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ABSTRACT 
 

Extracellular enzyme assays are widely used methods to probe the interactions 

between microbes and complex organic matter. Microbes produce extracellular enzymes 

to degrade macromolecules into smaller molecules that can be transported across cell 

membranes. Enzyme assays provide a quantitative understanding of the rates and 

specificities of extracellular enzymes toward these macromolecules. This study explored 

1) the biodegradation pathways of microcystin-LR (MC-LR), a cyanobacterial peptide 

toxin, by measuring the activities of extracellular peptidases produced by putative MC-

LR degraders and 2) the effects of enzyme assay protocol on activity measurements, 

which involved the creation of ezmmek, an R package designed to analyze enzyme assay 

data reproducibly under different protocols. Lactobacillus rhamnosus GG, an MC-LR 

degrader that employs an unknown pathway, produces L-Leucine aminopeptidases. 

Future work can test whether these same peptidases are capable of degrading MC-LR.  

Two enzyme assay protocols were applied to the same freshwater sample, but resulted in 

significantly different activity measurements when analyzed with ezmmek. Widespread 

adoption of ezmmek could standardize enzyme analytical pathways performed by other 

researchers, and will make results more comparable among MC-LR and other organic 

matter degradation studies.   
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INTRODUCTION  

 

Microcystin-LR 

Impacts on Human and Ecosystem Health 

 Microcystin (MC), an intracellular hepatotoxin produced as a secondary 

metabolite by several genera of cyanobacteria in freshwater and marine environments, 

can poison drinking water and damage ecosystems. Dangerous concentrations of MC 

typically accompany certain species of cyanobacterial cells present in high abundances, 

i.e. harmful cyanobacterial blooms (Huisman et al., 2018). Such events force the 

shutdown of drinking water sources for days at a time, and leave thousands of people 

without access to tap water (Qin et al., 2009). MC also impairs ecosystems by affecting 

bacteria, plants, and invertebrates (Zanchett & Oliveira-Filho, 2013). Acute exposure to 

MC can be lethal to a variety of fish species (Rohrlack et al., 2005). Chronic exposure 

has been linked to a reduction in fertility and growth rates in aquatic life (Zanchett & 

Oliveira-Filho, 2013). Cyanobacterial bloom formation, and subsequently MC 

production, are likely to increase in the future due to higher levels of eutrophication and 

warmer temperatures associated with climate change (Paerl et al., 2016). MC poses 

significant threats to both human and ecosystem health, which makes its degradation 

mechanisms important to the scientific community. 
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Production and Degradation Mechanisms 

The biological functions of MC are a mystery, although some researchers 

hypothesize it may have once served as an anti-grazing mechanism (Codd, 1995). 

Although MC has over 250 structural variants (Bouaïcha et al., 2019), all of them take the 

form of a cyclic heptapeptide. Two of the amino acids, located at positions 2 and 4 in the 

ring, dictate most of the structural variability between types of MC. MC-LR 

(C49H74N10O12) is the most common variant (Merwe, 2015) and contains L-Leucine and 

L-Arginine in these positions (Figure I-1). The stable ring structure renders MC-LR 

resistant to the common physical degradation mechanisms of high temperature, extreme 

pH, and sunlight (Tsuji et al., 1994; Gagala & Mankiewicz-Boczek, 2012; Rastogi et al., 

2014). The presence of several uncommon amino acids, such as those with the D- 

isomeric form, also render MC-LR resistant to many biodegradation mechanisms. Break-

down by microcystinase, a group of extracellular enzymes that first cleave the ring 

structure at the 3-amino-9-methyoxy-2,6,8-trimethyl-10-phenyl-4,6-decadienoic 

acid (ADDA)-arginine bond, is the only proven pathway for the biodegradation of MC-

LR and some other structural variants of MC (Figure I-2; Schmidt et al., 2014)    

Biodegradation by Non-Specific Pathways 

Although break-down by microcystinase is the only proven pathway, several 

phylogenetically diverse microbes have been discovered that can degrade MC-LR, 

despite lacking the genes necessary to express microcystinase (Li et al., 2017). However, 

the pathways performed by these microbes are unknown (Li et al., 2017). We propose 

that MC-LR can be biodegraded through a variety of non-specific pathways induced by 
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extracellular enzymes. Here, a non-specific pathway is defined as one that may possess 

some ability to degrade MC-LR, but only as a secondary function. Microbes across the 

phylogenetic tree produce extracellular peptidases, and some peptidases express broad 

substrate specificity in aquatic environments (Steen et al., 2015). Evidence for non-

specific degradation may further our knowledge of MC-LR degradation in the 

environment as well as assist in the development of novel bioremediation practices.  

Extracellular Enzyme Assays 

    

Michaelis-Menten Kinetics 

Heterotrophic bacteria produce extracellular enzymes to degrade peptides that 

allows them to assimilate nutrients. Most environmental enzymes, including 

aminopeptidases, exhibit Michaelis-Menten kinetics (Gonzales & Robert-Baudouy, 

1996). Michaelis-Menten kinetics is a model used to predict changes in enzymatic 

activity as a function of substrate concentration, and can be described mathematically as: 

(I-1) V0 = 
𝑉𝑚𝑎𝑥∗ [S]

[S]+ 𝐾𝑀
 

where V0 is the rate of reaction or activity, Vmax is the maximum rate of reaction, [S] is the 

concentration of substrate, and KM is the concentration of substrate at which V0 = 
1

2
 Vmax 

(Figure I-3). The KM value describes the affinity of enzymes toward a particular substrate 

and behaves independently of cell count or sample volume. Furthermore, KM values 

provide a quantitative means to compare enzyme affinities of several samples toward a 

variety of substrates. 
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Application to Ecosystem Studies 

Extracellular enzyme assays are widely used tools to describe the Michaelis-

Menten kinetics of extracellular enzymes present in environmental samples. Fluorometric 

assays, a common and straightforward technique, involve the exposure of the sample to a 

fluorogenic substrate proxy. A fluorogenic substrate proxy consists of a substrate bonded 

to a fluorophore that only fluoresces once that bond is cleaved (Figure I-4). Fluorescence 

increases as enzymes cleave and release more of the fluorophore over time.  The bond 

that is cleaved is assumed to be analogous to the bond of a natural substrate that those 

enzymes might cleave. A standard curve consisting of free fluorophore can be used to 

convert fluorescence to concentration of fluorophore. Activity can be described as the 

concentration of fluorophore released over time per unit of volume or mass. In this study, 

fluorometric enzyme assays were applied to substrate proxies thought to represent similar 

peptide bonds present in MC-LR, with the goal of identifying unknown biodegradation 

pathways.   

At present, a singular fluorometric enzyme assay protocol is not applied 

universally among studies. Studies differ in how they correct for fluorometric quenching, 

which in turn affects how enzymatic activities are calculated. To stimulate discussion 

about how to best optimize fluorometric enzyme assays, we developed ezmmek (Easy 

Michaelis-Menten Enzyme Kinetics), an R package designed to analyze fluorometric 

enzyme assay data according to different protocols. ezmmek was used to compare 

enzymatic activity measurements of the same freshwater sample using two protocols 

found in the literature. A standardized and universal approach to fluorometric enzyme 

assays may benefit those researching MC-LR or other organic matter degradation by 
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making data comparable across several studies and experiments. At the very least, the 

practitioners of these studies may benefit from explicitly stating how their enzyme assays 

were performed. 
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Figure I-1: Structure of Microcystin-LR. 

Positions 2 and 4 (red) dictate the structural variability of MC. 
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Figure I-2: Microcystinase pathway for MC-LR degradation. 

The ring is cleaved via hydrolysis at the ADDA-arginine bond before being linearized 

and broken down through additional hydrolysis reactions. From Schmidt et al. (2014). 
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Figure I-3: Plot depiction of Michaelis-Menten Kinetics. 

Vmax is indicative of saturating conditions, and is the maximum velocity an enzymatic 

reaction can achieve. From Berg et al. (2002). 
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Figure I-4: Fluorometric enzyme assay schematic. 

L-Leucine-7-amido-4methylcoumarin (L-Leucine-AMC) is a substrate proxy for peptide 

bonds attached to L-Leucine. AMC is a fluorophore that only fluoresces once cleaved 

from the L-Leucine. Fluorescence increases over time, as more bonds are broken through 

enzymatic hyrdolysis. 
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Abstract  

  

Microcystin (MC), a cyanotoxin produced by several genera of cyanobacteria, can 

poison drinking water sources and damage ecosystems. MC is a cyclic heptapeptide, 

whose stable ring structure is resistant to common physical degradation mechanisms. 

