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ABSTRACT 

Spontaneous imbibition (SI) is a capillary-driven flow process, in which a wetting 

fluid enters a porous medium displacing a preexisting non-wetting fluid. In low-porosity 

rocks SI generally occurs slowly within the matrix. However, fractured low-porosity 

rocks allow pathways for rapid SI to occur which can directly influence oil and gas 

recovery, fracturing fluid loss, leakage from deep waste storage repositories, and the 

degradation of building materials. Previous research has typically focused on the 

measurement and modeling of SI in high porosity systems, with little attention given to 

low-porosity rocks. Furthermore, SI models generally idealize a fracture as a gap formed 

between parallel flat surfaces, disregarding fracture roughness. Here, a new analytical 

model was derived for the early-time SI behavior within a fracture bounded by parallel 

rough fractal surfaces. The model was tested by fitting it to experimental data for the SI 

of deionized water into air-filled fractures collected on a suite of low-porosity rocks 

(Burlington Limestone, Crossville Sandstone, Mancos Shale, Sierra White Granite, 

Vermilion Bay Granite, and Westerly Granite). The SI data were obtained using dynamic 

neutron radiography at ORNL’s Neutron Imaging Facility (beam CG-1D, HFIR). Height of 

wetting versus time was delineated using change point analysis. The fracture aperture 

width and fracture sorptivity were also quantified. Among all rock types, geometric 

mean aperture widths ranged from 84 to 205 m, with igneous cores producing larger 

apertures than sedimentary cores. Wetting fronts within the fractures generally 

exhibited a square-root of time behavior. Fracture sorptivity values ranged from 13.2 to 

33.7 mm·s-0.5 with sedimentary cores yielding higher values than igneous cores. 

Differences in fracture surface roughness explained the majority of the variance in the 

fracture sorptivity values. The newly-derived fractal model fitted the experimental SI 

data very well for all cores investigated. Inversely estimated surface fractal dimensions, 

𝐷, all fell within the theoretical bounds of 2 ≤ 𝐷 < 3, thereby validating this modeling 

approach for fractured low-porosity rocks. Future research should focus on forward 
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prediction of SI through independent measurements of 𝐷 and extension of the fractal SI 

model to late-times through the inclusion of gravity. 
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Chapter 1 
Overview of Spontaneous Imbibition within Fractured Porous 

Media 

1.1 Introduction 

Low-porosity rocks, such as some shales, limestones, and granites, tend to inhibit 

the flow of fluids. However, these low-porosity rocks, if fractured, allow passageways 

for potential fluid flow. Many researchers have studied the flow of fluids through 

fractures within concretes and rocks under pressured, saturated conditions (e.g., 

Kanematsu et al., 2009; Karpyn et al, 2009; Rangel-German and Kovscek, 2002). 

However, relatively little research has been done to study the hydraulic properties of 

fractured low-porosity rocks under partially-saturated conditions.  

In unsaturated porous media, a phenomenon known as spontaneous imbibition 

has the potential to drive fluid flow. Spontaneous imbibition occurs when a wetting 

phase fluid (e.g., water, brine) moves into a porous medium, displacing the pre-existing 

non-wetting fluid (e.g., air, natural gas, oil). This process is driven by capillary action 

within the network of pores (Morrow and Mason, 2001; Schmid et al., 2012).  

Many researchers have studied rates of spontaneous imbibition within porous 

media (e.g., Hall, 1989; Taha et al., 2001; Hanzic and Ilic, 2003). Research has generally 

focused on construction materials such as mortar, masonry brick, and dry concrete 

using the rate of spontaneous imbibition as a measure of potential durability 

(Lockington and Parlange, 2003). However, a recent study by Kang et al. (2013) used 

neutron radiography to quantify the rate of spontaneous imbibition within a sandstone. 

Researchers have shown that spontaneous imbibition is much faster in fractures 

than in the surrounding matrix (Hall, 2013; Cheng et al., 2015; Tokunaga and Wan, 2001; 

Şahmaran et al., 2009) (see Figure 1). Cheng et al. (2015) investigated the spontaneous 

imbibition of water into fractured unsaturated Berea Sandstone cores. These cores 

ranged in porosities from 19 to 25% and revealed rapid imbibition within the fractured 

zone relative to the porous matrix. This study focused solely on a high-porosity rock 
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type. Further research is needed to assess the behavior of spontaneous imbibition 

within low-porosity fractured rocks, where matrix imbibition is minimal. I hereby seek to 

extend this previous research by measuring and modeling the spontaneous imbibition of 

water within fractured unsaturated low-porosity rocks.  

1.2 Relevance to Industry etc.  

It is important to understand the hydraulic properties of fractured low-porosity 

rocks, and their influence on spontaneous imbibition rates, as applied to various 

industrial applications. This phenomenon has been shown to play a role in enhanced oil 

and gas extraction (Dehghanpour et al., 2013; Morrow et al., 2001), hydraulic fracturing 

leak-off (Ghanbari et al., 2016), storage of potentially hazardous wastes within the deep 

vadose zone (Gaurina-Medimurec et al., 2017), and water damage to the foundations of 

buildings or other engineered structures (Bao et al., 2017).  

1.2.1 Enhanced Oil and Gas Recovery 

 Spontaneous imbibition has long been considered as an important mechanism in 

enhancing oil recovery in fractured conventional oil and gas reservoirs (Rangel-German 

and Kovscek, 2002). While the fractures may be significantly more hydraulically 

conductive than the matrix, often the majority of fluids (e.g. oil, gas) reside in the matrix 

relative to fractures. Thus, water is typically injected into a fractured reservoir with the 

intent of allowing spontaneous imbibition to displace the non-wetting phase oil and gas 

within the pore spaces. The displaced oil and gas can then enter fractures where the 

fluids can move much more easily than through pore spaces (Rangel-German and 

Kovscek, 2002). Thus, through the process of spontaneous imbibition, the recovery of oil 

and gas can be enhanced.  

 While enhanced oil and gas recovery discussed above focuses primarily on 

imbibition within the porous matrix, a better understanding the hydraulic properties of 

fractured low-porosity reservoir rocks and their influence on spontaneous imbibition 

rates may be of benefit to future oil and gas recovery research within unconventional 
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reservoirs. Unconventional reservoirs, or oil and gas bearing rock formations with low 

porosity/permeability, are growing in economic importance. These tight gas shales and 

sandstones require enhanced recovery methods to be commercially viable. (Cui et al., 

2014; Alfarge et al., 2017). The main method used in exploiting these reservoirs is by 

hydraulic fracturing, also known as “fracking”. This method is based on horizontal 

drilling, and involves the injection of large volumes of water, chemical additives, and 

suspended solids (“proppants”) into the subsurface at high pressures (Osiptsov, 2017). 

As a result, fractures are induced within the source rocks, increasing their overall 

permeability (Li et al., 2015). The high rates of flow within the interconnected network 

of fractures facilitate more efficient recovery of oil and/or gas. Thus, a better 

understanding of the hydraulic properties of such fractured low-porosity reservoir rocks, 

and their influence on spontaneous imbibition rates, could aid in enhancing oil and gas 

recovery.  

1.2.2 Hydraulic Fracturing “Leakoff” 

As mentioned above, hydraulic fracturing is increasingly being used in fracturing 

and exploiting low permeability unconventional oil and gas reservoirs. This method 

requires a large amount of water containing chemical additives and suspended solids 

(Osiptsov, 2017) to be injected into horizontal wells. Often, only a small fraction of the 

injected fracturing fluid can be recovered (Ghanbari et al., 2016). This can range from as 

low as 5% recovered fluid, as seen in the Haynesville Shale, to as high as 50%, as 

reported in the Barnett and Marcellus Shales (Cheng, 2012; King et al., 2012). This lost 

fluid is known as “leakoff,” and can have potential environmental impacts such as 

contamination of aquifers (Myers, 2012) and overuse of water resources (Vengosh et al., 

2014).  Ghanbari et al. (2016) noticed that the leakoff percentage was greatly increased 

for wells with an extended shut-in time, or when the amount of time the fluid is allowed 

to sit within the reservoir before initiating flow-back processes. This has been attributed 

to increased spontaneous imbibition within the reservoir (Ghanbari et al., 2016; 

Dehganpour et al., 2013). Thus, further measurement and modeling of spontaneous 
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imbibition within fractured low porosity rocks could provide insight into mitigating or 

reducing leakoff in unconventional reservoirs. 

1.2.3 Deep Waste Repositories 

Deep geological repositories are often used to contain unwanted or otherwise 

harmful substances such as chemical wastes and CO2 for extended periods of time. 

Repositories generally consist of natural geologic barriers (e.g. faults, low-permeability 

layers) bounding a porous storage formation (Suzuki et al., 2018; Gaurina-Međimurec et 

al., 2017). Often, an overlying low porosity or low permeability layer, referred to as a 

“caprock,” is crucial to the containment of the sequestered waste. In cases of carbon 

sequestration, a detailed risk assessment is performed in the determination of suitable 

storage formations and the integrity of caprocks (Intergovernmental Panel on Climate 

Change, 2005). For nuclear wastes, a combination of low-porosity rocks and engineered 

materials are used for deep storage (Suzuki et al., 2018). Rather than storing waste in 

porous rock formations, wastes are encapsulated in an engineered canister and then 

placed in a shaft within a host rock, typically a granite. A bentonite clay buffer is placed 

around the canister and is then overlain by a back-fill of clay and host rock material. 

Lastly, a concrete plug is used to seal the entire storage location (Suzuki et al., 2018; Kim 

et al., 2011). Several weaknesses such as fractures created during excavation as well as 

the presence of pre-existing natural fractures may provide potential migration 

pathways. These migration pathways within a caprock or low-porosity storage site could 

allow spontaneous imbibition to drive fluid flow of the respective waste, resulting in 

potential leakage and contamination (Gaurina-Međimurec et al., 2017, Kim et al., 2011). 

Thus, a better understanding of caprock and low porosity host rock materials, and their 

response to spontaneous imbibition in fractures, could help mitigate potential 

contamination and aid in the determination of suitable rock formations for deep waste 

repositories. 
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1.2.4 Damage to Engineered Structures 

Spontaneous imbibition has been shown to degrade building materials by 

repeated wetting within microcracks (Bao et al., 2017). As these building materials are 

rarely fully saturated, spontaneous imbibition is a likely process driving water 

movement within these fractures. Research has focused on imbibition within materials 

such as masonry bricks, concretes, mortars, and granites (Bao et al., 2017; Hall, 1989; 

Taha et al., 2001). Further understanding of common building materials such as granite 

and limestone and their response to spontaneous imbibition within fractures could aid 

in the determination of building materials and their overall durability and integrity.  

1.3 Goals, Objectives, and Hypotheses 

This study focuses on the hydraulic properties of unsaturated, fractured low-

porosity rocks. Its main goals are to measure and model spontaneous imbibition of 

water within individual fractures in such rocks. The objectives of this study are to:  

1. characterize the aperture width and tortuosity of fracture damage zones induced by 

compression of cylindrical rock cores between parallel flat plates 

2. visualize the spontaneous imbibition of water within the induced fracture damage 

zones 

3. quantify fracture sorptivity on a suite of low-porosity sedimentary and igneous rocks 

4. derive and test a theoretical model for early-time spontaneous imbibition (ignoring 

gravity) that incorporates fracture surface roughness. 

 

The specific hypotheses to be tested include: 

1. rock types will differ in fracture aperture width and tortuosity 

2. within the fracture zone, the wetting front will advance with the square-root of time  

3. rock types will differ in fracture sorptivity 

4. fractal geometry can be used to model fracture surface roughness 

5. fracture surface roughness will differ between rock types 
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Chapter 2 
Measurement of Fracture Sorptivity 

2.1 Introduction 

Spontaneous imbibition occurs when a wetting fluid enters a porous medium 

and displaces the non-wetting fluid. This process is driven by capillary action within 

pores (Morrow, 2001; Schmid et al., 2012). It is well known that the wetting height 

during spontaneous imbibition is related to time by Philip’s infiltration equation (Philip, 

1957; Cheng et al., 2015): 

𝐿 = 𝐶√𝑡                                                                            [2.1] 

In this equation, the height of wetting 𝐿 is directly proportional to the product of 

sorptivity 𝐶 and the square-root of time, 𝑡. Thus, the sorptivity is described by the 

wetting height over the square-root of time. In simple terms, sorptivity is essentially a 

measure of the rate of imbibition. 

Many researchers have investigated spontaneous imbibition in porous media, 

particularly focusing on measurement of the sorptivity parameter (Cheng et al., 2015; 

Hall, 1989; Schmid et al., 2012; Taha et al., 2001). The study of sorptivity has shown that 

it is a useful parameter to quantify the water uptake rate at both the small, individual 

pore scale, and at larger Darcian, multiple pore, scales (Cheng et al., 2015; Taha et al., 

2001). 

