± 2.53 0.06 ± 0.07 0.08 ± 0.02 0.45 ± 0.17 5.18 ± 2.05 0.03 ± 0.01 1.48 ± 1.12 0.69 ± 0.31 

WCP2 Ref 6.82 ± 4.28 0.36 ± 0.23 19.2 ± 0.28 0.04 ± 0.04 0.09 ± 0.01 0.04 ± 0.00 0.31 ± 0.14 3.23 ± 2.97 0.88 ± 0.82 0.68 ± 0.64 

WCP3 Ref 3.18 0.26 12.5 0.03 ± 0.01 0.11 ± 0.03 0.14 ± 0.04 1.47 ± 0.80 1.75 ± 1.07 0.79 ± 0.84 0.83 ± 0.51 

Mean 4.92 0.29 17.1 0.03 0.14 0.33 2.27 0.96 0.89 0.81 

Means Range 2.19 – 6.82 0.18 – 0.36 12.4 – 21.4 0.01 – 0.06 0.08 – 0.41 0.04 – 0.90 0.31 - 5.18 0.03 – 3.23 0.28 – 1.48 0.35 – 2.62 

*MC = moisture content, TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  
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B. Comparison of Soil Chemistry between Horizons  

Mean values of each chemical parameter were compared between soil A/O and B horizons for 

low/med burn, unburned, and reference sites (Table 7 a-c). The high burn sites were not compared 

because the A/O horizon rich in organic matter was completely burned and no longer existed post-

fire. Salt pH values were similar for the A/O and B horizons averaging for the reference sites 5.06 

and 5.14, the unburned sites 5.64 and 5.35, and the low/med burn sites 4.38 and 4.20 (p = 0.69, 

0.18, and 0.64), respectively. Similarly, TA were similar for the A/O and B horizons averaging for 

the reference sites 0.40 and 0.69 cmolc/kg, the unburned sites 0.80 and 1.21 cmolc/kg, (p = 0.15, 

0.19), respectively. The only significant difference was at low/medium sites, where the A/O 

horizon sites had a TA (2.40 cmolc/kg) significantly lower than the B horizon (3.82 cmolc/kg) 

(p<0.01). Nitrate was not significantly different between the two soil horizons for reference and 

unburned levels (p = 0.08, 0.98 respectively). In low/medium burn areas, the nitrate was 

significantly lower in the B horizon (0.21 cmolc/kg) than the A/O (0.64 cmolc/kg) (p = 0.02). The 

%OM was significantly greater in A/O horizon with a range among reference, unburned, and 

low/med/burn sites of 18.6-20.1% compared to the B horizon with a range of 7.53-9.77% (p <0.01, 

<0.01, and < 0.01, respectively). As evidenced by the higher %OM content in the A/O horizon 

compared with the B horizon, EBC, ECEC, and %BS were also significantly greater in the A/O 

horizon. For example, ECEC A/O and B horizon averages for the reference sites were 7.40 and 

4.35 cmolc/kg, the unburned sites 13.97 and 6.66 cmolc/kg, and the low/med burn sites 7.85 and 

5.32 cmolc/kg, respectively (all p < 0.01). In these acidic soils demonstrating the influence of Al, 

ECEC values were greater than EBC for all burn conditions and both soil horizons. The individual 

base cations measured were all, aside from Na, significantly lower in the B horizon than A/O at 

all burn levels (p<0.01). Na was significantly lower in the B horizon, only at reference sites (p = 

0.04). Conversely, Al was consistently greater in the B horizon than the A/O at all burn levels 

(p<0.01). Measures of %C and %N were greater in the A/O horizon compared to the B horizon 

among all site burn levels, though not significantly for the references sites, where %C ranged from 

6.59-9.13 for the A/O horizon compared to 3.69-4.92% for the B horizon, and %N ranged from 

0.54-0.44 for the A/O horizon compared to 0.15-0.29% for the B horizon. Overall, the chemical 

properties were greater in the A/O horizon for all parameters, aside from the salt pH at the reference 

sites. TS was greater in the A/O horizon compared with the B horizon illustrating higher amounts 

of S in the A/O horizon.  
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Table 7. Comparison of soil chemistry between the A/O and B soil horizons. ANOVA significant differences appear in bold (p<0.05).  

A. Reference sites; N=22. 

Horizon Salt pH 
TA 

(cmolc/kg) 
EBC 

(cmolc/kg) 
ECEC 

(cmolc/kg) 
BS (%) OM (%) C (%) N (%) C/N 

A/O 5.06 0.40 6.16 7.40 88.1 19.2 6.59 0.44 14.4 

B 5.14 0.69 2.77 4.35 78.7 9.77 4.92 0.29 17.1 

Prob > F 0.71 0.15 p<0.01 p<0.01 p<0.01 p<0.01 0.37 0.11 0.046 

 

Horizon 
Na 

(cmolc/kg) 
K 

(cmolc/kg) 
Mg 

(cmolc/kg) 
Ca 

(cmolc/kg) 
Al 

(cmolc/kg) 
NO3 

(cmolc/kg) 
NH4 

(cmolc/kg) 
SO4 

(cmolc/kg) 
TS 

(mg-S/kg) 

A/O 0.06 0.37 0.93 4.80 0.11 1.25 0.84 0.34 577 

B 0.03 0.14 0.33 2.27 0.96 0.81 0.89 0.11 304 

Prob > F 0.04 p<0.01 p<0.01 p<0.01 p<0.01 0.08 0.80 0.08 0.11 

*TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content, TS = total sulfur.  

B. Unburned (no road) sites; N=36. 

Horizon Salt pH 
TA 

(cmolc/kg) 
EBC 

(cmolc/kg) 
ECEC 

(cmolc/kg) 
BS (%) OM (%) C (%) N (%) C/N 

A/O 5.64 0.80 12.4 13.97 84.3 20.1 9.13 0.54 16.7 

B 5.35 1.21 4.77 6.66 67.3 8.96 4.58 0.29 16.0 

Prob > F 0.23 0.19 p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 0.49 

 

Horizon 
Na 

(cmolc/kg) 
K (cmolc/kg) 

Mg 

(cmolc/kg) 
Ca 

(cmolc/kg) 
Al 

(cmolc/kg) 
NO3 

(cmolc/kg) 

NH4 

(cmolc/kg) 
SO4 

(cmolc/kg) 
TS 

(mg-S/kg) 

A/O 0.09 0.65 1.78 9.84 0.29 0.76 0.77 0.28 400 

B 0.06 0.36 0.58 3.76 0.88 0.75 0.69 0.33 259 

Prob > F 0.16 p<0.01 p<0.01 p<0.01 p<0.01 0.98 0.66 0.68 0.12 

*TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content, TS = total sulfur.  
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Table 7 Continued.  

C. Low/medium burn sites; N=14. 

Horizon Salt pH 
TA 

(cmolc/kg) 
EBC 

(cmolc/kg) 
ECEC 

(cmolc/kg) 
BS (%) OM (%) C (%) N (%) C/N 

A/O 4.38 2.40 4.81 7.85 68.0 18.6 8.98 0.44 21.6 

B 4.20 3.82 0.96 5.32 32.4 8.34 3.69 0.15 24.8 

Prob > F p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 p<0.01 0.03 

 

Horizon 
Na 

(cmolc/kg) 
K  

(cmolc/kg) 
Mg 

(cmolc/kg) 
Ca 

(cmolc/kg) 
Al 

(cmolc/kg) 
NO3 

(cmolc/kg) 
NH4 

(cmolc/kg) 
SO4 

(cmolc/kg) 

TS 

(mg-S/kg) 

A/O 0.08 0.50 0.76 3.47 1.02 0.64 0.64 0.32 339 

B 0.06 0.27 0.16 0.46 2.41 0.21 0.54 0.16 207 

Prob > F 0.16 p<0.01 p<0.01 p<0.01 p<0.01 0.02 0.71 0.20 0.16 
*TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content, TS = total sulfur.  
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C. Comparison of Soil Chemistry among Site Burn Severity Levels 

Soil chemical parameters were compared independently for the A/O and B horizons among site 

burn severity levels including: high burn, low/med burn, unburned, and reference sites (Table 8). 

Salt pH values were significantly lower in burned areas for both the A/O and B horizons (p < 0.01). 

A/O horizon salt pH for the reference and unburned sites were 5.06 and 5.64 respectively compared 

to the low/medium burn site average pH of 4.38. B horizon salt pH for the reference and unburned 

sites were 5.14 and 5.35 compared to the low/medium and high burn sites of 4.20 and 4.27 

respectively. TA were significantly greater (p<0.001) in burned sites in the A/O horizon, with an 

average of 2.40 cmolc/kg in low/medium sites compared to reference and unburned sites of 0.40 

cmolc/kg and 0.80 cmolc/kg, respectively. Similarly, TA were significantly greater (p<0.001) in 

the B horizon in low/medium and high burned sites, with means of 3.82 and 4.52 cmolc/kg, 

respectively, compared to the references and unburned site means of 0.69 and 1.21 cmolc/kg, 

respectively. The %OM values were similar at all burn severity levels, with reference sites 

averaging 19.2% and 9.77% in the A/O and B horizon, the unburned sites 20.1 and 8.96, 

low/medium sites 18.6 and 8.34, and high burn sites averaging 7.53 in the B horizon, with no 

significant differences. The average EBC was highest in unburned sites in both soil horizons (12.4 

and 4.77 cmolc/kg, in the A/O and B horizon respectively). Both horizons EBC was significantly 

greater in the unburned sites as compared to low/medium and reference sites (p = 0.017). Similarly, 

the ECEC was greatest at the unburned sites in the A/O horizon, with an average of 13.97 cmolc/kg, 

significantly greater than both reference (7.40 cmolc/kg) and low/medium (7.85 cmolc/kg) sites 

(p<0.001). In the B horizon, unburned sites averaged 5.97 cmolc/kg, while reference sites averaged 

3.46 cmolc/kg and low/medium and high burn sites 4.78 cmolc/kg and 6.99 cmolc/kg respectively. 

The high burn areas had the greatest value, significantly greater (p<0.001) than reference and 

low/medium sites, which were statistically similar (p = 0.25). As the ECEC is the sum of TA and 

EBC, it was not surprising to see a similar pattern between EBC and ECEC. EBC and ECEC were 

significantly correlated for each site burn condition and soil horizon (t-test, p < 0.001).  