Break-down by microcystinase is the only proven pathway for the biodegradation of MC-

LR, the most common structural variant of MC. However, diverse microbes that 

apparently lack the microcystinase enzyme can also degrade MC-LR, including 

Lactobacillus rhamnosus GG, but the pathways are unknown. We propose that MC-LR 

can be degraded through non-specific pathways involving extracellular enzymes. We test 

this nonspecific pathway hypothesis through a series of incubation experiments designed 

to identify the pathway by which L. rhamnosus GG breaks down MC-LR. L. rhamnosus 

GG, among some other bacterial strains used as controls, were exposed to a fluorogenic 

substrate whose bond was assumed analogous for peptide bonds present in MC-LR. We 

concluded that L. rhamnosus GG produces L-Leucine aminopeptidases. Future work will 

test whether these same peptidases possess the ability to degrade MC-LR. 

Introduction 

Extracellular Peptidases in Freshwater Systems  

Heterotrophic bacteria can rapidly transform organic compounds synthesized by 

primary producers in aquatic systems (Bai et al., 2017). These organic compounds, which 

can take the form of macromolecular detritus, are too large for bacteria to assimilate 

directly. Heterotrophic bacteria produce extracellular enzymes to break-down 
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macromolecular detritus into assimilable nutrients (Arnosti et al., 2014). MC-LR, a 

structurally recalcitrant cyanobacterial peptide toxin (Bourne et al., 1996), is one such 

macromolecule that must be broken down before its constituents can be metabolized. 

Some heterotrophic bacteria produce extracellular peptidases that are specifically geared 

toward the degradation of MC-LR (Li et al., 2017). 

Evidence for Non-Specific Degradation 

The current literature identifies one pathway for the biodegradation of MC-LR. 

This pathway involves microcystinase, a peptidase that selectively degrades MC-LR by 

first cleaving the ring at the 3-amino-9-methyoxy-2,6,8-trimethyl-10-phenyl-4,6-

decadienoic acid (ADDA)-arginine bond (Figure I-1; Schmidt et al., 2014). Yet, 

Krausfeldt et al. (2019) found that microcystinase gene transcripts were absent in harmful 

cyanobacterial bloom samples from Lake Erie, United States/ Canada and Lake Tai, 

China, two bodies of water known for producing high MC-LR concentrations.  

Furthermore, several phylogenetically diverse microbes that lack the ability to produce 

microcystinase, including L. rhamnosus GG, have been found to degrade MC-LR. The 

pathways used by these microbes are unknown. L. rhamnosus GG is hypothesized to 

degrade MC-LR via cell wall associated endopeptidases (Nybom et al., 2007; Nybom et 

al., 2008; Nybom et al., 2012), but the exact positions at which the ring is hydrolyzed 

remains unknown. We hypothesize that L. rhamnosus GG, along with the other microbes 

that employ unknown pathways, degrade MC-LR using a variety of non-specific 

pathways. Here, a non-specific pathway is defined as one that may possess some ability 

to degrade MC-LR, but only as a secondary function. Microbes across the phylogenetic 
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tree produce extracellular peptidases, and some peptidases exhibit broad substrate 

specificity in aquatic environments (Steen et al., 2015). Extracellular peptidases may be 

able to break down MC-LR in addition to performing their primary functions. Conclusive 

evidence for non-specific degradation may further knowledge of the environmental fate 

of MC-LR as well as assist in the development of novel bioremediation techniques. 

Testing for Non-specific Degradation   

To test the hypothesis that L. rhamnosus GG degrades MC-LR via nonspecific 

pathways, cultures were first assayed for the production of aminopeptidases that may 

degrade corresponding amino acids present in MC-LR. Here, cultures were assayed for 

L-Leucine aminopeptidases. L-Leucine aminopeptidases cleave peptide bonds shared by 

L-Leucine, one of the amino acids present in MC-LR. The assay was also performed 

using Sphingomonas ACM-3962, a positive control for the microcystinase pathway 

(Bourne et al., 1996), and Escherichia coli K12, a negative control that does not produce 

the extracellular peptidases required to degrade macromolecular peptides like MC-LR 

(Chalova et al., 2009). 

Methods 

Incubation Parameters 

Three strains of bacteria were cultured to test the production of L-Leucine 

aminopeptidases. S. ACM-3962 was grown in 30 mL of nutrient broth for 48 hours at 30 

°C [degrees Celsius] and 180 revolutions per minute (rpm). L. rhamnosus GG was grown 

in 30 mL of De Man, Rogosa, and Sharpe (MRS) broth for 48 hours at 37 °C and 180 

rpm. E. coli K12 was grown in 30 mL of Luria-Bertani (LB) broth for 24 hours at 37 °C 
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and 180 rpm. Each culture was then centrifuged and washed twice in 30 mL of PBS broth 

with a pH ~7.5 in ambient conditions. Enzyme assays were performed immediately after 

final resuspensions of cultures in PBS. 

Enzyme Assays 

Each culture was exposed to L-Leucine-7-amido-4-methylcoumarin 

hydrochloride (L-Leucine-AMC), a fluorogenic substrate whose bond was deemed 

analogous to the peptide bonds shared by L-Leucine in MC-LR. Assays were performed 

according to Steen and Arnosti (2011). Standard curves were measured in the presence of 

the cultures suspended in PBS. The standard curve aliquots were made in 1.5 mL plastic 

cuvettes and measured using a PromegaTM GloMax® fluorometer. Each aliquot consisted 

of 960 µL culture suspended in PBS and 40 µL of a varying ratio of dimethyl sulfoxide 

(DMSO) to 7-amino-4-methylcoumarin (AMC) dissolved in DMSO, with the ratio 

dependent on the desired concentration of AMC in the final solution. Final concentrations 

of AMC in the standard curve aliquots were 0.0 to 4.0 µ[micro]M (micromolar), in 0.5 

µM increments.  

Raw fluorescence data were collected at time intervals of 0, 10, 20, 30, and 40 

minutes. These aliquots were made similarly to the standard curve aliquots, but with 

intact L-Leucine-AMC dissolved in DMSO instead of pure AMC dissolved in DMSO. 

Final concentrations of L-Leucine-AMC in the assay aliquots were 0, 50, 100, 200, 300, 

and 400 µM. Aliquots were made in triplicate. Measurements were taken using the same 

fluorometer. Raw fluorescence data were calibrated to activity using the standard curves. 
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Results and Discussion 

Enzyme Assay Data Analysis 

The saturation curves and raw fluorescence data for each microbe can be found in 

this chapter’s appendix. As expected, E. coli K12, the negative control, did not exhibit 

Michaelis-Menten kinetics on the L-Leucine AMC (Figure II-3). Although a saturation 

curve was fitted to the E. coli K12 activities, these data exhibited a linear trend, with 

saturating conditions predicted well-beyond the maximum substrate concentration of 400 

µM. L-Leucine-AMC degraded despite that E. coli K12 is not known to produce 

extracellular peptidases, which may be due to abiotic degradation or the release of 

intracellular peptidases upon cell lysis. S. ACM-3962 and L. rhamnosus GG both 

exhibited Michaelis-Menten kinetics, with KM values of 225.69 and 97.27 µM of L-

Leucine-AMC, respectively (Figures II-1 and II-2). L. rhamnosus GG had a higher 

affinity toward L-Leucine-AMC than S. ACM-3962. Although KM behaves independently 

of cell count, the activities themselves did not. Therefore, the activities and VMax values 

between L. rhamnosus GG and S. ACM-3962 were not comparable from these data. 

Based on these data, L. rhamnosus GG and S. AMC-3962 produce L-Leucine 

aminopeptidases. 

Combining Enzyme Assays with MC-LR Degradation Experiments 

 Preliminary results suggested that L. rhamnosus GG produced L-Leucine 

aminopeptidases. Further work may determine whether these peptidases are capable of 

degrading MC-LR. We propose a series of incubation experiments that simultaneously 
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measures MC-LR degradation, fluorogenic substrate degradation, and cell growth (Figure 

II-7). These experiments would entail exposing L. rhamnosus GG (as suspended in PBS) 

to MC-LR and taking several timepoints over a 48-hour period. At each timepoint, 

subsamples would be collected to measure MC-LR concentration by high performance 

liquid chromatography (Nybom et al., 2007), substrate degradation by fluorometry (i.e., a 

subsample would be exposed to L-Leucine-AMC for up to an hour at each timepoint 

collected), and cell growth by spectrophotometry. In these experiments, MC-LR acts as a 

major carbon source (priming with other carbon sources, such as glucose, may be 

beneficial), which allows for assumption that the majority of cell growth can be attributed 

to MC-LR degradation. Quantitative relationships between these three measurements 

may suggest that L-Leucine aminopeptidases (or any other enzymes tested) produced by 

L. rhamnosus GG are capable of degrading MC-LR. If so, then they would likely use a 

pathway that first cleaves the bonds between L-Leucine and the adjacent amino acids in 

MC-LR, which are Alanine and Aspartic Acid. Enzyme assays involving the use of 

substrates analogous to other amino acids present in MC-LR should be performed to 

further identify possible pathways performed by L. rhamnosus GG. Many of the amino 

acids in MC-LR are atypical, and analogous substrates may need to be specially 

synthesized to perform additional experiments.  