Sorptivity has been found to be a useful measure of spontaneous imbibition in 

fractured porous media. Hall (2013) used neutron radiography to qualitatively 

investigate the spontaneous imbibition of water in fractured porous media, comparing 

uptake in the fractures themselves with that in the surrounding matrix. It was found 

that the rate of imbibition was much faster in fractures than in the surrounding matrix 

(Hall, 2013). Cheng et al. (2015) built upon Hall’s findings and developed a theoretical 

model to quantitatively describe this difference, ultimately allowing the estimation of a 

sorptivity value for the fracture zone. These authors attributed the increase in 
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spontaneous imbibition within the fracture zone to early time capillary action, as well as 

surface spreading along the rough fracture surface (Cheng et al., 2015). 

Here I seek to measure spontaneous imbibition within the fracture zone of 

several types of low-porosity fractured rocks. The fracture sorptivity will be quantified 

for each respective rock type as a means to better understand potential differences in 

rates of imbibition among rock types. 

2.2 Materials and Methods 

2.2.1 Rock Cores 

Low-porosity rock cores were acquired from Kocurek Industries Inc. (Caldwell, 

TX), a commercial vendor. Several replicate cores were obtained for each rock type, 

allowing for a statistical analysis of the dataset. As similar rock types were used for 

experiments outlined in Chapter 2 (i.e. fracture sorptivity measurement) and in 

Chapters 3 and 4 (i.e. spontaneous imbibition model validation), it is to be noted that 

different cores were used for each respective experiment. All cores were 5.08 cm long 

by 2.54 cm in diameter and were obtained from surface outcrops with unknown 

locations (see Figure 2 for photographs of each core’s cross-section). The acquired cores 

consisted of both sedimentary and igneous rock types. The sedimentary cores included 

Burlington Limestone, Crossville Sandstone, and Mancos Shale (cored perpendicular to 

bedding). The igneous cores consisted of a suite of granites including Vermilion Bay 

Granite A, Vermilion Bay Granite B, Sierra White Granite, and Westerly Granite.  

Burlington Limestone (known commercially as “Carthage Marble”) is a fine- 

grained, gray to brown crystalline limestone. The permeability of Burlington Limestone 

varies between 4 × 10-18 and 7 × 10-18 m2 as described by Kocurek Industries Inc. 

Crossville sandstone (known commercially as “Crab Orchard sandstone”) was deposited 

during the Pennsylvanian period and is located in Kentucky and Tennessee, USA. It is a 

light-gray fine- to medium-grained sandstone with bands of red, yellow, brown and gray 

due to iron staining (Wanless, 1946). The permeability of Crossville sandstone varies 
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between 3 × 10-18 and 3 × 10-17 m2 (Gehne and Benson, 2017). The Mancos shale is an 

interbedded siltstone and shale located in New Mexico, Wyoming, and Utah, USA. It was 

deposited during the Late Cretaceous and has an estimated 595 billion cubic meters of 

recoverable gas (McLennan et al., 1983; U.S. Energy Information Administration, 2011).  

Its permeability varies between 3 × 10-17 and 9 × 10-19 m2 (Mokhtari and Tutuncu, 

2015). The Mancos samples were gray in color with light gray inter-bedding. Samples 

were taken both cored parallel and perpendicular to the bedding planes. 

Sierra White Granite is a granodiorite that was emplaced between the Permian 

and Tertiary periods (Jennings et al., 1977). Both Vermilion Bay Granite A and Vermilion 

Bay Granite B (known commercially as “Morning Rose” Granite and “North American 

Pink” Granite, respectively) are fine grained deep pink to light red alkali granites from 

Northwestern Ontario, Canada.  Westerly Granite is a fine grained gray to light gray 

granite located in Rhode Island, USA. It was likely emplaced in the Pennsylvanian period 

and ranges in composition from quartz monzonite to granodiorite. The granite is 

equigranular with an average grain size of 0.75 mm and a typical modal composition of 

28% quartz, 36% potassium feldspar, 31% plagioclase, and 5 % biotite (Wawersik and 

Brace, 1970; Quinn, 1971). The permeability of Westerly Granite is 6 × 10-20 m2 (Brace 

et al., 1968).  

The bulk density, solid phase density, and helium gas porosity of the cored 

samples were measured by Andrew Vial using the method of Donnelly et al. (2016). 

Intrinsic contact angles for deionized-water on polished flat surfaces of the different 

rock types were measured using the sessile drop method by Gates (2018). Wenzel 

roughness factors from the well-known Wenzel (1936) equation for the rock fracture 

surfaces, further referenced here as surface roughness, were measured using a Phenom 

Pro X scanning electron microscope (Phenom-World B.V., Eindhoven, Netherlands) by 

Gates (2018). Selected mean physical properties for the different rock types are given in 

Table 1. 
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2.2.2 Core Preparation 

Prior to neutron radiography, all of the cores were oven dried at 105°C for a 

period of 24 hours to bring each core to a zero initial moisture content (Ulusay and 

Hudson, 2007). Cores were then wrapped using Kapton® Tape. This ensures no-flow 

boundaries and helps to keep the fractured sample intact. Such tape is free of hydrogen 

compounds which would otherwise inhibit the ability to effectively image the imbibition 

of water using neutron imaging. The wrapped cores were then fractured using the 

Brazilian method which involves inducing a mode-I fracture, by applying a stress to the 

core as it is placed between parallel loading plates (Li et al., 2013, Cheng et al., 

2015)(refer to Figure 2 for cross-sectional views of the fractured cores). This was 

accomplished using a Carver Laboratory Press (Model M) with a 25 Ton Hydraulic Unit 

(Model #3925). The fractured cores were then placed into a humidity controlled 

container to minimize changes in their moisture content over time. 

2.2.3 Measurement of Fracture Aperture Width 

Fracture apertures, acting somewhat like capillary tubes, likely influence rates of 

water imbibition into the cores. As seen in porous media, faster early time imbibition of 

the wetting phase is seen in larger capillaries, while slower imbibition is seen in smaller 

capillaries (Shi et al., 2018). Thus, all fractured cores were characterized by their 

aperture widths to account for this potential influence.  

Images of both the bottom and top of the fractured core were taken with a high-

resolution camera. These images were then cropped to allow the edge of the image to 

be tangential to the edge of the core. Conversion from pixels to microns was achieved 

by measuring the dimensions of the cropped images in ImageJ (Schneider, 2012) and 

assuming the diameter of the cores to be exactly 25.4 mm. The width of the aperture 

was measured at 10 locations on a randomly-positioned superimposed square grid in 

ImageJ (see Figure 3). The measurement process was then repeated using a second 

randomly-positioned grid. Both the top and bottom images of the core were analyzed in 

this way, resulting in 40 aperture width measurements per core.  
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2.2.4 Dynamic Neutron Radiography 

Spontaneous imbibition data, or the height of wetting at a given time within the 

fracture zone, were obtained for each rock-type.  Neutron radiography is a novel way to 

obtain these data due to its ability to image the uptake of water within a fracture at 

reasonable frame rates. Neutron imaging was performed at the Neutron Imaging Facility 

(beam line CG-1D, HFIR) at ORNL. Data were collected in May 2017 utilizing the MCP 

detector. This detector has a pixel size of 55 m and a field of view of 28 x 28 mm2 (see 

Figure 4a). The detector yielded a relatively consistent frame rate of ~6 frames per 

second. 

To perform neutron radiography, the prepared oven-dried cores were placed 

individually in front of the neutron detector with the fracture plane parallel to the 

neutron beam-line. The cores were imaged while their bases were brought into contact 

with a deionized-water reservoir. The resulting imbibition within the fracture zone was 

visualized as a series of time-stamped radiographic images.  

Images from each core were analyzed to delineate the height of the wetting 

front with respect to time.  In ImageJ, (Schneider, 2012), images were first normalized to 

more easily see the uptake within the fracture zone. The normalization was done by 

dividing each image in the time sequence by the initial image before water contacted 

the base of the core. As no electronic noise is produced by the MCP detector, this 

process of normalization can be used effectively. Resulting normalized images allow for 

the delineation of the wetting front within the fracture zone at any given time (see 

Figure 4b). Once normalized, the core width (in pixels) was determined by three random 

measurements of the core within the image. Knowing the core width to be 25.4 mm, the 

average pixel length of the core width was converted to millimeters. Using this 

conversion, the visible rise in uptake for each image in the sequence was measured 

three times in ImageJ and then averaged yielding the height of wetting in millimeters for 

each respective time. 
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2.2.5 Fracture Sorptivity Estimation 

Due to the rapidity of the spontaneous imbibition phenomenon, coupled with 

the relatively low frame rate of the MCP detector, only between 3 and 11 pairs of 

wetting height and corresponding time values were obtained for each core. To see how 

the different rock-types compare in their fracture imbibition rates, fracture sorptivity 

values were quantified from the data collected. This was accomplished by first plotting 

the square-root of time as the independent variable and the height of wetting as the 

dependent variable for each respective core. If a linear relationship existed between 

these variables, then the fracture sorptivity was obtained by linear regression, with the 

slope of the linearly regressed line forced through the origin denoting the fracture 

sorptivity (Culligan et al., 2005; Taha et al., 2001). The coefficient of determination, R2, 

was used to assess the strength of the linear relationship. If the R2 was less than 0.9, 

showing a relatively poor linear relationship between the height of wetting versus the 

square-root of time, the resulting fracture sorptivity value was excluded from further 

analyses.  

2.2.6 Statistical Analyses 

Analyses of variance (ANOVA) were performed on the measured aperture widths 

and the calculated fracture sorptivity values to compare mean values between rock 

types. Post hoc Tukey HSD (honestly significant difference) tests were used to test 

equivalency of mean values between pairs of rock types. Relationships between 

variables such as mean sorptivity, geometric mean aperture width, mean bulk density, 

average contact angle, average solid phase density, mean porosity, and mean fracture 

roughness were explored using correlation coefficients (r) among rock types. It is to be 

noted that many of these values were not measured for the Mancos Shale (parallel) 

cores. Thus, this rock type was excluded from the correlation investigation. Statistical 

significance was assessed at the p < 0.05 level. Due to limited number of observations, 

p-values for the correlations were not corrected for multiple comparisons. All of the 

statistical analyses were performed in the R software environment (R Core Team, 2016). 
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2.3 Results 

The distributions of the aperture widths were right skewed for all rock types (see 

Figure 5). For statistical analysis, aperture width data were log-transformed to satisfy 

ANOVA assumptions (Figure 6). Analysis of variance performed on the log-transformed 

values indicated significant differences (at p < 0.05) among the rock types. The results 

were then back-transformed to give geometric mean aperture widths. Among all rock 

types, the geometric mean aperture width ranged from 84 to 205 m (Table 2). Post hoc 

comparisons using the Tukey HSD indicated four groupings with statistically similar 

geometric mean aperture widths among the rock types (see Table 2).  

Height of wetting within the fracture consistently portrayed a square-root of 

time behavior (Figure 7). Sorptivity values were quantified from the slopes of regression 

lines fitted to the height versus square root of time data from the neutron imaging 

measurements. Typical fits and regression models are shown in Figure 7. After removing 

fits with R2 values < 0.9 shown in table 3, sorptivity values were averaged over several 

replicate cores per rock type, and are given in Table 4. 

Among rock types, sorptivity values ranged from 13.2 to 33.7 mm·s-0.5 with an 

overall average of 24.1 mm·s-0.5. ANOVA indicated significant differences in average 

sorptivity values among rock types (at p < 0.05). Based on the Tukey HSD test, four 

groupings with statistically similar mean sorptivity values were distinguished among 

rock types (see Table 4 and Figure 8).  

Statistically significant relationships (at p < 0.05) were found between geometric 

mean aperture width and porosity as well as between geometric mean aperture width 

and bulk density. Geometric mean aperture widths were negatively correlated to 

porosity and positively correlated to bulk density. Sorptivity was negatively correlated 

with the Wenzel roughness factor (see Figure 9). 
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2.4 Discussion and Conclusions 

As can be seen in Table 2, the igneous rocks generally produced larger aperture 

widths, with geometric means ranging from 125 to 205 m, relative to the sedimentary 

samples. Among igneous rocks, Westerly Granite yielded the largest aperture width, 

followed by Sierra White Granite, and Vermilion Bay Granite A, with geometric means of 

205, 176, and 166 m, respectively. The Vermilion Bay Granite B produced the smallest 

aperture among igneous rocks with a geometric mean aperture width of 125 m. The 

sedimentary rocks generally had narrower aperture widths, with geometric means for 

the sandstone and shales ranging from 84 to 89 m. The Burlington Limestone, 

however, yielded wider fracture apertures than the other sedimentary rocks, and even 

the majority of igneous rocks, with a geometric mean aperture of 191 m. This 

distinction among igneous and sedimentary rocks in aperture width could potentially be 

due to differences in porosity as indicated by the correlation coefficient (r) in Figure 9. 

As indicated by the negative correlation between geometric mean aperture width and 

porosity, wider fractures were generally produced in lower porosity rocks. As porosity 

increases, the presence of larger void spaces may alter the width of an induced fracture. 