%BS was significantly lower in burned areas in both horizons; 68.0% in burned A/O horizon, 

compared to 88.1 and 84.3% in reference and unburned sites in the A/O horizon. %BS averaged 

32.4 and 37.6% in low/medium and high burn sites compared to 78.7 and 67.3% in reference and 

unburned sites in the B horizon (p<0.01). In these acidic soils demonstrating the influence of Al, 

ECEC values were greater than EBC for all burn conditions and both soil horizons. Al was 
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significantly higher in burned areas (p<0.01) for both soil horizons. A/O horizon Al averaged 1.02 

cmolc/kg in low/medium sites, and just 0.84 and 0.77 cmolc/kg in reference and unburned areas. B 

horizon patterns were similar, with 2.41 and 2.93 cmolc/kg Al in low/medium and high burn sites, 

and 0.96 and 0.88 cmolc/kg in reference and unburned areas. Sulfate and ammonium means per 

burn severity level showed no pattern. High burn site sulfate was significantly different than 

reference site sulfate (p = 0.023), with high sites averaging 0.40 cmolc/kg and reference B horizon 

sites averaging 0.11 cmolc/kg. Low/medium and high sites were not statistically different (p = 

0.062), and neither were high sites compared to unburned sites (p = 0.698). Measures of %C and 

%N were similar at all burn levels in the A/O horizon, where %C ranged from 6.59 to 9.13 and 

%N ranged from 0.44 to 0.54. In the B horizon, %C and %N was greater in unburned areas, though 

only significantly for %N. %C averaged 4.92 to 4.58 in reference and unburned sites, respectively, 

and 3.69 to 3.92 in low/medium and high burn sites, respectively. %N was significantly lower in 

burned areas, 0.154 and 0.151 in low/medium and high burn sites, and 0.288 and 0.292 in reference 

and unburned sites (p<0.01). The TS was lower for burned areas in both horizons with averages in 

the low/medium burn sites 339 mg-S/kg in A/O and 207 mg-S/kg in the B horizon, with lowest 

averages in high burn areas (171 mg-S/kg). However, no statistically significant differences were 

found between the burn levels in either the A/O and B horizon (p = 0.63; = 0.61, respectively). 

Additionally, TS was lower in the unburned sites (400 mg-S/kg in A/O and 259 mg-S/kg in B 

horizon) than in the reference sites (577 mg-S/kg in A/O and 304 mg-S/kg in B). In the high burn 

areas that lacked an A/O horizon, the S in organic material that burned likely was exported.  

The ratios of ECEC/%OM and ECEC/%C were calculated per burn severity level and soil horizon. 

ECEC/%OM in the A/O and B horizon was significantly greater in unburned sites (0.885 in A/O; 

1.09 in B), compared to reference (0.545 in A/O and 0.392 in B) and low/medium burn sites (0.401 

in A; 0.604 in B) (p<0.01). In high burn sites, the ECEC/%OM ratio averaged 1.01, statistically 

similar to that of unburned sites (p = 0.96). ECEC/%C was similarly greatest at unburned sites, 

1.71 in the A/O horizon and 2.48 in the B horizon. In the A/O horizon, reference sites were 

significantly lower than unburned sites with ECEC/%C of 1.33, and low/medium sites weren’t 

significantly from either reference or unburned sites at 0.877. In the B horizon, no statistically 

significant differences were noted for ECEC/%C, however the unburned was again the greatest 

ratio (2.48).  
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Table 8. ANOVA means separation analysis per burn severity level in A/O and B soil horizons. ANOVA significant differences (p<0.05) 

appear in bold. 

Horizon Burn Level Salt pH 
TA 

(cmolc/kg) 

EBC 

(cmolc/kg) 
(cmolc/kg) BS (%) 

OM 

(%) 
Sulfate 

(cmolc/kg) 
C (%) N (%) C/N 

A/O 

Reference 5.06 A 0.40 A 6.16 A 7.40 A 88.1 A 19.2 0.34 6.59 0.44 14.4 A 

Unburned 5.64 B 0.80 A 12.4 B 13.97 B 84.3 A 20.1 0.28 9.13 0.539 16.7 B 

Low/Med 4.38 C 2.40 B 4.81 A 7.85 A 68.0 B 18.6 0.32 8.98 0.438 21.6 C 

Horizon Burn Level Salt pH 
TA 

(cmolc/kg) 

EBC 

(cmolc/kg) 

ECEC 

(cmolc/kg) 
BS (%) 

OM 

(%) 
Sulfate 

(cmolc/kg) 
C (%) N (%) C/N 

B 

Reference 5.14 A 0.69 A 2.77 A 4.35 A 78.7 A 9.77 0.11 4.92 0.288 A 17.1 A 

Unburned 5.35 A 1.21 A 4.77 B 6.66 BC 67.3 A 8.96 0.33 4.58 0.292 A 16.0 A 

Low/Med 4.20 B 3.82 B 0.96 C 5.32 AB 32.4 B 8.34 0.16 3.69 0.154 B 24.8 B 

High 4.27 B 4.52 B 2.48 A 7.60 C 37.6 B 7.53 0.40 3.92 0.151 B 26.9 B 
*TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content, TS = total sulfur.  

 

Horizo

n 

Burn 

Level 

Na 

(cmolc/kg) 

K 

(cmolc/kg) 

Mg 

(cmolc/kg) 

Ca 

(cmolc/kg) 

Al 

(cmolc/kg) 

NH4 

(cmolc/kg) 

NO3
 

(cmolc/kg) 

TS 

(mg-S/kg) 

ECEC/ 

%OM 

ECEC/ 

%C 

A/O 

Reference 0.064 0.366 A 0.928 A 4.803 A 0.106 A 0.840 1.247 577 0.545 A 1.33 AB 

Unburned 0.087 0.652 B 1.78 B 9.842 B 0.287 A 0.768 0.757 400 0.885 B 1.71 A 

Low/Med 0.078 0.501 AB 0.762 A 3.465 A 1.02 B 0.636 0.644 339 0.401 A 0.877 B 

Horizo

n 

Burn 

Level 

Na 

(cmolc/kg) 

K 

(cmolc/kg) 

Mg 

(cmolc/kg) 

Ca 

(cmolc/kg) 

Al 

(cmolc/kg) 

NH4 

(cmolc/kg) 

NO3
 

(cmolc/kg) 

TS 

(mg-S/kg) 

ECEC/ 

%OM 

ECEC/ 

%C 

B 

Reference 0.032 A 0.141 A 0.325 A 2.27 A 0.955 A 0.894 0.810 A 304 0.392 A 0.878 

Unburned 0.063 AB 0.363 B 0.584 B 3.76 A 0.881 A 0.688 0.752 A 259 1.09 B 2.48 

Low/Med 0.063 AB 0.265 AB 0.175 A 0.461 B 2.41 B 0.544 0.209 B 207 0.604 A 1.57 

High 0.071 B 0.330 B 0.288 A 1.79 AB 2.93 B 0.613 0.391 AB 171 1.01 B 2.43 
*TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content, TS = total sulfur.
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D. Qualitative Assessment of Post-fire Trends in Soil Chemistry  

Exchangeable Base Cations  

A temporal analysis was done comparing burn levels (REF = reference, UNB = unburned, LMB 

= low/medium burn, HB = high burn) over time post-fire for EBC (Figure 16). EBC tended to 

decrease at all levels, in both horizons. High burn EBC was highly variable. 

 

 

 

 

   

Figure 16. Post-fire trends for exchangeable base cations at reference, unburned and 

low/medium burn sites in the A/O (left)and B (right) soil horizons (REF = reference, UNB = 

unburned, LMB = low/medium burn, HB = high burn). 
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Percent Base Saturation 

A temporal analysis was done comparing burn levels (REF = reference, UNB = unburned, LMB 

= low/medium burn, HB = high burn) over time post-fire for %BS (Figure 17). Similar to EBC, 

the %BS decreased as time went on and the high burn sites were highly varied.  

 

 

 

 

 

 

   

Figure 17. Post-fire trends for percent base saturation at reference, unburned and low/medium 

burn sites in the A/O (left)and B (right) soil horizons (REF = reference, UNB = unburned, LMB 

= low/medium burn, HB = high burn). 

 

 

 

  

0

20

40

60

80

100

120

4/10/2018 10/2/2018 3/26/2019 9/17/2019

%

Ref (A) Unb (A) LMB (A)

0

20

40

60

80

100

120

4/10/2018 10/2/2018 3/26/2019 9/17/2019

%

Ref (B) Unb (B) LMB (B) High (B)



44 

 

Total Acidity 

A temporal analysis was done comparing burn levels (REF = reference, UNB = unburned, LMB 

= low/medium burn, HB = high burn) over time post-fire for TA (Figure 18). TA decreased over 

time post-fire. Burned sites had the greatest TA values.  

 

 

 

 

 

 

   

Figure 18. Post-fire trends for total acidity at reference, unburned and low/medium burn sites in 

the A/O (left)and B (right) soil horizons (REF = reference, UNB = unburned, LMB = 

low/medium burn, HB = high burn). 
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Total Sulfur 

A temporal representation of TS data was done on sites with more than two collection dates. Figure 

19 displays the data for the B horizon of site BGB (unburned), B horizon of site SCM (high burn) 

and A/O horizon of site NEON (low/medium burn). The TS measured tended to decrease as time 

passed post-fire at the sites analyzed, in both the A/O and B soil horizons at unburned and 

low/medium sites, while the high burn site increased post-fire after an initial decrease. The 

unburned site had a smaller range of values over the four analyzed dates than did the burned sites. 

The site in the A/O horizon tended to have the highest values.  

 

 

 

 

 

 

  

Figure 19. Total sulfur at site BGB (unburned) in the B horizon, SCM (high burn) in the B 

horizon and NEON (low/medium burn) in the A/O horizon over time post-fire, 4 dates plotted. 
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Soil Carbon and Nitrogen  

A temporal analysis was done comparing burn levels (REF = reference, UNB = unburned, LMB 

= low/medium burn, HB = high burn) over time post-fire for %C, %N and C/N. The percent C 

over time per burn severity level in the A/O and B horizons is displayed on Figure 20. The percent 

N in the A/O horizon and B horizon is shown in Figure 21, and the ratio of C:N in the A/O and B 

horizons is indicated in Figure 22. The A/O horizon showed a larger range of values and more 

change over the two year period than the B horizon for both %C and %N. No soil samples from 

directly following the fire (2017) were available for %C and %N analysis. The %C and %N 

showed similar trends over the two year period, which is indicated by the steady nature of the ratio 

of C:N. The C:N was highest for high burn sites (26.9), indicating that the burned areas had more 

C compared to N than did unburned areas. However, high burn sites (all B horizon) tended to have 

the lowest %C and %N content of all tested sites.  

 

 

 

 

 

 

Figure 20. Post-fire trends for percent C at reference, unburned and low/medium burn sites in 

the A/O and B soil horizons (REF = reference, UNB = unburned, LMB = low/medium burn, HB 

= high burn). 
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Figure 21. Post-fire trends for percent N at reference, unburned and low/medium burn sites in 

the A/O and B soil horizons (REF = reference, UNB = unburned, LMB = low/medium burn, HB 

= high burn). 