Conclusions 

 
L. rhamnosus GG produces L-Leucine aminopeptidases. Additional assays are 

necessary to identify other aminopeptidases produced by each bacterium. After which, 
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more robust incubation experiments involving several enzyme substrates and novel 

biodegraders can further test the hypothesis of non-specific biodegradation pathways.  
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Figure II-1: Saturation curve of L. rhamnosus GG acting on L-Leucine-AMC. 

Presented are the average activities (points) and standard deviations (error bars) of three 

replicates at each substrate concentration. 
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Figure II-2: Saturation curve of S. ACM-3962 acting on L-Leucine-AMC. 

Presented are the average activities (points) and standard deviations (error bars) of three 

replicates at each substrate concentration. 

 



29 

 

Figure II-3: Saturation curve of E. coli K12 acting on L-Leucine-AMC. 

Presented are the average activities (points) and standard deviations (error bars) of three 

replicates at each substrate concentration. The activities here are an order of magnitude 

lower than the activities of the other two microbes. 
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Figure II-4: Raw fluorescence data of L. rhamnosus GG acting on L-Leucine-AMC. 

Faceted by substrate concentration (µM). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



31 

 

Figure II-5. Raw fluorescence data of S. ACM-3962 acting on L-Leucine-AMC. 

Faceted by substrate concentration (µM). 
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Figure II-6: Raw fluorescence data of E. coli K12 acting on L-Leucine-AMC. 

Faceted by substrate concentration (µM). 
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Figure II-7: Outline of future incubation experiments. 
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Abstract 

Extracellular enzyme assays are used to measure the enzyme activities of 

microbes toward complex organic matter. However, there are broad methodologies for 

assaying enzyme activities, and there remains a need to standardize the protocols used by 

practitioners. Here we describe ezmmek (Easy Michaelis-Menten Enzyme Kinetics), an R 

package designed to calculate enzyme kinetic parameters using published methodologies. 

ezmmek includes functions to calibrate, calculate, and plot enzyme activities as they relate 

to the transformation of synthetic substrates. At present, ezmmek implements two 

common protocols found in the literature, and is modular to accommodate additional 

protocols. Both common protocols were applied to the same freshwater samples prior to 

analysis in ezmmek and resulted in substantially different activities from identical data. 

We probe the reasons that the two methods yield different results from identical data and 

make recommendations as to which methods are appropriate for several sample types. As 

a reliable platform to compare and run different protocols, ezmmek aims to stimulate 

further discussion about how to best optimize extracellular enzyme assays.  

 

Introduction 

Optimization of Extracellular Enzyme Assays 

Extracellular enzymes produced by microorganisms play an important role in 

driving ecosystem processes and biogeochemical cycles. Extracellular enzyme assays 

were developed as methods to quantify enzymatic activity and further probe the 

interactions between microbes and organic matter. Fluorometric assays, which involve 
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the detection of a fluorophore enzymatically cleaved from a substrate, are particularly 

popular due to their inexpensive, efficient, and accessible nature. The fluorescence of a 

sample ideally increases with respect to time, and can be converted to fluorophore 

production as a result of enzymatic hydrolysis. Although fluorometric assays are 

relatively simple in practice, several parameters can hinder the ability to measure activity 

values accurately. These parameters include 1) Adsorption of the fluorophore to solid 

surfaces, 2) Quenching of the fluorophore by dissolved compounds, 3) Abiotic release of 

the fluorophore from the substrate, and 4) Pre-existing background fluorescence (German 

et al., 2011).   Each of these parameters complicates the detection of fluorescence solely 

as a result of enzymatic hydrolysis. As an important step in describing a standardized 

approach to fluorometric enzyme assays, German et al. (2011) synthesize how best to 

correct for fluorometric interference by describing a protocol, complete with calculations 

and guidelines to address the effects of pH and temperature. However, the protocol 

described by German et al. (2011) has not been universally accepted among fluorometric 

assay practitioners. Other approaches differ in regard to how quenching is corrected and 

activity is calculated. The next step forward in creating a unified outlook on extracellular 

enzyme assay protocol is to compare other prominent protocols with the one described by 

German et al. (2011). 

Protocol Descriptions 

The protocol outlined by German et al. (2011), which will be referred to as the 

“In-Buffer Calibration (IBC) Protocol,” corrects for quenching by measuring the 

interference from each individual component involved in an assay (Figure III-1; 
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Equations III-1 through III-4). The IBC Protocol involves standard curves in the separate 

presence of homogenate (slurry of soil and buffer) and buffer. Also involved are 

homogenate controls (i.e., sample slurry without added substrate), and substrate controls 

(i.e., substrate in the presence of buffer without sample slurry). The separate standard 

curves correct for quenching of the fluorophore in two different solutions, which can 

affect later activity calculations.  The homogenate and substrate controls correct for 

background fluorescence and abiotic degradation of the substrate, respectively. The IBC 

protocol measures activity based on one timepoint, which relies on the assumption that 

fluorescence in the sample at time zero is equal to the fluorescence of the homogenate 

control, corrected for quenching by the quench coefficient, minus the fluorescence of the 

substrate control.  

 

(III-1) 𝑉0,Enzymes (mol kg−1 s−1) =
Net Fluorescence (fsu) ∗ Buffer Volume (L)

Emission Coefficient∗Homogenate Volume (L)∗Time (s)∗Soil Mass (kg)
 

 

 

(III-2) Net Fluorescence (fsu) =
Assay (fsu)−Homogenate Control (fsu)

Quench Coefficient 
− Substrate Control (fsu) 

 

 

(III-3) Emission Coeff. (fsu mol−1) =

Slope of Standard Curve (in presence of homogenate) [
fsu
mol

L

]

Standard Volume (L)
 

 

 

(III-4) Quench Coeff. =

Slope of Standard Curve (in presence of homogenate)  [
fsu
mol

L

]

Slope of Standard Curve (in presence of buffer) [
fsu
mol

L

]

 

 

As written, the IBC protocol only applies to samples with a solid component, such as soil 

or sediment. To adjust this protocol for water samples, we replaced the soil mass from 
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Equation III-1 with the homogenate volume, as seen in Equation III-5. When a solid is 

not present, the homogenate can simply be defined as the water sample in its entirety. 

(III-5) 𝑉0,Enzymes (mol L−1  s−1) =
Net Fluorescence (fsu)∗Buffer Volume (L)

Emission Coefficient∗Homogenate Volume (L)∗ Time (s)∗Homogenate Volume (L)
 

 

Equations III-1 through III-5 were edited from German et al. (2011) to reflect the 

International System (SI) of Units.  

In contrast to the IBC Protocol, early environmental extracellular enzyme assays 

simply measured the change in fluorescence per unit time of a live sample versus that 

same rate of change of an autoclaved or killed sample (Hoppe, 1983; Somville & Billen, 

1983; King, 1986), with a calibration curve measured using fluorophore added to the 

sample. This protocol will be referred to as the “In-Sample Calibration (ISC) Protocol” 

(Equations III-6 through III-9). In contrast to the widespread use of the IBC Protocol 

within the soil microbial ecology community (DeForest, 2009; Allison et al., 2009; Stone 

et al., 2012; Burns et al., 2013), the ISC Protocol has been widely used within the aquatic 

microbial ecology community (Baltar et al., 2009; Baltar et al., 2010; Steen & Arnosti, 

2011). The ISC Protocol corrects for quenching by measuring “bulk” interference, which 

relies on the assumption that the behavior of the free fluorophore released from substrates 

behaves identically to the free fluorophore added to the sample to construct a calibration 

curve. Some workers have modified the ISC Protocol to account for potential sorption of 

fluorophore to particles over the time course of the incubation (Coolen & Overmann, 

2000). This is relevant in samples with very high organic content, e.g., marine sapropels, 

but does not appear to be relevant in typical marine sediments (Steen et al., 2019). This 
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can be corrected by applying a separate calibration curve at each timepoint, but we do not 

address it here. 