The positive correlation between geometric mean fracture width and solid phase 

density (Figure 9) indicates that mechanical properties related to the mineralogy of the 

rock may also play a potential role in influencing the width of the fracture aperture. 

Mean fracture sorptivity values ranged from 13.2 mm·s-0.5 to 33.7 mm·s-0.5 (Table 

4).  Although no significant correlation existed between sorptivity and fracture aperture 

width, the igneous cores, which generally had larger aperture widths, tended to have 

lower sorptivity values (refer to Figure 8). The Westerly Granite, however, yielded a 

much higher sorptivity relative to the other granites. The sedimentary cores, having a 

relatively smaller aperture width, tended to have higher sorptivity values. Shi et al. 

(2018) suggested that pores with greater widths should imbibe faster than pores of a 

smaller width within a porous material. It seems that within fracture zones, however, 

this trend does not always hold true. Here the Mancos Shale (parallel) had nearly the 
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smallest aperture width, but yielded nearly the highest sorptivity. It seems that other 

factors, such as contact angle and fracture surface roughness, may play a larger role in 

influencing the fracture imbibition rate. 

This can be seen from the correlation coefficient (r) in Figure 9, indicating a 

negative correlation between fracture sorptivity and Wenzel roughness factor. This 

indicates that fracture sorptivity tends to decrease as roughness increases among these 

rock types as shown in Figure 10. In general, among the given rock types, granites tend 

to be rougher, yielding relatively lower fracture sorptivity. Sedimentary rocks tend to 

have less roughness relative to granites and yield higher fracture sorptivity. To my 

knowledge, no studies have focused on the influence of fracture surface roughness on 

spontaneous imbibition within fracture zones. Many studies have focused on the 

influence of fracture surface roughness on fluid flow in saturated conditions where the 

hydrostatic pressure is greater than atmospheric pressure (Koyama et al., 2008; Huang 

et al., 2017; Huang et al., 2018). For example, Huang et al. (2018) noticed that the flow 

path inside rough fractures shear bands greatly reduces permeability in saturated 

conditions. Because of this, fluid flow tends to disperse into pathways perpendicular to 

the rough fracture path where permeability can be much larger (Huang et al., 2018). 

Similarly, Brown (1987) noted that flow through rough fracture surfaces yielded flow 

rates between 70 and 90% of that estimated from models incorporating smooth parallel 

plate fractures. Thus, we see that under saturated conditions, roughness tends to slow 

fluid flow within the fracture zone. 

In the current study, a zero gauge pressure is used where fluid flow is driven by 

capillary action. While this study was not performed under saturated flow, similar 

principles likely apply in regards to the influence of roughness on fluid flow. Here, low-

porosity rocks were used, which inhibit imbibition perpendicular to the fracture during 

early time spontaneous imbibition. Thus, fracture spontaneous imbibition is restricted 

to the fracture zone. Much like that seen in saturated flow, as the roughness of the 

fracture surface increases, perhaps, the pathway inside the rough fracture decreases 
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permeability and increases tortuosity relative to that of smoother fractures. As the 

porosity of the rocks is quite low, spontaneous imbibition is focused only within the 

rough fracture zone, with no potential for lateral dispersion. Thus, the increased 

fracture surface roughness has potential to yield a lower relative sorptivity.  

A recent study by Vogler et al. (2017) suggested that the Brazilian test, a test to 

produce tensile fractures by exceeding the tensile strength of the rock, produced mode-

I fractures dominated by intragranular cracks in smaller core sizes (diameter < 2.5cm). 

On a small scale, the intragranular cracks tend to form jagged surfaces, increasing 

roughness (Vogler et al., 2017). In the present study, relatively small core sizes were 

employed, thus intragranular cracks may be the dominant way in which tensile fractures 

were produced rather than following grain boundaries. Thus, surface roughness may be 

increased in samples in which intragranular cracks dominate. These intragranular cracks 

were clearly seen within the larger grained granite cores. Qualitatively, cores with 

smaller grain sizes seem to have increased sorptivity values (see Figure 11). Perhaps, 

among these cores, those with smaller grain sizes tend to produce fractures that follow 

grain boundaries while cores with larger grains tend to produce jagged fractures from 

intragranular cracks. This potential difference in roughness may explain some of the 

observed differences in sorptivity. 

Lastly, another potential driver in determining rates of fracture imbibition is 

chemical composition, and its effect on contact angle. Overall, there was no significant 

relationship between intrinsic contact angle and fracture sorptivity (Figure 9). However, 

the Vermilion Bay Granites and the Sierra White Granite all have relatively similar 

chemical compositions. According to the Tukey HSD test, these samples group together 

sharing lower sorptivity values (refer to Figure 8). The Westerly Granite is, however, 

anomalously higher in sorptivity. Thus, it seems that an interplay of both surface 

fracture roughness and mineralogy of the rock types play a large role in influencing 

spontaneous imbibition within the fracture zone. Future studies of this nature should 

include a larger number of samples of diverse rock types to provide a more robust 
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statistical evaluation of relationships between fracture sorptivity and physicochemical 

properties.  
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Chapter 3 
A Fractal Model for Spontaneous Imbibition: Theory and 

Experimental Validation 

A slightly modified version of this chapter has been accepted for publication in 

the journal, Fractals: Brabazon, J.W., E. Perfect, C.H. Gates, L.J. Santodonato, I. Dhiman, 

H.Z. Bilheux, J.-C. Bilheux, and L.D. McKay. 2018. Spontaneous Imbibition of a Wetting 

Fluid into a Fracture with Opposing Fractal Surfaces: Theory and Experimental 

Validation. Fractals. (in press). 

Spontaneous imbibition (SI) is a capillary-driven flow process, in which a wetting 

fluid moves into a porous medium displacing an existing non-wetting fluid. This process 

likely contributes to the loss of fracking fluids during hydraulic fracturing operations. It 

has also been proposed as a method for enhanced recovery of hydrocarbons from 

fractured unconventional reservoirs. Numerous analytical and numerical approaches 

have been employed to model SI. Invariably, these idealize a fracture as the gap formed 

between parallel flat surfaces. In reality, rock fracture surfaces are rough over multiple 

scales, and this roughness will influence the contact angle and rate of fluid uptake. We 

derived an analytical model for the early-time SI behavior within a fracture bounded by 

parallel impermeable surfaces with fractal roughness assuming laminar flow. The model 

was tested by fitting it to experimental data for the SI of deionized water into air-filled 

rock fractures. Twenty cores from 2 rock types were investigated: a tight sandstone 

(Crossville) and a gas shale (Mancos). A simple mode-I longitudinal fracture was 

produced in each core by compressive loading between parallel flat plates using the 

Brazilian method. Half of the Mancos cores were fractured perpendicular to bedding, 

while the other half were fractured parallel to bedding. The two main parameters in the 

SI model are the mean separation distance between the fracture surfaces, �̅�, and the 

fracture surface fractal dimension 2 ≤ 𝐷 < 3. The �̅� was estimated for each core by 

measuring the geometric mean fracture aperture width through image analysis of the 

top and bottom faces, while 𝐷 was estimated inversely by fitting the SI model to 
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measurements of water uptake obtained using dynamic neutron radiography. The �̅� 

values ranged from 45 to 190 m, with a median of 93 m. The SI model fitted the 

height of uptake versus time data very well for all of the rock cores investigated; 

medians of the resulting root mean squared errors and coefficients of determination 

were 0.99 mm and 0.963, respectively. Estimates of 𝐷 ranged from 2.04 to 2.45, with a 

median of 2.24. Statistically, all of the 𝐷 values were significantly greater than two, 

confirming the fractal nature of the fracture surfaces. Future research should focus on 

forward prediction through independent measurements of 𝐷 and extension of the 

existing SI model to late times (through the inclusion of gravity) and fractures with 

permeable surfaces.  

3.1 Introduction 

Unconventional reservoirs are oil and/or gas producing rock formations that 

require the implementation of enhanced recovery methods to be commercially viable. 

They include low permeability gas shale’s and tight gas sandstones, and are of growing 

economic importance (Cui et al., 2014; Alfarge et al., 2017). The development of 

hydraulic fracturing, or “fracking,” technology has been the key to exploiting 

unconventional reservoirs. This method is based on horizontal drilling, and involves the 

injection of large volumes of water, chemical additives, and suspended solids 

(“proppants”) into the subsurface at high pressures (Osiptsov, 2017). As a result, 

fractures are induced within the source rocks, increasing their overall permeability (Li et 

al., 2015). The high rates of flow within the interconnected network of fractures 

facilitate more efficient recovery of oil and/or gas.         

 Spontaneous imbibition is a capillary-driven flow process, in which a wetting 

fluid (e.g., water, brine) moves into a porous medium displacing a preexisting non-

wetting fluid (e.g., air, natural gas, oil) (Mason and Morrow, 2013; Meng et al., 2017). 

This process, using water or brine with added surfactants to displace oil, has been 

proposed as an enhanced recovery technique (Babadagli, 2005; Towler et al., 2017). 
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With the rapid growth and implementation of fracking technology, spontaneous 

imbibition is now being investigated as a method of improving the recovery of 

hydrocarbon resources from fractured unconventional reservoirs (Fernø, 2012; Javaheri 

et al., 2017). Spontaneous imbibition may also contribute to the loss of fracking fluids 

(known as “leakoff”) during hydraulic fracturing operations. (Dehghanpour et al., 2013).  

Numerous analytical and numerical approaches have been proposed for 

modeling the spontaneous imbibition of a wetting fluid into the gap formed by parallel 

planar surfaces (e.g., Schwiebert and Leong, 1996; Xiao et al. 2006; Wang et al., 2017). 

However, these models invariably represent the opposing surfaces of the fracture as 

smooth and flat. In reality, rock fracture surfaces are rough over multiple scales, and this 

roughness likely influences the contact angle and rate of fluid uptake within the 

fracture. Fractal geometry is a quantitative paradigm for simulating and characterizing 

the irregularity of natural systems (Mandelbrot, 1982). Cai (2010) developed a fractal 

model to predict the displacement of a non-wetting fluid by a wetting fluid within a 

tortuous capillary tube. Several studies have shown that rock fracture surfaces exhibit 

fractal roughness over length scales of two or more orders of magnitude (Power et al., 

1991; Develi and Babadagli, 1998; Boffa et al., 1998; Babadagli and Develi, 2003). 

However, we were unable to find any previously published studies that have sought to 

incorporate the fractal roughness of fracture surfaces into a model for the prediction of 

spontaneous imbibition. 

The objective of this paper, is to derive an analytical model for the spontaneous 

imbibition mechanism within a fracture bounded by parallel rough fractal surfaces. The 

model will be tested by fitting it to experimental data for the spontaneous imbibition of 

water into air-filled fractured rock cores collected using neutron radiography.   

3.2 Theory 

The well-known Wenzel (1936) equation for the contact angle of a fluid on a 

rough surface, 𝜃𝑅, is given by: 
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𝑐𝑜𝑠𝜃𝑅 = 𝑟𝑐𝑜𝑠𝜃𝑆         [3.1] 

where 𝜃𝑆 = the contact angle of a fluid on a smooth flat surface, and 𝑟 is the roughness 

ratio, defined as: 

𝑟 =
𝐴𝑅

𝐴𝑆
         [3.2] 

where 𝐴𝑅 = the projected area of the rough surface relative to the corresponding area 

of the smooth flat surface, 𝐴𝑆.  

Assuming the rough surface is fractal, the number, 𝑁, of tiles of length, ℓ, 

needed to cover it can be calculated using the following expression (Russ, 1994; 

Turcotte, 1997): 

𝑁 = (
ℒ

ℓ
)

𝐷

       [3.3] 

where ℒ = the length scale corresponding to the maximum extent of fractal scaling, and 

2 ≤ 𝐷 < 3 is the surface fractal dimension. Based on Eq. [3.3], the area of a rough fractal 

surface of length ℒ is given by: 

𝐴𝑅 = ℓ2𝑁 = ℓ2−𝐷ℒ𝐷      [3.4] 

Based on Euclidean geometry, the area of a smooth flat surface of length ℒ is given by: 

𝐴𝑆 = ℒ2       [3.5] 

Substituting Eqs. [3.4] and [3.5] into Eq. [3.2] we obtain: 

𝑟 = (
ℓ

ℒ
)

2−𝐷

       [3.6] 

Substituting Eq. [3.6] into Eq. [3.1] we obtain the following expression for the contact 

angle of a fluid on a rough fractal surface: 

𝑐𝑜𝑠𝜃𝑅 = (
ℓ

ℒ
)

2−𝐷

𝑐𝑜𝑠𝜃𝑆                                 [3.7] 

Eqs. [3.1] through [3.7] provide a new, parsimonious derivation of Hazlett’s 

(1990) equation for the contact angle of a fluid on a rough fractal surface. Hazlett’s 

(1990) equation was written in terms of area scaling limits instead of length scaling 

limits, i.e. 