 

 

 

 

 

Figure 22. Post-fire trends for C to N ratio at reference, unburned and low/medium burn sites in 

the A/O and B soil horizons (REF = reference, UNB = unburned, LMB = low/medium burn, HB 

= high burn). 
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E. Historical Soil Data Comparison 

A two-way contingency analysis was used to compare pre- and post-fire chemical differences. Of 

the sites with historic soil data available, 6 total, the only site that burned was RP3 (Road Prong 

site 3). RP3 was in an area classified as low/medium burn severity. The remaining historic sites 

were all outside the burn footprint, and therefore reference sites. The data were compared pre- and 

post-fire for both the A/O and B soil horizons (Table 9 & 10). No differences were significant 

(p<0.05) between pre- and post-fire data, as indicated by the p-values displayed in Table 9 and 10. 

Salt pH in the A/O horizon increased after the fire at all sites, whereas in the B horizon the salt pH 

decreased post-fire at all sites besides WCP1. TA consistently decreased post-fire, in both horizons 

and at all sites, as did nitrate content, aside from site RP1 in the A/O horizon. Ammonium was 

elevated at all six sites, including burned and unburned, for both soil horizons, post-fire. The %BS 

increased most drastically at the burned RP3 site in both soil horizons.  
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Table 9. Comparison of soil chemistry between pre- and post-fire periods for Road Prong and Walker Camp Prong watersheds in A/O 

horizon. Parameters reported as means. Pre-fire data collected in 2009 from Grell (2010). 

Road Prong (RP) watershed:  

Soil Chemical 

Parameters 

Unburned RP1 Site (p=0.253) Unburned RP2 Site (p=0.175) Burned RP3 Site (p=0.252) 

Pre-fire Post-fire Pre-fire Post-fire Pre-fire Post-fire 

Salt pH 3.83 4.60 4.32 5.33 3.64 4.63 

TA (cmolc/kg) 4.53 0.40 3.65 0.20 3.04 1.30 

EBC (cmolc/kg) 2.10 3.60 4.73 2.21 12.5 1.26 

ECEC (cmolc/kg) 6.63 4.00 2.17 2.41 2.98 2.56 

%BS 31.7 93.8 6.9 95.0 15.4 64.9 

%OM 11.9 18.7 31.5 11.7 19.3 18.9 

NO3
 (cmolc/kg) 0.21 1.25 13.7 0.99 48.7 0.91 

SO4
 (cmolc/kg) 0.03 0.10 0.25 0.08 0.42 0.13 

NH4
 (cmolc/kg) 0.03 2.00 0.03 0.76 0.08 1.66 

*TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  

Walker Camp Prong (WCP) watershed: 

Soil Chemical 

Parameters 

Unburned WCP1 Site (p=0.143) Unburned WCP2 Site (p=0.242) Unburned WCP3 Site (p=0.184) 

Pre-fire Post-fire Pre-fire Post-fire Pre-fire Post-fire 

Salt pH 5.2 4.64 4.48 4.13 4.97 4.07 

TA (cmolc/kg) 4.67 0.20 3.9 1.30 4.42 0.40 

EBC (cmolc/kg) 0.57 4.54 3.97 4.49 1.15 4.82 

ECEC (cmolc/kg) 8.34 4.74 2.05 5.79 5.26 5.22 

%BS 8.91 97.8 6.22 85.6 6.41 93.5 

%OM 93.7 27.4 33.0 51.7 82.1 29.3 

NO3
 (cmolc/kg) 20.4 0.81 9.98 1.20 11.4 0.95 

SO4
 (cmolc/kg) 0.27 0.18 0.23 0.19 0.29 0.17 

NH4
 (cmolc/kg) 0.09 1.63 0.04 1.14 0.03 1.12 

*TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  
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Table 10. Comparison of soil chemistry between pre- and post-fire periods for Road Prong and Walker Camp Prong watersheds in B 

horizon. Parameters reported as means. Pre-fire data collected in 2009 from Grell (2010). 

Road Prong (RP) watershed:  

Soil Chemical 

Parameters 

Unburned RP1 Site (p=0.242) Unburned RP2 Site (p=0.143) Burned RP3 Site (p=0.086) 

Pre-fire Post-fire Pre-fire Post-fire Pre-fire Post-fire 

Salt pH 4.67 4.94 4.6 5.48 4.45 4.66 

TA (cmolc/kg) 4.18 0.30 4.01 0.20 4.19 1.00 

EBC (cmolc/kg) 2.54 2.65 3.08 1.07 2.45 0.30 

ECEC (cmolc/kg) 0.47 2.95 0.45 1.27 0.21 1.30 

%BS 3.02 90.0 3.53 90.0 2.66 46.4 

%OM 15.7 10.8 12.7 8.53 7.89 9.47 

NO3
 (cmolc/kg) 6.42 1.06 6.51 0.72 13.3 1.05 

SO4
 (cmolc/kg) 0.06 0.09 0.07 0.07 0.05 0.19 

NH4
 (cmolc/kg) 0.02 0.94 0.03 0.35 0.08 0.55 

*TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  

 

Walker Camp Prong (WCP) watershed: 

Soil Chemical 

Parameters 

Unburned WCP1 Site (p=0.099) Unburned WCP2 Site (p=0.358) Unburned WCP3 Site (p=0.148) 

Pre-fire Post-fire Pre-fire Post-fire Pre-fire Post-fire 

Salt pH 5.25 6.23 4.67 4.09 5.54 4.37 

TA (cmolc/kg) 4.59 0.00 4.2 2.60 4.85 1.20 

EBC (cmolc/kg) 1.12 5.77 2.72 0.48 1.18 1.74 

ECEC (cmolc/kg) 1.92 5.77 0.6 3.08 3.92 2.94 

%BS 3.23 100 3.14 34.8 5.09 68.3 

%OM 59.4 8.66 19.3 11.5 76.9 9.18 

NO3
 (cmolc/kg) 9.51 1.48 5.82 0.88 7.01 0.79 

SO4
 (cmolc/kg) 0.09 0.19 0.10 0.17 0.13 0.07 

NH4
 (cmolc/kg) 0.11 0.69 0.05 0.68 0.04 0.83 

*TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  
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F. Stream Water Chemistry: Pre- and Post-fire Parameter 

Characterization 

Means and standard deviations of chemical properties measured were calculated for the water 

sampling sites (Table 11). Note, sites 73 and 74 were reference sites; neither site had any forest 

area burned within its watershed. These two sites were sampled by the same method and have 

historic data available. The pH was not highly variable among the sites and time frames, with a 

range of 6.10 to 6.77. The conductivity among the sites had a range of 11.7-18.0 µS/cm post-fire, 

and 16.1-29.8 µS/cm from 2008-2014. The average ANC at all stream sites was between 30.3 to 

107 µmolc/L from 2008 to 2014 and considerably lower, 17.7 to 54.1 µmolc/L, post-fire. Chloride 

had a range of 13.6 to 24.6 µmol/L, at all sites and time frames. Nitrate tended to be lower post-

fire, with averages per site between 14.5 and 29.1 µmol/L. Between 2008 and 2014 average nitrate 

fell between 31.3 and 35.5 µmol/L. Sulfate per site did not show a large range of average values 

between timeframes. Site 30, which had 60.7% watershed burned, averaged 29.6-32.6 µmol/L, site 

66 averaged between 32.7 and 34.4 µmol/L, site 71 fell between 22.3 and 24.3 µmol/L, site 73 

averaged 32.2 to 38.6 µmol/L and site 74 averaged 38.7 to 43.7 µmol/L. Ammonium from 2008 – 

2014 ranged 1.09 to 2.01 µmol/L and post-fire ammonium ranged 0.01–1.27 µmol/L, with the 

higher values post-fire being at reference sites (1.03–1.27 µmol/L) compared to burned sites (0.01-

0.36 µmol/L). Of the individual cations tested, Na, K, Mg and Al were not highly variable between 

time frames per site. Ca was the most varied cation, contributing the most to changes in the sum 

of cations, which among post-fire data at all sites, ranged 42.4 to 88.5 µmol/L. From 2008 to 2014, 

values were between 45.4 and 95.5 µmol/L.  
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Table 11. Stream water chemistry for sites in or near the Chimney Tops 2 fire. A summary of means and standard deviations for pre-

fire (1993 – 2007 and 2008 – fire) and post-fire periods. Units shown in title block.  

Site ID Time Frame pH 
Conductivity 

(µS/cm) 

ANC 

(µmolc/L) 

Chloride 

(µmol/L) 

Nitrate 

(µmol/L) 

Sulfate 

(µmol/L) 
Na (µmol/L) 

26 Post-Fire  6.28 ± 0.31 13.0 ± 4.92 42.6 ± 19.1 21.3 ± 14.9 14.5 ± 5.01 19.7 ± 2.58 83.5 ± 58.0 

28 Post-Fire  6.32 ± 0.28 13.9 ± 5.65 54.1 ± 37.3 15.3 ± 4.90 15.9 ± 9.11 20.6 ± 2.49 37.2 ± 7.94 

30 1993 – 2007 6.42 ± 0.29 20.9 ± 2.30 61.7 ± 23.5 18.4 ± 7.40 28.7 ± 11.2 32.6 ± 6.35 34.8 ± 8.78 

30 2008 – Fire 6.60 ± 0.25 20.6 ± 2.35 55.6 ± 30.0 18.5 ± 4.80 31.9 ± 8.82 31.3 ± 6.75 30.8 ± 14.6 

30 Post-Fire  6.35 ± 0.25 17.0 ± 4.73 45.9 ± 17.0 19.0 ± 10.7 25.7 ± 6.28 29.6 ± 2.51 34.9 ± 6.02 

66 1993 – 2007 6.25 ± 0.28 19.9 ± 2.45 38.4 ± 23.4 16.0 ± 5.04 34.9 ± 9.59 34.4 ± 5.21 25.5 ± 5.02 

66 2008 – Fire 6.47 ± 0.36 20.4 ± 5.77 39.6 ± 26.2 16.8 ± 2.82 35.5 ± 10.6 32.7 ± 8.45 24.9 ± 14.7 

66 Post-Fire  6.24 ± 0.25 14.8 ± 5.09 28.8 ± 9.50 18.7 ± 10.7 29.1 ± 5.95 32.8 ± 1.39 27.4 ± 2.24 

71 1993 – 2007 6.13 ± 0.26 15.9 ± 1.91 29.3 ± 20.4 15.2 ± 7.16 35.0 ± 8.94 23.2 ± 7.46 28.1 ± 6.24 

71 2008 – Fire 6.32 ± 0.37 16.1 ± 3.37 30.3 ± 23.1 13.6 ± 4.62 34.5 ± 10.6 24.3 ± 6.30 23.9 ± 9.52 

71 Post-Fire  6.10 ± 0.25 11.7 ± 5.48 17.7 ± 7.92 13.6 ± 5.86 24.8 ± 5.49 22.3 ± 6.52 26.8 ± 2.63 

73 1993 – 2007 6.23 ± 0.30 21.0 ± 2.55 34.1 ± 19.3 17.5 ± 5.97 36.6 ± 9.06 38.6 ± 6.60 24.4 ± 4.85 

73 2008 – Fire 6.52 ± 0.27 20.9 ± 4.00 42.2 ± 29.1 17.5 ± 4.88 34.2 ± 12.4 35.5 ± 8.35 24.1 ± 11.3 

73 Post-Fire  6.20 ± 0.28 14.2 ± 4.19 25.0 ± 12.6 20.3 ± 13.6 26.8 ± 4.78 32.2 ± 5.95 26.0 ± 3.06 

74 1993 – 2007 6.37 ± 0.34 24.9 ± 3.61 58.1 ± 33.5 18.5 ± 7.72 36.8 ± 8.73 43.7 ± 7.15 25.8 ± 5.02 

74 2008 – Fire 6.77 ± 0.47 29.8 ± 14.6 107 ± 193 21.4 ± 6.66 31.3 ± 11.2 42.7 ± 10.7 27.4 ± 13.4 

74 Post-Fire  6.37 ± 0.27 18.0 ± 6.25 46.8 ± 19.7 24.6 ± 16.5 28.7 ± 5.34 38.7 ± 3.93 30.5 ± 2.60 
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Table 11 Continued.  