The ISC Protocol uses a standard curve in the presence of homogenate-buffer 

solution and killed controls, which comprise of substrate in the presence of autoclaved or 

boiled homogenate-buffer solution; Figure III-1). Activity is calculated as the slope (mfl) 

of concentration of fluorophore (mol L-1; after conversion from fluorescence units) with 

respect to time (s), which requires a minimum of two timepoints. 

(III-6) V0, Enzymes (mol kg−1 s−1) = 

 

V0, Sample (mol kg−1 s−1) – V0, Killed Control (mol kg−1 s−1) 

 

 

 

Activity for either the sample or the killed control is calculated as: 
 

(III-7) V0 = 
𝑚𝑓𝑙  (mol L−1s−1 )

Soil Mass (kg)
 * Assay Volume (L) 

 

 
(III-8) Fluorophore (mol L−1) = 

 
 Fluorescence (fsu) −  Intercept of Standard Curve (in presence of homogenate and buffer solution) [fsu]

Slope of Standard Curve (in presence of homogenate and buffer solution)  [
fsu
mol

L

]

 

 
For a liquid sample or killed control, Equation III-7 can be simplified as follows: 

 
(III-9) V0 (mol L−1 s−1) =   𝑚𝑓𝑙  (mol L−1s−1 ) 

 

Methods 

 

Design of ezmmek 

ezmmek (Easy Michaelis-Menten Enzyme Kinetics) is a package designed for R, 

an open source statistical software environment becoming increasingly useful in the 
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fields of ecology and other biological sciences. The most current iteration of ezmmek (v. 

0.2.0) can be found on GitHub (https://github.com/ccook/ezmmek). Using S3 object-

oriented programming, ezmmek contains a suite of functions that output relevant analyses 

as data frames belonging to unique ezmmek classes (Table III-1). The user can further 

analyze these data frame objects using generic R functions, such as plot, that were 

assigned new methods to process these new classes.  

ezmmek operates under a hierarchal structure, in that the data frame output of each 

function builds upon the data frame output of a lower-tier function (Table III-1). For 

example, the data frame created by new_ezmmek_sat_fit includes standard curve data and 

analyses that build on that standard curve data. But if the user only wishes to analyze 

standard curve data, then they can run the more appropriate new_ezmmek_std_curve. The 

workflow of ezmmek treats the standard curve data and raw activity data as separate files 

that are analyzed independent from each other before being combined for more complex 

analyses (Figure III-2). During this flow, the user must specify which protocol they are 

using to determine how final activity is calculated. Code for each ezmmek function can be 

found in the appendix. 

Sample and Site Description 

A freshwater sample was collected at approximately 10:00 AM from Third Creek 

in Tyson Park (2351 Kingston Pike, Knoxville, TN 37919), under the walking bridge 

near the intersection of South Concord Street and Tyson McGhee Park Street Southwest 

(Figure III-3). Conditions were sunny, with a temperature of approximately 13 °C. 

https://github.com/ccook/ezmmek
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Enzyme assays using both protocols were performed as soon as possible once samples 

were transported to the laboratory later that morning. 

Enzyme Assay Procedure 

Enzyme assay parameters should be adjusted to match the environmental 

conditions of the sample site. As this study primarily focuses on the effect of the 

protocol, the effects of these other parameters, such as pH and temperature, were deemed 

inessential, as long as reasonable saturating conditions were observed. Here, the buffer 

used was phosphate-buffered saline (PBS), and the homogenate used was the freshwater 

sample. The pHs of the buffer and homogenate were 7.27 and 8.04, respectively. The 

experiment was performed at ambient temperature. pH and temperature were assumed 

equal and constant for both protocols for the duration of the experiment. Enzyme assays 

were performed using L-Leucine-AMC, a fluorogenic substrate that serves as an analog 

for the environmentally common and highly digestible amino acid, L-Leucine.  

Standard curves were measured in the presence of homogenate, buffer, and 

homogenate-buffer solution. The standard curve aliquots were made in 1.5 mL plastic 

cuvettes and measured using a PromegaTM GloMax® fluorometer. For the standard curve 

in the separate presence of homogenate and buffer (IBC Protocol), each aliquot consisted 

of 960 µL of homogenate or buffer, and 40 µL of a varying ratio of dimethyl sulfoxide 

(DMSO) to AMC dissolved in DMSO, with the ratio dependent on the desired 

concentration of AMC in the final solution. For the standard curve in the presence of 

homogenate-buffer solution (ISC Protocol), each aliquot consisted of 860 µL of 

homogenate, 100 µL of buffer, and 40 µL of a varying ratio of dimethyl sulfoxide 
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(DMSO) to AMC dissolved in DMSO, with the ratio dependent on the desired 

concentration of AMC in the final solution. Under both protocols, final concentrations of 

AMC were 0.0, 1.0, 2.0, 3.0, and 4.0 µM. Aliquots were made in duplicate for each of the 

standard curves. These data were saved in long-format as a comma-separated values 

(CSV) file for analysis in ezmmek. 

Raw fluorescence data were measured in the presence of homogenate-buffer 

solution at time intervals of 0, 20, 40, 60, 120, and 240 minutes. For the ISC Protocol, 

each of these timepoints were used to calculate activities. For the IBC Protocol, which 

relies on a single timepoint, only data collected at the 240-minute mark was used to 

calculate activities. These aliquots were prepared in similar fashion to the homogenate-

buffer solution standard curve aliquots, with each cuvette consisting of 860 µL of 

homogenate, 100 µL of buffer, and a 40 µL ratio of DMSO and L-Leucine-AMC 

dissolved in DMSO. Final solution L-Leucine-AMC substrate concentrations, which 

were prepared in triplicate, were 0, 50, 100, and 200 µM. Following the ISC Protocol, 

this same process was repeated, but with the killed control taking place of the 

homogenate. For the IBC Protocol, the substrate control took place of the homogenate. 

Data relevant to both the ISC and IBC were saved in separate long-format comma-

separated values (CSV) files. Both sets of data were analyzed in ezmmek. The buffer 

volume, as seen in Equation III-5, was considered to be the summation of PBS volume 

and DMSO volume, which was 140 µL. 
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Results and Discussion 

ezmmek Performance 

ezmmek successfully analyzed several aspects of extracellular enzyme data, 

including enzyme kinetic parameters, data visualizations, and relevant statistics. 

However, some useful features are still in development. These include the ability to 1) 

Input and track units throughout the analyses and 2) Read in different file formats of data. 

Enzyme Assay Method Analysis 

 The standard curve, raw data, and saturation curve plots produced by ezmmek can 

be found in this chapter’s appendix. Final average V0 calculations between the two 

protocols differed by a maximum of two orders of magnitude (Table III-2). At 200 µM L-

Leucine-AMC, the maximum substrate concentration at which activity was measured, the 

IBC Protocol calculated an average V0 of 0.845 nM hr-1 (Figure III-11), and the ISC 

Protocol calculated an average V0 of 85.1 nM hr-1 (Figure III-12). The difference in final 

average activities can be traced to the calculation method of each protocol, particularly in 

regard to the number of timepoints collected. By collecting a single timepoint, the IBC 

Protocol assumes that fluorescence units (fsu) at time zero, after accounting for the fsu 

values of the controls, equal zero. In this study, this assumption did not hold true. The 

error bar associated with average activity at 200 µM L-Leucine AMC, as determined by 

the IBC Protocol, was large compared to the error bars corresponding to the other 

substrate concentrations, with half of it covering a negative range of activities (Figure III-

11). The sample fluorescence values of Replicates 1, 2, and 3 at Time 120 minutes were 
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143328.50, 83360.85, and 140409.87 fsu, respectively. The corresponding substrate 

control fluorescence values of these replicates were 68130.94, 73493.61, and 58215.49, 

respectively. The substrate control values were less spread than the sample values. 