𝑐𝑜𝑠𝜃𝑅 = (
𝜎𝐿

𝜎𝑈
)

1−𝐷
2

𝑐𝑜𝑠𝜃𝑆        [3.8] 
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where 𝜎𝑈 and 𝜎𝐿 are the upper and lower area limits of fractal scaling, respectively.  

Comparing Eqs. [3.7] and [3.8] it can easily be seen that they are equivalent, since 𝜎𝑈 ∝

ℒ2 and 𝜎𝐿 ∝ ℓ2  

Ignoring gravity, the spontaneous imbibition of a wetting fluid into the gap 

formed between smooth flat impermeable parallel plates is given by (Schwiebert and 

Leong, 1996): 

𝐿 =  √
𝑥𝛾𝑐𝑜𝑠𝜃𝑆𝑡

3𝜇
       [3.9] 

where 𝐿 = the distance travelled by the wetting front in time, 𝑡, 𝑥 = the separation 

distance between the two plates, 𝜇 = the absolute viscosity, and 𝛾 = the surface tension 

of the liquid-vapor interface. Substituting Eq. [3.7] into Eq. [3.9] and replacing 𝑥 with the 

mean separation distance between the fracture surfaces, �̅� (Brown, 1987), results in the 

following expression for the spontaneous imbibition of a wetting fluid into the gap 

formed by parallel impermeable fracture surfaces with fractal roughness: 

𝐿 =  √
�̅�𝛾(

ℒ

ℓ
)

2−𝐷
𝑐𝑜𝑠𝜃𝑅𝑡

3𝜇
       [3.10] 

Both Eqs. [3.9] and [3.10} assume a laminar flow regime.  

It is evident from Eq. [3.7] (see Figure 12), that the contact angle for a wetting 

fluid on a rough fractal surface (𝜃𝑅) tends to approach zero for most values of 𝜃𝑆, 𝐷 and 

ℓ

ℒ
 likely to be encountered in geological systems. Thus, it is reasonable to assume that 

𝑐𝑜𝑠𝜃𝑅 = 1 in Eq. [3.10], i.e. 

𝐿 ≈  √
�̅�𝛾(

ℒ

ℓ
)

2−𝐷
𝑡

3𝜇
       [3.11] 

Assuming that the distance travelled by the wetting front represents the upper length 

limit of fractal scaling, i.e. 𝐿 = ℒ, Eq. [3.11] can be rewritten as: 

 𝐿 ≈  (
�̅�𝛾

3𝜇ℓ2−𝐷)
1
𝐷

𝑡
1
𝐷       [3.12] 
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The influence of the surface fractal dimension, 𝐷 and mean fracture aperture 

width, �̅�, on rates of water uptake predicted by Eq. [3.12] are illustrated in Figure 13. 

When �̅� is held constant, imbibition rates decrease with increasing values of 𝐷 (Figure 

13a); this trend can be attributed to the increase in surface roughness as 𝐷 gets larger, 

resulting in more tortuous flow paths, and possibly turbulent flow (Wang et al., 2016), 

within the fracture.  As �̅� is increased with 𝐷 held constant, imbibition rates increase 

(Figure 13b); this is because flow occurs more easily within a wider channel due to 

reduced friction with the side walls. It should be noted that these are early time 

predictions, because the current model neglects gravity. As such they are consistent 

with standard capillary theory, which predicts rapid rates of uptake in large diameter 

capillary tubes at early times, but lower maximum heights attained relative to smaller 

diameter capillary tubes at late times (Cheng et al., 2015).  

When applying Eq. [3.12] in an experimental setting, neutron radiography is used 

to determine 𝐿 and 𝑡 (see Materials and Methods). However, the time at which the 

wetting fluid first contacts the base of the fracture is not known precisely. Therefore, 

when fitting Eq. [3.12] to experimental data a constant, 𝑐, is introduced to account for 

this uncertainty, i.e.   

𝐿 ≈  (
�̅�𝛾

3𝜇ℓ2−𝐷)
1
𝐷

(𝑡 − 𝑐)
1
𝐷      [3.13] 

The unknown parameters, to be estimated by fitting Eq. [3.13] to experimental 𝐿 

versus 𝑡 data, are 𝐷 and 𝑐. The other parameters in Eq. [3.13], 𝛾, 𝜇, �̅� and ℓ, are all 

known quantities; 𝛾 and 𝜇 are physico-chemical constants whose values are available in 

tables, �̅� is measured by image analysis (see Materials and Methods), and the lower 

length limit of fractal scaling, ℓ, is taken to be the length of the ruler used for the 

measurements, i.e. pixel length in neutron radiography. 

3.3 Materials and Methods 

Two rock types with physical properties representative of unconventional 

reservoir rocks were investigated: a tight sandstone (Crossville) and a gas shale 
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(Mancos). Several core samples (5.08 cm long × 2.54 cm diameter) of each rock type 

were supplied by Kocurek Industries Inc. (Caldwell, TX, USA). The samples were cored 

from surface outcrops with unknown locations. The Crossville sandstone samples were 

cored parallel to bedding, while the Mancos shale samples were cored both parallel 

and perpendicular to bedding. 

Crossville sandstone (known commercially as “Crab Orchard sandstone”) was 

deposited during the Pennsylvanian period and is located in Kentucky and Tennessee, 

USA. It is a light-gray fine- to medium-grained sandstone with bands of red, yellow, 

brown and gray due to iron staining (Wanless, 1946). The permeability of Crossville 

sandstone varies between 3 × 10-18 and 3 × 10-17 m2 (Gehne and Benson, 2017). The 

solid phase density and helium gas porosity of the cored samples were measured using 

the method of Donnelly et al. (2016) and were determined to be 2.50 (±0.01) g cm-3 

and 5.85 (±0.27) %, respectively. 

The Mancos shale is an interbedded siltstone and shale located in New Mexico, 

Wyoming, and Utah, USA. It was deposited during the Late Cretaceous and has an 

estimated 595 billion cubic meters of recoverable gas (McLennan et al., 1983; U.S. 

Energy Information Administration, 2011).  Its permeability varies between 9 × 10-19 

and 3 × 10-17 m2 (Mokhtari and Tutuncu, 2015). The Mancos samples were gray in 

color with light gray inter-bedding.  Their solid phase densities and helium gas 

porosities were determined, using the method of Donnelly et al. (2016), to be 2.50 

(±0.01) g cm-3 and 5.59 (±0.39) %, respectively. 

Each rock core was wrapped longitudinally with Kapton® tape to help maintain 

the integrity of the sample during fracturing and to create a no-flow boundary for the 

water uptake experiments. This tape can withstand high temperatures and high 

pressures, and is free of hydrogen compounds that would otherwise inhibit the 

neutron radiography. A simple mode-I longitudinal fracture was produced in each 

wrapped core by compressive loading between parallel flat plates using the Brazilian 

method (Li and Wong, 2013; Cheng et al., 2015). The load was applied by manually 
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operating the bottom loading platen of a Carver Laboratory Press (Model M) with a 25 

Ton Hydraulic Unit (Model #3925). A distinctive crack sound was heard as soon as the 

fracture occurred. Loading was then immediately stopped. 

Fracture aperture widths were measured on all of the cores. Images of both the 

top and bottom faces of each fractured core were taken with a high resolution camera. 

These images were analyzed using ImageJ (Schneider et al., 2012). The width of the 

aperture was measured at 10 locations on a randomly-positioned superimposed square 

grid (see Figure 14a). The measurement process was then repeated using a second 

randomly-positioned grid. Both the top and bottom images were analyzed in this way, 

resulting in 40 width measurements per core. As observed by other researchers (e.g., 

Keller, 1998; Konzuk and Kueper, 2004), these data were log-normally distributed. 

Therefore, the geometric mean fracture aperture width was used as the best estimator 

of �̅� for each core.   

Prior to the spontaneous imbibition experiments all of the cores were oven dried 

at 105°C for a period of 24 hours to bring them to a zero initial moisture content. The 

oven-dried cores were then placed into a humidity controlled container to prevent 

changes in the core’s moisture content prior to placement in the neutron beam. 

As shown in previous studies (e.g., Cheng et al., 2015; Perfect et al., 2014), 

neutron imaging allows for distinct visualization of the movement of hydrogen-rich 

liquids within rocks and other porous media. Thus, dynamic neutron radiography was 

employed to measure the spontaneous imbibition of water within the fractured rock 

cores. The imaging was performed at Oak Ridge National Laboratory’s Neutron Imaging 

Facility (beam line CG-1D, HFIR). The configuration and specifications of this cold 

neutron beam line are described in Santodonato et al. (2015). Neutron radiographs 

were obtained using the sCMOS detector at a rate of 30 frames per second. The field of 

view was 28 mm x 28 mm, and the spatial resolution was 100 m. Cores were placed 

individually in front of the sCMOS detector with their fracture planes oriented parallel 

to the neutron beam. Each core was imaged as it was brought into contact with a 
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deionized-water reservoir following Cheng et al. (2015) (Figure 15a). The resulting 

uptake of water within the fracture was imaged as a series of time-stamped neutron 

radiographs.  

The radiographs were normalized to ensure visualization of the water (shown as 

black pixels). To do this, dark-field images were subtracted from radiographs captured 

both prior to and during wetting. The resulting wetting images were then divided by 

one of the dry images yielding the final normalized radiographs for each core (Figure 

15b). For each time series of normalized radiographs, a 50 pixel wide transect was 

superimposed over the fracture from the base of the core to the top of the image. The 

fracture transect was segmented so as to closely follow any deviations from linearity in 

the fracture. The total length of the transect, 𝐿𝑇, was then used to compute the 

fracture tortuosity, 𝜏, using the relationship 𝜏 =
𝐿𝑇

𝐿𝑆
, where 𝐿𝑆 is the straight line 

distance between the two ends of the transect.  

Pixel gray-scale values were averaged over the width of each superimposed 

transect, resulting in an average gray-scale pixel value for each pixel length of the 

transect (Figure 15c). Change point analysis was employed to determine 𝐿 by detecting 

the distance the water had moved along the transect in each normalized neutron 

radiograph. Change point analysis can identify abrupt shifts in the statistical properties 

of a sequence of observations (Eckley et al., 2011). It is widely used in such fields such 

as climatology, bioinformatics, and finance (Beaulieu et al., 2012; Reeves et al., 2007; 

Erdman and Emerson, 2008; Zeileis et al., 2010). We used a single change point model 

with a likelihood-ratio based approach, as described by Eckley et al. (2011), to detect 

specific shifts in the mean and variance of the average gray-scale pixel values along the 

fracture transect. The resulting change point for each radiograph in the time series is a 

mathematical representation of the distance the water has imbibed along the fracture 

(Figure 15c). The change points were converted from pixel values to millimeters by 

comparing the measured diameter of the core in the radiograph to its known diameter. 

Corresponding 𝑡 values were extracted from the radiograph time stamps. 
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Between 16 and 60 pairs of 𝐿 and 𝑡 values were collected for each core (Table 5). The 

surface fractal dimension, 𝐷, and initial imbibition time, 𝑐, were estimated by fitting Eq. 

[3.13] to the experimental 𝐿 and 𝑡 values on a core-by-core basis, with all other 

parameters specified, using the Levenberg-Marquardt algorithm for non-linear least 

squares regression estimation (Marquardt, 1963). All of the fits converged. Goodness of 

fit was assessed using the root mean squared error (RMSE) and the coefficient of 

determination (R2) computed from the observed and predicted values of 𝐿 for each 

core. Non-parametric analyses of variance (Kruskal and Wallis, 1952) were performed 

on the estimated 𝐷 and 𝑐 parameters, the RMSE’s, and the �̅� and 𝜏 measurements, to 

compare median values between the rock groups. Relationships between variables were 

explored using correlation coefficients (r). Statistical significance was assessed at the p < 

0.05 level. All of the statistical analyses were performed in the R software environment 

(R Core Team, 2016).  

3.4 Results 

Geometric mean aperture widths, �̅�, ranged from 45 to 190 m.  Their 

distribution was right skewed, with a median value of 94 m (Figure 14b). Among rock 

groups, the Mancos shale (parallel) cores had the largest variability in �̅�, ranging from 

45 to 190 m. For the Mancos shale (perpendicular) cores, �̅� ranged from 64 to 113 

m, while for the Crossville sandstone cores the range was 79 ≤ �̅� ≤ 111 m. The 

median �̅� values for the different rock groups were 87, 124, and 93 m for Mancos 

shale (parallel), Mancos shale (perpendicular), and Crossville sandstone, respectively; a 

Kruskal-Wallis test indicated no significant differences between these values.  

 The fracture tortuosity’s, 𝜏, ranged from 1.000 to 1.030, with an overall median 

value of 1.004.  A Kruskal-Wallis test indicated significant differences between the 

median values of 𝜏 for the different rock groups. The Mancos shale (perpendicular) had 

the highest median 𝜏 value (1.008), followed by Mancos shale (parallel) (1.006), and 
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lastly Crossville sandstone (1.000).  The higher 𝜏 for Mancos shale (perpendicular) is to 

be expected since those cores were fractured perpendicular to bedding.  