Site ID 
Time 

Frame 
K (µmol/L) Mg (µmol/L) 

Ca 

(µmol/L) 
Al (µmol/L) 

Sum of Cations 

(µmolc/L) 

Sum of Anions 

(µmolc/L) 

Ammonium 

(µmol/L) 

26 Post-Fire  13.4 ± 3.17 27.2 ± 20.8 67.4 ± 49.8 0.007 ± 0.007 162 ± 5.43 74.6 ± 17.1 0.24 ± 0.54 

28 Post-Fire  12.1 ± 2.54 14.1 ± 3.61 32.3 ± 8.65 0.007 ± 0.007 143 ± 32.5 80.9 ± 11.9 0.02 ± 0.04 

30 1993 – 2007 9.66 ± 2.79 22.4 ± 5.1 48.6 ± 12.43 0.010 ± 0.007 182 ± 42.9 109 ± 29.9 0.15 ± 0.50 

30 2008 – Fire 8.60 ± 5.32 18.9 ± 9.15 42.5 ± 21.3 0.020 ± 0.027 159 ± 77.9 99.6 ± 42.5 2.01 ± 2.03 

30 Post-Fire  9.49 ± 1.32 21.3 ± 1.64 44.7 ± 2.75 0.007 ± 0.003 177 ± 9.25 108 ± 14.4 0.06 ± 0.12 

66 1993 – 2007 7.08 ± 2.59 22.8 ± 5.41 49.2 ± 11.6 0.017 ± 0.010 176 ± 35.2 118 ± 22.3 0.24 ± 0.85 

66 2008 – Fire 6.02 ± 4.38 18.0 ± 9.60 38.2 ± 20.4 0.017 ± 0.010 141 ± 73.1 107.3 ± 40.7 1.29 ± 1.84 

66 Post-Fire  7.23 ± 1.01 20.5 ± 1.35 42.9 ± 2.72 0.013 ± 0.007 162 ± 8.69 116 ± 15.5 0.01 ± 0.01 

71 1993 – 2007 9.35 ± 2.78 14.8 ± 3.59 37.8 ± 8.62 0.020 ± 0.013 141 ± 27.9 95.2 ± 24.7 0.38 ± 1.17 

71 2008 – Fire 7.97 ± 4.39 14.0 ± 6.75 31.2 ± 14.7 0.025 ± 0.020 113 ± 55.7 90.7 ± 32.8 1.09 ± 1.12 

71 Post-Fire  8.74 ± 2.15 13.1 ± 5.62 31.5 ± 8.45 0.020 ± 0.007 126 ± 27.6 84.8 ± 22.8 0.36 ± 0.48 

73 1993 – 2007 6.29 ± 3.95 25.4 ± 6.19 50.6 ± 11.2 0.020 ± 0.017 183 ± 30.7 131 ± 19.2 0.38 ± 1.87 

73 2008 – Fire 6.05 ± 4.60 22.2 ± 18.6 56.6 ± 82.5 0.023 ± 0.033 151 ± 71.1 124 ± 25.3 1.32 ± 1.99 

73 Post-Fire  - 19.7 ± 3.82 41.5 ± 6.36 0.017 ± 0.003 281 ± 310 118 ± 40.3 1.03 ± 1.94 

74 1993 – 2007 5.62 ± 2.65 27.9 ± 8.40 64.2 ± 17.9 0.023 ± 0.017 216 ± 49.8 142 ± 17.9 0.72 ± 1.73 

74 2008 – Fire 5.41 ± 4.00 26.2 ± 18.2 76.2 ± 79.1 0.037 ± 0.083 191 ± 110 127 ± 49.4 1.23 ± 1.37 

74 Post-Fire  5.59 ± 1.13 23.5 ± 2.18 57.9 ± 5.54 0.013 ± 0.007 201 ± 16.6 136 ± 21.1 1.27 ± 2.87 
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G. Impacts of the CT2 Fire on Stream Water Chemistry  

Mean values of each chemical parameter were compared using a repeated measures ANOVA 

between time frames pre- and post-fire for all water sites (Tables 12 a-e). Average water pH was 

significantly greater during 2008-fire period (6.47-6.77) compared to post-fire (6.20-6.37) (p < 

0.004) at all sites, aside from site 71, which had 2.6% watershed burn and pH 6.32 pre-fire, 6.10 

post-fire (p = 0.201). The conductivity of stream samples was significantly lower post-fire (11.7-

18.0 µS/cm) than pre-fire (16.1-29.8 µS/cm) (p < 0.032) at all sites. The reference sites (73 & 74, 

0% watershed burned) had the lowest p-values for conductivity pre- to post-fire, therefore the most 

significant change between time frames, with a similar trend evident for ANC which had 

significantly higher averages before the fire at all sites (p < 0.039). Chloride concentrations were 

not significantly different pre- to post-fire (0.540 < p < 0.909) at any sites, burned or reference. 

Sulfate at site 30, with 60.7% burned watershed, went from 31.3 µmol/L to 29.6 µmol/L pre- to 

post-fire (p = 0.024), while at site 66 and 71, also burned (16.7% and 2.6% watershed burn, 

respectively), the changes were not significant (32.7 to 32.8 µmol/L (p = 0.865) and 24.3 to 22.3 

µmol/L (p = 0.211), respectively). Nitrate concentrations were not consistent between reference or 

burned sites, but in all cases the average was lower post-fire than pre-fire. Ammonium 

concentrations were lower post-fire at all three burned sites, significantly at site 30 (60.7% burned 

watershed) and 66 (16.7% burned watershed) (p = 0.009, 0.006), and lower post-fire at site 71 

(2.6% burned watershed), p = 0.058. At both reference sites, ammonium was not significantly 

lower post-fire (p = 0.126, 0.834). Sum of base cations were greater pre-fire (124 & 191 µmolc/L), 

compared to post-fire (118 & 136 µmolc/L) at reference sites (p = 0.018, 0.004), whereas no 

significant change in base cations were evident at burned sites (p = 0.134, 0.249 & 0.116).  
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Table 12a. Repeated measures ANOVA analysis of water pre- and post-fire for the West Prong of 

the Pigeon River at Headquarters (Site 30), with pre-fire data from 2008 – 2014, Significant 

differences (p<0.05) appear in bold. Site 30 watershed was 60.7% burned with a drainage area 

of 18.0 km2. 

Time pH 
Conductivity 

(µS/cm) 

ANC 

(µmolc/L) 

Chloride 

(µmol/L) 

Sulfate 

(µmol/L) 

Nitrate 

(µmol/L) 

Ammonium 

(µmol/L) 

Base Cations 

(µmolc/L) 

2008-Fire 6.60 20.6 55.6 18.5 31.3 31.9 2.01 159 

Post-Fire 6.35 17.0 45.9 19.0 29.6 25.7 0.06 177 

p-value 0.004 0.028 0.027 0.668 0.024 0.030 0.009 0.134 

N 14 9 14 9 14 14 9 9 

 

 

  

Table 12b. Repeated measures ANOVA analysis of water pre- and post-fire for the West Prong of 

the Pigeon River at Chimneys Picnic Area (Site 66), with pre-fire data from 2008 – 2014, 

Significant differences (p<0.05) appear in bold. Site 66 watershed was 16.7% burned with a 

drainage area of 34.4 km2.  

Time pH 
Conductivity 

(µS/cm) 

ANC 

(µmolc/L) 

Chloride 

(µmol/L) 

Sulfate 

(µmol/L) 

Nitrate 

(µmol/L) 

Ammonium 

(µmol/L) 

Base Cations 

(µmolc/L) 

2008-Fire 6.47 20.4 39.6 16.8 32.7 35.5 1.29 141 

Post-Fire 6.24 14.8 28.8 18.7 32.8 29.1 0.01 116 

p-value 0.002 0.003 0.020 0.632 0.865 0.278 0.006 0.249 

N 11 12 11 12 11 11 12 12 

 

 

  

Table 12c. Repeated measures ANOVA analysis of water pre- and post-fire for the Road Prong 

above Barrier Cascade (Site 71), with pre-fire data from 2008 – 2014, Significant differences 

(p<0.05) appear in bold. Site 71 watershed was 2.6% burned with a drainage area of 8.28 km2. 

Time pH 
Conductivity 

(µS/cm) 

ANC 

(µmolc/L) 

Chloride 

(µmol/L) 

Sulfate 

(µmol/L) 

Nitrate 

(µmol/L) 

Ammonium 

(µmol/L) 

Base Cations 

(µmolc/L) 

2008-Fire 6.32 16.1 30.3 13.6 24.3 34.5 1.09 90.7 

Post-Fire 6.10 11.7 17.7 13.6 22.3 24.8 0.36 84.8 

p-value 0.201 0.032 0.039 0.909 0.211 0.007 0.058 0.116 

N 11 12 11 12 11 11 12 12 
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Table 12d. Repeated measures ANOVA analysis of water pre- and post-fire for the Walker Camp 

Prong above Road Prong (Site 73), with pre-fire data from 2008 – 2014, Significant differences 

(p<0.05) appear in bold. Site 73 watershed was 0% burned with a drainage area of 20.5 km2.  