Because each of the sample values were assumed to have the same starting fsu value of 

zero, replicate 2 was calculated to have less activity than the other two replicates. The 

activity calculations for replicate 2 at substrate concentration 200 µM rely on the IBC 

Protocol equations discussed previously and are as follows: 

 Emission Coefficient  =

404 ∗  [
fsu

nmol
L

]

1 ∗ 10−3 L
=  𝟒. 𝟎𝟓 ∗ 𝟏𝟎𝟓 𝐟𝐬𝐮 𝐧𝐦𝐨𝐥−𝟏 

 

Quench Coefficient =

404  [
fsu

nmol
L

]

235  [
fsu

nmol
L

]

 = 1.72 

 

 

Net Fluorescence =
8.32 ∗  104 fsu − 1.38 ∗ 103 fsu

1.72
− 7.3 ∗ 104 fsu =  −𝟐. 𝟔𝟎 ∗ 𝟏𝟎𝟒 𝐟𝐬𝐮 

 

Activity =
−2.60∗104 fsu ∗ 1.4 ∗ 10−4 L

 4.05∗105 fsu nmol−1 ∗ 8.6 ∗ 10−4 L ∗  2 h ∗ 8.6 ∗ 10−4 L 
 = -6.08 nM h-1  

 

Note that these calculations were rounded for ease of reading. Due to the negative net 

fluorescence value, which comes from the fact that fluorescence of replicate 2’s control 

was greater than the fluorescence at the initial timepoint of the sample, the IBC Protocol 

calculated the activity of replicate 2 as a negative value. Replicate 2 was primarily 

responsible for the large amount of error at 200 µM L-Leucine-AMC. However, the raw 

fluorescence data collected by the ISC Protocol, which shows change in fsu with respect 

to time (Figure III-10), suggested that the activities of these three replicates at 200 µM 

were closer in value than calculated by the IBC Protocol. Replicate 2 appeared to be 

offset from the other replicates, but maintained a similar slope, which implied a positive 
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activity value. The substrate control for replicate 2, however, did not appear to be offset 

(Figure III-9). The following activity calculations for replicate 2 at substrate 

concentration 200 µM relied on the ISC Protocol equations discussed previously and are 

as follows: 

Sample Fluorophore after 2 h =
8.32 ∗ 104  fsu  − 1.24  ∗ 104  fsu

2.68 ∗ 102  [
fsu

nmol
L

]

 = 355 nM 

 

Sample Fluorophore after 0 h =
8.40 ∗ 104  fsu − 1.24  ∗ 104 fsu

2.68 ∗ 102  [ fsu
nmol

L

]

 = 77.3 nM 

 
V0, Sample =

355 nM − 77.3 nM

2 h−0 h
 = 139 nM h-1 

 

 

Killed Control Fluorophore after 2 h =
9.75 ∗ 104 fsu − 12.4 ∗ 104 fsu

269  [ fsu
nmol

L

]

 = 409 nM 

 

Killed Control Fluorophore after 0 h =
5.96 ∗ 104 fsu − 12.4 ∗ 104 fsu

269  [ fsu
nmol

L

]

 = 268 nM 

 
V0, Killed Control =

409 nM − 268 nM

2 h−0 h
 = 71.3 nM h-1 

 

 

V0, Enzymes = V0, Sample – V0, Killed Control = 67.7 nM h-1 

 

Note that this simplified and rounded version only relied on the first and last timepoint to 

calculate activity. Normally, the slope would be calculated from a line of multiple 

timepoints.  

The enzymatic activities of each replicate at 200 µM L-Leucine-AMC, in addition 

to their corresponding averages and standard deviations, are shown in Table III-2. 

Positive activities were calculated for both the sample and the killed control of replicate 

2. The concentration of fluorophore was greater at both timepoints for the killed control 

than the sample. However, this observation is largely irrelevant, as the ISC Protocol 
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considers only the rate of change between them, which in this instance was greater for the 

sample activity. Even though the killed control values were higher than the sample 

values, they increased in fsu over time at a lesser rate than the assay values, resulting in a 

positive rate of change between timepoints (Figures III-10 and III-11). The IBC Protocol 

does not account for any potential offsets with its substrate control and will always result 

in a negative activity if the fsu of the substrate control is greater than the fsu of the assay. 

The lack of accounting for potential offsets may also explain why the IBC calculated 

substantially lower activities in this instance. The ISC Protocol appeared to be less 

sensitive to offsets between replicates and potential pipetting errors than the IBC Protocol 

by taking multiple timepoints. The IBC Protocol may benefit by taking multiple 

timepoints, if only as a check to ensure that the zero-fsu at time zero assumption holds 

true. The mechanisms behind the offsets in this study are unclear, but they may be related 

to naturally fluorescent organics heterogeneously distributed in the sample. 

Conclusions 

 
ezmmek is a useful tool for analyzing several aspects of enzyme assay data and 

will hopefully spur more conversation about how to best optimize environmental 

extracellular enzyme assays. The IBC Protocol appears to be more sensitive to offsets 

between replicates than the ISC Protocol. In an experiment where the difference in 

release of fluorophore due to abiotic mechanisms versus enzymatic hydrolysis is small, 

the ISC Protocol may be better suited to measure those activities. However, some studies 

suggest that autoclaving or boiling the homogenate does not fully deactivate enzymes 

(Carter et al., 2007). A killed control could then overcalculate the amount of abiotic 
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release of fluorophore from the substrate, which in turn would cause an undercalculation 

of enzymatic activity. More robust comparisons, particularly for soil and sediment 

samples, need to be performed before further assessing the strengths and weaknesses of 

each protocol. 
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Table III-1: Descriptions of ezmmek functions. 

Functions that begin with “new” are those that create objects of a new class and are 

accessible to the user. These “new” functions are listed in descending order by tier, with 

new_ezmmek_sat_fit being of the highest tier and building upon those functions listed 

below it. Functions that begin with “ezmmek” perform calculations and are inaccessible 

to the user. 

 

Function/ Class of New Data Frame Output/ Purpose User Access 

new_ezmmek_sat_fit 

 

 

new_ezmmek_act_calibrate 

 

 

new_ezmmek_act_group 

 

 

new_ezmmek_std_group 

 

 

ezmmek_calc_mm_fit 

 

 

ezmmek_calibrate_activities 

 

 

ezmmek_std_lm 

 

 

ezmmek_calc_std_buffer 

 

 

ezmmek_calc_std_homo 

Tibble containing predicted 

saturation curve 

 

Tibble containing calibrated 

activity data  

 

Tibble containing grouped raw 

activity data 

 

Tibble containing grouped raw 

standard curve data 

 

Calculates Michaelis-Menten fit 

 

 

Calibrates raw activity data by 

standard curve 

 

Applies predicted standard curve 

models to nested datasets 

 

Calculates standard curve in 

presence of buffer 

 

Calculates standard curve in 

presence of homogenate 

Exported 

 

 

Exported 

 

 

Exported 

 

 

Exported 

 

 

Hidden 

 

 

Hidden 

 

 

Hidden 

 

 

Hidden 

 

 

Hidden 
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Table III-2: Enzymatic activities and their corresponding averages and standard 

deviations of each replicate at 200 µM substrate under both protocols. 

Protocol Replicate V0 (activity; nM h-1) Average V0 Standard Deviation 

 

IBC 

1 

2 

3 

3.35 

-6.08 

5.28 

 

0.845 

 

6.07 

 

ISC 

1 

2 

3 

112 

71.3 

71.6 

 

85.1 

 

23.7 
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Figure III-1: Standards and controls used for each protocol.  

Both protocols use the same assay sample, but calculate activity based on different 

standards, controls, and equations. 
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Figure III-2: ezmmek design flow. 

Standard curve data and raw activity data are read as separate files before being 

processed to calculate final activity data and fit Michaelis-Menten models. Michaelis-

Menten models include the kinetics parameters of KM and VMax. 
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Figure III-3: Sampling location at Tyson Park, Knoxville, TN 37919. 

The sampling location is marked with a red box under the aerial view (A), which marks 

the approximate location of the street view (B). 
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Figure III-4: Standard curve in buffer and model summary statistics, IBC Protocol. 

 

## Call: 

## lm(formula = buffer_signal ~ std_conc, data = gcal$std_raw_data_g[[1

]]) 

##  

## Residuals: 

##    Min     1Q Median     3Q    Max  

## -61817 -58412  -7289  21906 117357  

##  

## Coefficients: 

##             Estimate Std. Error t value Pr(>|t|)     

## (Intercept)  7771.83   37845.24   0.205    0.842     

## std_conc      235.10      15.45  15.216 3.45e-07 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Residual standard error: 69100 on 8 degrees of freedom 

## Multiple R-squared:  0.9666, Adjusted R-squared:  0.9624  

## F-statistic: 231.5 on 1 and 8 DF,  p-value: 3.448e-07 
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Figure III-5: Standard curve in homogenate and model summary statistics, IBC 

Protocol. 