  Overall, the fitting of Eq. [3.13] to the experimental 𝐿 versus 𝑡 data resulted in 

excellent correspondence. Typical data sets and fits are shown in Figure 16. The RMSE, 

which represents the mean distance of observed values from the predicted values, 

ranged from 0.40 to 1.69 mm (Table 5). Overall, the median RMSE was 0.99 mm. It is 

not always easy to comprehend the goodness of fit when reported as an RMSE value. 

Therefore, although not strictly applicable for non-linear regression, we also computed 

R2 values for the individual fits. These ranged from 0.789 to 0.993, with a median R2 of 

0.963. Both the RMSE and R2 values indicate that the proposed model, Eq. [3.13], fitted 

the observed experimental data very well for the 20 rock cores investigated.  

 The surface fractal dimension, 𝐷, and initial imbibition time, 𝑐, parameters 

estimated by fitting Eq. [3.13] to the experimental 𝐿 and 𝑡 values are listed in Table 5. 

Among all cores, the median 𝐷 value was 2.24, with individual estimates ranging from 

2.04 to 2.45. The median 𝐷 values for the different rock groups were 2.35, 2.25, and 

2.21 for Mancos shale (parallel), Mancos shale (perpendicular), and Crossville 

sandstone, respectively; there were no significant differences between these values 

according to a Kruskal-Wallis test. The 𝑐 parameter provides an estimate of the time at 

which the water reservoir first contacted the base of the fractured core. The 𝑐 values 

ranged from -0.06 to 0.09 s, with a median of 0.02 s. A Kruskal-Wallis test indicated no 

significant differences in median 𝑐 values among the rock groups. 

3.5 Discussion and Conclusions 

The model presented here, Eqs. [3.12] and [3.13], neglects gravity and can only 

be used to predict early time behavior. To predict the maximum height that a wetting 

fluid will attain due to spontaneous imbibition within a fracture, further research will 

be required. Specifically the effect of gravity will need to be incorporated into the 

theoretical derivation. The current model also assumes the fracture occurs within an 
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impermeable matrix. This assumption is perfectly reasonable for the low porosity rock 

types, with matrix permeabilities ranging from 10-19 to 10-17 m2 (Mokhtari and Tutuncu, 

2015; Gehne and Benson, 2017), investigated in this study. There was no visible 

evidence of water moving into the matrix over the course of the extremely short (< 2 s) 

neutron imaging experiments (see Figure 15b). However, the incorporation of a 

permeable matrix, allowing for spontaneous imbibition of water through the fracture 

surface, would greatly expand the range of applicability of the proposed model.     

At the beginning of the spontaneous imbibition process, liquid velocities are 

relatively high, resulting in large Reynolds numbers. It has been shown that fracture 

surface roughness can induce turbulent flow at relatively low Reynolds numbers 

(Ghezzehei, 2004; Wang et al., 2016). The analytical model we have proposed assumes 

a laminar flow regime. Therefore, additional investigations are needed to test this 

assumption and establish critical Reynolds numbers for spontaneous imbibition in 

rough-walled fractures. 

As can be seen in Figure 16, the experimental 𝐿 versus 𝑡 data were slightly less 

variable for Crossville sandstone than for Mancos shale. As a result, individual RMSE 

values obtained from fitting Eq. [3.13] to the experimental data were generally higher 

for Mancos shale than for Crossville sandstone (Table 5). The median RMSE for 

Crossville sandstone was 0.80 mm, as compared to median RMSE’s of 1.04 and 0.89 

mm for the Mancos shale cores fractured parallel and perpendicular to bedding, 

respectively. Although not statistically significant (based on a Kruskal-Wallis test), these 

differences suggest that the model provided a better fit to the sandstone data than to 

the shale data. This could be due to the presence of more hydrous minerals in the shale 

samples resulting in darker pixel values during neutron radiography. While the overall 

trend of wetting could still easily be distinguished in both rock types by change point 

analysis, the hydrous minerals may have contributed to the variability, and 

consequently, the higher median RMSE values. 
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Estimations of the surface fractal dimension, 𝐷, ranged from 2.04 to 2.45 (Table 

5). All of the estimates fell within the theoretical bounds of 2 ≤ 𝐷 < 3 for a fractal 

surface, suggesting that our proposed model is physically sound and that rock fracture 

surfaces are indeed fractal. Recently, Persson (2014) has argued that, because of the 

fragility of actual rough surfaces, practical bounds of 2 ≤ 𝐷 < 2.3 apply to such surfaces. 

The results in Table 5 indicate that 75% of the estimated 𝐷 values fell within this 

restricted range, lending support to his argument.  

In the present study the surface fractal dimension, 𝐷, was estimated inversely by 

fitting Eq. [3.13] to experimental wetting height versus time data. However, there is no 

reason why the fractal model developed here cannot not be used for the forward 

prediction of water uptake into fractured rocks. To accomplish this 𝐷 would need to be 

measured independently in future studies. Babadagli and Develi (2003) have reported 

estimates of 𝐷 based on fracture surface roughness measurements with a 

profilometer. Similar measurements could be made following a spontaneous imbibition 

experiment. The fractured core would first be oven dried to remove any retained 

water. It would then be unwrapped and carefully separated along its fracture plane 

into two halves, each with an exposed fracture surface. Surface profilometry could 

then be employed to provide an independent estimate of 𝐷 for forward modeling. 

The only significant correlation among the variables was a weak positive 

relationship between 𝐷 and �̅� (r = 0.53, p < 0.05). This trend indicates that the fracture 

aperture width increased as the fracture surface fractal dimension increased. Assuming 

random roughness, this is to be expected, since the greater the 𝐷 value, the rougher 

the fracture surfaces and thus, the greater the separation distance between them.  

In conclusion, we have developed an analytical model for spontaneous imbibition of a 

wetting fluid into a fracture formed by opposing rough fractal surfaces. The model 

includes a new parsimonious derivation of Hazlett’s (1990) equation for the contact 

angle of a fluid on a rough fractal surface from the well-known Wenzel (1936) equation. 

The model ignores gravity and is applicable to laminar fluid uptake at early times in 
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otherwise impermeable rock. The model was tested by fitting it to experimental data for 

the spontaneous imbibition of deionized water into rock fractures collected using 

dynamic neutron radiography. Twenty fractured cores from 2 rock types (a tight 

sandstone and a gas shale) were investigated. Geometric mean aperture widths of the 

fractures, �̅�, were measured and entered into the model, while the surface fractal 

dimension, 𝐷, was estimated inversely, along with the initial imbibition time, 𝑐. All of 

the fits successfully converged and there was a close correspondence between the 

observed and modeled heights of wetting.  The estimated 𝐷 values ranged from 2.04 to 

2.45, with a median value of 2.24, which is reasonable for fracture surfaces with fractal 

roughness. 

  



 

31 

 

Chapter 4 
A Fractal Model for Spontaneous Imbibition: Further 

Experimental Validation  

4.1 Introduction 

In typical porous media, fluid can be transported through interconnected void 

spaces between grains. Under variably saturated conditions, the phenomenon of 

spontaneous imbibition drives this process (Kang et al., 2013). Spontaneous imbibition 

occurs when a wetting fluid enters a porous medium and displaces a present non-

wetting fluid. This process is driven by capillary action within interstitial pore spaces 

(Morrow, 2001; Schmid et al., 2012). Researchers have shown that spontaneous 

imbibition is much faster within fracture zones than in the surrounding matrix (Hall, 

2013; Cheng et al., 2015; Tokunaga and Wan, 2001; Şahmaran et al., 2009) (refer to 

Figure 1). In low-porosity rocks, where matrix imbibition is minimal, fracture imbibition 

is likely to play a greater role in fluid transport relative to matrix imbibition (Cheng et al., 

2015). Several industries such as Carbon Sequestration and Deep Waste Storage rely on 

low-porosity rocks to inhibit fluid flow. However, these low-porosity rocks, when 

fractured, contain conduits where spontaneous imbibition can drive fluid uptake. Other 

industries such as construction, often use low-porosity rocks such as granite and 

limestone as building materials. These materials, if fractured, can deteriorate with time 

due to repeated wetting within the fracture zone from spontaneous imbibition. Thus, it 

is important to understand how low porosity rock types typically used in these 

industries respond to spontaneous imbibition within fracture zones.  

4.1.1 Carbon Capture and Storage 

In an initiative to lower global carbon emissions, Carbon Capture and Storage 

technology has been widely considered as a potential solution as seen in places such as 

Sleipner, Norway and Weyburn, Canada (Intergovernmental Panel on Climate Change, 

2005). Carbon capture and storage typically involves the capture of CO2 generated from 
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industrial processes, the compression of the CO2 into a dense fluid state, and then 

subsequent injection of that captured CO2 into underground rock formations deemed 

suitable for sequestration (Gaurina-Međimurec et al., 2017; Intergovernmental Panel on 

Climate Change, 2005). These formations are generally quite porous, and often either 

hold fluids (e.g. brines, oil, natural gas), or have previously held fluids. To ensure proper 

sequestration of the injected CO2, and to limit potential migration, CO2 is injected into 

formations upon which a low porosity, low permeability unfractured caprock overlies 

the storage formation (Intergovernmental Panel on Climate Change, 2005). 

A high seal potential of the overlying caprock is integral in successful carbon 

storage. This seal potential is often evaluated based on the integrity of the caprock as 

well as the sealing capacity. The integrity of the caprock is considered based on the 

presence of fracture systems and faults and their ability to aid in migration of CO2 

(Gaurina-Međimurec et al., 2017). The seal capacity of the caprock is determined by the 

amount of CO2 underlying the caprock that can be retained without allowing for 

capillary entry into the seal (Jimenez and Chalaturnyk, 2002; Kaldi et al., 2013).  

Jimenez and Chalturnyk (2002) suggest that tight granular rocks such as granites, 

have the potential to hold very large columns of CO2, thus having a high seal capacity. 

This high seal capacity suggests that capillary leakage is likely to be minimal in these 

rock types. However, while some porous media may show a slower rate of imbibition 

within its respective matrix, rapid imbibition can occur within in situ fractures (Cheng et 

al., 2015; Hall, 2013). Thus, it is important to understand how potential caprocks could 

potentially leak due to rapid imbibition of fluids within fractured zones. 

4.1.2 Nuclear and Chemical Deep Waste Repositories 

Long-lived hazardous nuclear and chemical wastes require a cost effective form 

of disposal that has a low environmental and health impact. Many disposal ideas 

abound such as deep-seabed disposal, disposal in polar ice sheets, and rocketing waste 

into space (Kim et al., 2011). However, deep geological waste repositories in low-
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porosity rocks (e.g. granites, salt, and clays) are often considered as a practical solution 

(Falck and Nilsson, 2009).  

For high-level nuclear and chemical wastes, a combination of low-porosity rocks 

and engineered materials are used for deep storage (Suzuki et al., 2018). Rather than 

storing waste in porous rock formations as done with CO2, these wastes are 

encapsulated in an engineered canister and then placed in a shaft within a host rock, 

typically a granite. A bentonite clay buffer is placed around the canister and is then 

overlain by a back-fill of clay and host rock material. Lastly, a concrete plug is used to 

seal the entire storage location (Suzuki et al., 2018; Kim et al., 2011; Falck and Nilsson, 

2009). Fractures created during excavation as well as the presence of pre-existing 

natural fractures may provide potential migration pathways for leaking waste. 

4.1.3 Deterioration of Engineered Structures 

Spontaneous imbibition research for porous media has generally focused on 

building materials such as mortar, masonry brick, and dry concrete using the rate of 

imbibition as a measure of potential material durability (Lockington and Parlange, 2003). 

These studies imply that a decreased rate of imbibition indicates the likelihood of a 

material to resist exposure to fluids and reactive solutes (Lockington and Parlange, 

2003). Thus, a faster imbibition rate allows for increased exposure to fluids promoting 

material deterioration. Researchers have shown that increased imbibition occurs within 

fractures and can cause degradation of building materials by repeated wetting within 

microcracks (Bao et al., 2017; Şahmaran et al., 2009). As these building materials are 

rarely fully saturated, spontaneous imbibition is a likely process driving water 

movement within the fractures. Further research is needed to better understand the 

response of common low-porosity building materials, such as granite and limestone, to 

fracture spontaneous imbibition. This can help to inform material selection in the 

construction process as well as determine a given material’s durability and integrity. 

The objective of this chapter, is to further test the analytical model developed in 

chapter 3 for spontaneous imbibition within a fracture bounded by parallel rough fractal 
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surfaces, using potential caprock, host rock, and building materials. The model will be 

tested by fitting it to experimental data for the spontaneous imbibition of water into air-

filled fractured rock cores collected using neutron radiography.  

4.3 Materials and Methods 

To apply the fractal model derived in chapter 3 to low porosity rock types typical 

of those used for caprocks, deep waste storage, and building materials, similar methods 

were employed as outlined in the methods section of chapter 3.  

Four rock types were investigated: a low porosity limestone (Burlington 

Limestone) and three granites (Sierra White, Vermilion Bay Granite, and Westerly). 