Time pH 
Conductivity 

(µS/cm) 

ANC 

(µmolc/L) 

Chloride 

(µmol/L) 

Sulfate 

(µmol/L) 

Nitrate 

(µmol/L) 

Ammonium 

(µmol/L) 

Base Cations 

(µmolc/L) 

2008-Fire 6.52 20.9 42.2 17.5 35.5 34.2 1.32 124 

Post-Fire 6.20 14.2 25.0 20.3 32.2 26.8 1.03 116 

p-value 0.001 0.001 0.002 0.589 0.014 0.025 0.126 0.018 

N 11 12 11 12 11 11 12 12 

 

 

  

Table 12e. Repeated measures ANOVA analysis of water pre- and post-fire for the Walker Camp 

Prong above Alum Cave Creek (Site 74), with pre-fire data from 2008 – 2014, Significant 

differences (p<0.05) appear in bold. Site 74 watershed was 0% burned with a drainage area of 

7.43 km2.  

Time pH 
Conductivity 

(µS/cm) 

ANC 

(µmolc/L) 

Chloride 

(µmol/L) 

Sulfate 

(µmol/L) 

Nitrate 

(µmol/L) 

Ammonium 

(µmol/L) 

Base Cations 

(µmolc/L) 

2008-Fire 6.77 29.8 107 21.4 42.7 31.3 1.23 191 

Post-Fire 6.37 18.0 46.8 24.6 38.7 28.7 1.27 136 

p-value 0.000 0.002 0.003 0.540 0.001 0.412 0.834 0.004 

N 11 12 11 12 11 11 12 12 
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H. Qualitative Assessment of Post-fire Trends in Stream Water Chemistry 

Post-fire data were plotted over time per parameter, beginning just after the fire ended in December 

2016 through November 2019 (Figure 23-30). The stream pH had a very similar trend for all sites 

tested. A decrease in pH was evident at all sites in March 2019, with values increasing into the end 

of the same year. Initially post-fire, pH was lower. ANC remained fairly consistent at all sites in 

2018, with a spike seen at the end of 2019 at all sites. Nitrate and sulfate both tended to decrease 

with time post-fire. The conductivity trend was similar at all 7 sites, with peak conductivity just 

after the fire, followed by a decrease into early 2018 after which it increased in summer of 2018 

and then decreased to similar levels in the late fall of 2018. Chloride was highest in the reference 

sites, throughout the post-fire analysis. A peak in chloride was evident in February 2018 at all 

sites, after which the concentrations decreased and were consistent into the end of 2018. 

Ammonium was fairly consistent over time. Base cations were fairly consistent in time after the 

fire at all sites.  

 

 

 

 

Figure 23. pH at water sampling sites over time following the fire, December 2016 to 

Novermber 2019. Sites with burned watershed: Site 26, 28, 30, 66 and 71. Reference sites 

include: Site 73 and 74. 
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Figure 24. ANC (µmolc/L) at water sampling sites over time following the fire, December 2016 

to November 2019. Sites with burned watershed: Site 26, 28, 30, 66 and 71. Reference sites 

include: Site 73 and 74. 

 

 

 

 

Figure 25. Nitrate (µmol/L) for water sampling sites over time following the fire, December 

2016 to November 2019. Sites with burned watershed: Site 26, 28, 30, 66 and 71. Reference sites 

include: Site 73 and 74. 
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Figure 26. Sulfate (µmol/L) for water sampling sites over time following the fire, December 

2016 to November 2019. Sites with burned watershed: Site 26, 28, 30, 66 and 71. Reference sites 

include: Site 73 and 74. 

 

 

 

 

Figure 27. Conductivity (µS/cm) at water sampling sites over time following the fire, December 

2016 to November 2019. Sites with burned watershed: Site 26, 28, 30, 66 and 71. Reference sites 

include: Site 73 and 74. 
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Figure 28. Chloride (µmol/L) for water sampling sites over time following the fire, December 

2016 to November 2019. Sites with burned watershed: Site 26, 28, 30, 66 and 71. Reference sites 

include: Site 73 and 74. 

 

 

 

 

Figure 29. Ammonium (µmol/L) for water sampling sites over time following the fire, December 

2016 to November 2019. One outlier point for site 73 (4.97 µmol/L) omitted. Sites with burned 

watershed: Site 26, 28, 30, 66 and 71. Reference sites include: Site 73 and 74.  
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Figure 30. Sum of base cations (µmolc/L) for water sampling sites over time following the fire, 

December 2016 to November 2019. Sites with burned watershed: Site 26, 28, 30, 66 and 71. 

Reference sites include: Site 73 and 74. 
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IV. DISCUSSION 

It was anticipated that fire would have the greatest impact on the upper soil horizons with more 

organic matter content than the mineral soil layers below, and more with direct exposure to fire 

with high intensity. There was a significant difference in most soil chemical properties from the 

A/O horizon to the B horizon, with most parameters being significantly lower in the B horizon 

than the A/O horizon regardless of burn severity level. The A/O horizon typically contains higher 

organic matter content due to partially decomposed and humidified organic matter (Brady & Weil, 

2008), and a lower percent organic matter was measured in the B horizon as compared to the A/O 

horizon. Organic matter tends to have high ECEC, as it can absorb more exchangeable cations than 

pure mineral soils with significantly higher EBC and ECEC in the A/O horizon than the B soil 

horizon. It should be noted that in high organic matter soils ECEC is a smaller fraction of the cation 

exchange capacity (CEC), most likely due to the presence of organic cations. Due to the 

measurement of ECEC as opposed to CEC, the reference and unburned sites not exposed to fire 

could have greater CEC due to their greater organic matter, thus, in the reference systems, the 

proportion of ECEC that is CEC could be greater than that in the burned systems, assuming that 

burning can degrade adsorbed organic cations. Although, due to the organic matter between burned 

areas and non-burned areas not being significantly different, this difference is not expected to be 

significant. Similar patterns of significantly greater values of EBC, ECEC, and EA in the A/O 

horizon than B horizon were evident in the park in 2010 (Grell, 2010).  

The soil salt pH was significantly lower in burned sites, as compared to unburned sites, while the 

TA was significantly greater at burned sites, showing a pattern of more acidic soil conditions in 

burned areas. Fires in base-poor environments have shown to decrease pH in runoff, and therefore 

streams receiving runoff, by releasing base cations from burned soils and vegetation (Raison, 1979; 

Bayley et al., 1992). Consistent with this pattern, EBC and ECEC were significantly greater in 

unburned sites than low/medium and high burn sites in both horizons, meaning that fire decreases 

the ECEC of soils, probably through the loss of soil OM, decreasing capacity to retain and supply 

nutrient cations for plant nutrients growth. The percent base saturation was significantly lower in 

the low/medium and high burn sites compared to the reference and unburned sites. A decrease in 

%BS, which represents the proportion of acids to bases on soils exchange surfaces, leads to a more 

acidic environment due to the relative increase in Al is present on soil exchange surface than base 
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cations (Cai et al., 2011), as seen in the significantly decreased soil pH. Al significantly increased 

in burned areas, with values more than doubling from non-burned sites to burned sites in both 

horizons. Al has been shown to increase post-fire, with the release attributed to changes in nutrient 

release and ash deposition (Kong et al., 2018). Additionally, a decrease in base cations and organic 

matter can lead to Al mobilization, which is furthermore more soluble in acidic conditions (Elliott 

et al., 2012; Lydersen et al., 2014). Soil exchangeable Al presence has been shown to increase with 

increasing burn severity and higher fire temperature (Pereira et al., 2010). Gibbsite (Al(OH)3) has 

been found to be noticeably reduced at temperatures exceeding 600°C, and studies have indicated 

the increased presence of Al3+ ion compared to Al(OH)2+ with increasing temperature (Moller et 

al., 2006; Certini, 2005). Al was the major source of the increased total acidity in burned areas, 

which led to the significant decrease in percent base saturation in tandem with the decrease in EBC 

at burned sites. Additionally, at the pH range of the burned sites, below 4.4 in both horizons, Al 

ion (Al3+) is present in a high proportion and is toxic to many plant species. With the spike in Al 

ion, vegetation in burned areas could be hindered (Rout et al., 2001). No increase in Al was noted 

for stream samples post-fire.  

The ratio of carbon to nitrogen (C/N) was significantly higher in low/medium and high burn areas 

as compared to reference and unburned sites in both soil horizons. A significant decrease in percent 

N was evident in burned areas for the B soil horizon. Changes in the percent C and percent N in 

the A/O horizon from the wildfire were inconsistent, which could be due to the more exposed 

nature of the top soil layer. I hypothesized that the percent C, N, and S would decrease in burned 

areas. The only significant decrease noted was the percent N in the B soil horizon. The TS tended 

to decrease with increasing burn severity, however, not significantly. The lack of significance 

could be due to the much smaller sample size tested for this parameter.  

The organic matter, expected to be lower in burned areas, did decrease in low/medium and high 

burn areas, however, not significantly or by great margins. The unburned and reference sites had 

similar percentages of organic matter throughout the study area. Other studies, in the eastern and 

western United States have reported significantly decreased organic matter (Elliot et al., 2012; 

Bormann et al., 2008; Baird et al., 1999; Murphy et al., 2006). Because soil sampling began in 

2018, there were over 18 months between the fire and sampling which could have allowed organic 

matter to build up in burned areas.   
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Of the 6 soil sites with historic soil data available, one site was located within the burn footprint 

(RP3). A two-way contingency analysis on all the soil parameters tested on both groups was 

performed, and no site displayed a significant difference pre- to post-fire. However, the lowest p-

value (0.086) was evident at the one burned soil site, which fell in the low/medium classification. 

The limited data from the Grell (2010) study did not provide the statistical power to adequately 

interpret the two datasets. Additionally, the Road Prong and Walker Camp Prong sites were only 

added to the sampling scheme for 2019 collections, increasing the period post-fire, opportunity for 

environmental change and time between the historical data.  

The stream pH, ANC and conductivity decreased significantly post-fire at all sites, including those 

with burned area in the watershed and the two reference sites (73 and 74). An increase in stream 

base cations was expected to occur due to releases from soils. It was expected that changes in 

stream chemistry would be short-lived as mobile solutes produced from the wildfire are flushed 

from the watersheds and as nutrients are assimilated by re-growing vegetation recovers. 

Exchangeable base cations in soils decreased significantly in unburned areas, but did not 

significantly change at sites within burned areas. This finding was contrary to my hypotheses. 

Years of acid deposition have led to elevated stores of S in soils. It was expected that this S to be 

released as sulfate into streams when burned. However, the stream samples did not show large 

differences post-fire. Sulfate decreased significantly post-fire at both reference sites, and 2 of 3 

sites with burn area. Sulfate has been shown to decrease in base-poor environments, with large S 

stores, as was seen in a wildfire study on base-poor Norwegian lakes, where sulfate decreased up 

to 93% (Lyderson et al., 2014), however no real trend or extreme decreases were seen. All sites, 

including the two reference sites, tended to decrease, however not by large measures. Stream pH 

was not predicted to change post-fire, as increases in sulfate stream export were anticipated to be 

balanced by increases in base cation export. However, post-fire pH changes were statistically 

significant, with a maximum decrease of 0.4 units among sampled sites. There are a variety of 

other factors that could impact pH over such a large area, and time frame, including other 

atmospheric deposition and underlying geologic factors (Flum et al., 1995).  