## Call: 

## lm(formula = homo_signal ~ std_conc, data = gcal$std_raw_data_g[[1]]

) 

##  

## Residuals: 

##     Min      1Q  Median      3Q     Max  

## -358024  -26326   57618   66902  175999  

##  

## Coefficients: 

##              Estimate Std. Error t value Pr(>|t|)     

## (Intercept) -61510.19  104029.08  -0.591 0.575916     

## std_conc       404.78      44.87   9.021 0.000104 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Residual standard error: 173100 on 6 degrees of freedom 

##   (2 observations deleted due to missingness) 

## Multiple R-squared:  0.9313, Adjusted R-squared:  0.9199  

## F-statistic: 81.38 on 1 and 6 DF,  p-value: 0.0001039 
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Figure III-6: Standard Curve in homogenate-buffer solution and model summary 

statistics, ISC Protocol. 

## Call: 

## lm(formula = homo_buffer_signal ~ std_conc, data = ssat$std_raw_data

_s[[1]]) 

##  

## Residuals: 

##     Min      1Q  Median      3Q     Max  

## -117425  -56536   13777   53831  146012  

##  

## Coefficients: 

##              Estimate Std. Error t value Pr(>|t|)     

## (Intercept) -12363.58   52455.51  -0.236     0.82     

## std_conc       268.71      23.72  11.327 9.36e-06 *** 

## --- 

## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

##  

## Residual standard error: 93570 on 7 degrees of freedom 

##   (1 observation deleted due to missingness) 

## Multiple R-squared:  0.9483, Adjusted R-squared:  0.9409  

## F-statistic: 128.3 on 1 and 7 DF,  p-value: 9.36e-06 
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Figure III-7: Raw fluorescence data, IBC Protocol. 

Generated using new_ezmmek_act_group. Data was collected at time 120 minutes. 
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Figure III-8: Raw substrate control data, IBC Protocol. 

Faceted by substrate concentration (µM). The IBC Protocol typically relies on one 

timepoint, but the timepoints here were collected in tandem with the ISC Protocol, which 

relies on taking several timepoints. 
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Figure III-9: Raw fluorescence data, ISC Protocol. 

Generated using new_ezmmek_act_group. Faceted by substrate concentration (µM). 
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Figure III-10: Raw killed control data, ISC Protocol. 

Faceted by substrate concentration (µM). 
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Figure III-11: Calibrated activity data, IBC Protocol. 

Presented are the average activities (points) and standard deviations (error bars) of three 

replicates. 
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Figure III-12: Calibrated activity data, ISC Protocol. 

Presented are the average activities (points) and standard deviations (error bars) of three 

replicates. 
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Figure III-13: Saturation curve data and model summary statistics, ISC Protocol. 

Presented are the average activities (points) and standard deviations (error bars) of three 

replicates. A nonlinear model based on Michaelis-Menten kinetics was fitted to these 

points. 
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Function III-1: new_ezmmek_sat_fit 

######## 

### Calculate Michaelis-Menten fit and add to dataframe 

######## 

 

new_ezmmek_sat_fit <- function(std.data.fn, 

                               act.data.fn, 

                               ..., 

                               km = NULL, 

                               vmax = NULL, 

                               method = NA) { 

 

  ### User names columns to be grouped 

  columns <- purrr::map_chr(rlang::enquos(...), rlang::quo_name) 

 

  ### Calibrate and calculate activities 

  calibrated_df <- new_ezmmek_act_calibrate(std.data.fn, 

                                            act.data.fn, 

                                            ..., 

                                            method = method, 

                                            columns = columns) 

 

  ### Group data frame by substrate type and the additional arguments p

ut in by user 

  calibrated_df_grouped <- calibrated_df %>% 

    dplyr::group_by_at(dplyr::vars(substrate_type, intersect(names(.), 

columns))) %>% 

    tidyr::nest() 

 

  ### Creates new Michaelis-Menten fit columns 

  calibrated_df_mm_fit <- calibrated_df_grouped %>% 

    dplyr::mutate(mm_fit_obj = purrr::map(data, function(df) ezmmek_cal

c_mm_fit(df, km, vmax) %>% purrr::pluck(1)), #nlsm 
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                  km = purrr::map_dbl(data, function(df) coef(ezmmek_ca

lc_mm_fit(df, km, vmax) %>% purrr::pluck(1))[2]), #km 

                  vmax = purrr::map_dbl(data, function(df) coef(ezmmek_

calc_mm_fit(df, km, vmax) %>% purrr::pluck(1))[1]), #vmax 

                  pred_grid = purrr::map(data, function(df) ezmmek_calc

_mm_fit(df, km, vmax) %>% purrr::pluck(2))) %>% 

    tidyr::unnest(data) 

 

  ### Function to apply mm_fit to each value in pred_grid 

  predict_df <- function(mm_fit, pred_grid) { 

    pred.vec <- predict(mm_fit, pred_grid) 

    pred_df <- data.frame(substrate_conc = pred_grid$substrate_conc, ac

tivity_m = pred.vec) 

    pred_df 

  } 

 

  ### Apply predict_df() to pred_grid in each row 

  result_df <- calibrated_df_mm_fit %>% 

    dplyr::mutate(pred_activities = purrr::map2(.x = mm_fit_obj, .y = p

red_grid, .f = predict_df)) 

 

  ### Assign new class 

  class(result_df) <- c("new_ezmmek_sat_fit", "data.frame") 

 

  result_df 

} 
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Function III-2: new_ezmmek_act_calibrate 

 

######## 

### Join activity dataframe with standard dataframe and calibrate 

######## 

 

new_ezmmek_act_calibrate <- function(std.data.fn, 

                                     act.data.fn, 

                                     ..., 

                                     method = NA, 

                                     columns = NULL) { 

 

  ### Use '...' arguments if column names not supplied in parent fxn 

  if(is.null(columns)) { 

    columns <- purrr::map_chr(rlang::enquos(...), rlang::quo_name) 

  } 

  ### Creates dataframe of standard curve data 

  std_data_grouped <- new_ezmmek_std_group(std.data.fn, 

                                           method = method, 

                                           columns = columns) 

 

  ### Creates dataframe of raw activity data 

  act_data_grouped <- new_ezmmek_act_group(act.data.fn, 

                                           method = method, 

                                           columns = columns) 

 

  ### Joins the two data frames based on common descriptor columns 

  std_act_std <- dplyr::full_join(act_data_grouped, std_data_grouped) 

 

  ### Calibrate activities 

  std_act_calibrated <- ezmmek_calibrate_activities(std_act_std, method

, columns) 
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   ### Assign new class 

  class(std_act_calibrated) <- c("new_ezmmek_calibrate", "data.frame") 

 

  std_act_calibrated 

 

} 
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Function III-3: new_ezmmek_act_group 

######## 

### Group raw activity data 

######## 

 

new_ezmmek_act_group <- function(act.data.fn, 

                                 ..., 

                                 method = NA, 

                                 columns = NULL) { 

 

  ### Read in data 

  act_data <- read.csv(act.data.fn) 

 

  ### Use '...' arguments if column names not supplied in parent fxn 

  if(is.null(columns)) { 

    columns <- purrr::map_chr(rlang::enquos(...), rlang::quo_name) 

  } 

 

  ### Steen method required column names 

  if(method == "steen") { 

    assertable::assert_colnames(data = act_data, 

                    colnames = c("time", 

                                 "signal", 

                                 "substrate_conc"), 

                    only_colnames = FALSE, 

                    quiet = TRUE) 

 

 

  act_data_grouped <- act_data %>% 

    dplyr::group_by_at(dplyr::vars(intersect(names(.), columns))) %>% 

    dplyr::group_nest(.key = "act_raw_data_s") 

  } 
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  if(method == "german") { 

    assertable::assert_colnames(data = act_data, 

                    colnames = c("time", 

                                 "signal", 

                                 "substrate_conc", 

                                 "buffer_vol", 

                                 "homo_vol", 

                                 "soil_mass", 

                                 "assay_vol", 

                                 "homo_control", 

                                 "substrate_control"), 

                    only_colnames = FALSE, 

                    quiet = TRUE) 

 

    act_data_grouped <- act_data %>% 

      dplyr::group_by_at(dplyr::vars(intersect(names(.), columns))) %>% 

      dplyr::group_nest(.key = "act_raw_data_g") 

  } 

 

  class(act_data_grouped) <- c("new_ezmmek_act_group", "data.frame") 

 

  act_data_grouped 

 

} 
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Function III-4: new_ezmmek_std_group 