Similar to previous chapters, core samples (5.08 cm long × 2.54 cm diameter) of each 

rock type were obtained from Kocurek Industries Inc. (Caldwell, TX, USA). The samples 

were cored from surface outcrops with unknown locations. See section 2.2.1 and Table 

1 for detailed background information on these rock types. 

As outlined in chapter 3, each rock core was wrapped in Kapton® tape and 

fractured using the Brazilian method (Li and Wong, 2013; Cheng et al., 2015). The 

fracture width was then measured at 20 locations on both ends of each core, resulting 

in 40 measurements per core. The resulting data (not shown) were log-normally 

distributed, and geometric mean aperture widths, �̅�, were calculated from these 

measurements. All cores were then oven dried to a zero initial moisture content and 

immediately placed into a humidity controlled container to prevent changes in the 

core’s moisture content prior to placement in the neutron beam. See section 3.3 

methods for more details on the core preparation. 

Dynamic neutron radiography was employed to measure the spontaneous 

imbibition of water within the fractured rock cores. The imaging was performed at Oak 

Ridge National Laboratory’s Neutron Imaging Facility (beam line CG-1D, HFIR). The 

configuration and specifications of this cold neutron beam line are described in 

Santodonato et al. (2015). Neutron radiographs were obtained using the sCMOS 
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detector at a rate of 30 frames per second. The field of view was 28 mm x 28 mm, and 

the spatial resolution was 100 m. Cores were placed individually in front of the sCMOS 

detector with their fracture planes oriented parallel to the neutron beam. Each core was 

imaged as it was brought into contact with a deionized-water reservoir following Cheng 

et al. (2015) (refer to Figure 15a). The resulting uptake of water within the fracture was 

imaged as a series of time-stamped neutron radiographs.  

The radiographs were normalized to ensure visualization of the water (shown as 

black pixels). To do this, dark-field images were subtracted from radiographs captured 

both prior to and during wetting. The resulting wetting images were then divided by one 

of the dry images yielding the final normalized radiographs for each core (refer to Figure 

15b). For each time series of normalized radiographs, a 50 pixel wide transect was 

superimposed over the fracture from the base of the core to the top of the image. The 

fracture transect was segmented so as to closely follow any deviations from linearity in 

the fracture. The total length of the transect, 𝐿𝑇, was then used to compute the fracture 

tortuosity, 𝜏, using the relationship 𝜏 =
𝐿𝑇

𝐿𝑆
, where 𝐿𝑆 is the straight line distance 

between the two ends of the transect.  

Pixel gray-scale values were averaged over the width of each superimposed 

transect, resulting in an average gray-scale value for each pixel length of the transect 

(refer to Figure 15c). Change point analysis, as described by Eckley et al. (2011), was 

employed to determine 𝐿 in Eq. [4.1] by detecting the distance the water had moved 

along the transect in each normalized neutron radiograph. The change points were 

converted from pixel values to millimeters by comparing the measured diameter of the 

core in the radiograph to its known diameter. Corresponding 𝑡 values in Eq. [4.1] were 

extracted from the radiograph time stamps. 

Between 13 and 80 pairs of 𝐿 and 𝑡 values were collected for each core (see Table 

6). The surface fractal dimension, 𝐷, and initial imbibition time, 𝑐, were estimated by 

fitting Eq. [4.1] to the experimental 𝐿 and 𝑡 values on a core-by-core basis using the 

Levenberg-Marquardt algorithm for non-linear least squares regression estimation 
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(Marquardt, 1963). Physico-chemical constants including absolute viscosity (8.9 × 10-5 

dyn·s·mm-2) and surface tension of the liquid-vapor interface (7.2 dyn·mm-1) for water at 

25°C were specified in the model (CRC Handbook of Chemistry and Physics, 2018). All 

other measured parameters were also specified. All of the fits converged. Goodness of 

fit was assessed using the root mean squared error (RMSE) and the coefficient of 

determination (R2) computed from the observed and predicted values of 𝐿 for each 

core. Non-parametric analyses of variance (Kruskal and Wallis, 1952) were performed 

on the estimated 𝐷 and 𝑐 parameters, and the RMSE values to compare median values 

between the rock groups. A non-parametric analysis of variance was also performed on 

the geometric mean aperture widths to test for any differences among rock types. 

Relationships between variables were explored using correlation coefficients (r). 

Statistical significance was assessed at the p < 0.05 level. All of the statistical analyses 

were performed in the R software environment (R Core Team, 2016). 

4.2 Model Review 

In chapter 3, an analytical model for spontaneous imbibition within a fracture 

bounded by parallel rough fractal surfaces was developed (refer to Eq. [3.13]) now 

shown here as Eq. [4.1]. 

𝐿 ≈  (
�̅�𝛾

3𝜇ℓ2−𝐷)
1
𝐷

(𝑡 − 𝑐)
1
𝐷      [4.1] 

In Eq. [4.1], the height of wetting 𝐿 at any given time 𝑡 in a sequence of 

measurements is determined experimentally. Unknown parameters, to be estimated by 

fitting Eq. [4.1] to the experimental 𝐿 versus 𝑡 data, are 𝐷 and 𝑐, where 𝐷 is the surface 

fractal dimension and 𝑐 is a constant introduced as the initial imbibition time. The other 

parameters in Eq. [4.1], 𝛾, 𝜇, �̅� and ℓ, are all known quantities; 𝛾 and 𝜇 are physico-

chemical constants of surface tension and absolute viscosity whose values are available 

in tables, �̅� can be measured by image analysis (see Materials and Methods), and the 

lower length limit of fractal scaling, ℓ, is taken to be the length of the ruler used for the 

experimental measurements, i.e. pixel length in neutron radiography. 
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4.4 Results 

Among rock types, geometric mean aperture widths, �̅�, ranged from 108 to 259 

m with a median of 164 m (see Figure 17). Their distribution was right skewed. The 

Burlington Limestone cores had the largest variability in geometric mean aperture width 

ranging from 113 to 244 m. For the Sierra White Granite cores, �̅� ranged from 115 to 

232 m, while for the Vermilion Bay Granite B cores 108 ≤ �̅� ≤ 180 m. The Westerly 

Granite cores ranged in �̅� from 218 to 259 m. The median �̅� values for the different 

rock groups were 176, 231, 125, and 239 m for Burlington Limestone, Sierra White 

Granite, Vermilion Bay Granite B, and Westerly Granite, respectively; a Kruskal-Wallis 

test indicated significant differences between the rock types at p < 0.05.  

The fracture tortuosity’s, 𝜏, ranged from 1.000 to 1.036, with an overall median 

value of 1.006.  A Kruskal-Wallis test indicated no significant differences between the 

median values of 𝜏 for the different rock groups at p < 0.05. The Vermilion Bay Granite B 

had the highest median 𝜏 value (1.015), followed by Westerly Granite (1.006) and the 

Burlington Limestone (1.004). Lastly, Sierra White Granite had the lowest median 𝜏 

value (1.003).   

The fitting of Eq. [4.1] to the experimental 𝐿 versus 𝑡 data resulted in excellent 

correspondence. Typical data sets and fits are shown in Figure 18. RMSE, which 

represents the mean distance of observed values from the predicted values, ranged 

from 0.52 to 2.58 mm (see Table 6). Overall, the median RMSE was 1.40 mm. R2 values 

between observed and predicted values were also computed for the individual fits. 

These ranged from 0.706 to 0.993, with a median R2 of 0.931. The Burlington Limestone 

had the greatest variability in R2, with values ranging from 0.706 to 0.993. The Sierra 

White Granite seems to have given the most consistent fitting with R2 ranging from 

0.979 to 0.988. Both the RMSE and R2 values indicate that the proposed model, Eq. 

[4.1], fitted the observed experimental data very well for the 24 rock cores investigated.  

 The surface fractal dimension, 𝐷, and initial imbibition time, 𝑐, parameters 

estimated by fitting Eq. [4.1] to the experimental 𝐿 and 𝑡 values are listed in Table 6. 
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Among all cores, the median 𝐷 value was 2.31, with individual estimates ranging from 

2.11 to 2.53. The median 𝐷 values for the different rock groups were 2.24, 2.28, 2.33 

and 2.35 for Burlington Limestone, Sierra White Granite, Vermilion Bay Granite B, and 

Westerly Granite, respectively; there were no significant differences between these 

values according to a Kruskal-Wallis test at p < 0.05. Among all cores, the lowest 𝐷 value 

representing the lower bounds of the calculated 95% confidence interval was 2.10. The 

highest 𝐷 value representing the upper bounds of the calculated 95% confidence 

interval was 2.54. The 𝑐 parameter provides an estimate of the time at which the water 

reservoir first contacted the base of the fractured core. The 𝑐 values ranged from -0.03 

to 0.03 s, with a median of 0.02 s. A Kruskal-Wallis test indicated no significant 

differences in median 𝑐 values among the rock groups. Using correlation coefficients (r), 

no statistical relationships were found between variables at the p < 0.05 level. 

4.5 Discussion and Conclusions 

 The spontaneous imbibition model fit the experimental data very well, 

converging in all cases. RMSE values obtained by fitting Eq. [4.1] to experimental 𝐿 and 𝑡 

values indicate that the model fit the experimental data for several rock types very 

closely (see Figure 18). While not significantly different in RMSE values among rock 

types (based on a Kruskal-Wallis test), the model seemed to most closely fit the Sierra 

White Granite data, with RMSE values ranging from 0.59 to 0.74 mm and a median value 

of 0.71 mm. The model also showed exceptional fits on the other rock types as seen in 

Figure 18, with median RMSE values of 2.32, 1.40, and 1.23 mm for Burlington 

Limestone, Vermilion Bay Granite B, and Westerly Granite, respectively. Estimated 

surface fractal dimensions, 𝐷, for all of the rock cores fell within the theoretical bounds 

of 2 ≤ 𝐷 < 3 for a fractal surface, suggesting that the proposed model is physically sound 

and that rock fracture surfaces are indeed fractal.  

 Future research should focus on forward prediction using the proposed model as 

a method in evaluating capillary leakage of caprocks and host rocks through in situ 
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fractures. This could be done by measuring the fractal dimension, 𝐷, for fracture 

surfaces in the desired caprock, by using a an instrument such as a profilometer 

(Babadagli and Develi, 2003). With 𝐷 as a known parameter, as well as probable 

measurements for other known parameters, 𝛾, 𝜇, �̅� and ℓ, spontaneous imbibition 

within a fractured low porosity caprock could be predicted.  

 In this study, deionized water displacing air at atmospheric pressure was used for 

all of the spontaneous imbibition measurements. However, other wetting (e.g. brine) 

and non-wetting (e.g. CO2 in a dense fluid state, methane, and oil) fluids, should 

theoretically work with this model as long as model parameters such as the fluid 

viscosity and surface tension are known. Future research should focus on testing this 

model with other fluids such as those mentioned above, and possibly at pressures 

relevant to deep subsurface conditions.  

 In conclusion, a theoretical model for spontaneous imbibition within fractures 

with parallel fractal surfaces was tested on caprock materials potentially usable for 

carbon sequestration, waste storage repositories, and building stone. The model 

successfully estimated the fractal dimensions within expected theoretical bounds of the 

rock types tested. The model was tested by fitting it to experimental data for the 

spontaneous imbibition of deionized water into rock fractures collected using dynamic 

neutron radiography. Twenty four fractured cores from 4 rock types (a low porosity 

limestone and three granites) were investigated. Geometric mean aperture widths of 

the fractures, �̅�, were measured and entered into the model, while the surface fractal 

dimension, 𝐷, was estimated inversely, along with the initial imbibition time, 𝑐. All of 

the fits successfully converged and there was a close correspondence between the 

observed and modeled heights of wetting.  The estimated 𝐷 values ranged from to 2.11 

to 2.53 with a median value of 2.31, which is reasonable for fracture surfaces with 

fractal roughness. 
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Chapter 5 
Conclusions and Suggestions for Future Research 

5.1 Conclusions 

 The overall goal of this study was to both measure and model spontaneous 

imbibition within unsaturated, fractured low-porosity rocks in order to better 

understand their hydraulic properties. Eight rock types were analyzed including: 

Burlington Limestone, Crossville Sandstone, Mancos Shale (core both perpendicular and 

parallel to bedding planes), Sierra White Granite, Vermilion Bay Granites (two varieties), 

and Westerly Granite (refer to Table 1). These rocks were chosen as they represent 

examples of low-porosity rock types used in various industrial applications. These 

applications include oil and gas recovery, hydraulic fracturing, deep waste storage, and 

the building of engineered structures. Thus, knowing their hydraulic properties with 

regard to spontaneous imbibition can be of benefit to society. 