An increase in ammonium in streams directly following the fire was hypothesized (Earl & Blinn, 

2003). On the contrary, ammonium concentrations were significantly lower post-fire at all burned 

sites, whereas it did not change significantly at the two unburned control sites. In soil samples, 
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ammonium was not significantly different between burn severity levels, however, it tended to be 

lower in burned areas. Nitrate decreased significantly post-fire at 2 of 3 burned sites, and 1 of the 

2 reference sites. This inconsistency in changes could be due to potential atmospheric fallout (e.g. 

smoke, ash) in areas surrounding the footprint of the burn (Earl & Blinn, 2003). The only parameter 

that remained similar to pre-fire levels at all sites was chloride, which is generally not impacted 

by wildfire (Bayley et al., 1992; Schindler et al., 1980). 

Examining the impacts of the CT2 fire compared to studies of western US wildfires was a goal of 

this project. The response to the CT2 fire exhibited some of the same impacts as observed in 

wildfires in the west, however, some parameters showed contrasting patterns. The CT2 resulted in 

significant decreases in percent N and organic matter soil as observed in western fires of similar 

magnitude (Murphy et al., 2006; Bormann et al., 2008). Bormann et al. (2008) noted dramatic 

(50%) decreases in percent total soil C post-fire, when compared to pre-fire observations. Due to 

the lack of pre-fire C data pre-fire, I cannot make a direct comparison to this observation. However, 

observed no significant difference between soil C concentrations in burned sites, unburned sites or 

reference sites. Bormann et al. (2008) also reported a significant decrease in soil percent N post-

fire. Again, pre-fire N data were not available for comparison, however, in the B soil horizon there 

was a significant decrease in N concentrations in burned soil as compared to unburned and 

reference soil.  

The most notably contrasting pattern from the CT2 wildfire in comparison to effects reported for 

western fires was for the soil and stream pH. The CT2 fire resulted in significant decreases in the 

pH of both soils and streams. In western areas of the US, increases in water pH are typically noted 

post-fire, attributed to the ash released from fires entering waterways (Waskom et al., 2014; Earl 

& Blinn, 2003). The impacts are typically short-lived as the ash is flushed downstream and the pH 

then returns to pre-fire values with time. A study in Canada, in a similarly base-poor environment, 

reported that following a wildfire in 1980 the area experienced a decrease in lake pH lasting at 

least two years after the fire (Bayley et al., 1992). 

It was hypothesized that the stream impacts would be short-lived as ash would be anticipated to 

be readily transported from the burned watershed via stream runoff (Bayley et al., 1992; Knoepp 

et al., 2009). Streams were expected to experience a flux pulse response in chemistry, due to greater 

ion loads from nutrient loss on catchment lands entering streams as runoff just after the fire, which 
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would quickly be transported from the area and further diluted by rain events and mixing of 

drainage from non-burned catchments. Smaller scale studies have shown that ash input into 

streams can impact water quality for as little as 24 hours (Earl & Blinn, 2003), or up to weeks 

(Cushing & Olson, 1963). The CT2 fire, as a much larger event with greater ash deposition, could 

have impacts to streams for a longer period. However, the GRSM National Park typically receives 

considerably more precipitation than most areas prone to large scale wildfire, such as in the West, 

which could cause a quicker return to baseline stream water quality conditions. Some water quality 

parameters did have a noticeable change in response to the fire, such as a decrease in pH. These 

effects became diminished and no longer significant within the first few weeks post-fire. With 

relatively few samples collected over a coarse interval (minimum of two weeks apart) immediately 

after the fire, the duration of stream impacts are difficult to characterize. More frequent sampling 

would have needed in the weeks following the fire to accurately quantify the stream impacts. One 

possible explanation of export of S and N are the hydrology and this rapid flush of ions with 

impacts being short-lived as ions are transported out of streams, waters comingle and precipitation 

occurs (Cushing & Olson, 1963; Earl & Blinn, 2003; Knoepp et al., 2013). Another explanation is 

the volatilization of S and N because of the fire temperature. N can begin volatilizing from organic 

matter at 200°C (Neary et al., 1999). Temperatures of 400°C have been shown to release 35-50% 

of sulfur to the gas phase during volatilization of herbaceous biomass (Knudsen et al., 2004). 

Wildfire typically burns surface soils at a temperature of 800°C or greater, with a flashpoint of 

300°C, the temperature at which wood will catch fire (Natural Resources Canada, 2019). The CT2, 

especially in high burn areas, far exceeded temperatures susceptible to S and N volatilization.  

The soil impacts from fire seems to have been more lasting and marked. In contrast, stream 

responses were transient. Stream chemistry changes were only anticipated for smaller streams 

within the burn footprint, due to dilution when waters mix from larger unburned watersheds. The 

site with the largest percent of watershed area burned (site 26 – 99.79% burned) exhibited the 

largest changes in concentrations of nearly all parameters measured post-fire. In contrast, Site 66 

with the largest watershed area of the sites studied had 16.67% area burned, and generally 

experienced the smallest changes in measured stream solutes. The site at the highest elevation (site 

74) generally had the highest greatest stream solute concentrations, or among the highest value, 

post-fire for all parameters measured. Factors such as percentage of the watershed impacted by 

wildfire, topography, geology, fire-intensity, ratio of catchment are to stream size and hydrological 
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conditions impact post-fire water quality, creating large variability among watershed responses 

(Lyderson, 2014). 

The CT2 wildfire caused a decrease in the soil pH of burned lands, due to a decrease in 

exchangeable base cations present. This coincided with an increase in Al in the soils in burned 

areas, which can be toxic to sensitive plant species. Ammonium in soils was significantly lower in 

burned areas and in streams that receive runoff from burned land. The streams in and around the 

burn area saw a significant decrease in pH, conductivity, and ANC post-fire when compared to 

historical stream data, however, this increase in acidity and ion concentration remains unexplained. 

Increased acidity may be due to some unmeasured anion or possibly to an increase in organics 

acids. The increase in conductivity from elevated ion concentrations was not observed in either 

anions or cations, thus dissolved metal such as iron could be a contributor. These changes were 

evident in reference sites as well as burn sites and continued or remained steady post-fire, making 

it difficult to attribute them to purely due to the wildfire occurrence. Wildfire events are rarely 

studied in base-poor environments, like the GRSM National Park. The incidence of large wildfires 

has increased rapidly in the US since the mid-1980s (Westerling et al., 2006). Climate change is 

predicted to further increase the occurrence and severity of wildfires due to increases in drought 

conditions. Climate change will likely lead to a longer fire season in the southern Appalachia 

(EPA, 2016; Liu et al., 2012). Potential for increased incidence, and predictions of a longer fire 

season, make this fire characterization important going forward. 
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Table A1. Soil characteristics per sampling site. Soil horizons available for sampling, indication 

of exurban (outside National Park boundaries) or natural (inside National Park boundaries) and 

soil type.  

Site ID Burn Level Urban/Natural 
Soil Horizon(s) 

Available 
Soil Type 

DUD High Burn Urban B Junaluska-Cataska complex 

FCM High Burn Natural B Cataska-sylco complex 

LCM High Burn Natural B Cataska-sylco complex 

NMT High Burn Urban B Cataska-sylco complex 

NS4  High Burn Natural B Rock Outcrop-Luftee complex 

SCM High Burn Natural B Cataska-sylco complex 

TCL High Burn Urban B Soco-Stecoah complex 

FCL Low/Med Burn Urban A/O, B Soco-Stecoah complex 

GCL Low/Med Burn Urban B Soco-Stecoah complex 

LGB Low/Med Burn Natural B Junaluska-Brasstown complex 

NEON Low/Med Burn Natural A/O Spivey-Santeetlah-Nowhere complex 

RGB Low/Med Burn Natural B Junaluska-Brasstown complex 

RP3 Low/Med Burn Natural A/O, B Luftee-Anakeesta complex 

WIN Low/Med Burn Urban A/O, B Rosman-Reddies-Urban land complex 

BGB Unburned Natural A/O, B Soco-Stecoah complex 

CANEY Unburned  Urban A/O, B Cataska-sylco complex 

LOVE Unburned  Urban  A/O, B Rosman-Reddies-Urban land complex 

PL441 Unburned  Natural A/O Dellwood-Smokemont complex 

RS441 Unburned Natural A/O, B Dellwood-Smokemont complex 

NS1  Unburned Natural A/O, B Luftee-Anakeesta complex 

NS2  Unburned Natural A/O, B Spivey-Santeetlah-Nowhere complex 

NS3  Unburned Natural A/O, B Spivey-Santeetlah-Nowhere complex 

SKI Unburned Urban  A/O, B Rock outcrop-Unicoi complex 

RP1 Reference Natural A/O, B Ditney-Unicoi complex 

RP2 Reference Natural A/O, B Breakneck-Pullback complex 

SGL Reference Natural  A/O, B Spivey-Santeetlah-Nowhere complex 

TREE Reference Urban A/O, B Rosman-Reddies-Urban land complex 

WCP1 Reference Natural A/O, B Luftee-Anakeesta complex 

WCP2 Reference Natural A/O, B Ditney-Unicoi Complex 

WCP3 Reference Natural A/O, B Ditney-Unicoi Complex 
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Table A2. Soil taxonomic classification in GRSM National Park.  