######## 

### Group standard lm objects 

######## 

 

new_ezmmek_std_group <- function(std.data.fn, 

                                 ..., 

                                 method = NA, 

                                 columns = NULL) { 

 

  ### Read in data 

  std_data <- read.csv(std.data.fn) 

 

  ### Use '...' arguments if column names not supplied in parent fxn 

  if(is.null(columns)) { 

    columns <- purrr::map_chr(rlang::enquos(...), rlang::quo_name) 

  } 

 

  ### Group standard data 

  std_data_grouped <- ezmmek_std_lm(std_data, 

                                    columns = columns, 

                                    method = method) 

 

  ### Assign new class 

  class(std_data_grouped) <- c("new_ezmmek_std_group", "data.frame") 

 

  std_data_grouped 

 

} 
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Function III-5: ezmmek_calc_mm_fit 

######## 

### Calculate nls fit model 

######## 

ezmmek_calc_mm_fit <- function(df, 

                               km, 

                               vmax) { 

 

  ### If statements to adjust column names 

  if("act_calibrated_data_g" %in% colnames(df)) { 

    df <- df %>% dplyr::rename(act_calibrated_data = act_calibrated_dat

a_g) 

  } 

 

  if("act_calibrated_data_s" %in% colnames(df)) { 

    df <- df %>% dplyr::rename(act_calibrated_data = act_calibrated_dat

a_s) 

  } 

 

  ### Michaelis-Menten formula 

  mm_form <- formula(activity_m ~ (vmax * substrate_conc) / 

                       (km + substrate_conc)) 

 

  ### Assign starting values to predict km and vmax 

  max_activity_m <- purrr::map_dbl(df$act_calibrated_data, function(df) 

max(df[[8]])) 

  median_substrate_conc <- purrr::map_dbl(df$act_calibrated_data, funct

ion(df) median(df[[1]])) 

 

  ### If km and vmax arguments are NULL, predict km and vmax values 

  if(is.null(km) | is.null(vmax)) { 

 

    mm_fit <- nls2::nls2(formula = mm_form, data = df$act_calibrated_da

ta[[1]], 



75 

                         start = list(vmax = max_activity_m, km = media

n_substrate_conc)) 

 

    ### Else rely on user defined km and vmax 

  } else { 

 

    ### Michaelis-Menten formula 

    mm_fit <- nls2::nls2(formula = mm_form, data = df$act_calibrated_da

ta[[1]], 

                         start = list(vmax = vmax, km = km)) 

  } 

 

  ### Create a 1-column data frame with a 'grid' of points to predict 

  min_substrate_conc <- purrr::map_dbl(df$act_calibrated_data, function

(df) min(df[[1]])) 

  max_substrate_conc <- purrr::map_dbl(df$act_calibrated_data, function

(df) max(df[[1]])) 

  pred_grid <- data.frame(substrate_conc = seq(from = min_substrate_con

c, to = max_substrate_conc, length.out = 1000)) 

 

  out_list <- list(mm_fit = mm_fit, 

                   pred_grid = pred_grid) 

 

  out_list 

 

} 
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Function III-6: ezmmek_calibrate_activities 

######## 

### Calibrate activities by standard curve data 

######## 

 

ezmmek_calibrate_activities <- function(df, method, columns) { 

 

  if(method == "steen") { 

    ### Calibrates raw activity data by standard curve 

    std_act_calibrated <- df %>% 

      tidyr::unnest(act_raw_data_s) %>% 

      dplyr::mutate(signal_calibrated = ((signal - kill_control) - std_

lm_homo_intercept) / std_lm_homo_slope) %>% #calibrate signal 

      tidyr::nest(act_calibrated_data = c(time, signal, kill_control, s

ignal_calibrated)) %>% #place calibrated signal back in nested df 

      dplyr::mutate(activity = purrr::map_dbl(act_calibrated_data,  #ca

lculate slope of calibrated data 

                                              function(df) coef(lm(sign

al_calibrated ~ time, 

                                                                   data 

= df))[2]) * assay_vol) %>% 

      dplyr::group_by_at(dplyr::vars(substrate_conc, substrate_type, in

tersect(names(.), columns))) %>% 

      dplyr::mutate(activity_m = mean(activity), #calculate means and s

d's of activities 

                    activity_sd = sd(activity)) %>% 

      tidyr::unnest(act_calibrated_data) %>% 

      tidyr::nest(act_calibrated_data_s = c(substrate_conc, 

                           replicate, 

                           time, 

                           signal, 

                           kill_control, 

                           signal_calibrated, 

                           activity, 

                           activity_m, 
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                           activity_sd)) 

  } 

 

  if(method == "german") { 

    std_act_calibrated <- df %>% 

      tidyr::unnest(act_raw_data_g) %>% 

      dplyr::mutate(emission_coef = std_lm_homo_slope / assay_vol, #emi

ssion coefficient 

                    net_signal = (signal - homo_control) / quench_coef 

- substrate_control, #net signal 

                    activity = (net_signal * buffer_vol) / (emission_co

ef * homo_vol * time * soil_mass)) %>% #activity 

      dplyr::group_by(substrate_conc) %>% 

      dplyr::mutate(activity_m = mean(activity), activity_sd = sd(activ

ity)) %>% #mean and sd of activity 

      tidyr::nest(act_calibrated_data_g = c(substrate_conc, 

                                          replicate, 

                                          time, 

                                          signal, 

                                          buffer_vol, 

                                          homo_vol, 

                                          soil_mass, 

                                          assay_vol, 

                                          homo_control, 

                                          substrate_control, 

                                          net_signal, 

                                          activity, 

                                          activity_m, 

                                          activity_sd)) 

 

  } 

  std_act_calibrated 

} 
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Function III-7: ezmmek_std_lm 

######## 

### Calculate standard curve linear models 

######## 

ezmmek_std_lm <- function(df, 

                          method = method, 

                          columns = NULL) { 

 

  ### Stop function if method is not assigned approriately 

  if( 

    !(method == "steen") & !(method == "german") 

  ) { 

    stop("method must equal 'steen' or 'german'") 

  } 

 

  if("std_conc" %in% columns) { 

    stop("Cannot group arguments used to calculate linear model ('std_c

onc', 'homo_signal', 'buffer_signal')") 

  } 

 

  ### Steen method 

  if(method == "steen") { 

 

    ### Require certain column names 

    assertable::assert_colnames(data = df, 

                                colnames = c("std_conc", 

                                             "homo_signal"), 

                                only_colnames = FALSE, 

                                quiet = TRUE) 

 

    ###### Groups data by user-decided column names 

    ######### Creates dataframe containing lm list for each unique set 

of grouped column 

    std_data_lm <- df %>% 
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      dplyr::group_by_at(dplyr::vars(intersect(names(.), columns))) %>% 

      dplyr::group_nest(.key = "std_raw_data_s") %>% 

      dplyr::mutate(std_lm_homo_obj = purrr::map(std_raw_data_s, functi

on(df) ezmmek_calc_std_lm_homo(df)), #homogenate lm 

                    std_lm_homo_slope = purrr::map_dbl(std_raw_data_s, 

function(df) coef(ezmmek_calc_std_lm_homo(df))[2]), #homogenate slope 

                    std_lm_homo_intercept = purrr::map_dbl(std_raw_data

_s, function(df) coef(ezmmek_calc_std_lm_homo(df))[1]) #homogenate inte

rcept 

      ) 

  } 

 

  ### German method 

  if(method == "german") { 

 

    ### Require certain column names 

    assertable::assert_colnames(data = df, 

                                colnames = c("std_conc", 

                                             "homo_signal", 

                                             "buffer_signal"), 

                                only_colnames = FALSE, 

                                quiet = TRUE) 

 

    ###### Groups data by user-decided column names 

    ######### Creates dataframe containing lm list for each unique set 

of grouped column 

    std_data_lm <- df %>% 

      dplyr::group_by_at(dplyr::vars(intersect(names(.), columns))) %>% 

      dplyr::group_nest(.key = "std_raw_data_g") %>% 

      dplyr::mutate(std_lm_homo_obj = purrr::map(std_raw_data_g, functi

on(df) ezmmek_calc_std_lm_homo(df)), #homogenate lm 

                    std_lm_homo_slope = purrr::map_dbl(std_raw_data_g, 

function(df) coef(ezmmek_calc_std_lm_homo(df))[2]), #homogenate slope 

                    std_lm_homo_intercept = purrr::map_dbl(std_raw_data

_g, function(df) coef(ezmmek_calc_std_lm_homo(df))[1]), #homogenate int

ercept 
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                    st_lm_buffer_obj = purrr::map(std_raw_data_g, funct

ion(df) ezmmek_calc_std_lm_buffer(df)), #buffer lm 

                    std_lm_buffer_slope = purrr::map_dbl(std_raw_data_g

, function(df) coef(ezmmek_calc_std_lm_buffer(df))[2]), #buffer slope 

                    std_lm_buffer_intercept = purrr::map_dbl(std_raw_da

ta_g, function(df) coef(ezmmek_calc_std_lm_buffer(df))[1]), #buffer int

ercept 

                    quench_coef = std_lm_homo_slope / std_lm_buffer_slo

pe #quench coefficient 

      ) 