 Spontaneous imbibition of water was visualized and measured on a total of 43 

rock cores of length 5.08 cm and a diameter of 2.54 cm representing several replicates 

of each of the eight rock types. These cores were fractured between flat parallel plates 

using the Brazilian method. In order to assess the influence of aperture width on 

spontaneous imbibition within fracture zones, each rock type was characterized by the 

geometric mean aperture width. In general, the igneous rocks tended to have larger 

aperture widths while sedimentary rocks had smaller aperture widths. Fractures among 

the different rock types ranged in geometric mean aperture widths from 84 to 205 m 

(refer to Table 2). The fracture widths were significantly correlated with both solid 

phase density and porosity. While not the focus of this study, the solid phase density 

had the strongest correlation with fracture width (r = 0.92, p < 0.05) indicating that 

mechanical properties related to the mineralogy of the individual cores likely plays a 

large role in determining the width of apertures produced by the Brazilian method. 

 Spontaneous imbibition of water displacing air was visualized within the fracture 

zone of each of the eight rock types. This was done by implementing dynamic neutron 
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radiography to image the movement of water within the fractures of the 43 cores. 

Neutron radiographs were generated during this process, allowing for the quantitative 

measurement and modeling of spontaneous imbibition within the rock core fracture 

zone. The wetting fronts portrayed a square-root of time behavior, allowing fracture 

sorptivity values to be computed. Fracture sorptivity values ranged from 13.2 to 33.7 

mm·s-0.5. The fracture sorptivity parameter differed among rock types, with sedimentary 

cores generally resulting in larger values relative to igneous cores. A significant negative 

correlation between fracture sorptivity and Wenzel roughness factor was found, 

indicating that fracture sorptivity tends to decrease as fracture surface roughness 

increases among these rock types. 

 A theoretical model for spontaneous imbibition within a fracture comprised of 

parallel fractal surfaces was derived and tested on gas shale’s and tight gas sandstones 

(e.g. Mancos Shale and Crossville Sandstone), as well as rock types similar to caprocks in 

deep waste repositories (e.g. Sierra White Granite, Vermilion Bay Granite, and Westerly 

Granite). A low porosity limestone sample (Burlington Limestone) relevant to building 

materials was also tested. In total, the model was validated using 44 cores, which were 

different from those measured in Chapter 2 (i.e. no duplicate cores were used). Of these 

cores, several replicates of the different rock types were tested (refer to Tables 5 and 6). 

Similar to the samples used for the measurement of spontaneous imbibition, these rock 

cores were fractured using the Brazilian method, inducing a planar mode-I fracture. 

Among these 44 cores, median fracture aperture widths and fracture tortuosities were 

significantly different between the different rock types (see Table 7). The theoretical 

model was fitted to experimental fracture imbibition data obtained through dynamic 

neutron radiography. All of the fits converged for the 44 rock cores investigated (i.e. 

cores analyzed in Chapters 3 and 4). Surface fractal dimensions, 𝐷, were estimated 

inversely and ranged from 2.04 to 2.53.  All 44 estimates were within the theoretical 

bounds for a rough fractal surface, i.e.  2 ≤ 𝐷 < 3, although there were no significant 

differences between the median 𝐷 values for the different rock types (see Table 7). This 
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proposed theoretical model may be a suitable way to estimate fracture surface 

roughness based upon spontaneous imbibition data for fractured low porosity rocks.   

 Among the cores analyzed in Chapters 3 and 4, a weak positive correlation was 

found between 𝐷 and the geometric mean aperture width, �̅� (r = 0.34, p < 0.05, DF = 

42). No other significant correlations were found between the model variables 𝐷 and �̅�, 

and other measured values (i.e. contact angle, porosity, solid phase density, sorptivity, 

tortuosity, and Wenzel roughness). 

 Measurements of the geometric mean aperture widths in Chapter 2 and those 

measured in Chapters 3 and 4 were quite similar. The Westerly Granite produced the 

largest geometric mean aperture width in both experiments. The Mancos Shale and 

Crossville Sandstone yielded the smallest apertures. A strong positive correlation (r = 

0.91, p < 0.05) existed between the geometric mean aperture widths measured in 

Chapter 2 and those reported in Chapters 3 and 4, indicating that despite some 

variation, the aperture widths were consistent in both experiments.  

5.2 Suggestions for Further Research 

This study provided measurements of spontaneous imbibition within 

unsaturated, fractured low-porosity rocks. If possible, future investigations of the 

influence of fracture surface roughness on the rate of fracture spontaneous imbibition 

should implemented using larger core sizes. In this study, relatively small cores (25.4 

mm in diameter by 50.8mm in length) were used. However, as suggested by Vogler et al. 

(2017), small core sizes may produce rougher surfaces from intragranular fractures. The 

use of larger core sizes would allow for the production of more natural fractures along 

grain boundaries when using the Brazilian method for fracturing. Thus, a more realistic 

fracture and fracture roughness would be produced allowing for a more realistic 

simulation of natural in situ fracture imbibition. 

During the fracturing process of this study, it was noted that, qualitatively, 

certain rock types possessed varying tensile strengths, thus resulting in higher or lower 



 

43 

 

loading stresses to induce failure. Specific measurements of the stress applied at failure 

would allow for increased rock type characterization as well as potentially provide a 

quantifiable measurement of fracture variability within similar rock types.  

A theoretical model for spontaneous imbibition within the fracture zone was 

developed. This model, however, has a few assumptions which could be improved 

upon in future studies. The current model ignores gravity and focuses on early time 

imbibition. With a focus on early time imbibition, the model does not account for 

lateral movement of water into pore spaces; the model assumes an impermeable 

matrix. This assumption is perfectly reasonable for the low porosity rock types 

investigated in this study, specifically during early time imbibition. There was no visible 

evidence of water moving into the matrix over the course of the extremely short (< 2 s) 

neutron imaging experiments (see Figure 15b). However, the incorporation of a 

permeable matrix, allowing for spontaneous imbibition of water through the fracture 

surface, would greatly expand the range of applicability of the proposed model and 

better represent late time imbibition. Thus, further work should focus on the inclusion 

of gravity (i.e. extending the model to late time) as well as accounting for a permeable 

matrix. 

The present model also assumes a laminar flow regime during fracture 

imbibition. However, at the beginning of the spontaneous imbibition process, liquid 

velocities are relatively high, resulting in large Reynolds numbers. It has been shown 

that fracture surface roughness can induce turbulent flow at relatively low Reynolds 

numbers (Ghezzehei, 2004; Wang et al., 2016). Therefore, additional investigations are 

needed to test this assumption and establish critical Reynolds numbers for 

spontaneous imbibition in rough-walled fractures. Finally, spontaneous imbibition 

within the fracture zone was measured solely at a zero-gauge pressure. Further 

research and incorporation of confining pressures into the spontaneous imbibition 

model could be beneficial.   
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Lastly, future studies should focus on the forward prediction of spontaneous 

imbibition using the derived spontaneous imbibition model. This could be done using 

independent estimates of the fractal dimension obtained from surface roughness data 

measured for example using a profilometer, as was accomplished by Babadagli and 

Develi (2003). These independent measurements could then be used in the model to 

forwardly predict spontaneous imbibition for a given material and fluid. 
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Table 1: Physical rock properties of the sample rock types as means of measured values with standard 
errors shown. Abbreviations of rock types listed below rock name. Note only Mancos Shale 
(perpendicular) was measured denoted here as simply Mancos Shale. 

Rock Type 
Bulk Density 

(g cm-3)† 
Solid Phase Density 

(g cm-3)† 
Porosity 

(%)† 

Intrinsic 
Contact 

Angle (°)‡ 

Wenzel 
Roughness 

Factor ‡ 

Burlington 
Limestone 

(BL) 
2.66 ± <0.01 2.70 ± <0.01 1.77 ± 0.09 76.4 ± 3.3  1.63 ± 0.09 

Crossville 
Sandstone 

(CS) 
2.50 ± 0.01 2.65 ± <0.01 5.85 ± 0.27 42.6 ± 4.3 1.62 ± 0.09 

Mancos Shale 
(MS) 

2.50 ± 0.01 2.64 ± 0.01 5.59 ± 0.39 38.4 ± 4.9 1.76 ± 0.09 

Sierra White 
Granite 

(SW) 
2.63 ± <0.01 2.67 ± <0.01 1.49 ±0.13 46.2 ± 2.6 1.84 ± 0.13 

Vermilion Bay 
Granite A 

(VBA) 
2.61 ± <0.01 2.63 ± <0.01 0.69 ± 0.15 58.8 ± 4.1 1.88 ± 0.11 

Vermilion Bay 
Granite B 

(VBB) 
2.62 ± <0.01 2.70 ± <0.01 0.81 ± 0.10 55.9 ± 2.9 1.82 ± 0.16 

Westerly 
Granite 

(WG) 
2.63 ± <0.01 2.65 ± <0.01 0.89 ± 0.10 52.5 ± 2.1 1.70 ± 0.16 

 
† Values measured using the method of Donnelly et al. (2016) by Andrew Vial 
‡ Values taken from previous study by Gates (2018)  
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Table 2: Geometric mean aperture width and Tukey’s grouping 

 

 

 

  

Rock Type Geometric Mean Aperture Width (µm) Grouping Cores 

Burlington Limestone 191 ab 5 

Crossville Sandstone 89 d 6 

Mancos Shale (parallel) 85 d 6 

Mancos Shale (perpendicular) 84 d 6 

Sierra White Granite 176 ab 7 

Vermilion Bay Granite A 166 b 5 

Vermilion Bay Granite B 125 c 4 

Westerly Granite 205 a 4 
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Table 3: Sorptivity values for samples with clarity in neutron radiographs allowing hand measurements. 
Goodness of fit shown by coefficient of determination R2. Grayed out samples were excluded from further 
analyses as R2 < 0.9 

Rock Type Replicates R2 Sorptivity (mm sec-0.5) 

Burlington Limestone 1 0.9071 27.78 

Burlington Limestone 2 0.9817 33.50 

Burlington Limestone 3 0.9933 40.50 

Burlington Limestone 4 0.9999 32.82 

Crossville Sandstone 1 0.8274 25.28 

Crossville Sandstone 2 0.9860 21.34 

Crossville Sandstone 3 0.9818 26.07 

Crossville Sandstone 4 0.9038 24.52 

Crossville Sandstone 5 0.9836 25.90 

Crossville Sandstone 6 0.9915 25.14 

Mancos Shale (parallel) 1 0.9982 38.47 

Mancos Shale (parallel) 2 0.9508 29.35 

Mancos Shale (parallel) 3 0.9158 25.02 

Mancos Shale (perpendicular) 1 0.7268 26.20 

Mancos Shale (perpendicular) 2 0.9377 18.41 

Mancos Shale (perpendicular) 3 0.9451 24.61 

Mancos Shale (perpendicular) 4 0.9248 26.13 

Mancos Shale (perpendicular) 5 0.9902 29.17 

Sierra White Granite 1 0.8622 14.35 

Sierra White Granite 2 0.8770 22.27 

Sierra White Granite 3 0.9880 16.61 

Sierra White Granite 4 0.9647 19.07 

Sierra White Granite 5 0.9818 19.16 

Vermilion Bay Granite A 1 0.9614 14.32 

Vermilion Bay Granite A 2 0.1758 3.28 

Vermilion Bay Granite A 3 0.9824 10.08 

Vermilion Bay Granite A 4 0.8802 11.12 

Vermilion Bay Granite A 5 0.9924 15.35 

Vermilion Bay Granite B 1 0.9583 14.02 

Vermilion Bay Granite B 2 0.9964 19.32 

Vermilion Bay Granite B 3 0.9956 21.27 

Vermilion Bay Granite B 4 0.9469 16.16 

Westerly Granite 1 0.9732 31.26 

Westerly Granite 2 0.9906 29.02 

Westerly Granite 3 0.9483 29.00 

Westerly Granite 4 0.8845 17.35 
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Table 4: Mean sorptivity and Tukey’s grouping 

Rock Type Mean Sorptivity (mm sec-0.5) Grouping Cores 

Burlington Limestone 33.7 a 4 

Crossville Sandstone 24.6 bc 5 

Mancos Shale (parallel) 30.9 ab 3 

Mancos Shale (perpendicular) 24.6 abc 4 

Sierra White Granite 18.3 cd 3 

Vermilion Bay Granite A 13.2 d 3 

Vermilion Bay Granite B 17.7 cd 4 

Westerly Granite 29.8 ab 3 
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Table 5: Parameter estimates and associated 95% confidence intervals obtained by fitting Eq. [3.13] to the 
neutron radiography data for each replicate of each rock group 

 

  

Rock Type 
Replicate 

number 

Number of 

observations 

Surface fractal 

dimension, 𝑫 

Initial 

imbibition 

time, 𝒄 (s) 

RMSE 

(mm) 

Crossville Sandstone 1 24 2.21 ± 0.01 0.03 ± 0.01 1.03 

Crossville Sandstone 2 17 2.18 ± 0.02 0.03 ± 0.01 1.36 

Crossville Sandstone 3 34 2.24 ± <0.01 0.09 ± <0.01 0.62 

Crossville Sandstone 4 26 2.19 ± <0.01 0.03 ± <0.01 0.52 

Crossville Sandstone 5 21 2.04 ± 0.01 0.01 ± <0.01 1.17 

Crossville Sandstone 6 24 2.23 ± <0.01 0.06 ± <0.01 0.52 

Crossville Sandstone 7 24 2.24 ± 0.01 0.03 ± 0.01 0.80 

Mancos Shale (parallel) 1 17 2.24 ± 0.01 0.03 ± <0.01 1.04 

Mancos Shale (parallel) 2 58 2.45 ± 0.01 0.00 ± <0.01 0.88 

Mancos Shale (parallel) 3 41 2.35 ± 0.01 0.07 ± 0.03 1.43 

Mancos Shale (parallel) 4 38 2.42 ± 0.02 0.01 ± 0.04 1.69 

Mancos Shale (parallel) 5 16 2.08 ± 0.02 -0.01 ± 0.02 0.95 

Mancos Shale (parallel) 6 24 2.17 ± 0.01 0.01 ± 0.01 0.56 

Mancos Shale (parallel) 7 46 2.37 ± 0.01 0.02 ± 0.03 1.04 

Mancos Shale (perpendicular) 1 23 2.26 ± 0.01 0.01 ± <0.01 0.65 

Mancos Shale (perpendicular) 2 60 2.33 ± 0.01 -0.01 ± 0.04 1.04 

Mancos Shale (perpendicular) 3 62 2.29 ± 0.01 -0.06 ± 0.03 1.51 

Mancos Shale (perpendicular) 4 25 2.25 ± 0.02 -0.01 ± 0.05 1.50 

Mancos Shale (perpendicular) 5 13 2.17 ± 0.01 0.03 ± <0.01 0.40 

Mancos Shale (perpendicular) 6 17 2.17 ± 0.01 0.03 ± <0.01 0.74 
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Table 6: Parameter estimates and associated 95% confidence intervals obtained by fitting Eq. [4.1] to the 
neutron radiography data for each replicate of each rock group. 