Soil Name  Taxonomic Classification 

Anakeesta  Loamy-skeletal, isotic, frigid Humic Dystrudepts 

Brasstown  Fine-loamy, mixed, subactive, mesic Typic Hapludults 

Breakneck  Fine-loamy, isotic, frigid Humic Dystrudepts 

Cataska  Loamy-skeletal, mixed, semiactive, mesic, shallow Typic Dystrudepts 

Dellwood  Sandy-skeletal, mixed, mesic Oxyaquic Dystrudepts 

Ditney   Coarse-loamy, mixed, semiactive, mesic Typic Dystrudepts 

Junaluska  Fine-loamy, mixed, subactive, mesic Typic Hapludults 

Luftee   Loamy-skeletal, isotic, frigid Humic Dystrudepts 

Nowhere  Loamy-skeletal, isotic, acid, mesic Typic Humaquepts 

Pullback  Loamy, isotic, frigid Humic Lithic Dystrudepts 

Reddies  Coarse-loamy over sandy or sandy-skeletal, mixed, superactive, mesic Oxyaquic 

Dystrudepts 

Rosman  Coarse-loamy, mixed, superactive, mesic Fluventic Humic Dystrudepts 

Santeetlah  Fine-loamy, isotic, mesic Humic Dystrudepts 

Smokemont  Sandy-skeletal, mixed, mesic Fluventic Humic Dystrudepts 

Soco   Coarse-loamy, mixed, active, mesic Typic Dystrudepts 

Spivey  Loamy-skeletal, isotic, mesic Humic Dystrudepts 

Stecoah  Coarse-loamy, mixed, active, mesic Typic Dystrudepts 

Sylco   Loamy-skeletal, mixed, active, mesic Typic Dystrudepts 

Unicoi   Loamy-skeletal, mixed, semiactive, mesic Lithic Dystrudepts 
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B. APPENDIX B. HISTORICAL DATA 
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Table B1. Grell (2010) soil data averages for Walker Camp Prong (WCP) and Road Prong (RP) sites. The averages include sites 

indicated as WCP1, WCP2 and WCP3, and RP1, RP2, and RP3. Data from the thesis of Mary Ann Grell titled Soil Chemistry 

Characterization of Acid Sensitive Watersheds in the Great Smoky Mountains National Park. 
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WCP1 A/O 5.20 4.67 20.36 0.07 0.16 1.12 7.00 8.34 0.27 0.04 0.09 0.57 8.91 93.65 

WCP2 A/O 4.48 3.90 9.98 0.01 0.24 0.32 1.49 2.05 0.23 0.02 0.04 3.97 6.22 33.02 

WCP3 A/O 4.97 4.42 11.38 0.01 0.21 0.57 4.47 5.26 0.29 0.03 0.03 1.15 6.41 82.07 

RP1 A/O 4.37 3.83 11.89 0.02 0.23 0.40 1.45 2.10 0.21 0.03 0.03 4.53 6.63 31.71 

RP2 A/O 4.32 3.65 13.74 0.02 0.17 0.30 1.68 2.17 0.25 0.04 0.03 4.73 6.90 31.46 

RP3 A/O 3.64 3.04 48.69 0.03 0.32 0.60 2.03 2.98 0.42 0.05 0.08 12.45 15.43 19.30 

WCP1 B 5.25 4.59 9.51 0.04 0.05 0.29 1.53 1.92 0.09 0.01 0.11 1.12 3.23 59.43 

WCP2 B 4.67 4.20 5.82 0.01 0.08 0.08 0.43 0.60 0.1 0.01 0.05 2.72 3.14 19.27 

WCP3 B 5.54 4.85 7.01 0.02 0.13 0.27 3.50 3.92 0.13 0.01 0.04 1.18 5.09 76.91 

RP1 B 4.67 4.18 6.42 0.01 0.08 0.10 0.28 0.47 0.06 0.01 0.02 2.54 3.02 15.74 

RP2 B 4.60 4.01 6.51 0.01 0.07 0.07 0.29 0.45 0.07 0.01 0.03 3.08 3.53 12.74 

RP3 B 4.45 4.19 13.32 0.01 0.05 0.05 0.09 0.21 0.05 0.01 0.08 2.45 2.66 7.89 
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C. APPENDIX C. MAPS 
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Figure C1. Great Smoky Mountains National Park Soil Burn Severity Resulting from Chimney 

Tops 2 Fire GIS Layer. Esri, NASA, NGA, USGS | Great Smoky Mountains Natl Park, State of 

North Carolina DOT, Esri, HERE, Garmin, METI/NASA, USGS, EPA, NPS, USDA | BAER Team; 

Great Smoky Mountains National Park.
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Figure C2. Map of urban sites, those outside of the National Park boundary, with each burn level represented. 
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Figure C3. Map of the original natural sites sampled, excluding RS441 and PL441 (included in map A3). Sites within the National 

Park that were sampled in 2018. Additionally, sites NS2 and NS3, sampled in 2019.   
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Figure C4. Map of sites sampled in 2019, with all burn levels represented. The RP and WCP sites are those with historical data from 

a 2010 study within the park by Mary Ann Grell.
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D. APPENDIX D: BAER CLASSIFICATION 
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A Burned Area Reflectance Classification (BARC) map was created displaying the CT2 Fire. This 

map was modified significantly by the ground survey BAER team in order to more accurately 

represent the local post-burn conditions. The ground visits for validation focused on hillslope 

conditions, pre-burn vegetation communities, geologic types, soil classifications and vegetation 

burn severity. Table D1 displays the classification system used for the soil burn severities. Low 

and moderate soil burn levels were the dominate severity throughout the burn area, Table D2. This 

is thought to be due to the large amount of litter and duff accumulated in the park area on the soil 

surface that acted as a buffer to soil heating and kept the severity from increasing. Table D3 shows 

the major watersheds impacted and the area burned, percent watershed burned as well as the 

distribution of soil burn severity within each watershed.  
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Table D1. General characteristics of the soil burn severity classes used to characterize the burn 

area by survey team (US Forest Service BAER, 2017).  
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Table D2. Acres of Soil Burn Severity (SBS) Classes in the Chimney Tops 2 Fire (US Forest 

Service BAER, 2017).  

 

 

 

 

 

 

 

 

Table D3. Acres of Soil Burn Severity Class by Modeled Watershed in the Chimney Tops 2 Fire 

(US Forest Service BAER, 2017).  
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E. APPENDIX E. SOIL ANALYSIS METHODS 
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Soil pH 

The water pH and salt pH were taken on all samples (Thomas, 1996). Approximately 5 grams of 

field moist soil were added to 50 mL plastic centrifuge tubes. A 1:2 (weight: volume) ratio was 

used, adding respectively either 10 mL DI water or 0.01 M calcium chloride solution. The pH of 

the slurry was then measured using a pH meter.  

 

Moisture Content 

Soil moisture content was measured gravimetrically by drying 5 grams of field moist soil in an 

aluminum cup at 105°C to constant weight. The cup containing soil was weighed before and after 

drying, and moisture content was calculated by subtracting the final dry weight from the initial 

weight and determining a moisture percentage (Hart et al., 1994).  

 

Organic Matter Content  

The loss-on-ignition (LOI) method was used to determine the soils organic matter content. The 

LOI is assumed to be equal to organic matter content in most surface soils (Nelson and Sommers, 

1996). Aluminum cups were places in a muffle oven at 400°C for two hours and weighed. Next, 1 

to 3 grams of air dried soil, previously sieved to a diameter less than 0.2 mm, were added to the 

cup and placed in the oven at 105°C for 24 hours. The weight of these samples after subtracting 

the cup weight, W105, was measured and the samples were placed back in the muffle oven at 400°C 

for 16 hours. The ignited sample weight, W400, is calculated by subtracting the cup weight. The 

organic matter content of the soil samples was calculated using the following equation:  

𝐿𝑂𝐼 % =
𝑊105 − 𝑊400

𝑊105
∗ 100 
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Exchangeable Base Cations 

Exchangeable base cations, which include: sodium (Na), potassium (K), calcium (Ca) and 

magnesium (Mg), were determined by the use of an extractant: 1 M NH4Cl. 5 grams of air dry soil 

were added to approximately 50 mL extractant in a centrifuge tube. The slurry was shaken at 200 

rpm for 3 hours in a reciprocating shaker, followed by 10 minutes in a centrifuge at 5000 rpm. The 

slurry was then filtered through 0.45 micrometer membrane filters and the filtered leachate was 

analyzed by ICP for Na, K, Ca, and Mg. Exchangeable Al and Fe were tested at the same time 

using the filtered leachate via ICP analysis (Sims, 1996).  

 

Exchangeable Ammonium, Nitrate, and Sulfate  

The extractant used for exchangeable ammonium, sulfate and nitrate was 0.01 M KCl. 5 grams of 

air dry soil were added to a 50 mL plastic centrifuge with 50 mL 0.01 M KCl. The slurry was 

shaken at 200 rpm for 3 hours in a reciprocating shaker and centrifuged at 5000 rpm for 10 minutes. 

The leachate was filtered through a 0.45 micrometer membrane filter and the filtered leachate was 

tested on IC for ammonium (NH4), nitrate (NO3) and sulfate (SO4) (Cronan & Schofield, 1990; 

Stams & Marnette, 1990).  

 

Total Acidity, Effective Cation Exchange Capacity, and Percent Base Saturation 

Total acidity (TA) was calculated using a direct titration method. 5 grams of air dry soil were 

added to 50 mL of 1 M KCl in a centrifuge tube. The slurry was shaken at 200 rpm in a 

reciprocating shaker for 30 minutes, then centrifuged at 5000 rpm for 10 minutes. After 

centrifugation, the slurry was filtered through Buchner funnels using no. 42 Whatman filter paper. 

25 mL of filtrate was transferred to a conical flask. Three drops of a solution made from 100 mL 

ethanol and 1 gram phenolphthalein were then added to the flask. The filtrate, with the 

phenolphthalein drops, was manually titrated using 0.1 M NaOH until the first permanent pink 

endpoint was observed (Sumner and Miller, 1996).  
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The total acidity is calculated using the equation as follows:  

 

𝑇𝐴 =
100𝑀𝐴(𝑥 − 𝑦)

𝑊
 

 

Where M is the molarity of NaOH, A is the aliquot factor (A = 2 = 50mL/25mL), y is the amount 

of NaOH used for the blank (mL), x is the amount of NaOH used in titration (mL), and W is the 

weight of soil in grams. The resulting units are cmolc/kg dry soil. This TA value was used to 

determine the effective cation exchange capacity (ECEC). 

The ECEC is defined as the sum of the cations a soil can adsorb at its native pH (Sumner and 

Miller, 1996). The equation is as follows:  

 

ECEC = Ca + Mg + Na + K + TA + NH4 

 

The percent base saturation (%BS) represents the percentage of soil exchange sites occupied by 

base cations (Brandy and Weil, 2008). The percent base saturation was calculated by dividing the 

total exchangeable base cations by the effective cation exchange capacity: 

%𝐵𝑆 =  
𝑁𝑎 + 𝐾 + 𝑀𝑔 + 𝐶𝑎 + 𝑁𝐻4

𝐸𝐶𝐸𝐶
 

 

Total Sulfur 

Total sulfur (TS) was determined by thermal oxidation of soil samples. Less than one gram of dry 

soil was added to 25:1 sodium bicarbonate and silver oxide mixture at 550̊ C for four hours (Eivazi 

et al., 1988; Rossete et al., 2008). Residues were cooled in the oven and then transferred with 

minimum DI water to a flask, where the carbonate content was neutralized with minimum volume 

of HCl. Pure N gas in a pure stream was passed through the extract to remove any carbon dioxide 

traces. Resulting extract was analyzed on ICP for TS.   
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Percent Total Nitrogen and Percent Total Carbon 

The total percent N and percent C were measured at the Colorado Plateau Stable Isotope 

Laboratory (CPSIL). δ15N, δ13C, %C, %N and C/N were measured in continuous-flow mode using 

a Thermo-Finnigan Deltaplus Advantage gas isotope-ratio mass spectrometer interfaced with a 

Costech Analytical ECS4010 elemental analyzer (Werner & Brand, 2001).  
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F. APPENDIX F: PEARSON CORRELATION 
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Correlations among Soil Chemistry Parameters 

A Pearson correlation was used to compare soil parameters to one another in both soil horizons 

(Table 10, 11, 12 & 13). TA and pH were significantly correlated at both reference and 

low/medium burn severity levels in the A/O and B horizons (p<0.01). In both horizons, the 

reference sites had a significant (p<0.01) correlation between pH and EBC, as well as between 

EBC and individual base cations. Both horizons and burn levels showed a significant (p<0.01) 

correlation between the following pairs of parameters: EBC and ECEC (p<0.01), %C and %N 

(p<0.01), and C/N and TA (p<0.01). Nitrate and ammonium were significantly correlated in all 

cases aside from the B horizon of reference sites. Correlations that were noted only in the A/O 

horizon included pH and OM content (p<0.01), as well as OM and TA (p<0.01). In low/medium 

sites, the OM was correlated to EBC (p<0.01), and additionally in low/medium sites, more 

commonly than in reference sites, individual base cations were significantly correlated. 