  } 

 

  std_data_lm 

 

} 
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Function III-8: ezmmek_calc_lm_buffer 

######## 

### Make standard curve lm object for buffer 

######## 

 

ezmmek_calc_std_lm_buffer <- function(df) { 

 

  ### Fit linear model to buffer 

  std_curve_lm_buffer <- lm(formula = buffer_signal ~ std_conc, data = 

df) 

 

  std_curve_lm_buffer 

 

} 
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Function III-9: ezmmek_calc_lm_homo 

######## 

### Make standard curve lm object for homogenate 

######## 

 

ezmmek_calc_std_lm_homo <- function(df) { 

 

  ### Fit linear model to homogenate 

  std_curve_lm_homo <- lm(formula = homo_signal ~ std_conc, data = df) 

 

  std_curve_lm_homo 

} 
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Function III-10: plot_new_ezmmek_sat_fit 

plot.new_ezmmek_sat_fit <- function(df, ...) { 

 

  ### User-defined columns to facet by 

  columns <- rlang::enquos(...) 

 

  ### Plot points without curve fit 

  point_plot <- plot.new_ezmmek_calibrate(df, columns = columns) 

 

  ### Unnest predicted activities df 

  unnest_sat_df <- tidyr::unnest(df, pred_activities) 

 

  sat_fit_plot <- point_plot + 

    ggplot2::geom_line(data = unnest_sat_df, 

                       ggplot2::aes(x = substrate_conc, y = activity_m)

) + 

    ggplot2::facet_wrap(columns) 

 

  sat_fit_plot 

 

} 
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Function III-11: plot_new_ezmmek_calibrate 

plot.new_ezmmek_calibrate <- function(df, ..., columns = NULL) { 

 

  ### User-defined columns to facet by if column names not supplied by 

parent fxn 

  if(is.null(columns)) { 

    columns <- rlang::enquos(...) 

  } 

 

 

  ### Correct for different column names with 'if' statements 

  ### German protocol 

  if("act_calibrated_data_g" %in% colnames(df)) { 

    df <- df %>% dplyr::rename(act_calibrated_data = act_calibrated_dat

a_g, 

                               std_raw_data = std_raw_data_g) 

  } 

 

  ### Steen protocol 

  if("act_calibrated_data_s" %in% colnames(df)) { 

    df <- df %>% dplyr::rename(act_calibrated_data = act_calibrated_dat

a_s, 

                               std_raw_data = std_raw_data_s) 

  } 

 

  ### Unnest activity data 

  unnest_cal_df <- tidyr::unnest(df, act_calibrated_data) 

 

  ### Make plot of activity data 

  cal_plot <- ggplot2::ggplot(data = unnest_cal_df, 

                              mapping = ggplot2::aes(x = substrate_conc

, 

                                                     y = activity_m)) + 

    ggplot2::geom_point() + 
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    ggplot2::geom_errorbar(ggplot2::aes(ymin = activity_m - activity_sd

, 

                                        ymax = activity_m + activity_sd

)) + 

    ggplot2::theme_bw() + 

    ggplot2::facet_wrap(columns) 

 

cal_plot 

 

} 
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Function III-12: plot_new_ezmmek_act_group 

plot.new_ezmmek_act_group <- function(df, ...) { 

 

  ### User-defined columns to facet by 

  columns <- rlang::enquos(...) 

 

  ### Use 'if' statements to adjust column names 

  ### German protocol 

  if("act_raw_data_g" %in% colnames(df)) { 

    df <- df %>% dplyr::rename(act_raw_data = act_raw_data_g) 

 

    unnest_act_df <- tidyr::unnest(df, act_raw_data) 

 

    ### Make plot 

    act_plot <- ggplot2::ggplot(data = unnest_act_df, 

                                mapping = ggplot2::aes(x = substrate_co

nc, 

                                                       y = signal, 

                                                       color = as.facto

r(replicate))) + 

      ggplot2::geom_point() + 

      ggplot2::theme_bw() + 

      ggplot2::scale_color_discrete(name = "replicate") + 

      ggplot2::facet_wrap(columns) 

 

    } 

 

  ### Steen protocol 

  if("act_raw_data_s" %in% colnames(df)) { 

    df <- df %>% dplyr::rename(act_raw_data = act_raw_data_s) 

 

    unnest_act_df <- tidyr::unnest(df, act_raw_data) 

 

    ### Make plot 
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    act_plot <- ggplot2::ggplot(data = unnest_act_df, 

                                mapping = ggplot2::aes(x = time, 

                                                       y = signal, 

                                                       color = as.facto

r(replicate))) + 

      ggplot2::geom_point() + 

      ggplot2::geom_smooth(method = "lm") + 

      ggplot2::theme_bw() + 

      ggplot2::scale_color_discrete(name = "replicate") + 

      ggplot2::facet_wrap(columns) 

 

    } 

 

    act_plot 

 

} 
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Function III-13: plot_new_ezmmek_std_group 

plot.new_ezmmek_std_group <- function(df, ...) { 

 

  ### User-defined columns to facet by 

  columns <- rlang::enquos(...) 

 

 

  ### German protocol 

  if("std_raw_data_g" %in% colnames(df)) { 

 

    homo_plot <- ggplot2::ggplot(data = tidyr::unnest(df, std_raw_data_

g), 

                                 mapping = ggplot2::aes(x = std_conc, y 

= homo_signal)) + 

      ggplot2::geom_point() + 

      ggplot2::geom_smooth(method = "lm") + 

      ggplot2::theme_bw() + 

      ggplot2::facet_wrap(columns) 

 

    buffer_plot <- ggplot2::ggplot(data = tidyr::unnest(df, std_raw_dat

a_g), 

                                   mapping = ggplot2::aes(x = std_conc, 

y = buffer_signal)) + 

      ggplot2::geom_point() + 

      ggplot2::geom_smooth(method = "lm") + 

      ggplot2::theme_bw() + 

      ggplot2::facet_wrap(columns) 

 

    print(homo_plot) 

    print(buffer_plot) 

 

    out_list <- list(std_homo_plot = homo_plot, 

                     std_buffer_plot = buffer_plot) 

    out_list 
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  } 

 

  ### Steen protocol 

  if("std_raw_data_s" %in% colnames(df)) { 

 

    ### Make plot 

    homo_plot <- ggplot2::ggplot(data = tidyr::unnest(df, std_raw_data_

s), 

                                 mapping = ggplot2::aes(x = std_conc, y 

= homo_signal)) + 

      ggplot2::geom_point() + 

      ggplot2::geom_smooth(method = "lm") + 

      ggplot2::theme_bw() + 

      ggplot2::facet_wrap(columns) 

 

    homo_plot 

 

  } 

 

} 
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CONCLUSION 

 
Extracellular enzyme assays are useful tools for studying microbial ecology, but 

the practice of broad methodologies inhibits studies from being intercomparable and 

reproducible. The extracellular enzyme assay protocol has the potential to impact the 

measurement of key parameters related to enzyme kinetics, notably the KM and VMax 

values. ezmmek provides a useful platform to compare those impacts reproducibly. 

Preliminary comparisons suggest that the IBC Protocol may be more error prone than the 

ISC Protocol, but more robust analyses must be performed before this observation can be 

considered conclusive. We hope that ezmmek will be adopted by enzyme assay 

practitioners to standardize their methodologies, regardless of which protocol they prefer 

to use.  

L. rhamnosus GG produces L-Leucine aminopeptidases following the ISC 

Protocol. Under the IBC Protocol, this conclusion would likely remain intact, albeit the 

calculated activities between protocols could differ by orders of magnitude. At this time, 

confident recommendations cannot be made as to which extracellular enzyme assay 

protocol should be applied to MC-LR and other organic matter degradation studies. We 

suggest that enzyme assay practitioners be explicit about how their activity measurements 

were collected, in such a way that their results can be reproduced by another party. More 

confident recommendations may develop in the future, as more robust analyses are 

performed to compare protocols. 
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