 

 

 

 

 

 

 

Rock type 
Replicate 

number 

Number of 

observations 

Surface fractal 

dimension, 𝑫 

Initial 

imbibition 

time, 𝒄 (s) 

RMSE 

(mm) 

Burlington_Limestone 1 40 2.41 ± 0.01 0.03 ± <0.01 1.46 

Burlington_Limestone 2 17 2.19 ± 0.01 0.01 ± <0.01 0.52 

Burlington_Limestone 3 13 2.14 ± 0.04 0.01 ± <0.01 2.48 

Burlington_Limestone 4 13 2.34 ± 0.06 0.01 ± <0.01 2.52 

Burlington_Limestone 5 16 2.27 ± 0.04 0.03 ± <0.01 2.58 

Burlington_Limestone 6 11 2.49 ± 0.01 0.01 ± <0.01 0.99 

Burlington_Limestone 7 15 2.26 ± 0.03 0.01 ± <0.01 2.47 

Sierra_White_Granite 1 23 2.35 ± 0.01 0.03 ± <0.01 1.40 

Sierra_White_Granite 2 22 2.53 ± 0.01 0.02 ± 0.02 0.84 

Sierra_White_Granite 3 32 2.34 ± 0.02 0.03 ± <0.01 1.93 

Vermilion_Bay_Granite_B 1 85 2.33 ± 0.01 0.03 ± <0.01 1.41 

Vermilion_Bay_Granite_B 2 26 2.34 ± 0.01 0.01 ± <0.01 1.63 

Vermilion_Bay_Granite_B 3 59 2.30 ± 0.01 0.00 ± <0.01 0.90 

Vermilion_Bay_Granite_B 4 70 2.40 ± 0.01 0.03 ± <0.01 1.56 

Vermilion_Bay_Granite_B 5 38 2.11 ± 0.01 0.01 ± 0.01 0.76 

Vermilion_Bay_Granite_B 6 35 2.22 ± 0.05 -0.03 ± 0.07 2.32 

Vermilion_Bay_Granite_B 7 42 2.24 ± 0.02 0.03 ± 0.01 1.06 

Vermilion_Bay_Granite_B 8 12 2.32 ± 0.01 0.03 ± 0.01 1.60 

Vermilion_Bay_Granite_B 9 36 2.22 ± 0.01 0.03 ± 0.01 1.08 

Vermilion_Bay_Granite_B 10 27 2.19 ± 0.01 0.01 ± 0.02 1.03 

Vermilion_Bay_Granite_B 11 20 2.33 ± 0.01 0.02 ± 0.02 1.72 

Vermilion_Bay_Granite_B 12 51 2.27 ± 0.01 0.01 ± 0.01 0.74 

Westerly_Granite 1 28 2.32 ± 0.01 0.03 ± 0.01 0.71 

Westerly_Granite 2 43 2.26 ± <0.01 0.03 ± <0.01 0.59 
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Table 7: Median values for estimated and measured parameters for all rock cores tested in both chapters 
3 and 4.  

Rock Type 
Surface Fractal 
Dimension, 𝑫 

Aperture Width†, 

𝒙 (m) 
Tortuosity†, 

𝝉 
Replicates 

Burlington Limestone 2.22 176 1.002 7 

Crossville Sandstone 2.21 87 1.000 7 

Mancos Shale (parallel) 2.35 124 1.006 7 

Mancos Shale (perpendicular) 2.25 93 1.008 6 

Sierra White Granite 2.27 231 1.003 3 

Vermilion Bay Granite B 2.33 125 1.015 12 

Westerly Granite 2.35 239 1.006 2 

  

† Significant differences among rock types as indicated by Kruskal-Wallis test at p < 0.05 
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Appendix 2 - Figures 
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Figure 1: Illustration of a porous fractured core coming in contact with a water reservoir over time. T0 
indicates the initial contact of the core with the water reservoir shown on left. Later time steps T1 and T2 
subsequently shown to the right. Spontaneous imbibition is shown as occurring both within the matrix 
and within the fracture. Note the difference in wetting front height between the fracture and matrix.  
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Figure 2 : Top view of fractured rock cores. Top row from left to right: Burlington Limestone, Crossville 
Sandstone, Mancos Shale (cored perpendicular), Mancos Shale (cored parallel); Bottom row from left to 
right: Vermilion Bay Granite A, Vermilion Bay Granite B, Sierra White Granite, Westerly Granite. 
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Figure 3 : Westerly Granite core with random overlying grid applied to image in ImageJ. Measurements 
taken at fracture intersection with grid as shown by blue points. Each core had two grids applied per core 
side resulting in 20 measurements per side and 40 measurements per core. 
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Figure 4 : (a) Neutron radiography imaging set-up with the MCP detector. The rock core (brown) is 
brought in contact with a water reservoir (aluminum container) in front of the beam-line while the 
detector images neutrons attenuated by the water. (b) Neutron radiograph produced by the MCP 
detector of a Crossville Sandstone sample. Note the water reservoir and the linear fracture imbibing 
water (black). 
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Figure 5 : Histograms showing the distribution of measured fracture aperture widths for each rock type. X-
axis shows aperture width in microns and y-axis shows frequency. Geometric mean aperture width shown 
as a dotted black line. BL – Burlington Limestone, CS - Crossville Sandstone, MS-par – Mancos Shale 
(parallel), MS-per – Mancos Shale (perpendicular), SW – Sierra White Granite, VBA – Vermilion Bay 
Granite A, VBB – Vermilion Bay Granite B, WG – Westerly Granite. Note the right skewed distributions. 

 



 

70 

 

 

Figure 6 : Log-transformed distributions used for analysis of variance. X-axis is the logarithm of the 
aperture widths in microns. Y-axis represents the frequency. The arithmetic mean of the log distribution is 
shown as the black dashed line. BL – Burlington Limestone, CS - Crossville Sandstone, MS-par – Mancos 
Shale (parallel), MS-per – Mancos Shale (perpendicular), SW – Sierra White Granite, VBA – Vermilion Bay 
Granite A, VBB – Vermilion Bay Granite B, WG – Westerly Granite. 
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Figure 7 : Typical fittings of linear regression per rock type. The coefficient of determination R2 is shown 
for each rock type. X-axis represent the square root of time and Y-axis represents the wetting height in 
mm. The slope of each regression line is equivalent to the respective sample’s sorptivity. a) Burlington 
Limestone; b) Crossville Sandston; c) Mancos Shale (parallel); d) Mancos Shale (perpendicular); e) Sierra 
White Granite; f) Vermilion Bay Granite A; g) Vermilion Bay Granite B; h) Westerly Granite. 
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Figure 8 : Mean fracture sorptivity with 95% confidence intervals and Tukey letter groupings shown for 

each rock type. Y-axis is sorptivity in 𝑚𝑚 ∙ 𝑠𝑒𝑐−0.5. The arithmetic average of each distribution is shown as 
a black diamond. Rock types with the same Tukey letter are not significantly different. BL – Burlington 
Limestone, MS-par – Mancos Shale (parallel), WG – Westerly Granite, MS-per – Mancos Shale 
(perpendicular), CS - Crossville Sandstone, VBB – Vermilion Bay Granite B, SW – Sierra White Granite, VBA 
– Vermilion Bay Granite A. 

 



 

73 

 

 

Figure 9: Correlation matrix illustrating relationships between sample rock properties. Values of bulk and 
solid phase density as well as porosity were measured by Andrew Vial. Measurements of contact angle 
and roughness from Gates (2018). No significant relationship designated by an “X.” Positive correlations 
shown in red with negative correlations shown in blue with gradations in color indicating the strength of 
correlation coefficient (r). Significant relationships at p < 0.05 shown with value of correlation coefficient 
(r).  

 

 

 

 

 

 

 

 



 

74 

 

 

Figure 10: Linear regression relationship between measured fracture sorptivity values and Wenzel surface 
roughness for all rock types. Roughness measurements from Gates (2018). 
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Vermilion Bay Granite A: 13.2 mm ∙ sec−0.5 

Burlington Limestone: 33.7 mm ∙ sec−0.5 

Mancos Shale (parallel): 30.9 mm ∙ sec−0.5 

Westerly Granite: 29.8 mm ∙ sec−0.5 

Mancos Shale (perpendicular): 24.6 mm ∙ sec−0.5 

Crossville Sandstone: 24.6 mm ∙ sec−0.5 

Sierra White Granite: 18.3 mm ∙ sec−0.5 

Vermilion Bay Granite B: 17.7 mm ∙ sec−0.5 
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Figure 11: Core samples ordered from highest sorptivity (top) mm ∙ sec−0.5  to lowest (bottom). 
General qualitative negative correlation shown between increasing grain size and decreasing 
sorptivity values. Note that this trend seems to fit to all rock types except the Westerly Granite, 
which has a larger grain size relative to other rock types as well as a higher sorptivity. 
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Figure 12: Minimum contact angles for a fluid on a smooth flat surface, 𝜃𝑆, required to give 𝜃𝑅  > 0 on a 

rough fractal surface predicted using Eq. [3.7] for various combinations of 𝐷 and 
ℓ

ℒ
. 
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Figure 13: Height of wetting within a fracture versus time as predicted by Eq. [3.12]. (a) Fracture aperture 

spacing, �̅�, held at 100 m while varying the surface fractal dimension, 𝐷. (b) Surface fractal dimension 𝐷 
held at 2.5 while varying the fracture aperture spacing, �̅�. 
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Figure 14 : (a) A typical fractured Mancos Shale (perpendicular) core shown with a superimposed random 
grid; measurements of aperture width were taken at the intersection points of the fracture and the grid 
(shown as red dots). (b) Frequency distribution of geometric mean fracture aperture widths for all of the 

rock types (20 cores) with a bin size of 10 m; the vertical dashed line represents the median value. 
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Figure 15 : (a) Schematic illustration showing the uptake of water within a fractured core sample soon 
after basal contact with water. (b) Example of a normalized neutron radiograph showing water (in black) 
within a fractured Crossville Sandstone core. (c) Change point analysis of the neutron radiograph shown in 
b. The solid orange lines represent mean pixel values for the wet and dry regions within the fracture. The 
blue dashed line is the detection point, representing the height of wetting, at which a shift in the mean 
pixel values occurred. 
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Figure 16 : Typical height of wetting versus time data sets determined using dynamic neutron radiography 
and change point analysis: (a) Crossville Sandstone, replicate number 3, and (b) Mancos Shale (cored 
parallel to bedding), replicate number 2. The solid lines represent predicted values obtained from fitting 
of Eq. [3.13] to the experimental data using non-linear regression. 
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Figure 17 : Frequency distribution of geometric mean fracture apertures for all of the rock types (24 cores) 

with a bin size of 20 m; the vertical dashed line represents the median fracture aperture. 
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Figure 18 : Typical height of wetting versus time data sets determined using dynamic neutron radiography 
and change point analysis: (a) Burlington Limestone, replicate number 3, (b) Sierra White Granite, 
replicate number 2, c) Vermilion Bay Granite B, replicate number 11, and d) Westerly Granite, replicate 1. 
The solid lines represent predicted values obtained from fitting of Eq. [4.1] to the experimental data using 
non-linear regression. 
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