98 

 

Table F113. Correlations among soil chemistry parameters for reference sites in the A/O horizon. Significant correlations appear in 

bold (*p<0.01), N = 40. 

Parameter pH TA EBC ECEC %BS OM SO4 Na K Mg Ca Al NO3 NH4 C N 

pH                                 

TA 

(cmolc/kg) 
-0.500*                               

EBC 

(cmolc/kg) 
0.535* -0.018                             

ECEC 

(cmolc/kg) 
0.443* 0.153 0.985*                           

BS (%) 0.659* -0.388 0.739* 0.703*                         

OM (%) -0.676* 0.745* -0.289 -0.158 -0.509*                       

SO4
 

(cmolc/kg) 
0.211 -0.019 0.369 0.361 0.269 -0.131                     

Na 

(cmolc/kg) 
0.095 0.010 0.317 0.315 0.042 -0.133 0.142                   

K 

(cmolc/kg) 
0.391 -0.026 0.606* 0.595* 0.693* -0.387 0.418* 0.222                 

Mg 

(cmolc/kg) 
0.525* 0.003 0.578* 0.572* 0.789* -0.313 0.241 0.216 0.719*               

Ca 

(cmolc/kg) 
0.320 -0.037 0.187 0.179 0.544* -0.182 0.126 0.206 0.599* 0.758*             

Al 

(cmolc/kg) 
-0.664* 0.493* -0.137 -0.051 -0.539* 0.550* -0.007 0.205 -0.198 -0.371 -0.289           

NO3
 

(cmolc/kg) 
-0.189 0.329 -0.195 -0.131 -0.176 0.224 -0.203 -0.344 -0.177 0.035 -0.038 -0.081         

NH4
 

(cmolc/kg) 
-0.133 0.122 -0.149 -0.124 -0.118 0.178 -0.205 -0.362 -0.225 -0.045 -0.143 -0.085 0.675*       

C (%) 0.013 0.189 0.110 0.122 0.037 -0.377 0.400 0.228 0.074 0.252 -0.190 -0.084 -0.242 -0.334     

N (%) -0.041 0.099 0.195 0.197 0.185 -0.322 0.584* 0.145 0.115 0.075 -0.293 0.032 -0.306 -0.335 0.950*   

C/N 0.049 0.457* -0.086 -0.050 -0.395 -0.444* -0.128 0.393 0.027 0.600* 0.105 -0.299 0.105 -0.170 0.638* 0.412* 

*TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  
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Table F214. Correlation among soil chemistry parameters for reference sites in the B horizon. Significant correlations appear in bold 

(*p<0.01), N = 40. 

Parameter pH TA EBC ECEC %BS OM SO4 Na K Mg Ca Al NO3 NH4 C N 

pH                       

TA 

(cmolc/kg) 
-0.766*                               

EBC 

(cmolc/kg) 
0.556* -0.452*                             

ECEC 

(cmolc/kg) 
0.254 -0.024 0.903*                           

BS (%) -0.050 0.476* 0.282 0.619*             
   

      

OM (%) -0.168 0.228 0.227 0.364 -0.092           
   

      

SO4
 

(cmolc/kg) 
0.002 0.028 0.389 0.450* 0.494* 0.086         

   
      

Na 

(cmolc/kg) 
-0.019 -0.110 0.022 -0.029 -0.189 -0.189 0.669*       

   
      

K 

(cmolc/kg) 
0.212 -0.286 0.097 -0.029 -0.336 0.057 -0.232 0.014     

   
      

Mg 

(cmolc/kg) 
0.461* -0.420* 0.107 -0.083 -0.599* -0.151 -0.206 0.159 0.796*   

   
      

Ca 

(cmolc/kg) 
0.619* -0.451* 0.281 0.098 -0.519* -0.237 -0.060 0.180 0.458* 0.774* 

   
      

Al 

(cmolc/kg) 
-0.528* 0.357 -0.289 -0.152 0.507* -0.203 0.326 0.124 -0.213 -0.386 -0.407*         

NO3
 

(cmolc/kg) 
0.102 0.057 0.382 0.455* 0.022 0.293 0.271 0.035 -0.466* -0.255 -0.155 -0.251        

NH4
 

(cmolc/kg) 
0.024 0.009 0.413* 0.468* -0.239 0.556* -0.137 -0.315 0.447* 0.241 0.224 -0.286 0.251       

C (%) -0.504* 0.474* 0.104 0.156 -0.277 -0.382 0.378 0.301 -0.124 -0.158 0.035 0.358 -0.133 0.034     

N (%) -0.337 0.198 0.209 0.230 -0.433* -0.007 0.112 0.171 0.106 -0.035 0.214 0.090 -0.130 0.337 0.887*   

C/N -0.471* 0.728* -0.086 -0.005 0.658* -0.832* 0.493* 0.308 -0.303 -0.145 -0.170 0.617* -0.140 -0.416* 0.633* 0.234 

*TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  
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Table F315. Correlation among soil chemistry parameters for low/medium burn sites in the A/O horizon. Significant correlations appear 

in bold (*p<0.01), N = 34. 

Parameter pH TA EBC ECEC %BS OM SO4 Na K Mg Ca Al NO3 NH4 C N 

pH                       

TA 

(cmolc/kg) 
-0.796*                               

EBC 

(cmolc/kg) 
-0.112 0.040                             

ECEC 

(cmolc/kg) 
-0.362 0.360 0.947*                           

BS (%) 0.096 -0.290 0.763* 0.618*             
   

      

OM (%) -0.696* 0.580* 0.483* 0.638* 0.119           
   

      

SO4
 

(cmolc/kg) 
-0.055 0.058 -0.023 -0.003 0.008 -0.051         

   
      

Na 

(cmolc/kg) 
-0.373 0.448* 0.431 0.547* 0.366 0.229 0.205       

   
      

K 

(cmolc/kg) 
-0.270 0.344 0.432 0.515* 0.331 0.160 -0.104 0.601*     

   
      

Mg 

(cmolc/kg) 
-0.533* 0.617* 0.526* 0.690* 0.294 0.504* -0.047 0.684* 0.867*   

   
      

Ca 

(cmolc/kg) 
-0.312 0.451* 0.448* 0.563* 0.268 0.273 -0.056 0.648* 0.922* 0.934* 

   
      

Al 

(cmolc/kg) 
-0.294 0.096 0.269 0.282 0.271 0.368 0.007 0.161 0.006 0.167 -0.039         

NO3
 

(cmolc/kg) 
0.043 -0.025 -0.182 -0.178 -0.250 -0.033 -0.113 -0.206 -0.180 -0.143 -0.146 -0.276        

NH4
 

(cmolc/kg) 
-0.059 -0.042 -0.258 -0.255 -0.291 0.093 -0.069 -0.400 -0.272 -0.202 -0.218 -0.215 0.797*       

C (%) -0.319 0.018 -0.248 -0.279 0.053 -0.328 -0.193 0.432 0.028 0.177 0.114 -0.063 -0.051 0.039     

N (%) -0.258 -0.067 -0.212 -0.258 0.068 -0.303 -0.227 0.292 -0.149 0.063 -0.002 -0.080 0.103 0.177 0.946*   

C/N -0.572* 0.344 -0.333 -0.295 -0.152 -0.274 0.063 0.355 0.458* 0.321 0.285 -0.077 -0.417 -0.356 0.335 0.034 

*TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  
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Table F416. Correlation among soil chemistry parameters for low/medium burn sites in the B horizon. Significant correlations appear 

in bold (*p<0.01), N = 34. 

Parameter pH TA EBC ECEC %BS OM SO4 Na K Mg Ca Al NO3 NH4 C N 

pH                       

TA 

(cmolc/kg) 
-0.588*                               

EBC 

(cmolc/kg) 
-0.097 0.013                             

ECEC 

(cmolc/kg) 
-0.584* 0.942* 0.349                           

BS (%) 0.475* -0.071 -0.231 -0.145             
   

      

OM (%) -0.008 -0.056 0.504* 0.117 -0.157           
   

      

SO4
 

(cmolc/kg) 
-0.235 0.125 0.173 0.175 -0.259 0.114         

   
      

Na 

(cmolc/kg) 
-0.128 -0.095 0.198 -0.022 0.072 0.083 -0.074       

   
      

K 

(cmolc/kg) 
-0.285 0.249 0.412 0.372 0.112 0.191 0.078 0.631*     

   
      

Mg 

(cmolc/kg) 
-0.149 -0.015 0.291 0.084 0.226 0.273 -0.132 0.757* 0.801*   

   
      

Ca 

(cmolc/kg) 
-0.061 0.151 0.494* 0.308 0.302 0.464* -0.006 0.580* 0.786* 0.815* 

   
      

Al 

(cmolc/kg) 
-0.572* 0.624* 0.262 0.664* -0.148 -0.137 0.143 0.378 0.618* 0.397 0.322         

NO3
 

(cmolc/kg) 
-0.022 0.163 -0.030 0.143 -0.101 0.078 0.863* -0.218 -0.106 -0.239 -0.084 0.064        

NH4
 

(cmolc/kg) 
-0.125 0.041 0.275 0.131 -0.101 0.368 0.570* 0.094 0.175 0.140 0.274 0.125 0.624*       

C (%) 0.078 0.041 0.803* 0.329 0.102 0.457* 0.036 0.125 0.379 0.321 0.432 0.185 -0.111 0.164     

N (%) 0.109 -0.260 0.721* 0.003 0.090 0.586* 0.165 0.259 0.411 0.463* 0.494* -0.050 -0.025 0.368 0.769*   

C/N -0.145 0.491* -0.048 0.465* 0.021 -0.289 -0.190 -0.197 -0.104 -0.280 -0.147 0.331 -0.144 -0.304 0.105 -0.521 

*TA = total acidity, EBC = exchangeable base cations, ECEC = effective cation exchange capacity, BS = base saturation, OM = organic matter content.  
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